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ABSTRACT 

,4 theoretical conjecture is made about the nature of chaotic behavior in systems 
with siinple maps. This conjecture gives rise to a computational scheme based on 
trajectories starting from the nmxiniuni in the system map. These trajectories are 
called supertrucks and their loci in the parameter phase-space indexed by iteration 
number are called supertracks f un~ t ions .  The chaotic regimes of two nonlinmr 
systems with a single maximum are studied using this schetrie. It i s  fourid that the 
behavior in these regimes can be characterized recursively by supertrack functions. 
At low recursion order tlicse functions analytically describe the gross fmturcs of 
the chaotic. regime (i. e .  bounding envelopes; stable cycles, star points, etc.). They 
can be iterated to higher orders to st,udy higher order features. The rnetlodology 
employed is general enougli to be uswl to  study other lionlinear systems. It is also 
has potmt,ial for identifying chaotic liehavior experimentally. Universality is the 
basis for theoret,ic,ally understanding the results. 





1. INTRODUCTION 

This paper describes the results of an investigation into the chaotic behavior of 
some simple nonlinear systems. In particular, the classic quadratic system st ,udid 
by Feigenbaum'-3 and  other^^-^ will be the main focus of this effort. A descrip- 
tion of the hehavior of a system with a linear cusp will be included to highlight 
the role played by universality in these systems having a single extreniiun. The 
goal of the work is to use the understanding provided by Feigenbaum about the 
approach to ckaotic behavior to characterize the full chmtic regime. -4 theoretical 
conjec,ture ahout the nature of chaotic phenomena in these systems is the basis for 
the developments to follow. 

To begin, let us look a.t the simple quadratic system given by the following 
recursive equ a t '  ion 

= 4 A ~ , ( l  - X ~ ) = ~ ( A , N , ) .  (1) 

A graphical display of the asymptotic behavior of this system as a function of 
the system parameter X is given in Figs. 1 and 2. 

These figures display the now cla.ssic behavior of this system in its approach 
to cham (Fig. 1) and in the full cliaotic regime (Fig. 2). The boundary sepa.rating 
these two regimes is given by the critical pranieter of the system A, x 0.8925. 

While much i s  understood about the approach to chaos in this systeni arid 
its universality'-" questions about the behavior in the chmtic regime still reniaiii 
imanswered. It is quite apparent from Fig. 2 that milch regulnrit,y exists in this 
region (i. e. the occurrence of stable and unstatjle cycles). While a detailed n.nalysis 
of such features has been offered (see Refs. 4 arid 6), no full theory is availahle 
to tie all this information together. Is there m y  iiiiifyirig princ.iple behind all this 
apparent cliaos? Carl such hehavior be simply understood and easily predicted? 

The rest of this paper is devoted t,o developing a methodology and a theoretical 
lxtsis which provides sonie answers to the questions raised. As will he secn, this 
approach allows the chaotic regime for this quadratic system to be characterized in 
terms of a reciirsive series of polynomials which are only a function of the system 
parameter A. The gross features of the chaotic regime, as well as the fine deta.ils to 
arbitrary order, are displayed by these polynoininls. 

The results presented support the argument that Feigenbaum's universality' -3  

describes t,he chaotic regime as well as its a.pproach via bifurcations. This theory 
predicts the approach to chaos with a universal fiinction dependent only on the 
beliavior of the system nmp in the vicinity of its maximum. The work presented 
in this paper extends these arguments to show that the chaotic regime can be 
characterized by the behavior at the maximum itself. 
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2. GENERAL APPROACH 

In seeking a solution to the qiiadratic map problem, several key ideas provided 
motivation for making the particular theoretical conjecture which forms the basis 
of this work. These ideas are summarized by four important characteristics of the 
problem. 

1. Universality considerations allow the approach to chaos to be characterized 
by the khavior of the systciii map J in the inimediate vicinity of the 
quadratic maximum3. 

2. Sliperstable cycles (i. e. those cycles involving the innximiini point of 
the map) appear in every successive bifurcation regime in the approach to 
cha,os. These s c p r c y c l e s  represent, maximal bounds in these regions. They 
are also the basis for deriving the iiniversal parameters which describe the 
system b e h a v i c ~ r ~ ~ ~  . 

3. Iri tlie approach to chaos, tlie system generates increasingly large niinibers 
of unstable cycles wliicli ult,iniately drive the iteration process to some form 
of boinided behavior. Eounrla,ries appea,r to he a characttxistic feature of 
the cha,ot,ic rehi r me. 

