MARTIN MARIETTA ENSRGY SYSTEMS LIBRARIES

NREERERET

3 445k 02LAULY 3

ORNL /TM-10486

User interface for a Partially
Incompatible System Software
Environment with Non-ADP Users

R. S. Loffman

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A11 Microfiche AQ]

This report was prepared as an account of wark sponsored by an agency of the
United States Government. Neither theUnited States Governmentnorany agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefuiness of any information, apparatus, product, or process disclosed, or
represents thatits use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, irademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

ORNL/TM-10486

Energy Division

USER INTERFACE FOR A PARTIALLY INCOMPATIBLE
SYSTEM SOFTWARE ENVIRONMENT
WITH NON-ADP USERS

R. S. Loffman

Date Published—August 1987

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY LI R e e eses
e b vorao (THHTAD

To the Graduate Council:

I am submitting herewith a thesis

written by Regis S.

Loffman entitled "User Interface for a Partially Incom-

patible System Software Environment
I hate examined the final copy of
and content and recommend that it be
fulfillment of the requirements for
of Science, with a major in Computer

with Non-ADP Users."”
this thesis for form
accepted 1in partial
the degree of Master
Science.

Charles P. Pfleeger, Major Professor

We have read this thesis
and recommend its acceptance:

Accepted for the Council:

Vice Provost

and Dean of The Graduate School

i1

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of
the requirements for a Master’s degree at The University
of Tennessee, Knoxville, I agree that the Library shall
make 1t available to Dborrowers under rules of the
Library. Brief quotations from this thesis are allowable
without special permission, provided that accurate
acknowledgment of the source is made.

Permission for extensive quaotation from or reproduc-
tion of this thesis may be granted by my major professor,
or in his absence, by the Head of Interlibrary Services
when, in the opinion of either, the proposed use of the
material is for scholarly purposes. Any copying or use
of the material in this thesis for financial gain shall

not be allowed without my written permission.

Signature

Date

USER INTERFACE FOR A PARTIALLY INCOMPATIBLE
SYSTEM SOFTWARE ENVIRONMENT

WITH NON-ADP USERS

A Thesis
Presented for the
Master of Science

Degree

The University of Tennessee, Knoxville

Regis S. Loffman

June 1987

ACKNOWLEDGMENTS

J am grateful to Dr. Charles Pfleeger, Dr. Maria
Zemankova, and Dr. David Straight for their cooperation
and assistance as members of my thesis committee. 1 am
most appreciative of +the guidance provided by Dr.
Pfleeger in his role as head of the committee,.

I would also 1like +to acknowledge Martin Marietta
Energy System’s corporate support of my academic pur~
suits.

I extend a very sincere thanks +to the management of
Oak Ridge National Laboratory and especially to my
colleagues for their personal and professional support
over the past three years.

T am also thankful to my husband for his patience and

support.

ix

ABSTRACT

Good user interfaces to computer systems and software
applications are the result of combining an analysis of
user needs with knowledge of interface design principles
and techniques. This thesis reports on sn interface for
an environment (a) that consists of users who are not
computer science or data processing professionals and (b)
which is bound by predetermined software and hardware.
The interface was designed which combined these consid-
erations with user interface design principles.

Current literature was investigated to establish a
baseline of knowledge about user interface design. There
are many techniques which can be used to implement a user
interface, but all should have the same basic goal, which
is to assist the user in the performance of a task. This
can be accomplished by providing the wuser with consis-
tent, well-structured interfaces which also provide

flexibility to adapt to differences among users.

The interface produced used menu selection and
command language techniques to make two different
operating system environments appear similar. Additional

included features helped to address the needs of differ-

ent users. The original goal was also to make the

Xi

transition between the two systems transparent. This was
not fully accomplished due to software and hardware

limitations.

TABLE OF CONTENTS

CHAPTEK

I. INTRODUCTION ittt nntnesasns

Background ... e e eiaonsoossonssenan

PUurpose ...ttt it ias i
Approach ... i i iiii i aan
1I. USER INTERFACE DESIGN CONSIDERATIONS
User Characteristicscoc0v0vaas
User Interfacesciiiiiiniiien

Different Dialogue Types

QUEestion~and-AnSwWeET . i vt e a0

Form Filling ... eenoean e et s s

Menu Selection vt ervoro oo

Function Kevs .o venen e e e e e
Querv Language ..o e e .

Command LAanNgUage .o e oo oo

Graphic Interactionvivcueonn

Natural Languageo aeeeeenons

Hybrid Dialogues . .ovi i vev s

Parallel DialogUues . i ittt esiososn

Dialogue Chosen for this Project .

.....

Menu Selection Design Considerations

Command Langfuage Design Considerations

Other Design Considerationsceo000

xiii

PAGE

12

12

13

18

18

19

24

CHAPTER

IIT.

Iv.

APPLTCATION ENVIRONMENT AT HAND
Hardware-Software Configuration
User NeedsS .ttt nnetrsotrtoenenonnsess

IMPLEMENTATTION DESCRIPTION (...t vennneen
Implementation Plan .ottt ertnvrnen
Analysis of Appropriate User Interaction
Work Done for the First Kind of User
Command Implementation Details

Description of Individual Implemented

ComMMANAS © v vt vt e v oo o oo ensensonnensnecnes

Append L it i e e e e e e
LT o
Create Directory and Create File
L o
o s
T = A
o ol 1 ¢ VU
Remove Directory v v ee et eenereeannns
RETIBME ittt vttt s et oot o enennsonnnnos
Set Directory Protection and Set
Protection ..iiiiiiiiini i it ecnnas
1 s

T‘ype L L I I I R I I I I R I I T I T R R S T R S T S TR I |

Help FRCI1AtY vttt teinneeeneeannnsans

xiv

PAGE

28

29

30

35

35

37

38

42

43

44

44

45

47

48

48

49

54

54

57

58

CHAPTER PAGE

Iv. {Continued)

Work Done for the Second Kind of User 58

Menu Characteristics ...viiiiveriiienanas 59
Return/Undo Capabilityiicivvenenn.. 63

V. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS .. 65
Desirable Changesiiiiiiinvonnesenenns 65
Handling Duplicate BTOS-Centix Names 67

The Ideal Implementationevivevean AN 70
BIBLIOGRAPHY ettt e e e e e e Ce e 73
APPENDICES iiiaenns C e e e e e 78
APPENDIX A Lttt ittt ittt erasassnns fee e 79
APPENDIX B e Ce et e e 84
APPENDIX C ti ittt et snonnonsonnentonnennnas 88
APPENDIX D ... iivv i ettt 104
APPENDIX E .. viiviivvnnnn Ve N 106
APPENDIX F ... ittt inieens che st e e e s e e 108
APPENDIX G L ii ittt i it i et it e e e 114
APPENDIX H e e e e r et e e 187
APPENDIX T ...ttt iiennnrennnnnsotenenens 195

Xy

CHAPTER 1

INTRODUCTION

End wuser computing needs are becoming increasingly
important as hardware and software proliferate in our
society. This is evident in the variety of sapplications
available, and the variety is expected to grow as users
become more confidenti. It is tedious to the user, espe-
cially the user who is unfamiliar with computers and data
processing, to cope with idiosyncracies of software. The
issue is further complicated when the wuser has several
software applications each with its own unique language
or interface. The situation can be even worse when the
hardware environment is not designed for the application.

This thesis presents the design and partial imple-
mentation of a user interface to integrate a system
composed of multiple software applications in a partially

incompatible system software and hardware environment.

Background

The particular environment being studied in this
thesis is a government agency with over one hundred
offices trying to make best use of a set of avallable

tools. The user environment consists mostly of personnel

specialists who use the system for word processing and
access to data base applications.

Not much is known about the capabilities and limita-
tions of the total hardware-software environment. The
hardware, the software which supports 1it, and any
software applications developed will be distributed to
approximately 200 sites within the United States and
overseas. A better interface is needed for any applica-
tion in the environment to be successful. The subject cf

this thesis i1t the development of a better interface.

Purpose

This thesis reports on a user interface for access to

an integrated system. The user accesses a variety of
software applications, each of which has a unique set of
system software components. Because the typical user is
unfamiliar with automated data processing {ADP}, an

important goal of the interface is that it minimize
apparent differences between the various components. A
way to accomplish this is to make access, use, and syntax
of +these components as consistent as possible. No
attempt will be made in the interface effort to optimize
execution or access time of the underlying software.

