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A Collection of Teat Problems for 
Q r d b y  Differential. tion Solvers 
Which Have F'rovis Rootfinding 

S .  Thompson 

Several popular ordinary differential equation (ode) solvers contain provisions for 
locating roots of functions which depend on the solution of the ode. A collection of 
problems for testing such solvers is described in this report. In addition to several well- 
known problems. the collection contains other interesting problems which have not 
previously appeared in the literature. 

INTRODUCTION 

Excellent collections of test problems are available for testing general ordinary 
differential equation (ode) solvers (for example, see 16, 7, 13. 19. 201). This report 
presents a systematiaed collection of test problems for ordmary differential equation 
solvers and continuous simulation languages which have rootfinding capabilities. Such a 
solver is designed to integrate initial value problems of the form 

while simultaneously locating roots of event functions 

Such event functions sometimes correspond to derivative discontinuities, points at 
which the underlying initial value problem is changed. or simpk rootfirnding requirements 
such as locating the times at which a solution component attains a prescribed value. 
Prototype problems requiring rootfinding include the bouncing ball (Problem D-1) and 
stiction-friction (Problem B-3). The difficulties associated with rootfinding in the context 
of odes sometimes are not fully appreciated. (To emphasize this fact: the author is aware 
of no available ode solver with rootfinding which handles correctly all of the problems in 
this report, unless the user is extremely careful.) Excellent discussions of several of these 
difficulties are given in 111, 251. 

Several good ode solvers are available which contain rootfinding capabilities of one type 
or another (for example. see [9. 11. 12. 13. 21. 22. 23. 24, 251). Other such solvers will 
become available in the near future. In fact. it is anticipated that most new software for 
initial value problems in ordinary differential equations will contain provisions for 
rootfinding. It has been pointed out. for example. that the *next generation of Runge- 
Kutta code" will contain such provisions. The collection of problems described in this 
report should be useful in studying the performance of such solvers for problems 
requiring rootdinding. 
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The problems have been grouped roughly into several classes. Group A contains falling 
body problems with simple rootfinding (time-dependent event functions and functions of 
the form yi  - a where a is constant). Group B contains problems with switches in the 
derivative: (multiple state-dependent branches which define the derivative). Group C 
contains problems for which it is desired to build tables of values. These problems 
involve the re-definition of the event function at roots. Group D contains problems in 
which the underlying initial value problem changes at each root o f  the event function. 
Each problem is equivalent to a sequence of initial value problems. The roots of the event 
functions also cluster at finite times. The problems in this section have the property that 
if any root of the event equation is ever missed, it will not be possible to correctly solve 
the problem thereafter. Group E contains problems with derivative singularities. These 
problems require that the derivative definition be extended in a suitable fashion at the 
singularity. Some of the problems in Group F involve more general event functions (for 
example. event functions which depend on more than one of the solution components). 
(Some ode solvers restrict the rootfinding to locating times when a solution component 
attains a prescribed value, Problem such as the ones in Group F can be handled by such 
solvers by adding solution compnen& to the system.) Group 0 contains several 
interesting problems without simple solutions but for which the qualitative behavior of 
the solution is well-known. No test results are present in this report. Extensive results 
for this collection of problems and several Runge-Rutta-Sarafyan integrators will be 
presented in a forthcoming report. In fact. one of the purposes of the present report is to 
serve as a basis for an evaluation of several such solvers. 

Problem A-1 is a simple mechanics problem. It describes the behavior o f  a body which 
falls from rest toward the earth from height a. The rootfinding of interest is to locate 
the time t at which the body strikes the earth. that is, for which y l( t  ) = H (where y is 
the distance travelled from the initial resting position). Problem A-2 is similar to Problem 
A-1. The rootfinding of interest is to determine the time required for the moon to fall to 
earth under appropriate conditions. Due to the units used, it is necessary to integrate the 
problem for  very large values of the independent variable. Problem A-3 describes the 
motion of a paratrooper whose parachute opens at t h e  t = t 1. There is a strictly time- 
dependent discontinuity in the derivative at t ~ .  A second rootfinding requirement is to 
determine the time at which the paratrooper strikes the ground. Problems A-4 and A-5 
are typical linear mechanics systems. If Problem A-4 is integrated for decreasing values of 
t ,  for say 4 3 t >/ -1. it is roughly linear at the beginning of the integration. The 
solution is damped and oscillatory for t d 0. Problem A-5 oscillates throughout the 
interval [a. 41 with considerably varying amplitude. 
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where 
rn = 1/4 
w = 8  

k = 2  

H = l O  . 
The exact solution is 

Y I  = 4  

y2=4 

PROBLEM A-2 [ 181 

I - e - ” )  . 

