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A Collection of Test Problems for
Ordinary Differential Equation Solvers
Which Have Provisions for Rootfinding

S. Thompson

ABSTRACT

Several popular ordinary differential equation (ode) solvers contain provisions for
locating roots of functions which depend on the solution of the ode. A collection of
problems for testing such solvers is described in this report. In addition to several well-
known problems, the collection contains other interesting problems which have not
previously appeared in the literature.

INTRODUCTION

Excellent collections of test problems are available for testing general ordinary
differential equation (ode) solvers (for example, see [6, 7. 13, 19, 20]). This report
presents & systematized collection of test problems for ordinary differential equation
solvers and continuous simulation languages which have rootfinding capabilities. Such a
solver is designed to integrate initial value problems of the form

_dl —4 t
=7 .y
y (to) =Yo
while simultaneously locating roots of event functions
O0=g.y.y) i=1 -, m.

Such event functions sometimes correspond to derivative discontinuities, points at
which the underlying initial value problem is changed. or simple rootfinding requirements
such as locating the times at which a solution component attains a prescribed value.
Prototype problems requiring rootfinding include the bouncing ball (Problem D-1) and
stiction-friction (Problem B-3). The difficulties associated with rootfinding in the context
of odes sometimes are not fully appreciated. (To emphasize this fact: the author is aware
of no available ode solver with rootfinding which handles correctly all of the problems in
this report. unless the user is extremely careful.) Excellent discussions of several of these
difficulties are given in [11, 25].

Several good ode solvers are available which contain rootfinding capabilities of one type
or another (for example, see [9, 11, 12, 13, 21, 22, 23, 24, 25]). Other such solvers will
become available in the near future. In fact, it is anticipated that most new software for
initial value problems in ordinary differential equations will contain provisions for
rootfinding. It has been pointed out, for exaraple, that the "next generation of Runge-
Kutta code” will contain such provisions. The collection of problems described in this
report should be useful in studying the performance of such solvers for problems
requiring rootfinding.



The problems bave been grouped roughly into several classes. Group A contains falling
body problems with simple rootfinding (time-dependent event functions and functions of
the form y; — o where o is constant). Group B contains problems with switches in the
derivative (multiple state-dependent branches which define the derivative). Group C
contains problems for which it is desired to build tables of values. These problems
involve the re-definition of the event function at roots. Group I contains problems in
which the underlying initial value problem changes at each root of the event function.
Each problem is equivalent to a sequence of initial value problems. The roots of the event
functions also cluster at finite times. The problems in this section have the property that
if any root of the event equation is ever missed. it will not be possible to correctly solve
the problem thereafter. Group E contains problems with derivative singularities. These
problems require that the derivative definition be extended in a suitable fashion at the
singularity. Some of the problems in Group F involve more general event functions (for
example, event functions which depend on more than one of the solution components).
(Some ode solvers restrict the rootfinding to locating times when a solution component
attains a prescribed value. Problems such as the ones in Group F can be handled by such
solvers by adding solution components to the system.) Group G contains several
interesting problems without simple solutions but for which the qualitative behavior of
the solution is well-known. No test results are presented in this report. Extensive results
for this collection of problems and several Runge-Kutta-Sarafyan integrators will be
presented in a forthcoming report. In fact, one of the purposes of the preseat report is to
serve as a basis for an evaluation of several such sclvers.

A.FALLING BODY AND OTHER PROBLEMS WITH SIMPLE
ROOTFINDING REQUIREMENTS

Problem A-1 is a simple mechanics problem. It describes the behavior of a body which
falls from rest toward the earth from height H. The rooifinding of interest is to locate
the time ¢ at which the body strikes the earth, that is, for which y;(¢) = H (where y, is
the distance travelled from the initial resting position). Problem A-2 is similar to Problem
A-1. The rootfinding of interest is to determine the time required for the moon to fall to
earth under appropriate conditions. Due to the units used, it is necessary to integrate the
problem for very large values of the independent variable. Problem A-3 describes the
motion of a paratrooper whose parachute opens at time ¢ = ¢;. There is a strictly time-
dependent discontinuity in the derivative at ;. A second rootfinding requirement is to
determine the time at which the paratrooper strikes the ground. Problems A-4 and A-5
are typical linear mechanics systems. If Problem A-4 is integrated for decreasing values of
t, for say 4 2t 2 —1, it is roughly linear at the beginning of the integration. The
solution is damped and oscillatory for ¢ € 0. Problem A-5 oscillates throughout the
interval [0, 4] with considerably varying amplitude.