4. Tlie chaotic regime is composed of infinitely many stable and unstable 
cycles. The aperiodic behavior which is also possible is unnieasuxable and, 
therefore, need not be considered4". 

These four obst:rvations lead to the cotijec,tture that chaos can be described as 
the hounded bchavior of a system, derived from tlie extrema1 points of the system 
ma.p. These extrema define chaotic a.tt,ra,ctors in the syste.m pha,sc-space which 
govern its chaotic behavior. 

Chaos is achieved in this scermrio when the system looses a l l  int.erna1 stability 
locally in the p:iranieter phase-spnce. As each stable state becomes unstable i t  
acts as a repeller instead of a,n n t t r x t o r .  With no stable states m d  a collection 
of repellers (lriving it, system behavior should be characterized by its houndaries. 
The extrema in t,he systeni map play a,n essential role in defining such boundaries. 

Bouiided system behavior, defined by a. system extremun that acts 3s its 
chaotic attmctor, is thus the con,jtectiired basis of chaos. If this conjectiire is cor- 
rect, t,hen the behavior of it system m a p  having only n single maximal point (or one 
doininmt one) shoiild lje related only to the clmxcteristics of this maximum. In 
essence, it det,rriiiint:s tlie outer bounda.ry of systein behavior at all iteration ordels 
by functional composition. 
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For notational simplicity, the iterative trajectory emanating from a system 
maximal point will be called a supertrack. The loci of these tracks in the sys- 
tem parameter phase-space, indexed by iteration number, will be called s u p e r t r o d  
func t ions .  They will be denoted by sn(X). This notation allows distinctions to be 
made between supercycles and other system behavior emanating from the maximal 
point. The necessity for such distinctions will become clear later. The computa- 
tional methodology for generating these trajectories and their associated functions 
comprisr the rest of this paper. They will be used to test the conjecture made about 
chaotic behavior. 

2.1. COMPUTATIONAL METHODOLOGY 

In order to develop the computational methodology needed for this study, one 
additional factor is needed. This factor is found by looking at the derivatives of the 
iterates as functions of the initial condition 

For stable limiting behavior, these derivatives should converge to either zero for 
a system fixed point or cyclic behavior for system  cycle^^,^. The inark of chaotic 
behavior, on the other hand, has been extreme sensitivity to initial conditions6. 

It is clear, however, that if during iteration, the condition 

-- - 4X( 1 - 22,) = 0 df 
dz, (3) 

happens to be satisfied, the system will discontinuously loose its functional depen- 
dence on initial conditions. This point of discontinuity is the mark of a region 
of qualitatively different system evolution. Transient behavior surely ends at this 
singuhity, because what follows has lost all relationship to the initial state of the 
system. 

This transition point is conjecturcd here to be the essence of the difference 
between chaotic and transient beliavior in this problem. Transients have sensitivity 
to initial conditions, the bounding behavior of chaos does not. This distinction is a 
point of departure from conventional thinking on chaotic behavior. 

The role of the system maximum is evident here. The condition in Eq. (3) is 
satisfied by the maximum in the system map. In general this maximum point is a 
function of the system parameter, but here it is simply the constant x = 1/2. In 
the iterative procedure any trajectory that passes through this point characterizes 
the onset of a supertrack. The evolution of such a supertrack should display the 
qualitative differences between chaotic and trmsient behavior. If such a supertrack 
is cyclic in nature ( i .  e. it is a supercycle), then cyclic behavior in the chaotic regime 
should be displayed. 
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This analysis makes it clear that the behavior of supertracks can be investigated 
easily by insuring that the condition in Eq.(3) is met at the outset of the iteration 
procednrt:. Tlmt is, all supertra.cks can be generated by iterating on Eq.(l) starting 
with N = 1/2 as the seed. 

If the ideas being explored are correct, then the nature of cham can be studied 
at low iteration orders, not at high order limits. This is another departure from 
current thinking. This ability to study chaotic behavior a t  low iteration orders has 
great benefits. It allows a system to be studied more easily over a range of system 
parameters and it allows armlytic estimates to be made of gross behavior. 

The import~ant, point here for the quadratic. probkin, is that the investijiation 
of supertracks eliminates the func.tiona1 depeirdence of Eq.( 1) on t.he initial con- 
dition. Such trajectories are only a function of the system parameter A. Every 
syst.em iterate is also a continuous fiiriction of this parameter. Lock-stepping the 
entire iteration process by starting all itera.tioiis at the maximum value gives these 
supcrtre,ck functions their importmce iu characterizing chaos. 