This thesis reports on user interface design consid-

erations, the environment in which the integration is to

take place, the resulting interface that will integrate
the components, and the overall ability and effectiveness
of the attempt to integrate the components in & manner
transparent to the user.

The focus of the thesis is not the details of making
software run in the particular environment. The focus is
the analysis of user needs and abilities and then the
application of +the principles of interface design to the
design of a user interface which will make the different
components more comparable.

The result of +this thesis was a prototype system
intended to show the +viability of an integrated human
interface that uses both predetermined hardware and
software, and a mode of presentation familiar to the
users. The svstem produced was a demonstration project,
intended to elicit user feedback. It is expected that
there will be substantial change to the basic syvstem as a

result of that feedback.

Approach

System design in general and user interface design in
particular are implemented through a combination of
hardware and software tools and techniques. The scope of
this thesis 1is 1limited by predetermined software and

hardware constraints. The hardware with which the

interface 1s to be 1implemented 1is required to be a
monochrome monitor {green on black screen), a parallel
printer and a serial printer for output, and a kevboard
for input {a detailed description of +the heardware
environment sppears in Chapter II1). The system software
is defined by two very different operating systems and a
limited set of development software. (A more detailed
description of the hardware and software environment
appears in Chapter III1.)

The user community 1s large 1in number and widely
dispersed geographically. The typical wuser 1is not
familiar with automated data processing and uses the
svstem to accomplish office automation tasks. The level
of available assistance at each office for computer
related problems varies.

Because there 1is no option to acquire additional
hardware or software for all of +the sites, the only
flexible part is the user interface which can be built on
top of the hardware and system software. The thesis
work focuses on the introduction of flexibility into this
environment by the development of a user interface using
only the available resources.

The approach taken by this thesis is four-fold.
First, an investigation of the current literature was
conducted to establish a baseline of knowledge about user

interface theory and practice. The results are presented

in Chapter 1I. User interface is the term used through-
out this thesis, but in the literature it 1is also
referred to as ergonomics, human factors engineering?,
human engineering**, and other similar terms in different
sources.

Second, an analysis of users’ abilities, needs, and
gkill levels was done. Third, based on knowledge of the
application environment (user, hardware, and software as
described in Chapter 1I1), a set of features was chosen
to be implemented. The features and the rationale for
their selection are described in Chapter IV.

Fourth, the last part of the thesis work involved the
actual implementation of the selected features. The
results of this effort are reported in Chapter V.

Appendices A through F illustrate features of the
hardware~software environment available to the wuser.
These are the features supplied by the manufacturer.
Appendices G through I contain the code written for this
thesis as a response to the very different system

supplied components.

*Human factors engineering or ergonomics -~ "The
common objective of all human factors work is simply
stated: to achieve, through appropriate design, func-

tional effectiveness of whatever physical equipment or
facilities people use."” [Foley et al. 14]

*tHuman engineering - "refers to +the interaction
between the design of tools and the resulting ease of use
by people” [Crawford 302]

CHAPTER I1

USER INTERFACE DESIGN CONSIDERATIONS

Before advances in technology made computers smaller,
relatively inexpensive, and less intimidating, computers
and computer software were available to and used only by
professional computer scientists and data processors.
Thevy were basically 1inaccessible to the lay person.
Their ceost was so high that only major organizations
(government offices or Dbusinesses) could afford them.
Even within these organizations computers and the
applications they ran were controlled by and contained
within a data processing department or computing organi-
zation,

Today, this scenario 1s obsaglete. Because of
personal computing, computers are in widespread use, and
the users range from the completely inexperienced user to
the sophisticated programmer. Given this wide range of
experience within the user community, it is difficulit for

one computer system to adequately address the wide scope

of needs. This is where the user interface comesg into
play. The user interface is what allows the user and the
computer to communicate. "An ultimate goal of systems

design is for the user interface to no longer be s

barrier to the use of the capabilities by the people whe

want to use them" [Hammer] . Foley et &al. refer to
interactive graphics but their thoughts easily apply to
computer systems in general:

When a perscn uses an interactive

graphics system to do real work, he

wants the system to virtually disappear

from his consciousness so that only his

work and its ramifications have a claim

on his energy. [Foley et al. 13]
The user interface is accomplished through a combination
of hardware and software techniques. As mentioned in the
introduction, hardware selections are not an option in
this situation and, therefore, only software options are
available for the problem solution.

All software designers should take into account the

differences between humans, software and hardware, and

the strengths and weaknesses of each.

The human's thought patterns are

associative, integrative, and diffuse;
the program’s thought processes are
direct, analytical, and specific.

These differences are complementary and
productive because the homunculus does
well what the human cannot. {Crawford
302}
{ "Homunculus"” is a term which Crawford wuses to refer to
an intelligent being within the innards of the computer,)
By keeping aware of these differences, the designer
can produce a system that can perform the types of
activities which the user does not do well. 1In situa-
tions where the user’s participation 1is necessary, the

presentation of information can be structured to minimize

7

the user’s less creative efforts, allowing the majority

of the wuser’s efforts to be devoted to creative thought

processes.

User Characteristics

The consensus of the sources examined is that the
designer must know the intended user of the system. The
success of system and user interface design affects user
acceptance of the system, user productivity, training
costs, etc, [Folev et al. 14). There is a wide range of
users with high expectations and the ideal interface
would be tailored to each individual wuser’s needs and
abilities.

Foley et al. note the difference between users in the
following manner:

A knowledgeable user requires a wider
range of facilities and finer, more
precise tools than a less knowledgeable
user, before he will regard the system
as efficient, accurate, or pleasurable.
The experienced user can tolerate a
much higher apparent "memory load" with
many fewer prompting features. Indeed,
evidence indicates that a2 systen design
that works well for the inexperienced
user can be unproductively slow, crude,
and displeasing to the experienced
user. [Foley et al. 18]
Similarly, Shneiderman [226] notes that with "experi-

ence and maturity, users resent the computer's dominance

and prefer to use the computer as a tool."”

Branscomb and Thomas suggest a layered interface
approach which reflects the differences amcng users
[Branscomb and Thomas 227]J. This layering can be accom-
plished wusing different dialogue techniques appropriate
to the different types of wusers. (Dialogue technigues
will be discussed later in this chapter.) The intrcduc-~
tion of more complex commands as =& user’s knowledge
increases is also a way to achieve layering.

Several authors [Branscomb and Thomas 228, Botteril
3971 refer to the user's profile which would keep note of
which interface is appropriate to the individual user,.
This profile could also maintain a record of the uder’s
progress and adapt the interface to the user’s current

level of interaction.

User Interfaces

The tailoring of a system to a particular user is not
always possible due to the 1limitations of available
resources (programming, hardware limitations, etc.).
However, much can be done to improve systems and their
interfaces Dby incorporating some of the following
concepts and techniques,

If the user accesses more than one system, data base,
etc., it is Dbeneficial if systems are designed with

consistency as a common goal [Botteril 393]. Consistency

in this context refers +to dialogue design, command
vocabulary and structure, procedural flow through each

system, error handling techniques,; etc.

Command vocabulary achieves consistency at two
levels. One level is the semantics level which refers to
the meanings of a language. The other is the syntax

level which refers +to how the words in the language
convey the semantic meaning.

By having systems and interfaces available that
support consistency, the user experiences reduced
learning time. If the user learns one system and then is
presented with another which is consistent with the
first, less training will be required and the second
svstem will be learned 1in a shorter period of time. By
keeping systems consistent, what the user has learned is
reinforced and the retention time will be increased. The
user is less likely to be presented with an unfamiliar
situation which 1n turn will increase the user's self-
confidence and confidence in the systems themselves.

The ideal system is one in which the user can never
make a mistake. Of course this is wishful thinking but a

goal of each system should be to minimize the likelihood

of user error. This can be accomplished by careful
dialogue structuring. The wuser should be provided with

help facilities which provide more information when

needed. The user should be provided with the capability

10

to withdraw from a situation before taking an irre-
versible action. A further capability would allow the
user to undo an action that turns out to be not what was
intended or wanted [Botteril 398, Branscomb and Thonsas
230]).

When the wuser inevitably makes a mistake, the system
should provide helpful, non-antagonistic messages which
provide the user with enough information to correct the
situation. The not wuncommon situation of the user’s
being presented with a cryptic message, often Jjust iden-
tified by a message number, should be avoided. This
abbreviated message requires the user to refer to another
source (a manual) to interpret the message. The author’s
experience has often entailed searching for a manual
that, once found, reveals that either the page explaining
the error is missing or that the message is just repeated
in hard copy format with no solution offered.