PROBLEM A-1([17]

For 0 €¢ <H/ 2,

ya=w —ky)/ m. y,(0)=0
g1=y1—H



where
m=1/4
w =
k =
H =10
The exact solution is
- 1 5 1
y1=4t + i 3

)’2=4[1"e.—&l

PROBLEM A-2[18]

y1=—V2gR? T =y )7 Hy:
y1(0)=H
g1=y1—R
where
g =32
R = 4000(5280)
H = 237000(5280)

The exact solution satisfies

t = [H3/2 /8)'1]

VYT H =y HP + -;—cos"l(2y1/ H—1)

It isnoted that g, = Ofort = 411152.54 .
PROBLEM A-3[17]

For 0 €1 €20,

Yy1¥Y2

. w—kwyiZWm if t <¢,
Y25 | (w —koy2) m if t >ty
y1(0) =0

y2(0) =0

g1=t —1,

gzz}fl'ﬂ



where

w = 200
ky=1/ 150
k2=4/ 150
g =32
m=w/g
tlzj

H = 1000 .

The exact solution is given as follows:

ForO0 <t <t,.

1/ 2
=lﬁ'ﬂ1n cosh fi 4
yi1 g k, 4 w
1/ 2
= -ffwllztanh ﬁ t
Y2 k g W
Fore¢, <t,
1 FaNe ks
YI:"g'"I% In |cosh :/%-[\/kz(t —t) + V|l +C
12 .
Y2 = W tanh ‘-‘g.;:"[\/kz(t"‘tl)'{”'\/ﬂtl]
k, vw
where
12
w1 ks
C = e e 7 In jcosh g’V] t1”
PROBLEM A-4 [8]
Yy1=Y¥2
yo=—(16me ¥~ 1/4)y,
£1F Y1
g2y .

The solution for which y,(0) = 1 and y;(0) = 1/2 is given by:
y1(t) = e*?cos(4me™)

ya(t) = gtf2 4me™ sin(4me™ ) + %—-cos(47re"‘)‘ )



The roots of g, = O correspond to
ty =In8—nQk~1), £ =12, ---

Let @ = 4me™. For k 2 1, the function f (#) = tan 0 + —2—16- has exactly one root 6, for
which

(2k—1)-’25 <0, < (2% +1)~"2~'-.

t; = In | ———| is the corresponding root of g, = 0.

PROBLEM A-5 [8]

¥1= Y2 ‘
y2 = —16 cos -'%t- ¥y — 64112+64c052[7—r2£ — 4mrsin %—t— V1
g1 Y1 . v
The solution for which y;(0) = 1 and y,(0) = —8 is given by:
y1 = exp _}1}@- sin ZL]. cos (8 mre)
y2 = —8 exp —-}; sin £2£~ sixe 16- {wsin(& wt) + cos -}t cos 81'rt]

The roots of g4 = O correspond to ¢ = (2k — 1)/16, k = 1,2, - - -,
B. PROBLEMS WITH DERIVATIVE SWITCHES

The problems in this section contain switches in the derivative definition. These
switches introduce discontinuities in the derivazive. Problem B-1 contains a simple switch.
Any good adaptive integrator can handle the single discontinuity present in this problem.
Problem B-2 is a well-known example which contains frequent discontinuities in the
derivative. If rootfinding is not used and an integrator is not forced to hit exactly the
times corresponding to these discontinuities, it is possible to obtain very inaccurate results
for this problem. Problem B-3 is the well-known "stiction-friction” problem which
describes the motion of an object sliding over a surface. A time-dependent force is applied
to the body. The body tends to stick until the applied force overcomes friction and
inertia. The derivative starts out on branch 3 of the ode. It switches to branch 1 at
t = 0.166 and back to branch 3 near ¢ = 0.705. At ¢ = 0.83 it switches to branch 2. A
final switch occurs near ¢ = 1.036 when the derivative switches to branch 3. The
performance of a solver is of interest for several cases:

Case (i)

ignore the points of discontinuity
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locate the points of discontinuity using rootfinding but allow the
derivative to switch branches any time the conditions for a switch
are satisfied

Case (iii

locate the points of discontinuity but force the derivative
calculation to be performed for the correct branch of the derivative
at all values of time, that is, do not allow the derivative to switch
branches until the next root is located.

Three of the event functions for this problem are strictly time-dependent. Three of the
functions are also discontinuous step functions. In the latter cases, the rootfinder should
be used to locate the break-points for the step functions. A rootfinder which does not
reduce to bisection at points of discontinuity of the event function will have problems
doing so. Problem B-4 is the ideal relay equation. The solution has jump discontinuities
in its second derivative at multiples of #/2.

PROBLEM B-1[21]
For0 €t £ 0.5,

y1=y1., y1(0) =1

~L fE < ~L/K
yo=1KE if =L/ K SESL/K , y(0)=1
L fL/K <E

where
E=y1—y2
S =17
K =5/3
L=1/4

g1=y1—y2+L/ K
Denote by t; the positive root of
e X =t — L(XKH1) K

The exact solution is

Y1 = !

K 1 x

g

x+1° T xA1° if 0S¢ <,

Y2 =
Lt —t1)+y,(¢) ift; <t €05



It is noted that

and

t1=0.1569

y2{t 1) = 1.0199

PROBLEM B-2[4]

For0 €t £ 19,

, yt ify2>0
Y1Tlo ify,<€0
y2 = 4w cos 4wt
y1(0) = 0.1

y2{0) =0

g1 Y2

The exact solution is given as follows:

Fori 2 O define

Then

_ 1
5@ = wririss
, 2 2i+1
@)=
71 g |2itt] o, |2t 2i42
14 4 4

y,{t) =sin (4m¢)

g1 = 0 at integral multiples of 1/4.

PROBLEM B-3[5]

ForO0<¢ €15,

Yyi1i=Y2

Y2 =

(Fe —Fy—Fay))/ m, if (y,=0and F, >F,Jory, >0
(Fa + Fi—Fay)/m if (yy=0and F, <—F,)ory; <0

o ,if yp=0and |F,| IF,|



y1(0) =0
y2(0) =0

where

0 if0 <t <0.1 or 1.0 <t
F,=F@)=1{ 5 if01 <t <05

—t if 0.5 €z <1.0

m = 0.64
F, =083
Fy=0.75
Fy=028
-1, if (y2=0 and F, >F,) or y, >0
g1 %
+1, otherwise
—1, if (y2=0 and F, <—F,) or y, <0
g2
+1, otherwise
—~1, if y2=0 and |F,| €I|F,|
g3~
+1, otherwise
gq4=1¢—0.1
gs=t —05
ge=t —1.0 .

The exact solution for this problem is as follows:
i) forO <t <t;=0.166.

Y1=y11=0

Y2=y2.=0

ii) forz; <t €t,;=0.5,

Y1=Y12=—(Com/ Fy) exp(—F t/ m)+5t2/ 2F,

Y2 = Y22 = Coexp(—~Fpt/ m)+ 5t/ F,



where

Cy= —exp(Fot/ m)- {5t/ Fy—5m | F} —F,/ F,
D2=(C2m/ Fz)exp(—thllm)“'Stlz/ 2F >+ 5mty / F22 + Fity Fop

iii) fort, <t K t;=0.705

yi1=y13=—(cym/ Fp) exp(~Ft/ m)—t?/ 2F,
+ mt / Fzz —~Fyu/ Fy+ Dy

y2=y2,3=C3exp(-F2t/ m)—t/ Fodtm/ Fzz —'F]_/ Foy
where

C3=exp(F2tg/m)‘ yz_z(t2)+t3/ Fo—m / ng f‘!’Fl/Fz

D3=y12(t2)+ (Csm/ Fz) exp(—F2t2/ m) +t22 / 2F2
—mt, /[ F% + Fitaf Fy

and ¢ 5 satisfies
0=C3eXp(“F2t3/m)*t3/ F2+m/ F22 —F1/ F,
iV) fOl't3 <t S.t4=0.83,