Since the seed .z = 1/2 is the gcnerator of all supert,ra.cks these traject.ories 
a,re, therefor?, chara,cterized solely hy the masiiiiad point in the syst,em. It is clear 
then that Feigenhaum’s universality is the hasis of this approarh. The premise of 
universality is that the chaotic behavior of the system is fully characterized hy the 
behavior of the system neax its irmximum. The concept was derived f ~ y  studying 
supercycle scaliiig3. The behavior of nonlinear systems starting at this maxinium 
shoiilrl t,hm be the crux of universality. 





3. CHAOS FOR A QUADRATlC MAXIMUM 

The coiijectures made in the last section can be testcd by studying supertrack 
behavior for the quadratic problem. This will be done by constructing a set of 
siipertrack fnnctions in X from the seed z = 1/2, which is the maximal value of 
the system function in this case. These continuous supertrack functions sn(X), are 
generated recursively froni 

They represent the locus of supertracks at a given iteration number 1% over tlir range 
of the system parameter A.  

3.1. BEHAVIOR OF FIRST FOUR POLYNOMIALS 

A plot of the first four of these supertrack functions together with the asynq- 
totic chaotic results appear in Figs. 3 a i d  4. These figures are given one after the 
other on separate pages to facilitate cornparisoris between them. 

The remarkable properties of these functions even at such low orders is inime- 
diiately apparent. First, it is clear that sl(X) an3 sz(X) completely specify the outer 
boundary of the chaotic regime starting at A, % 0.8925. They also form the bounds 
of tlie bifurcating cycles that characterize the approach to chaos in t,lie region from 
X = 0.5 to A, N 0.8925. The major open region and the apparent darker curves in 
the chaotic regime (see Fig. 4) are see11 to be described by s3(X) and s4(X). 

The major 3 - s u p e r ~ y c l e ~ ~ ~  is also predicted by these functions. This stable 
feature in the chaotic regime is n supertracli which is cyclic in nature. It occurs 
here at X = 0.958. Feigenbaiim's a,nalysis showed that all such stable cycles are 
characterized by equal derivatives of the iterates at their point,s of intersectiomsz6. 
This cycle is thus noted by the point at which sq(X) intersects SI(,\). Since this is 
a supercycle, it must also include the point z = 1/2. This point is seen to occur at 
the intersection of s3(X) anti the line x = 1/2. A 4-supercycle is thus indicated by 
the intersection of sq(X) with .z = 1/2 at X = 0.990. 
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Such intersection and equal slope conditions are common to all supercycles. 
Denoting a point of intersection of general n-supercycle with 5 = 1/2 by A,, it is 
easy to show that they can he derived from the following relationships: 

and 

Another major feature resembling a star also appears at these low orders. A 
star is a supertrack which ends abruptly at a single point,. This star coincides with 
the intersection of the sS(X) a.nd sq(X) houndaries a.t A = 0.920. The point at 
which they intersect is characterized by unequal slopes and therefore represents an 
unstable Singularity in tlie cliaotic regiinc (i. e. a singular supertrack). Since it lies 
along the curve f = 1 - 1/4X, it represents the extended behavior of the fixed-point 
of Eq.(l) as a function of X in the chaotic regime. Its appearance as an rinstable 
singularity is thus easily understood. This 3-star corresponds to the point at which 
odd order cycles begin in the quadratic map problem4. 

It is clear that the behavior of these supertrack functions below A, x 0.8925 
arc traiisiciit in nature, except for the points with stable supercycles. This is true 
for any extended region of stability. Since supercycles play an important role in 
universality theory, however, supertrxk fiirictioris are also useful outside of the 
chaotic regime. In particuhr, they serve as bounding functions in the approach to 
cha,os. This bounding begins a,t X = 0.5, the point at which the 1-supercycle is 
located, and is traced by the curves for S I  (A)  and sz(X) up to the chaotic regime at 
A, N 0.8925. 

3.2. HIGHER ORDER POLYNOMIALS 

Continuing the anal.ysis of tliesc supert,rack functions, we display in Fig. 5 the 
behavior of all of the first eight of these functions. Fig. 6 expands this view in tlie 
chaotic regime and Fig. 7 shows the cllaractcristic asymptotic chaotic behavior at 
this scale dso. 