where 

g = 32 
R = 4000(5280) 

H = 237000(5280) . 
The exact solution satisfies 

It is noted that g l  = 0 for t 

PROBLEM A-3 C17I 

411152.54 . 

For 0 < t  g20, 

g 1 = t  - t 1  

82 = Yl - €.? 
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where 

w =200 

k l  = I/ 150 

k2 = 4/ 150 

g = 32 

m = w / g  

t 1 = 5  

w = Po00 . 

'The exact solution is given as follows: 

For0 6 t 6 t l .  

Fort1 < t .  

where 
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The roots of g l  = 0 correspond to 

tk = h8-ln(2k-1) .  k = 1,2. - - -  . 
1 

29 Let 0 = 4m-" For k 3 1. the function f (8 1 = tan 8 4- - has exactly one mot 8 

which 

for 

(2k - I> < k < (2k + 11 17 . 
2 2 

tR = In [ is the corresponding root of g 2  == 0. 

PROBLEM A-5 [$I1 

jt1= Y 2  

The solution for which y ,(S) = 1 and y 2(0) = -8 is given by: 

The roots of g 1 = 0 correspond to t = (2 k - 1)/16" k = 1.2, * * * . 
B. PROBLEMS WITH DERIVATIVE SWITCHES 

The problems in this section contain switches in the derivative definition. These 
switches introduce discontinuities in the derivative. Problem El contains a simple switch. 
Any good adaptive integrator handle the single discontinuity present in this problem. 
Problem B-2 is a well-known example which contains frequent discontinuities in the 
derivative. If rootiinding is not used and an integrator is not forced to hit exactly the 
times corresponding to these discontinuities. it is possible to obtain very inaccurate results 
for this problem. Problem B-3 is the well-known "stiction-friction" problem which 
describes the motion of an object sliding over a surface. A timedependent force is applied 
to the body. The body ten& to stick until the applied force overcomes friction and 
inertia. The derivative starts out on branch 3 of the ode. It switches to branch 1 at 
t = 0.166 and back to branch 3 near t = 0.705. At t r 0.83 it switches to branch 2. A 
final switch occurs near t = 1.036 when the derivative switches to  branch 3. The 
performance of a solver k of interest for several cases: 

Case (i) 

ignore the points of discontinuity 
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Gser f i i )  

l m t e  the points of discontinuity using rootfinding but allow the 
derivative to switch branches any time the conditions for a switch 
are satisfied 

Case fiii 1 

locate the points of discontinuity but force the derivative 
calculation to be performed fox the correct branch of the derivative 
at all values of time, that is, do not allow the derivative to switch 
branches until the next root i s  located. 

’Phree of the event functions for this problem are strictly time-dependent. Three of the 
functions are also discontinuous step functions. In the latter cases. the rootfinder should 
be used to locate the break-points for the step functions. A rootfinder which does not 
reduce to bisection at p i n t s  of discontinuity of the event function will have problems 
doing so. Problem 8-4 is the ideal relay equation. The solution has jump discontinuities 
in its second derivative at multiples of ~/2. 

PROBLEM B-1 [Zl] 

For 8 < t < 0.5, 

Where 

E = Y l - Y a  

S = 17 
K = 5 / 3  

L = 1 / 4  

Denote by t 1 the positive root of 

The exact solution is 

y 1  = e t  
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It is noted that 

and 

t 1 0.1569 

Y z ( t  1) 1.0199 . 
PROBLEM B-2143 

For 0 < t f 19. 

The exact solution is given as follows: 

For i  3 0 define 

Then 

gl = 0 at integral multiples of 1/4. 