Having established the user’'s needs and the overall
goal of assisting the user, the designer must choose the
dialogue form. Shneiderman [226]1 notes that when
designing for novice users "every attempt should be made
to make the user at ease, without being patronizing or
too obvious." This can be applied to how dislogues are

structured and how messages are constructed.

11

Different Dialogue Types

There are many different dialogue types from which to

choose when designing the interface. Martin lists
twenty~-three "techniques of conversation” employing a

screen and a keyboard to psrform alphanumeric displays

and input {Martin 87]. Cole et al. [217] have a shorter

PN

list of dialoguge costegories:
question-and-answer function keys
form filling command language
guery ianguage gZraphic 1interaction
menu selection natural language
hybrid dialogues parallel dislogues

Theze ten categories seem to represent the ranges of
dialogue types. The following i1s a composite discussion
of cach {rom the literature and their respective merits,

Thev are presenied in & approximate order from "appro-
. +

n
D

priate for u by 1nexperienced users” to "appropriate

for experienced users’ as determined by the author.

Question-and-Answer

Question-and-answer is an effective technique fTor use
with inexperienced users. The user is presented with =
set of predefined, system-initiated questions, one at =a

time. This technigue has & limited usage scope and is

12

best used in an environment with well-defined intersction
sequences.

This type of dialogue can be (machine and human)

resource intensive. Computer time 1is reguired to
generate the screen and interpret the response. This
method also reqguires telecommunication rescurces Lo

transport the screen and keyboard information between the
terminal and computer.

The user’'s effort is devoted to the actual typing of
the responses to each qgusstion. This involves the
physical typing activity and the time reguired to proceed
through the series of questions.

Question~-and-answer 1is nol an appropriate technique
for experienced users and {requent users who are likely
to be bored by the familiarity and tedium of a lengthy
process, However, this method reguires little training
and 1is of Dbenefit to the inexperienced or occasional
user. The users need to be aware of the acceptable input
formats or provided with helpful prompts to guide them

through the process.

Form Filling

Form filling is =similar to question-and-answer, but
the user 1is presented with a screen-~-genserated form which
regquires that values be supplied for esach paremeter. As

in question-and-answer technigues, the users need to be

13

aware of acceptable input formats for their responses.
The process can be shortened by allowing the user to take
default values for parameters. As with question-and-
answer, the experienced user may find this a boring

pProcess.

Menu Selection

Menu selection is also a system-initiated type of
dialogue and 1is appropriste for use by inexperienced and
occasional users. It is more appropriate for leading a
user through the possible options for an action as
opposed to leading the user through a series of data
entries. Menu selection requires less keyboard typing by
the user than question-and-answer or form filling because
the user generally only needs to type in a letter or =a
nunber indicating the selection choice. The wuser
generally cannot eliminate any steps required to perform
an action. As with the other two methods, menu selection
can be a (machine and human) resource intensive tech-

nigue .

Function Keys

Function keys are of assistance to the user by
enabling lengthy or frequently used input seguences to be
abbreviated with the use of one key or a combination of =a

few kevs. The use of function Kkeys requires some

14

training. To be useful to the novice wuser the combina-
tion of keys should be simple and not lengthy. Function
keys may be used in combination with other dialogue

methods.

Query Language

Query languages are sssociated with data bases and
data base management systems. There are several differ-
ent types of query languages available with commercial
data base management systems. These query languages can
be implemented using menus, keywords, templates, query-
by-example, command languages, form filling, and other
methods. To produce @eaningful, valid results, the user
should have knowledge of the underlying data schema to

properly structure the query.

Command Language

Command language dialogue is an effective technique
for use by experienced users. It generally permits
commands to be expressed in a short, concise, specialized
syntax which can appear cryptic and meaningless to the
uninitiated and inexperienced.

Because of the concise syntax associated with command
language dialogue, this type of dialogue is not machine
resource intensive. It also requires less manual effort

on the part of the user to type out the command. Command

15

language dialogue does require training in the meaning
and required syntax of the commands. It is not sppropri-
ate for 1inexperienced or occasional users, and even

experienced users sometimes are in need of assistance,.

Graphic Interaction

Interactive graphics as presented by Cole et a8l. is

not =a separate type of

dialogue but 1s a tool for
presenting information to the user. It is wused with the

other types of dialogues and can be geared to the level

of the user. By including graphics as a type of dia-
logue, Cole et al. acknowledge that some information is
best communicated graphically. Also, some 7people are

better able to comprehend things in graphic form as
opposed to written form.

Graphic interaction capabilities are Tbecoming more
common due to hardware and software improvements and the

advantages of presenting information graphicalls.

Natural Language

Natural language dialogue refers to a dialogue where
the user communicates with +the computer similar to the
way two people communicate. This type of interaction
requires a large amount of machine rescurces to interpret
the syntax, semantics, and ambiguities associated with

context~dependent human communication.

16

Martin also discusses natural language [Martin 37]
dialogue, but his usage refers to voice communication and
is therefore mnot a dialogue type which is implemented
using a keyboard and display. However, he notes that
natural language applications have difficulty dealing
with human syntax. The problem is not so difficult if
there is a limited vocabulary and sentence constructs to
deal with [Martin 397]. Even though Martin’s use of
natural language refers to voice communication, natural
languages in general suffer from similar problems with
syntax and are better handled with limited, well-defined
vocabularies.

Natural language dialogues often support or are sup-~
ported by artificial intelligence/expert systems and are

the focus of many recent research efforts.

Hybrid Dialogues

Responding to the fact that every tocl (in this case
each dialogue type) is not suited to every task, the
system designer may use a hybrid dialogue composed of two
or more of the previously discussed dialogue types. Some
dialogue types are more suitable for particular classes
of activities +than others. Hybrid dialogues combine
dialogue types to provide better support for an activity.
This combination allows greater flexibility for use but

is more complex to design and implement.

17

Parallel Dialogues

Parallel dialogues offer the wuser a choice of
dialogue method appropriate to the wuser’s level of
knowledge and individuel comfort. These dialogues
acknowledge the fact that user requirements change as the
users gain experience in the use of a system. Parallel
dialogues c¢an provide the +transition from basic func-
tionality requiring little skill to more complex func-
tions reguiring more skill.

For example, a new user may require a lot of assis-
tance to accomplish a task. In this situation, menu
selection, form filling, and question-and-answer would be
appropriate techniques to structure dialogues. As a user
gains experience these methods may prove to be too time-
intensive and alternative methods which can respond to

this growth can help the user.

Dialogue Chosen for this Project

For reasons which will be discussed in Chapter 1V,
menu selection and command language were chosen as the
types of dialogue to be implemented in the work of this
thesis. Therefore, more detail is ©provided here about
design considerations with respect to these two tech-

nigues.

18

Menu Selection Design Considerations

As stated previously, menus are well suited for use
by occasional and inexperienced wusers. Menus require
little manual (typing) effort on the part of the user.
The user need not remember commands nor their syntax.
Menus provide a structure by which an application can be
approached and worked through. They also help the user
get started with the task at hand [Botteril 416].
However, menus suffer from inflexibility which can be
offset by parallelism.

Karhan et al. address similar needs with regard to
instructions for public telephone wuse. 1In their work
they cite the need for “"consistent language, graphics,
and placement of information” [Karhan et al. 1829].

When many menus are designed for an application or
for a system of applications, it 1is helpful +to the user
if =all of the menus have similar appearances. For
example, many titles appear consistently in the same
place, perhaps centered at the top of the menu. The
choices appear consistently in the same place on the
screen and choices may be grouped in several ways. Items

can be grouped alphabetically, by frequency of use, or by

some logical connection [Foley et al. 26]. Choices which
are more irreversible (deleting data, exiting the
application) can be set off from the other choices to

18

help ensure that the user does not misread the menu and
make a selection with adverse results.

Menus should contain options to exit from the menu,
to return to previous menus, or to view help screens
[Shneiderman 23817. The words comprising the menus should

be kept simple and short, and computer jargon should be

avoided.
Menus are limited by how wuch information can
physically be placed on one screen. Furnas et al. note

the following:

When there are many objects, a menu
system must use a successive search
method that relies on socome kind of
hierarchical tree or other presentation
of the relations among the objects.
How to do this in a way that leads to
correct user choices at each level, to
good overall performance, and to
acceptable convenience are unsolved

e

issues., [Furnas et al. 1802]

Foley et al. [26] note the work of Snowberry et al.
and their findings that selection +time and accuracy
improved when broader menus with fewer levels of selec-
tion were used. However, there were no suggested numbers
of levels to be used as guides when constructing menus.