It is even clearer here how the. bounding structure of chaos is evolving. Several 
major new supercycles appear at, this levcl of resolution. These are noted by the 
intersectioii of each of the siipcrtrack functions with either z = 1/2 or the bounding 
curves .sl(X) and s2(X). Both tlie 3-star and the 3-supercycle 11aw ta,keri on more 
concrete slinpe. Closer to A, N 0.8925, bifurcated versions of these struct,urcs have 
also appeared (i .  e. the 6-star at X = 0.898 arid the 6-siipercycle at X = 0.907). 



A 
FigEre 5. Supertrack functions for  full range o f  

the quadratic system. 
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1 4  

Since others liave studied this region exten~ively"~ (and the results speak for 
tlieniselves), we will not belabor the analysis any further. Several observations can 
be immediately made, however. 

1. The supercyclcs arc becoming combinatorially more dense and they appear 
interspcrsed over the entire chmtic regime. High and low order supercycles 
appear closer and closer to each other. In this pattern stars and supercy- 
cles systematically alternate with each other. This is also true about the 
app'oach to chaos, except that, the stars liere can be loosely interpreted 
as st,a.hle regions. Some of the major structures predicted to exist in the 
cliaot,ic region have already appeared at these low orders. 

2. The eiitire cliaotic regime displays a reverse cascade of bifurcations away 
froin A, 0.8925 simi1a.r t,o that observed iii the approach to chaos. Some 
simple numerical calculation even at this point confirm that the universal- 
i ty predicted in this reverse process is indeed p r e ~ e n t ~ . . ~ .  The universal 
behavior is contained in tlic roots of the supertrack functions with respect 
to .L = 1/2. The succession of these A, for different cycles can easily be 
used to derive the Feigeiihaum constant 6 and the universal scaling num- 
ber 01.  These numbers t,lius descril->es both the approach to chaos through 
supercycles and the bifimcatirig cascade of the major supercycles of al! 
ordcrs away from A, 0.8925 i r i  the chaotic region. 

3.  By sta.rt,iiig at the system maximal point, t!ie apparent disorder of the 
chaotic regime and its sensitivity to initial conditions are both eliminated. 
Ihis niaximal seed orders tlie entire chot ic  regime in such a manner that 
it can he described by polynomials. Such ordering is the result of treating 
the maximal poiut as a chaotic attmctor. This attractor, once reached, 
determines all future syskrii liehvior. Tlie stable range of the attractor 
ill t ,his problem is seen to  lie hctwcen A, N 0.8925 and X = 1.0. Since 
all supertracks are boundcd by .,(A) and s2(X)  for this case, these curvcs 
describe the range of iiiflumce of tlie cliaotic attractor at any valne of the 
sys t ciii parainct er. 

i l  

4. The only infinite supert,rwdis iii this picturc appear at A, 25 0.8925 a,nd the 
a,ccui~iiulation points of the other n-supcrcycle. 4t, these points a.u irifiriit,e 
nunhcr of these super-triicli fuiict,ioris exist without crossing each other. 
T h e  infinite scqueiices are important because they are directly relat,cd 
to Feigcnbaum's universal fuiictioii". Tlie universal sca,ling para.meter cy 
cmi c;ilciila.ted from t,l~iese sequences 1~)-  setting the system parameter in 
Eq.(4) cq1:al to the crit,ical p i n t  value a i d  ikrating. The iiiiiversal scaling 
lair- for a,ny sequence can lie calculate(1 t,o a.ny desired a,ccuracy from 
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Extrapolating these observations to increasingly higher order behavior we can 
conclude that the chaotic regime in this problem is chaacterized by systema.ticdly 
alternating stable supercycles and unstable stars. These latter features follow paths 
corresponding to the continuation of the functional dependenc.e of stable cycles on X 
found in the qproadi  to chaos. The orders of both of these structiires are bounded 
by the order of the highest supertrack fiinctioii being considered. 

The t,wo iiniversal constants h and a,  and the map inaxiiniiiii :c = 11.7, thus 
characterize the chaotic attractor of the quadratic problem. The approach to the 
5 = 1/2 attractor and the chitotic behavior generated by it,  both clearly obey 
universality  relation^^-^. This i s  as it should be, since they are both are governed 
by the maxiiiial point of the map. 