Y1= Y14 =y13(3)
Y2=¥24=0

v) fort,<t St5=10,

y1=y15=—(mCs/ Fyyexp(—Fyt/ m)~—t?/ 2F,
+mt/ F§+ Ft/ Fy+ Ds

y2=y25=Csexp(~Ft/ m)—¢t/Fy+m/ F§ +F,/ F,
where
C5=exp(F2t4/m)' t4/ F2~—m / F22 ""FI/ Fz

Dy =y1,3(t3)+ (Csm/ F)) exp(—Ftq/ m) +t2/ 2F,
~mty/ F% ~ Fitdd Fap
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vi) forts <t Stg==1.036,
y1=y1,6=—(mC5/ Fz) exp(-—th/ m)+F1t/F2+D6
y2=y26=Cgexp(—Fat/ m) + Fy/ Fy

where
Ce=Cs+texp(Fy/m)- [m / F? —1/ le

Dg=(m/ F)(C¢—Cs)expl—Fy/ m) — 1/ 2F,+m [ F§ + Ds
and
te=—(m/ Fy) In(—F;/ C¢Fj)
vii) fortg <t,

Y1=Y171=Y16 (te)
Y2 = 0.

PROBLEM B-4[20, 25]

For 0 £t £ 10,

Y1= Y2 » ¥1(0) =0

ya=—y, +sgn(y;) — 3 sin 2¢ , y2(0) =3

where

sgn(yp) =
~-1if y, <0

g1 Y1 -

The exact sclution is given by

—1 4+ V2 cos (/4 —x) +sin2x for 0 L x <7/2
yie) =
14 V2 cos (/4 +x)+sin2x for /2 $x < 7

where x =t maod ().

g1 = 0 at multiples of /2.
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C. BUILDING TABLES OF VALUES
A common use of a rootfinding ode solver is to build a table of times at which the

solution attains prescribed values. In Problem C-1, it is desired to locate the times at
which the solution attains the values &k = 1, - -, 10; these times correspond to e’ =k or
t = 1In k. This problem requires that the definition of the event function be changed at
each root. (Initially g, = y; ~ 1, then gy = y; — 2, etc.) Problem C-2 is similar to C-1.
For this problem, it is desired to calculate a table of definite integrals corresponding to
specified values of the upper limit of integration.
PROBLEM C-1[9]
For 0 £¢ €3,

y1=y1

y1(0) =1

g1=y1—k , k=1 ---.10.

The exact solution is y; = e*.
g1=0att=Ink, k=1 ---,10
PROBLEM C-2[16]

Evaluate integrals of the form

y
[, ds/ VT
for equally-spaced values of y, in some interval.

Assume f is smooth, nonnegative, and has a simple zero at some unknown point y* in
the interval. Denoting the integral by ¢ (y,). leads to

dz}’l .
= 2

dt2 f @1)/

y,0) =0

d

_dZZ‘L(O) = '\/f (yoj .
Denote the desired values of y, by ¥, - . ¥, anduse g, =y, ~ 5%, i =1, -+, m.
Three cases are of interest: :

Case (i

fG)=1/ Vs

Cases {ii

FG) =1/ Viss?
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Case (iii
fG)Y=1/Vi—s
In each case, yo=0and §; =i/ 10,i =1, ---,10.