Shneiderman, in his discussion of short- and long-
term memory [2241, refers to the work of George Miller

and the "magical number seven plus or minus two” as it
relates to a person’s processing capacity., Miller's work
suggests that seven units is the limit for information
perceived by any sensory organ [Shneiderman 224]., 1In a

o B

20

later section of his book where he discusses menus and
other types of dialogues, Shneiderman does not suggest a
structure for menus with regard to the number of levels
and the number of options available at each level.
Perhaps the "magical number seven plus or minus two" can
be applied to menu structuring as well.

A drawback to the wuse of hierarchical menus is the
necessity of traversing through the hierarchy once a user
has become familiar with the application. Foley et al.
address this issue and suggest the following remedy:

Hierarchical menu structures almost
demand an accompanying keyboard or
function key technique for more experi-
enced users. These techniques make
selection especially easy if each node

and leaf of the tree has an unambiguous
name, allowing a user to directly enter

a known command or phase name. The
menu system provides a backup if the
user’'s memory fails. An alternative is
to require unambiguous names for each
entry within an individual menu. Then
the experienced user, seeking to avoid
direct interaction with menus, can

enter the complete path name to a leaf

node. [Foley et al. 26]
The complete path name to a leaf node adds a command
language or mnemonic capability to hierarchical menus.

Once a user has gained sufficient experience with an

application, the menu hierarchy may be tedious to
sequence through or the user may want to use advanced
functions [Botteril 416]. This can be handled by provid-

ing this type of user with an alternative to menus.

21

Command Language Design Considerations

As discussed previously, command langusge dialogue is
an effective technique for use with experienced users.
With this type of dialogue, these users perform tasks
quickly and are more satisfied because a greater sense of
control is felt [Shneiderman 240]. However, because of
the short, precise, specialized syntax associated with
this type of dialogue, attention should be given to the
design of these dialogues.

There appear to be two overall guiding principles
with respect to the design of command language dialogues.
With regard to the command names themselves, they should
be "unique, easy to type, memorable, and natural”
[Streeter et al. 1808]. Secondly, "command structures
should match the problem domain and the seguence of user
thought processes” {Shneiderman 255). Attention to both
of these will help +the wuser to learn the commands
initially and to remember them for later use.

There are several ways to develop command names. The
first would be to use the complete word or phrase which
describes the action to be taken. This produces the most
meaningful command names and a place to start in deter-
mining an appropriate abbreviated version of the command.
At this point in the development of command names there

are several different methods from which to choose.

22

Truncation permits the wuser to type enough of the
command to distinguish it from any other command. This
scheme 1is adequate for short commands but for lengthy
commands may require that a lot of the command be keyed
before reaching the point of uniqueness.

Standard system abbreviations developed with careful
planning can provide for both shortness and uniqueness.
However, if they are developed without user input, the
resulting commands may not be meaningful to the user,
which will require more learning time and attention to
use.

Another method, contraction, omits word internal
letters [Streeter et al. 1810]. The deleted letters most
often are vowels. This method provides for uniqueness
but may still result in lengthy command names.

Acronyms are the result of taking the first letter of
each word in the command. This provides for shortness of
command names but may encounter problems with uniqueness.

The decision about which approach to take in design-
ing command names is a difficult one. Streeter et al.
provide this as a summary to their work:

...truncation appears to be the best
single abbreviation scheme. Truncation
also best captures people’'s natural
abbreviations in all environments
except two--monosyllabic words and
multiple-word terms. In these cases,
we recommend using vowel deletion for
the former and acronym formation for
the 1latter. If, on the other hand,

one’s task requires generating full

23

names, given abbreviations (decoding),
vowel deletion abbreviations are better
than other rule-based schemes.
[Streeter et al. 1825]
Streeter et al. do not offer a recommendation regarding
the length of command names.

Botteril, in his discussion of the design rationale
of the System/38 wuser interface, recommends three-
character abbrevistions for words and the concatenation
of these words to produce system level commands. Two
character abbreviations generally do not provide for
unigqueness, and more than three results in names that are
too long [Botteril 4011. The rule scheme he uses to
produce abbreviations takes the first letter of the word
and two consonants which are prominent in the pronuncia-
tion of the word and which also help make it unique from
other words [Botteril 400-4017].

Whichever method 1is chosen for developing command

names, the structuring of the commands themselves should

also follow similar syntax. An example of this is the
command name followed by any argument(s) and the use of
wildecards if permitted. Adhering to similar syntax

patterns will assist the user in the use of commands.

Other Design Considerations

Irrespective of the type of dialogue technique

chosen, there are several additional considerations in

24

designing dialogues: closure, completeness, familiarity,
and flexibility.

Several authors cited the need for closure {[Shneider-
man 225, Crawford 3161]. Shneiderman’s use of "closure”

refers to the need on the part of the user to complete a

task. Crawford defines closure differently than Shnei-
derman, "The essence of closure is +the narrowing of
options, the elimination of possibilities, and the

placement of rock-solid walls around the user.”

Even though the two definitions are different, they
both point to the importance of keeping in mind that the
number of and difficulty of tasks with which a user can
deal differs among users. It is important that the user
be able to complete tasks. This completion of tasks lets
the user gauge personal progress and provides a sense of
security, especially for the novice user [Crawford 318].

An example of the lack of c¢losure is implementing a
dialogue using the question-and-answer technique where,
at some point in the dialogue, the user doesn’'t know how
to respond to a gquestion. At this point the user will
either attempt a2 guess or terminate +the task. Guessing
can result in unpredictable, wrong, and even disastrous
results. Termination requires that the user reinitiate
the operation. In either situation, the user can feel =

wide range of emotions from frustration to anger to

25

distrust of the svstem, A well designed interface should
avoid situations which evoke these emotions in users.

Achieving closure is aided by the careful structuring
of dialogues, the screening of input values, and helpful
guidance when errors do occur.

Crawford also addresses the need for completeness in
a computer language. Although his thoughts are directed
more toward programming languages, they also apply to
applications in general which constitute another type of
human-computer interaction or language. He states that
the "language must completely express all the ideas that
need to be communicated between the computer and the user
but it need not express ideas internal to either think-
er’s thought process” [Crawford 3147}]. This points to the
need that the chosen dialogue tyvpe be able to address all
of the needs of the user which have to be communicated
with the system.

Another aspect to be considered in the design process
which hae been touched on previously 1s that +the inter-
face should resemble that with which the user is familiar
[Crawford 3147]. This requires again that the interface
be simple and direct. This will help the user in
learning the application because it will not be com-
pletely foreign,

The use of color, intensity of c¢olor, sound, high-

lighting errors, graphics, icons, and other techniques

26

should also be considered when designing user interfaces.
They can be used to direct the wuser’s attention to
significant functions or to highlight errors,

When designing a user interface it is therefore most
important to keep the wuser in mind. Thig includes
knowing what is needed to help the user accomplish a task
as well as the different needs of individual wusers. The
designer must also hknow the different forms that dia-~
logues may take. By combining knowledge of the user’s
requirements with knowledge of dialogue techniques, the
designer is then prepared to choose an interface method

and begin the design effort.

CHAPTER I11

APPLICATION ENVIRONMENT AT HAND

The user environment 1s a sct of distributed govern-
ment personnel offices wnich employs computers to do word
processing and data base applications. In addition to
handling general office tasks, the system will be used to

maintain records for 211 of the personnel located at the

site. The average user i1s a personnel clerk or techni-

€4

cian and not a computer scientist or data processing
professional.

There are approximately 200 offices located through-
out the United States and overseas. The offices vary in
size and in the level of in-house computer support which
they can expect.

Most questions which cannot be handled at a particu-
lar office are forwarded +to one central information
center for resolution. This would result in a heavy
burden on the one information center 1if all 200 offices
had problems they could not resolve themselves. (There
is also limited support available from the manufacturer
in the form of a hotline.} 1In addition, few centralized
staf{ mewmbers are devoted to solving problems. Their
data processing experience is limited primarily to main-

s

frame computers and applications, not micro computers.

28

They have only recent training in the operating system,

the data base management system, and the hardware.
Consequently, it is important that the software be
reliable, consistent, and easy to use by non-ADP staff

when distributed to the 200 offices.

Hardware-Software Configuration

Most of the sources reviewed advocated that hardware

is selected only after the system reguirements have been

specified. This sequence of events often does not occur
in the development of real systems. This was the case
with the system under study in this thesis. The hardware

and development software were acqguired before the system
{functional) requirements were specified. These resource
limitations are not subject to change and, therefore,
place constraints on what can be implemented.