4. CHAOS FOR A LINEAR CUSP MAXIMUM 

To complete this discussion, the supertrack approach will be used to briefly 
describe the behavior of another simple system - linear cusp or triangle m a x i m i ~ r n ~ ~ ~ .  
The equation for the iterative behavior of this nonlinear system is given by 

Being composed of piecewise linear sect,ions, tliis functional forin increases only 
linearly in order of complexity at each iteration. Many of the salient features of 
the problem ace thus amenahle t,o iulalytic verification4i5. In particuhr, X = 1/2 
represents a singularity in the system shove which there are no stable fixed points. 

This probl~m was brought up bere because the cusp system has one new feature 
that makes it an importa.nt test of the general concept of uiiiversa,lity and the 
supertrack hypothesis. This feature is the singular nature of the peak in the map. 
If universalit,y holds, then the change from a maxiilium with zero slope to one with 
a discontinuity and a slope that precludes stability" should be directly reflected in 
the chaotic regime for this map. This change is indeed borne out by the results 
which follow. 

4.1. RESULTS 

The asymptotic chaotic beha.vior of the itaerates of the cusp map in the inter- 
esting region from X = [1/2,1] is shown in Fig. s. Using a seed of J: = 1/2, the 
supertrack functions for this system can be generahd from Eq.(8). The first eight 
of these a,re shown for the same region from X = [1/2,1] in Figs. 9. 

It is a,pparent that there are inmy  similarities between these results and the 
ones derived for the quadratic case (see Figs. 6 and 7). Topological siruilarities w t x  
e ~ p e c t e d ~ ~ ~ ,  Their coiiiptational redity here c.im he discussed at length, but this 
will not be done. Tlie iinportant point to be noted is the c h a n p l  nature of thc 
cliaotic, regime. 

As is evident from the results in Fig. 6, tlie entire region X = [1/2,1] is chadic. 
The supertrack analysis results in Fig. 9 bear t,his out. Since a11 the supertrack 
functions a,ttaiii maxima only as cnsps with unstahle slope conditions, all the s11- 
pertracks ?re unstahle and singular. The entire chaotic regime is ma.de up of such 
singular supertracks. 
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In particular, there is neither stability nor any approach to stability anywhere 
in the chaot,ic regime. The point A, = 1/2 is the critical point for this problem and 
it too is singular, in the sense that it is approached discontinuously. The system 
behavior degenerates from a single stable fixed point solution of x = 0 for X < 1/2 
into immediate chaos at A, = 1/2. Only the bounding nature of the supertrack 
functions are useful in analytically describing the features of this regime. The only 
open window is fully described by ss(X) and sq(X), as before. 

These results cleasly support the concept of universal behavior. The change 
from a quadratic to a cusp maxiinuin resulted in the elimination of all stable system 
behavior in the chaotic regime. The singular nature of the cusp is reflected in the 
singular nature of the chaos produced. 



5.  CONCLUSIONS 

The concliision that can he drawn from this work is t,lint chaotic behavior 
can be studied as a hounding phenomenurn. It can also be characterized hy a 
chaotic attractor which is an extremum in the system map. The evolution of system 
behavior starting at  this point characterizes the chaotic regime as a function of thc 
system paranietcr. This characterization c . m  bt: studied at low iteration order by 
following the system behavior as it evolves dir 

Although a lot more work needs to be done t,o thcor&cally understand thc 
behavior of the recursive supertrack fnnctions developed, it is clea,r that they re. 
veal important, aspects of nonlinear system hehavior in the diaotic and non-chaot,ic 
regimes. Tlirse Eiinctions faithfdly represent the approach to a chaotic attractor 
in their transient behavior at high orders. They cha,ract,erize both the stablc and 
unstable trajectories present in the chaotic regime at all orders. 111 addition, they 
ca.n be geIierated easily and at low orders they describe the gross features of chaos. 
Their relationship to other methods of characterizing chaotic behavior is iinder 
investigation. 

The theoretical conjecture iisetl to derive the siipertmcli functions also pro- 
vides a means for extending this conipiitational niethodology to the study of more 
complex problems. It appears to be g(:neral enough to apply to inore complex nmi 

ilirnensional niilps and to rniiltic~irrieiisioiial nonlinear ninps as well. The inctliorl- 
ology iniglit be used to idciitify the appea,rance of chaotic behavior experimentally 
by studying the bounded behavior of systems in  a fdly chaotic re&' rime. 

At the heart of all of these matters is Fcigenbanrn's universality and the theory 
that chaotic phenomena are tied closely to the hcliavior of nonlinear systems in the 
vicinity of a max.imal point. The sncccss of universality in a rmge of othcr problems 
siiggests that supwtracks might he iiseful there also. 

ly from the attractor point. 
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