D. PROBLEMS WITH DISCONTINUOUS SOLUTION COMPONENTS
AND CLUSTERED ROOTS

These problems are variants of the "bouncing ball problem." The initial value problem
is changed at each bounce, that is, at each point for which the height y,; is zero. At each
such point, the solution component y, is re-defined. In Problem D-1, y, is replaced by
~ky, for a constant £ between O and 1. In Problem D-2, y, is replaced by k ly,|* for
constants £ and o with 0 <% < 1 and 0 < o £ 1. For this problem, the maximum
height between bounces decays exponentially. Problem D-3 simulates a bouncing ball on a
45° ramp. Observe that the ball does not necessarily reach the bottom of the ramp. For
each of these problems, the bounce times cluster at a finite time. Near such cluster points,
the ball bounces infinitely often. This provides an interesting test for rootfinding ode
solvers. Problem D>-4 provides another test for handling multiple or clustered roots. By
picking appropriate values of k¥ and a, it is possible to determine how well a solver
performs in the presence of clustered roots.

PROBLEM D-1[23]

Yy1=Y2, y1(0)=Ho
y2=-g y2000=0
g1 N

where g =322, Hy=4,and 0 <k < 1. When g, = O replace y; by —ky,.

Denote the bounce times (the times for 2Whlch y1=0) by {£1%;. Then

=./2Hy g and forn > 1, ¢, =¢,(1 + 2% Z k™). The exact solution is given as
m=0
follows:

For 0 £ ¢ < t,, the solution is given by
y1o(t) = «g- t2 4+ 4
y20t)=—g t

Fort, £t <t,y;andn > 1, the solution is given by
V1. ) =~ ;%(t —t, )t — ¢, — 2t.k™)

Y2,()=—gt —t, —2,&")



-13 -

PROBLEM D-2

In Problem D-1 make the replacement y, = k ly,|* when gy = 0(0 < & € 1).

In this case, t; = «/2Ho/ g and forn > 1

n~1
t, =t; + _z.. Z FQ—aty (1"")(gt l)o:f

j=1
For 0 €£¢ < ty, the solution is given by
yo=—4¢2+H,
2
Yo =gt

Fort, St <t,418adn > 1, the solution is given by

yi.) =~ g—(t — P+ A, —1t,)
yo,)=—glt —¢,)+ A,
where

An =kl y2,n-—1(tn)la
= f(—a") (1-e) (gt l)a" .

PROBLEM D-3
For 0 € y,(¢) € 1and 0 < y,(t),

¥y1=y2 ., y10)=x,
¥2=0 . »0)=0
¥3=y4 :)’3(02’=)'o
Yya=g . y{0)=0

where

g =981
g1=y1tys—1
g2=y1—1
§3= Y3

(0~<..x0<1)

(Yo >1"“x0)

When g, = 0 replace y, by —ky, and replace y4 by —ky, where 0 < &k < 1. Terminate

the integration when g, = O or g5 = 0.

y1 and y3 correspond, respectively, to the horizontal and vertical components of the
position of a ball bouncing on a ramp with vertices (0,0), (0,1), (1,0) in the (y 1,y 3) plane.
The ball is initially at rest at the point (x4.yo) and is dropped from this position.
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Denote the bounce times determined by g3 by {£,}:%1 and let ¢, =0. Then
Ly = (%(i—xomyo))” 2and forn 21

n—1
oy =6 (1428 Y &™)
m =0
The exact solution is given as follows:
Fort, £t <t,,; the solution is given by

ylﬁ(t) =An + .Bn(t ""tn)
y2ﬂ(t) :-Bn

¥3,@8)=C, + Dt —2,) + g'(t —t, )
Yan &) =D, + gt ~1¢,)

where

1+(n ~1)k?" — nk %2
Ap =x9—2 t2k2[
n Xo gt ( (1—%2)2

B, = —ngt k"

C., =1—A, forn 21 (Co=yo)

D, = (n—1)gt1k™ forn 21 (Dy=0).
Observe that y1,(¢,) = A, and {4,} converges to xo — 2gt k% / (1—k 2?2 This value is
less than one if and only if

2
1+k2

2k

yo < (1 —xp)

(In this case. the ball does not get to the bottom of the ramp.) Also observe that {¢,}
converges to