The hardware configuration is composed of a Burroughs
XE550 “"megaframe” with Burroughs B 26 intelligent
workstations clustered off of the XE550. The XE550 is
composed of multiple processors assigned specific
functions (applications processing, file processing,
cluster ©processing., storage processing, and comuuni-~
cations processing).

The XES50 primary operating system, BTOS, serves as a

file processor. Centix, =an enhanced version of Unix

29

System V, is provided through the applications processor.
Centix is normally wused with PTI1500 terminals. The
configuration for the environment under study does not
have this type of terminal; rather it must be emulated by
the B 286 workstation wusing Intercom 1500 enmulation
software. Centix is accessed by invoking the Intercom
1500 emulator on the BTOS file processor, which in turn
connects through the hardware and software 1links to the
Centix applications processor. Appendix A shows the BTOS
logon screen, logon procedure, and how to invoke Intercom
1500.

Available software pertinent to this project are C,

and Cobol compilers, and the Ingres data base management

system running under Centix. Ingres is a relational data
base management system (DBMS) from Relational Technology
Inc.

User Needs

Current user applications on BTOS consist primarily
of word processing and some data base management using a
BTOS data base management system. In addition, users
require the capability to do some simple system level
commmands such as accessing the current date and time and

erforming basic file management.

30

There are currently no applications running under
Centix. A prototype system to evaluate candidates for
job openings is being designed for Centix, and it will
use Ingres as its data base management system because the
data management complexity cannot be handled under BTOS.
System administrators and data base administrators will
need commands to do file management.

It is expected that the system will evolve to where
word processing and other similar applications will be
done at the BTOS level and data base applications will be
developed using Ingres to run under Centix. Therefore,
the users, who are not ADP professionals, will be faced
with two totally different operating systems.

The BTOS commands available +to the typical user
employ the form filling dialogue technique described in
Chapter IT. Appendix B lists the BTOS commands available
to the typical user. This list is displayed to the user
when the HELP key 1is pressed. After this list is
completely displayed, if the user again presses the HELP
key, more information will be displayed about these
commands. The listing produced when the user takes this
action is in Appendix C.

The following 1is a general description of the use of
the BTOS system. A typical command, for example "create
file"”, is typed by the user at the COMMAND prompt. The

user then presses the return key and is presented with a

31

form (Appendix D) which reguires values to be supplied
for the parameters. ¥When the form is filled in, the user
presses the GO keyv to execute the command.

There =are only two ways to somewhat shorten this
sequence. First, the user need only type in enough of
the command name to identify it uniquely. (This could be
considered a type of command langusge as described in
Chapter I1.) Second, if the command has default values
and the user is willing to accept those wvalues, the user
need only enter the command and press the GO key.

The BTOS data base management system’s query language
can be characterized as being a command language dia-
logue. Ingres allows queries to be constructed either by
using form filling or by formulating command language
statements. The applications developed using Ingres have
access to menu selection technigues.

The complexity of the hardware/software environment

-

described above has a direct bearing on the design of the

vatem, The hardware and scoftware described previously
in this chapter have already been purchased through a
large government procurement. This has resulted in =a
constraint: no new hardware or development software can
be purchased for distribution to the sites. Foley et al,
recommend designing the system to meet the users' needs
and then acquiring the hardware and software needed to

implement the design [Foley et al. 177. In the system

32

under study by this thesis, the application designers are
to make do with what 1is in hand. This approach is
contrary to recommended system design technigues but is
typical of real world situations.

Another design concern not related to the user

pertains to who will be responsible for maintaining,

supporting, and distributing the user interface code. It
is assumed that this person (or persons) has minimal
knowledge of +the hardware/software environment. There-

fore, any code produced will have to be well documented.
The syvstem administrator currently at each site is often
not familiar with data processing. This person has the
responsibility to install new software at the local site,
and this situation may affect the complexity of some of
what is to be developed.

As opposed to the BTOS form filling dialogue, Centix
uses a command language dialogue. The command language
available with Centix is virtually indistinguishable from
"standard” Unix commands in spelling and syntax as well
as in method of operation. Thus the need to use applica-
tions under both BTOS and Centix not only violates the
consistency requirement for a user interface, but also
forces the wuser to learn two very complex operating
systems to perform a small number of office automation
functions. The purpose of the work described here is to

apply the methodology of user interface design to the

33

development of a more consistent set of forms and
commands to make the existence of two operating systems
more transparent to the user.

This chapter has characterized the environment for
which the user interface was developed. The hardware and
software were already purchased and were not chosen for
design characteristics needed for this project. The
system consists of two very different operating systems
(BT0OS and Centix) and a data base management system.
These system componenis do not adegquately address the
needs of the user community which is composed primarily
of non-ADP users. Because there is no option to acquire
additional hardware or software, i1t was determined that a
user interface was needed to shield the wuser from the
differences between the incompatible system components.

The nexti chapter describes the work that was done
which applies user interface design techniques (the

subject of Chapter II) to the environment just defined.

34

CHAPTER 1V
IMPLEMENTATION DESCRIPTION

The requirement to use the existing hardware and
software limited the options available for designing and
implementing the user interface. The only design options
are software techniques that can be eaccomplished with
existing development software on the existing hardware.
Chapter II briefly mentioned the use of color, sound, and
graphics as technigues for emphasizing information.
These are examples of features which are not feasible
given the hardware and software constraints of this

particular environment.
Implementation Plan

Under the existing environment, the user first logs
on to BTOS. BTOS has a distinctive 1log on screen
{Appendix A), command line prompt (COMMAND), and vocabu-
lary of commands. To get to Centix; the user first has
to run the PT Emulation softw?re, which brings up the
Centix logon screen. Because BTOS is what the user
interacts with first and has been located at the sites
longer than Centix, the original plan fof this thesis was

to:

a. try to make the 1logon procedure from BTOS to
Centix more transparent

b, make the Centix command language environment look
more like the BTOS form filling environment

c¢c. design a prototype dialogue for an application to
suggest a way applications under Centix can be accessed
by users.

The first item, that of a transparent log on proce-
dure between BTOS and Centix, was not able to be accom-
plished. This was due primarily to the PT 1500 emulation
software required to run between BTOS and Centix.
Currently upon exiting the application the wuser is
returned to the Centix shell prompt. The user then has
to logout of Centix by pressing the FINISH key. To
return to BTOS, the user then has to press the CODE and
FINISH kevs. It was intended that the user be automati-
cally returned to BTOS or logged out to the Centix log on
screen. To implement either of these requires knowing
the escape sequences for the FINISH key and the CODE~
FINISH key sequence and where +to send these sequences
once they are known. Both of these guestions are not
addressed accurately in the system manuals and have been
referred to the manufacturer.

The remaining two items therefore are the subject of

this thesis and will be discussed in terms of the user

36

who is most likely +to require their specific function-

ality.

Analysis of Appropriate User Interaction

As was discussed in Chapter 1I, there are approxi-
mately ten different types of dialogue which can be used
to facilitate communication between the user and the
computer. After much thought it was decided to design
software to help two different kinds of wusers in the
office under study.

The first type of wuser 1is the user who interacts
directly with Centix. This user is more experienced in
computing than the second type of user. For the user who
accesses Centix, form filling techniques that look like
BTOS were wused to develop commands. This satisfies
several goals of interface design, for example consis-
tency and familiarity because form filling techniques
most resemble what is available under BTOS. Command
language techniques were also developed for the user who
has progressed beyond the need for form filling. This
introduces flexibility and adaptation to individual user
needs.

The second type of user is the user who uses Centix
to access applications that were developed using Ingres.

Therefore, this type of user will never need to do Centix

37

level commands (file listings, file deletions, etc.).
Instead, access only to a particular application is
needed. A menu system was developed to assist this type
of user (the actual menu system 1is explained later).
Menu selection 1is a good type of dialogue for a novice
user because the wuser does not need to know complex
syntax. Some enhancements to the menus were added using
command language techniques for the wuser who does not

need all of the structure provided by menus.

Work Done for the First Kind of User

Most users of this system have had experience with
BTOS. Therefore it 1is 1important to make the Centix
environment look like BTOS. One obvious difference is
the different prompts in the two sgsystems. BTOS prompts
the user with "COMMAND" and Centix prompts with "$". To
make the two environments seem similar, the PS1 variable
{the PS1 +wvariable overrides the default setting for the
command-level prompt) was set to "COMMAND:" in the user’s

profile file to override the system default "§".
Appendix E lists the .profile file for a typical user.