PROBLEM J3-3[5] 

For O 6 t < 1.5 , 
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F" = F a c t )  = 

Yl(0) = 0 
Y2(0) = 0 

' o i f 0  ~t <0.1 or- 1.0 <t 

S t  if8.1 <t  <0.5 

-t if 0.5 < t  <LO 

R 1 =  

g z =  ' 

g3 = 

The exact solution for this problem is as follows: 

i) for O 6 t < t l  = 0.166, 

-1. 

I-1 . otherwise 

-1 

4-1 . otherwise 

-1. if y 2 = O  and IF, I < IFs I 

4-1 . otherwise 

if (y2=0 and Fa > F , )  or y z  > O  

if ( u 2 " O  and Fa <-F, )  or y2 <O 



where 

y 2  = y2,3 = C3 exp(-Fzt/ m) - t /  Fz + m / FZ - P I /  272 

where 

and t satisfies 

0 = C3 exp(--F2t3/ m) - t , /  F z  + m / F z  - F1/ F2 

iv) f o r t 3  < t < t 4 = 0 . 8 3 ,  

where 
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sgn (y 1) = ' 

where 

-1-1 if y 1  20 

-1 if y 1  < 0 

and 

vii) for t b  < t , 

For O < t < IO, 
Y t = Y 2  , y m  = 0 

where 

The exact, solution i s  given by 

g l  = 0 at multiples of 777'2. 
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A common use of a rootfinding ode solver is to build a table of times at which the 
solution attains prescribed values. In Problem C-1, it is desired to locate the times at 
which the solution attains the values k = 1, - - , 10; these times correspond to e t  = k or 
t = In k .  This problem requires that the definition of the event function be changed at 

each root. (Initially gl = y1 - 1. then gl = y1 - 2. etc.) Problem C-2 is similar to C-1. 
Far this problem, it is desired to calculate a table of definite integrals corresponding to 
specified values of the upper limit of integration. 

PROBLEM 0 1  197 

For 0 d t < 3, 

Y l - - Y l  

y,(O> = 1 
g l = y l - k  , k = l .  . e - .  10. 

The exact solution is y = e ' .  

g l = O a t t  = l n k , k  =1, * . e .  10 . 
BROBLrn c-2 C161 

Evaluate integrals of the form 

for equally-spaced values of y in some interval. 

Assume f is smooth, nonnegative. and has a simple zero at some unknown point y* in 
the interval. Denoting the integral by t (y lads to 

Y ,(0I = 0 

, m .  Denote the desired values of y 1 by yl, - - * , Fm and use g = y r  - Fi, i = 1, . . .  
Three cases are of interest: 



In each case, yo = 0 and yi = i / 10. i = 1. * - , lo .  

a* PROBLEMS W" u ON COMPOmNTS 
D 

These: problems are variants of the "bouncing ball problem." The initial value problem 
is changed at each bounce, that is, at each point for which the height y1 is zero. At each 
such point, the solution component y2  b redefined. In Problem D-1. y 2  is replaced by 
-ky2 for a constant k between 0 and 1. In Problem D-2. y z  is replaced by k l yz l "  for 
constants k and a with 0 < k < 1 and 0 < a < 1. For this problem, the maximum 
height between bounces decays exponentially. Problem D-3 simulates a bouncing ball on a 
45" ramp. Observe that the ball does not necessarily reach the bottom of the ramp. For 
each of these problems, the bounce times cluster at a finite time. Near such cluster points, 
the ball bounces infinitely often. This provides an interesting test for rootfinding ode 
solvers. Problem D-4 provides another test for handling multiple or clustered roots. By 
picking appropriate values of k and a, it is possible to determine how well a solver 
performs in the presence of clustered roots. 

PROB D-1 c233 

3 1 =  Y 2 ,  y , (O) = I p o  

3 2  = -g. y z ( 0 )  = 0 
g1=  Y 1  

where g 5= 32.2, H o  = 4. and 0 < k < 1. When $ 1  = 0 replace y 2  by --ky2. 