1+%

t* =t1 1%

PROBLEM D-4

In Problems DD-1. D-2, and D-3, simulate the bouncing of more than one ball. Use
slightly different values of & and the initial height for each ball. Dropping a shoebox of,
say, twenty-five balls leads to interesting problems for rootfinding ode solvers. For
example, it demonstrates the importance of locating the first root of any event function
for a given integration step.
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E. PROBLEMS WITH DERIVATIVE SINGULARITIES

This section contains problems which have singularities in the derivative. In each case
it is necessary to extend the derivative definition in some manner at such singularities. In
Problem E-1, the derivative is not defined beyond the final integration point. Problem E-2
involves Iny in the derivative calculation. Although the exact solution y is always
positive, it is possible for a solver to request a derivative calculation for a negative value
of y. The use of an event function such as the second one represents a common means of
avoiding this type of difficulty, by locating the value of time for which the solution attains
a cutoff value, and then terminating the integration. In Problems E-3 and E-4, the
derivative is also not defined beyond the desired root of the event function.

PROBLEM E-1[1]
For202¢ 25,

dyy _ _ J400—¢2
dt t
yl(ZO) = Q

g1 = 22— (y, + V400—¢2)

The exact solution is

- 2
y1 =~V 3002 + 20 1n 20440027

g1=0 at ¢ =12 at which y,(12) =6
PROBLEM E-2[12] '

For1l €£¢ <12,

, 2lny; +8
yi = —“'“;——“"5 Y1
yi(1) =1

g1=Iny;=22491

g2=y;~— € where € = 1078
The exact solution is y; = e~ %4,
g1=0att =247 ,2.53 .

g2=0att =(+0@—4me)?)/2.
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PROBLEM E-3

Fori12:t 20,

y1=1 Jy1
yi(1) =1
g1 Y1

2/ 3
The exact solution is y, = ‘"3?:" (t —1/3)

g1=Oatt = 1/ 3.
PROBLEM E-4

For0 <t £35,

y1=J1—y,;
}’1(0)”’"0
g1= 1y

The exact solution isy; = ¢ — ¢?/ 4.
g1=0atz =2,

F. PROBLEMS WITH MORE GENERAL ROOTFINDING
REQUIREMENTS

This section contains several miscellaneous problems which are of interest. Problems
F-1 and F-2 are well-known ode test problems. Problem F-1 describes the integral surface
of a torus. Problem F-2 involves orbit eguations. Event functions involving both the
sclution and the derivative are included. If the ode solver provides an approximation for
the derivative 1o the residuval evaluation subroutine, the event functions which involve the
derivative should be handled in each of two ways: wusing the derivative of the solver
interpolant, and using the calculated exact derivative corresponding to the approximate
solution. Problems F-3, F-4, and F-5 are standard demonstration problems for various
rootfinding solvers. Problem F-6 has a boundary layer near the roof of the event function.

PROBLEM F-1[6,21]

For Q0 St £ 2w,

1= ~y2—yws Gf +33M?% | y(0)=3
2= y1—yaysl b +yFW? . y200) =0
ya= yi/ Gf +y#)? . y20) =0
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8§11

g2=Y¥2" Y1
g3=ys— .3
8g4=y3—.5

The exact sclution is

yi=cost {2 +cost)
ya=sint - (2 +cost)

y3=sint
For 0 €¢ K2, the event functions have roots at the following times:

gi=0at /2, 3n/2
g2=0at w/ 4, 5n/4
gi=0at w/ 6, 5%n/6
g4=0at w/ 3, 50/3 .

PROBLEM F-2(6,21]

For0 £t < 2m7.

Y1 = y2 . y:00)= 4
y2 = =y Gf+yiP? |, y,(0)=0
¥y3 = Y4 . y3(0) =0

Yo o= =y G 49202, y(0)=2

g1 = h K]

gz = yi1+.6—y3/ .8

83 = yg/ 8—.5

g4 = }'3/ 8~ 5.