BTOS commands and Centix commands are very different.
Appendix B contains a list of commands available to the
typical user when in BTOS. These commands were reviewed,

and a subset of commands was chosen which have functional

38

counterparts in Centix. The implementation of the
selected commands in Centix is helpful to the user
because, as was discussed 1in Chapter 11, consistency
between BTOS and Centix dialogue structure will be
enforced. These commands and their Centix counterparts
are listed in Table 1.

These BTOS commands were then implemented in Centix
using shell scripts to make them appear and operate as
close as possible to the BTOS environment. Shell scripts
were chosen for the development work because they are
easy to program and debug. Some simple C programs were
used to perform cursor control and 1lend inverse video
capability. These C programs were used because Curses
{screen handling software which operates under Unix) is
not available with the PT 1500 emulator. The programs
used are accessed from the shell scripts as commands and
are:

1. "inverse" which turns on inverse video

2. "mvdown n” which moves the cursor down n number

of lines

3. "mvup n" which moves the cursor up n number of
lines

4, ‘"normal" which turns on normal video

5. "rectangle m n" which establishes & rectangular

area for the current screen attribute (such as "inverse")

with the current cursor position as the upper left hand

39

Table 1. BTOS Commands and Similar Centix Commands

BTOS Command

Similar Centix Command

append

copy

create directory
create file
delete

edit

files

print

remove directory
rename

set directory protection
set protection
sort

type

cat

cp

mkdir

rm
edit or vi
1ls
lpr

rmdir

chmod
chmod
sort

cat

40

corner and m lines down by n characters wide

6. "thisline n" which places the cursor at column n
of the current line

All of the script files are trapped for the user
pressing the delete key and abnormally terminating the
shell script. To ensure that the screen 1is not 1left in
an abnormal state, the delete key trap turns on normal
video when a user presses the delete key. The trap could
also be set to ignore the pressing of the delete key, but
none of the commands as implemented would cause harm if
abnormally terminated.

At the beginning of the effort it was also planned to
implement three other frequently wused BTOS commands.

These are "logout', "path"”, and "set time". "Logout”
could not be implemented because of the need +to know the
escape sequences for FINISH and CODE-FINISH as described
earlier in this chapter. The BTOS "path” command sets a
path to a specific drive (fixed drive or floppy drive)
and to a specific directory. This could not be imple-
mented using shell scripts because this requires the
shell script to change the current directory (cd) of the
parent shell. This is not permitted using shell scripts
[Kochan and Wood 239]. The system «clock is solely

controlled through BTOS and, therefore, the "set time”

command could not be implemented in Centix.

11

Command Implementation Details

For each of the above-mentioned BTOS commands
Appendix F 1lists what the user sees when one of these
commands is chosen. Appendix G contains the shell script
code to implement each of them in Centix. Appendix H is
a shell script that provides a help file capability for

the Centix implementations of the BTOS commands.

Each command operates in two modes. The first mode
is for the inexperienced wuser. If the wuser enters the
command without supplying arguments, the script assumes

the user wants to be prompted for parameter input as in
BTOS. Thie was implemented wusing the form filling
dialogue technique. The parameters which have meaning in
Centix were implemented.

The second mode 1s for the experienced user and

llows the entering of parameters on the same line as the

o

command without prompting. The user only has to supply
the command name and the file name(s) {(or directory name
for directory related commands]). Default values are

assumed for the other parameters with the exception of
the "sort" command. This was implemented using the
command language dialogue technique with the exception
that command names are not shortened. Command names were
not shortened in order to ©preserve the BTOS naming

convention.

12

This two mode approach was chosen for several
reasons. The form filling mode was chosen because this
is consistent with the BTOS implementation. This
provides users, who are accustomed to +the BTOS approach,
with a sense of continuity and security. The command
language mode was chosen for the experienced user who may
become bored with the form filling mode’s slowness and
required detail.

Five of the commands (edit, print, set, sort, and
type) conflict with existing Centix commands of the same
name. This means that to implement these five commands
in this thesis would require the user specifying the full
path name to where each shell script is located or
include the path where the shell script is located in the
PATH variable. "Edit", "print”, and "sort" provide

"

similar functionality, however, "set" and "type” do not.

Chapter V. will discuss the alternatives for each to
determine which should be implemented.

Description of Individual Implemented Commands

A detailed description of each command and how it was

implemented follows.

43

Append

The "append"” command in BTOS prompts the user for the
files to be appended and the file to which they will be
appended. The resulting file can also be the printer
which results in a printed output of the appended files
and no new file 1is created. Optionally, +the user can
choose to confirm each append operation before it is
performed. The default value assumes the user does not
want to confirm each. If the destination file does not
exist it is created, and if it does exist it is overwrit-
ten by the appended files.

The “append” shell script command in Centix using the
form filling mode functions the same as BTOS except for
the capability of sending the files to the printer.

The mode for the experienced user allows the user to
specify any number of files and assumes the last file is
the destination file. The files, as in the form filling

mode, cannot be sent to the printer.

Copy

The "copy"” command in BTOS prompts the user for the
file to be copied and the file +to which it will be
copied. The user has two options. The first c¢hecks if
the user wants to overwrite the destination file if it
already exists. The other option allows +the user to

confirm the copy operation before it is performed. The

44

default value assumes the user does not want to confirm
it.

The "copy” shell script command in Centix using the
form filling mode functions the same as BTOS,

The mode for the experienced user copies the first
file to the second file, It assumes overwriting is
rermitted and that the user does not want to confirm the

operation.

Create Directory and Create File

The "create directory” command in BTOS prompts the

user for the new directory name, which car also include a

volume name (“volume” refers to the hard drive or floppy
drive where the directory will be located). The user can
optionally set the protection level for the files

contained in the directory, specify the maximum number of
files to be contained in the directory, and specify
passwords for the directory and the volume.

The "create file” command in BTOS is similar to the
create directory command. It prompts the user for the
file name to be associated with the new file. The user
can optionally set the protection level for the file's
volume or directory, specify a password for the file, set
the protection 1level for the file, specify an initial

sector size, and choose to overwrite a pre-existing file.

The two BTOS commands were implemented in Centix
using the same shell script, "create." The first
argument to the shell script is compared to the words
“"file” and "directory"” to determine which type of create
is being performed. Once that is determined, the absence
of an argument indicates that the user has chosen the
form filling mode. Otherwise, the file or directory is
created.

The "create directory” shell script command in Centix
using the form filling mode Jjust prompts the user for the
directory name. The system protection level default is
automatically chosen. The BTOS volume and directory
passwords and number of files limitations do not have a
comparable Centix implementation.

The "create file"” shell script command in Centix
using the form filling mode prompts the user for the file
name and allows the user the option of overwriting an
exlsting file. The other options available in BTOS
{passwords, file protection level, and sector size) were
not implemented because they are not available in Centix.

The mode for the experienced user for the "create
directory” command expects a directory name as an
argument to the command. If the directory already
exists, a message to that effect is displayed; otherwise
the directory is created. The directory protection level

is the system default.

46

The experienced mode for the "create file" command

expects a file name. If the file exists, the user is
prompted to permit overwriting. Otherwise, a new file is
created. The file protection level defaults +to the

system value.

The "delete" command in BTOS requireg the user to
fill a form with the file names to be deleted and
optionally, the wuser can choose to confirm each deletion
before it is executed. The default value assumes the
user does not want to confirm each.

The "delete"” shell script command in Centix using the
form filling mode functions the same as BTOS.

The mode for the experienced user expects a list of
file names as arguments to the command and assumes that

the user does not want to confirm each deletion.

Edit

The "edit” command in BTOS prompts the user for the
name of the file to be edited. If the user supplies a
user name then more than one user can edit files in the
directory.

The "edit"” shell script command in Centix using the

form filling mode asks only for the name of the file to

be edited. Multiple user access to directories in Centix

is controlled by protection levels and, therefore, the
user name parameter was not implemented.

The mode for the experienced user expects only the
name of the file to be edited as an argument to the
command.

With the "edit" command, the user will actually be

invoking the vi editor.

Files

The "files” command in BTOS prompts the user for the
names of the files to be listed. The user has two
options. The first checks if the user wants details of
each file to be displayed. The default is for no detail
information. The other option allows the user to send
the listing to the ©printer. The default value assumes
the user wants the information to be displayed on the
screen and not the printer.

The "files” shell script command in Centix using the
form filling mode functions the same as BTOS.