Denote the bounce times (the times for which y1 = 0) by {t,)r=l. Then 

k" 1. The exact solution is given as 
n -2 

rn =o 
t l  = J 2 H 0 /  g and for n > 1. t ,  = t l ( l  4- 2k 

follows: 

For 0 d 1 < t 1, the solution is given by 

y I,& ) = -5 t 2  4- 4 

y 2 , * w  = --$ t . 
For t, < t < tn+l  and ~2 > 1, the solution i s  given by 
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In Problem D-1 make the replacement y 2  = k Iy2  I O1 when gl = 0 (0 < a 6 1). 
In this case. t l  = ,/- and €or n > 1 

For 0 < t < 15 the solution k given by 

9.') 0 = - g t 2  + H o  
2 

Y 2 , Y = - @  * 

For tR < t < tn+l aad n > 1. the solution is given by 

where 

PROBLEM D-3 

where 

When g 1 = 0 replace y2 by - k y ,  and replace -14 by -ky2 where 0 < k < 1. Terminate 
the integration when g2  = 0 or g3 = 0. 

y and y 3  correspond, respectively. to the horizontal and vertical components of the 
position of a ball bouncing on a ramp with vertices (O,O), (OJ), (LO) in the ( y I , y 3 )  plane. 
The ball is initially a t  rest at the point ( ~ 0 . ~ 0 )  aad is dropped from this position. 



where 

-k2l2. This value is 

(In this case, the ball does not get to the bottom of  the ramp.) Also observe that { t ,  } 
converges to 

In Problems D-1, D-2. and D-3. simulate the bouncing of more than one ball. Use 
slightly different values of k and the initial height for each ball. Dropping a shoebox of, 
say. twenty-five balls lads to interesting problems for rootfinding ode solvers. For 
example, it demmstrates the importance ~f locating the first root of any event function 
for a given integration step, 
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E. PROBLEMS W IDEWATIVE SINGZTLARITIES 

This section contains problems which have singularities in the derivative. In each case 
it is necessary to extend the derivative definition in some manner at such singularities. In 
Problem E-1, the derivative is not defined beyond the h a 1  integration point. Problem E-2 
involves l n y  in the derivative calculation. Although the exact solution y is always 
positive. it is possible for a solver to request a derivative calculation for a negative value 
of y . The use of an event function such as the second one represents a common means of 
avoiding chis type of difficu~ty, by locating the value of time for which the solution attains 
a cutoff value. and then terminating the integration. In Problems E-3 and E-4, the 
derivative is also not defined beyond the desired root of the event function. 

PROBLEM E-1 [l] 

For 20 2 t 3 5,  

The exact solution is 

g i  = 0 at t = 12 at which y1(12) = 6 . 
PROBLEM E-2 [12] 

For 1 < t < 12, 

The exact solution is y1 =Z e-t2-esr-4. 

gl = 0 at t = 2.47 ,2.53 . 



- 16 - 

g l = = Q a t t  =1/3. 

For 0 < t 6 5,  

31 = J1 -y1 
y,(O> = 0 

g1=:1--y, . 

The exact solution is y = t - t2 /  4. 

This section contains several miscellaneous problems which are of interest. Problems 
I.'-1 and F-2 are well-known ode test problems. Problem F-1 describes the integral surface 
of a torus. Problem F-2 involves orbit equations. Event functions involving both the 
sdution and the derivative are included. If the ode mlver provides an approximation for 
the derivative: to the residual evaluation subrout,ine. the event functions which involve the 
derivative should be handled in each of two ways: using the derivative of the solver 
interplant. and using the calculated exact derivative corresponding to the approximate 
solution. Problems F-3, F-4, and F-5 are standard demonstration problems for various 
rootfinding solvers. Problem F d  Bas a hunda.ry layer near the root of the event function. 

F-1 [692al 
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g l = Y l  
8 2  = Y 2  - Y1 
g 3 = y 3 - . 5  

g 4 = y 3 - . 5  . 
The exact solution is 

y 1 = cos t - (2 -+ cos t ) 

y z z s i n t  - ( 2 + c o s t )  

y 3 = s i n t  . 

The exact solution is 

y1 = COS u - .6 

y2 = -sin u I (1-.6 COS u ) 

y3 = .8 sin u 

y4 = .8 cos u /  (1 - -6 cos U )  

where u satisfies u - -6 sin u = t . 
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For 0 6 t 6 2w. the event functions have roots at the following times: 

g1= 0 at t = T, 2n 

g2 = 0 at t = T! 4 - .3JZ. 5T/ 4 -4- .3JZ 

g 3 = 0  at  t - ~ / 4 , - - . 3 . 5 . ~ / 6 - - . 3  

g4 = 46 at  t == cos-'(5/ 13) - 7.2/ 13* 
2T - cos-'(5/ 13) f 7.2/ 13 . 