The exact solution is

yi1=cosu — .6
y2 = —sin u/ (1~.6 cos u)
y3= 8sinu

ya=8cosu/ (1~ 6cosu)

where u satisfiesu — .6 sinu=1¢
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For 0 S ¢ < 2w, the event functions have roots at the following times:

g1=0att =w 27w

g2=0att =wuw/ 4~ 3V2 5%/ 4+ 3V2
ga=0att=w/6—23,57/6~ 23
g€4=0 at ¢ = cos {5/ 13) — 7.2/ 13,

27— cos"(5/ 13) + 7.2/ 13
PROBLEM F-3{9]
For1 <t £7,

Y1=2y,/t+5
yi(1) = —4

g1=¥1
g2=y1 4 6.2491

The exact solution is y; = —5¢ + ¢2.
g1=0atz =25,

gz2=0att =247 ,2.53.

PROBLEM F-4

For0 £t €4,
Y1 ¥ —y1 .y1(0) =1
ya =~y ? . y2(0) = 1
Y3 =yszcost ,¥3(0) =1

Ya= 341 —34/20) /4 .y 0)=1

¥s=—ys+yg .ys(0) =2
Y6 =Y¥s ™ 25+ yq .y6(0) =0
Y1= Y6 ¥y Ly.(0) =1

81=y¢+2y;—5/2
The exact solution is

~t

Yi1=e
y2=4 /(@ +2)°
ysmesint

Y4=20 / (1419 7%/ %)
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ys=1+( +e7¥) /2
Yye=1—e™¥
yr=l—(e" —e¥) /2

g1=0atz =1ln2.
PROBLEM F-§

For—1 &€ ¢ & 12,

Y1= Y2 (-1 =1/2
y2=1 L ya(~1) = —1
Ya=yi1+y, ' L ys(-1)=1/3
V4= Y3 ,y4(~1)=~1/8
Vs =3t2—20c + 24 ,ys(—1) = —35
g1 Ys

t—9 LJif ¢ o<
£27

(By; —54y,) (yy + 6y,) ,if ¢t 21
g3=y2—99
ga=yY1—y2—15.

The exact solution is

yi=t%2

ya2=t

ya=t21 +¢/3)/2
ya=t31 +1/4) 6
ys=t(t—~6)(t—4)
g1=0att =046
g2=0at¢t =9
g3=0atzr =99
ga=0att =-1,3

PROBLEM F-6 [21]
For—1<r £ 1,

Y11=y, yy(~1) =—1/ (e + .01V ?

il

};2 ~3€ / (e + t2)2 Vi, yz("“'l) =¢e/f (e + .01)1/2
815 Y1

where € = 1079,
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The exact solution is
yi=t/(e+tHY?

g1 has a root at ¢ = 0. Also, y,(Ve) =vV2/ 2, y,(—Ve€) = ~V2/ 2 and y,(0) = 1/ Ve.
The solution thus has a boundary layer of width V€ about £ = 0.0.

PROBLEM F-7
For0 €tz €02,

y1=y1—2t/y1 ,y,(0)=1
y2=—y% . ¥2(0) = 1
y3=—1/ (1+£) . y:0) =1
1= Y17 Y2
82=)’1“\/W)’2
ga3=y1~ V7797343 y;
ga=y1—1

gs=y{ + 101y,

The exact solution is

Y1 = ‘V’l + 2t
Y3 = 1/ (1+t)

g1=0att =0 .

g2=0att =1/7.

ga=0atet =1/7.

ga=0att =0 .

gs=0 a1 t = (0.02 + V.0404)/2 .

G. SOME OTHER INTERESTING PROBLEMS WITHOUT SIMFLE
SOLUTIONS

This section contains several interesting problems for which exact solutions are not
readily available. In Problem G-1, it is desired to build a table of values corresponding to
prescribed values of the solution. It is desired to do this for one complete swing of the
corresponding pendulum. The accompanying table contains approximate values of the
times of interest. In Problem G-2, it is desired to locate zeroes of van der Pol's equation for
two cases. The roots of the event functions in Problem G-3 correspond to roots of Bessel
functions of the first kind and orders O and 1. Four cases are of interest for the
rootfinding. Two of the cases involve the derivative in the rootfinding. In Problem G-4, it
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is desired to calculate orbits for the three-bodies problem, that is, to locate times at which
the solution components return to their initial values. Since the event function also
vanishes for other values of time, it is necessary to check whether a calculated root
actually corresponds to an orbit.