The mode for the experienced user displays the list

of file names with no details displayed on the screen.

The "print"” command in BTOS prompts the user for the
file to be printed and then has a number of optional

parameters. The user can specify the queue to handle the

48

printing. The user can specify the number of copies to

be printed if more than one. After a file is printed it
can be deleted automatically. The default 1is to not
delete the file. The user can also confirm the printing

of each file, the default being not to confirm.

There are other parameters which accommodate special
forms, print wheels, and print modes, form alignment, a
time when the printing will occur, a security mode which
requires a password, and a priority to be applied to the
actual printing schedule.

The "print” shell script command in Centix using the

form filling mode implements the parameters which can be

te]

accommodated using the Centix "lpr"” command. The user is
prompted for gqueue name, number of copies, deletion after
printing, and the confirmation of each print operation.
The defaults are the same as those taken by BT0S. The
other BTOS prompts discussed 1in the previous paragraph
were not implemented.

The mode for the experienced user prints one copy of
each of the listed files to the default queue and does

not delete the file after printing nor does the user

confirm each print operation.

Remove Directory

The "remove directory” command in BTOS ©prompts the

user for the name of the directory to be deleted. If the

49

volume or directory has a password 1t must be supplied.
The user has two options. The first checks if the user
wants all of the files in the directory deleted. If the
user does not respond with "yes" then if there are files
in the directory the directory will not be removed. The
user can also optionally choose to confirm each file
deletion.

The mode for the experienced user was not difficult
to implement, Because Centix has a hierarchical file
structure, directories can be nested. For the "remove
directory” command this implies +that before a directory
can be removed it must be empty of files which, by the
definition of file in Centix, includes directories. For
this reason, the command language mode was chosen to be
implemented in. a limited manner. The user supplies a
directory name and the shell script checks that the
argument 1s first of all a directory. If it is a
directory, it is then checked to make sure +that it 1is
empty. If it is empty of files, it is removed. If it 1is
not empty it is not deleted and a message is displayed to
the user stating that the directory can not be removed
because it contains files.

The form filling mode method was the difficult
command to implement. The resulting implementation,
although functional, docoes not include the breadth of

scope originally planned. Because the nesting of files

50

in Centix allows for many possible situations the command
seemed to be a good candidate for recursion. The BTOS
convention of letting the user specify ahead of time
whether all files should be deleted or not and the
ability to confirm each deletion before it is processed
seemed to provide adequate safety measures against
indiscriminate file and directory deletion which recur-
sion could introduce.

Code development was based on this premise and the
assumption that a recursive shell script could be
implemented, In simple cases it worked. However, as
more complicated cases were tested, the recursion did not
work. It seemed to be able to push down through direc-
tory levels but popping back out clearly was not func-
tioning correctly. The shell script seemed to be having
difficulty dealing with hierarchical structures that
became too deep (three levels) and too wide.

No discussion of recursion applied to shell scripts
was found in the available reference material including
the system’s Centix manuals. At this point a simple
recursive shell script was written to determine if there
is a 1limit on the number of times a shell script can be
called recursively. The script basically continued to
call itself until a counter reached a predefined limit
(the value of the counter was printed each time) and then

the value in the counter was printed as the levels popped

51

back out. This shell script worked correctly with small
values. When the limit was set to twenty~four the shell
script broke down. The twenty-four levels could be
pushed but at the point where the popping would occur the
execution was hung and had to be aborted.

A few times when this occurred a message came to the
screen but never remained long enough to be completely
recorded. It was something to the effect that the number
of fork processes had been exceeded. The execution of a
shell script causes the spawning of a new process.
Apparently there is some limit to the number of processes
which can be running. Whether the recursion encountered
a process limit for an individual user or a system limit
is not clear. The problem was referred to the manufac-
turer.

At this point the pursuit of a recursive solution to

the "remove directory’ command did not seem to Dbe
profitable. There were three other courses of action
from which to choose. The first would be to write a C

program to implement the remove directory command using
recursion. The second would be to use a variation of the
"ls" command (with the ~R option) to build a file
containing the names of all of the files (and directo-
ries) in a directory and use that file as the base from
which to do deletions. The third alternative would be to

limit the functionality of the command.

52

The first alternative, that of implementing the
command with a C program, was discarded because the
premise of the thesis 1is to demonstrate user interface
techniques (using shell scripts because they are easy to
program and debug). The second alternative was not
chosen because in other than simple cases it would seem
to require a lot of processing resulting in very slow
execution time.

The third alternative was chosen to implement the
prompt mode as a compromise between functionality and
execution time. The user 1is prompted for a directory
name and the user can optionally choose to delete all the
files in the directory and to confirm each deletion. If
the user does not want to delete all files, the directory
is checked to see if it is empty. If there are files in
the directory, a message 1is displayed to the effect that
there are files present and the directory cannot be
removed.

If the wuser wants to delete all files, the directory
is checked for the presence of subdirectories. If there
are subdirectories present, a message is displayed saying
that the directory can not be removed because it contains
subdirectories.

Assuming there are no subdirectories, if the user
chooses to confirm each file deletion, the user 1s then

prompted to confirm the deleting of each file. 1If all

53

files are subsequently confirmed for deletion, the direc-
tory 1s then removed. If some files are not confirmed
for deletion, they are not deleted, and the directory is

not removed.

Eename

The "rename"” command in BTOS prompts the user for the
file to be renamed and the new name for the file.
Optionally, the user can specify whether overwriting is
acceptable if the new file name is the name of an
existing file. The default is to not overwrite. The
user can choose to confirm the rename operation before it
is performed. The default value assumes the user does
not want to confirm each.

The "rename” shell script command in Centix using the
form filling mode functions the same as BTOS.

The mode for the experienced user expects the user to
supply the old file name and the new file name as
arguments to the command. If the new file name 1is the
name of an existing file, a message to that effect is

displayed to the user and the file is not renamed.

Set Directorv Protection and Set Protection

The "set directory"” protection command in BTOS
prompts the user for the directory name, which can also

include a volume name {(volume refers to the hard drive or

54

floppy drive where the directory will be located) and the
new protection level. The user can optionally specify a
volume or directory password and can also confirm the
protection level change before it is finalized.

The "set protection” command in BTOS is similar to
the "set directory protection” command, except that it
applies to file protection. it oprompts the user for a
list of file names and a protection level to be assigned
to each file. The user can optionally specify a password
for the file and can also confirm the protection level
change before it occurs.

The two commands were implemented in Centix using the
same shell script, "set." The first argument to the
shell script is compared to "directory” and "protection”
to determine which type of create is being performed. If
the first argument is directory, the second is checked
for being "protection.” Once it 1is determined whether
the user 1is concerned with file or directory protection,
the absence of other arguments indicates that the user
has chosen the prompt mode. Otherwise, the new file or
directory protection is assigned.

The "set directory protection” shell script command
in Centix wusing the form filling mode prompts the user
for the directory name, the new protection level, and,

optionally to confirm the change.

The "set protection” shell script command in Centix
using the form filling mode 1is analogous to the set
directory protection command. It prompts the user for
the file name(s), the new protection 1level, and an
optional confirmation.

\al

The mode for the experienced wuser for the "set
directory protection" command expects a protection level
and a list of directory names to which the protection
level will be assigned as arguments to the command.

The experienced mode for the "set protection” command
for files works 1like the "set directory protection”

except that it expects a list of file names instead of

directories as arguments to the command.

The "sort” command in BTOS prompts the user for the
name of the files to be sorted and the file in which the
sorted files are placed. The file organization must
either RSAM (Record Sequential Access Method), DAM
(Direct Access Method), or JISAM (Indexed Seqguential
Access Method). The wuser also specifies the keys on
which to perform the sort. These keys are embedded in
the data. The user then can supply optional parameters
which pertain to stable sorts, work files, log file, and

user confirmation for malformed input records.

(@3}
[@p]

Centix has a "sort” command which was used in the

implementation of this command. However, it is used to
sort lines of files, and the "key" is a portion of the
line specified by a beginning and ending position. To

fully implement the BTOS sort command would require
writing a utility to handle RSAM, DAM, or ISAM records.

The "sort"” command implemented here was done to put a
BTOS-like front-end on the Centix "sort".

The "sort shell” script command in Centix using the
form filling mode asks for the name of the files to be
sorted, the output file, and the part of +the 1line on
which to sort as specified by a beginning and ending
position in the line.

The mode for the experienced user expects a beginning
and ending position on which to sort and a list of files
as arguments to the command. It is assumed that the lasf
file in the 1list is the output file to which the Sorted

lines will be written.