The exact solution is y = -5t f t z. 

gl = O a t t  = 2 . 5 .  

g2 = 0 at t = 2.47. 2.53 ~ 
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BROBL2M F-5 

FOP -1 6 t 4 12. 

The exact solution is 
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The exact solution is 

y 1 = t  / ( E  +t”)“’2 

y2 = c / (6 + t*)3’2 . 

g l  has a root at t = 0. Also, y l ( d a  = dz /  2, y,(-dZ) = -dZ/ 2 and yl(0) = 1/ &. 
The solution thus has a boundary layer of width v% a b u t  t = 0.0. 

For 0 < t < 0.2, 

g l - Y l - Y 2  
gz = y 1 -  J778/343 y2 

$ 3  = y 1 -  6779/343 y3 

g 4 = Y 1 -  1 

$ 5  = 9 ;  I- 1.0132 . 

The exact solution is 

This section contains several interesting problems for which exact solutions are not 
readily available. In Problem GI .  it is desked to build a table of values corresponding to 
prescribed values of the solution. I t  is desired to do this for one complete swing of the 
corresponding pendulum The accompanying table contains approximate values of the 
times of interest. In Problem G-2. it is desired to locate zeros of van der Pol’s equation for  
two cases. The roots of the event functions in Problem 6 - 3  correspond to roots of Ressel 
functions of the first kind and orders 0 and 1. Four cases are of interest for the 
rootfinding. Two of the cases involve the derivative in the rootfinding. In Problem G-4. it 
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is desired to  calculate orbits for the three-bodies problem, that is, to locate times at which 
the solution components return to their initial values. Since the event function also 
vanishes for other values of time. it is necessary to check whether a calculated root 
actually copresponds to an orbit. 

where k = 11 2, 

g1 = y~ - iAy2 i = 1. 
$2  = Y2 

* - .  8 , 9 . 8 .  * - * ,  1 where Ay = 0-1. 

Denote the root of g2(t 1 = 0 by F. Then y = 1 and 

For 0 
the first kind 

P < t the value of P for which y l(t* = y* is given by the elliptic integral of 

or 

For t 6 t*: d 2r, the value of t* fox which y 1(P ) = y* is given by 

The exact solution for y1 may be computed to any desired degree of accuracy by using a 
rootfinder to invert the elliptic integral relationship. 
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Two cases are of interest: 

q " 3 ,  o t t  < a 0  

'l%e desired roots are approximately as follows. 

3,6076 1269698567 
8.0371604214843Q 

12.466708169891 1 
16.8962559 f82% 1. 

8 P.172W 78 70549 7 
162.59091343266'7 
244.009448787067 
325,42 79844606 14 

[19] contains a discussion of values of r )  for which this problem behaves like a stiff 
problem. 

The exact solutian 3s 

where J o  and J1 are the 1 functions of the first kind and orders 0 and 1. 
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Four rootfinding cases are of interest: 

g1= 31 

s 2  = Yl 

gl= Yr 
9 2  = tY-4 4" Y 3  

Case ( i v ]  

In each case the roots of g 1 = 0 are the zeroes of y 3  = J 1  (recall that .Ti (t = -J,(t )I; 
d 
dt 

and the roots of = 0 are the zeroes of y1 = J o  (recall that - ( tJ l ( t  >> = t J &  1). 

Within the interval of interest, the zeros of g 1 thus occur at approximately 

t = 0.0, 3.8317, 7.0156, 10.1735, 13.3237. 16.4706; 

and the zeros of ga QCCW at approximately 

t = 2.4048, 5.5201. 8.6537, 11.7915, and 14.9309. 

See 1261 for an interesting discussion of using rootfinding ode salvers for other problems 

PROBLEM G-4 [IS, 201 

$1 = Y 3  

Y 2  = Y4 
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u =: I/ 82.45 

v = l - u  

The solution is periodic with period T where 

T 6.19216933131963970674 . 
The roots of g which are of interest occur at integral multiples of T . 
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