PROBLEM G-1 [20]
Y1¥ ¥z »y1(0) =0

Vo= 2k% 3 ~ (1+kDy; - y2(0) =1
where &k = 1/ 2.

g1=y1—éldy,i =1, ---,8,%8, ---,1 where &y = 0.1.
8§22

Denote the root of g,(¢) =0 by ¢. Then y(f) =1 and

1

- ds
i = .
~£ [(A—s3)(1-k2s2)]V2
For 0 € ¢* K¢ the value of # for which y,(#*) = y* is given by the elliptic integral of
the first kind

»
- ds
== ‘{ [(1~sD(1~k2sD)]V 2

or
¢
¢ = F(pla) = [ (1 —sin’a sin®0)V240
0

where
a=sin"'k, ¢ =sin"t y*

Fort <it* < 2f, the value of #* for which y,(#*) = y* is given by

”
- ds
* =2 —
‘{ [(A=s2(1—x2sH))2

The exact solution for y, may be computed to any desired degree of accuracy by using a
rootfinder to invert the elliptic integral relationship.

PROBLEM G-2[3,19]

Y1=Y2 , y1(0) =2
y2=n=yfly, =y . y2(00=0
g17 Y1
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Two cases are of interest:

Case (i)
=3 0t <20

Case (ii
1 =100, 0 ¢ € 400
The desired roots are approximately as follows.

Case (i)

3.60761267698567

8.03716042148430
12.4667081698911
16.8962559182921

Case (ii)

81.1723778705497
162.590913432667
244.009448787067
325.427984460614

[19] contains a discussion of values of 7 for which this problem behaves like a stiff
problem.

PROBLEM G-3

For 0 £t €20,

Yy1=Y2 ,yi(0) =1
Ya= =y /t —y; . yX0) =0
Y3 =4 » ¥3(0) =0

Ya==yalt —(1—1/tDy, » Y40 =1/2
(y,(0) = —.5 and y 40) = 0.)

The exact solution is

y1=J0(t)
y2=Jo()
ya=J,0)
ya=J,@)

where Jo and J, are the Bessel functions of the first kind and orders 0 and 1.
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Four rootfinding cases are of interest:

Case (i

g1= Y1
82 Y3

Case (ii

E1™ V1
g2= Y1

Case (iii)

gi=Y1
2T tyat ys

Case (iv

g1 V3
g2=tyqa+tys.

In each case the roots of g, = O are the zeroes of y3 = J; (recall that Jo(¢) = —J,(¢));
and the roots of g, = 0 are the zeroes of y; = J; (recall that g; (t7.(t)) = 2T,(e)).

Within the interval of interest, the zeros of g, thus occur at approximately
t = 0.0, 3.8317, 7.0156, 10.1735. 13.3237, 16.4706;
and the zeros of g, occur at approximately
t = 2.4048, 5.5201, 8.6537, 11.7915, and 14.9309 .

See [26] for an interesting discussion of using rootfinding ode solvers for other problems
involving Bessel functions.

PROBLEM G-4 [15, 20]
For0 £t £ 10,
Y1 = Y3
Y2 =4
ya=yi+2ya—vitul riy—uly,—v) r,
Ya=y2—2ys—vyy/ ri—uyy/ r;

yl(O) =12
y2(0) =0
ya(0) =0

y4(0) = K = —1.04935750983031990726
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where
w =1/ 82.45
v=1—u
3/ 2
ry = [(}’1+u)2+y22I

3/ 2
ry = l(yr"v)2 + yzZ]
g1= (1= y1(0) y3 + (2~ 50 y,4
The solution is periodic with period 77 where

T =6.19216933131963970674 .

The roots of g, which are of interest occur at integral multiples of T.
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