Type

The "type"” command in BTOS prompts the user for a
list of files to be displayed on the screen. The user
can optionally choose +to confirm each before it is
displayed to the screen.

The "type" shell script command in Centix using the

form filling mode works the same as in BTOS.

57

The mode for the experienced user for the "type"
command expects a list of file names to be displayed to

the screen as arguments to the command.

Help Facility

A help facility for the implemented commands and
their Centix counterparts was also implemented using a
shell script. The command to access the facility is
"unixhelp."” If no argument is supplied, a screen is
displayed with each command listed and synonyms for the
command . The user then selects a command for which more
detail is supplied. The detail contains information
about the use of the command, the form of the command and
its expected arguments, and in some cases, cautions about
using the command {for example, possible overwriting).

I{f an argument is supplied, the argument is checked
to determine i1f it is one of the commands for which help
is available. If so, the detail that was explained in
the previous paragraph is displayed. 1If help information

i not available, a message to that effect is displayed.

Work Done for the Second kind of User

A menu system was developed for the Ingres applica-
tions. (See Appendix I for the code; note that the menus

contain calls to Ingres and the Ingres called code is not

58

included.) The menu system approach was chosen for two
reasons. First, non-ADP wusers are more accustomed to
menu systems. Second, menus are an effective tool for
novice users because menus reguire little effort on the
part of the user. Menus lead a user through an applica-
tion and offer a sense of security to users who are new
to unfamiliar with the applicetion or computers 1in
general.

The strict hierarchical nature of the menu system was
modified to accommodate the {frequent user who may find
the wuse of menus fedious. This was accomplished by
putting a wunigue alphanumeric label in the upper right
hand corner of each menu. This label identifies the menu
screen and, by specifying the label, the user can

directly access the specified menu.

Menu Characteristics

Main menus have a character label which is an acronym
representing the function of the module. For example,
ACP 1s the label associated with the Personnel Office
Main Menu screen, which is the first screen the user sees
and from which all applications are accessed through the
menu tree (ACP has meaning to the user). CE is the label
on the Candidate Evaluation System Main Menu. It is
listed on ACP as an available application. Currently

there are no other applications developed and available,

59

however, new ones would be included as choices on this
menu.

The CE main menu contalins the modules which comprise
the Candidate Evaluation System. Currently, KSA Item
Bank (KSA) and Crediting Plan Bank (CP) are the only
gvailakle modules. The KSA Ttem Bank Main Menu choices
include KSA010, KSA020, KSA030, and KSARPT. The numbered
identifiers were selected as a way to distinguish between
modules. It 1is intended that they be replaced with
lahels which are meaningful to the user. The users have
been asked to determine what these labels should be.
This will provide added meaning to the user and make the
labels less cryptic.

Report menus are labeled with the code which identi-
fies the module (KSA) and "RPT" for report (KSARPT).
Help menus are labeled with the code which identifies the
moc¢ule (ACP) and "HLP" for help {(ACPHLP).

A typical session will first log the user into the
ACP screen. From this screen the user can log out or
choose an application, for example Candidate Evaluation.
From the application, the user can be guided through the
svstem by the menus or direct access to a menu can be
achieved by typing its unique screen label.

If the wuser chooses to use the menus, all selections
just require the typing of the number of the selection

and prescsing return. The only screens which require more

60

typing effort are the screens which are called by Ingres.
These are the data entry, data modification, and data
querying screens which were all developed wusing Ingres

utilities and which are only called by the shell script

code (Appendix 1) developed for this thesis.

The principle of consistency was ensured by having
all of the menus follow the same format. The unique code
is listed in the upper right hand corner. The title of
the menu 1is listed in upper case letters and centered on
the next line. The choices available to the user arve
listed below the title. The first choice is always 0
which returns the user to the menu from which the current
screen was called. Notice that this choice is separated
from the other choices below it by one blank line. This
is done to distinguish it from the other choices. The
other choices are then listed.

One screen may contain a variety of selections. The
number of selections for the menus in this thesis ranges
from three to five, Similar menu selections are grouped
together and separated from different grouping by a blank
line. For example, the KSA TITEM BANK MAIN MENU choices 1
and 2 are grouped together because they both ecall modules
which add, edit, delete, or retrieve data. Choice 3
appears by itself because it calls the reporting module
menu. Choice 4 also appears by itself because it has &

different function from the other choices,.

61

All wmenus are contained within a box of asterisks
(*). Below the box, the user is prompted for a selec-
tion and also reminded to ©press the enter key. The
separation of these areas by the box is done to emphasize
the difference Dbetween choices available to the user and
the place where the user inputs a selection.

At any time that the user makes an invalid menu
selection, an error message is displayed which repeats
the user’'s choice and that it is in error. The display
of what the user entered i1s done to help the user correct
kevyboard entry errors. Then the menu is repainted, and
the user is prompted for another choice.

All report menus behave the same. This reinforces
the consistency principle by presenting the user with
information in a familiar format. The user is presented
with a menu of the different reports which are available
at that ©point in the menu process. The user selects a
report choice, and then is prompted for how the report is
to be oprinted: either to the terminal, in draft copy, or
in final copy. The choice of terminal will display the
report on the screen. Draft copy will print the report
on the parallel printer which is connected to the XE550.
Final copy will print the report on the serial printer
which is connected to the XE550. The wuser must know
vhere these +two printers are located so that printed

output can be picked up. It would be helpful if the user

62

were also given a message as to where the printers are
located (i.e., what room) but because this software will
be distributed to approximately 200 different locations,

this feature is not feasible to implement.

Interface design principles suggest that the user be
given an undo capability. Within this menu system, this
feature is interpreted as allowing the user to return to
the calling menu (the previous menu). This is accom-
plished by the last choice which is "r"”. This choice is
deliberately not a number because choosing 1t does not
call a specific module menu but returns the user to the
calling screen. This 1is included in case the user
forgets what was done previously. There 1is no undo
capability, but at least the user can see the previous
screen.

It was originally intended for the r capability to
allow the user to flip back and forth between two menus.
This would eliminate the need for the user to type menu
labels repeatedly. However, when a shell function
executes another shell function by calling its name, a
pointer to the parent function is placed on a stack.
When a return is executed from the called shell function,
the return stack is popped and returns the pointer to the

parent shell function for it to be executed. There is no

63

way to put a pointer to the child on the stack as the
parent is being popped.

Because the calls to Ingres are slow and are beyond
the control of the menu system itself, the user is
presented with a message ("This will take some time...")
which acknowledges that processing is going on. This is
done to assure the user that an error has not been made.
After this message appears on the screen, the Ingres
utilities are running and each of them prints 1its own
messages to the screen so that at least the user knows
something is going on. Once the user has completed an
activity which involves Ingres (adding, updating,
deleting, retrieving data or running a rtreport), the menu
from where the selection was made 1s redisplayved. This
is an application of Shneiderman’s interpretation of
closure. The wuser is assured that the task requiring
Ingres has been completed because the menu displayed is

the one from which the task was initiated.

64

CHAPTER V

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

Ideally the wuser should be unaware of changing from
BTOS to Centix and returning to BTOS. As was mentioned
in the previous chapter, it was not possible to accom-
plish this goal. To do so, more help would be needed
from the manufacturer’s support staff. It appears that
major system software redesign may be required to present

the multiple operating systems as a single entity.

Desirable Changes

The menu system developed for the personnel system
will need to be refined with the feedback of users to
ensure that it provides the functionality they require
and captures the sequence of their activities correctly.
Shell scripts proved to be a good prototyping tool for
menus because they can be modified easily and do not
require recompiling.

OCnce the functionality and sequencing of menus has
been agreed upon with the user, the menu system should be
converted to C to improve response time. The ability to
flip back and forth between two screens as was attempted

with the "r" feature could probably be better implemented

65

using global variables which save a reference to the
called and calling menus. ({These recommendations have
been successfully implemented as part of the work of the
ongoing project of which this thesis is a component.)

The shell scripts, which were written to implement
BTOS commands in Centix, should be converted +to C for
faster execution. Shell scripts were chosen as a quick
way to implement the selected commands with the knowledge
that they would execute slowly. Using C and a system
call to perform a Centix “cd”, the ’“path” command can
probably be implemented.

In order to make the commands accessible by all
users, the shell script files should be located 1in a
specific directory. The path to that directory is then
included either 1in each individual user’s PATH (in the
.profile file) or in the system default PATH 1if it is
determined that the majority of users will use the
commands . This directory path should be chosen carefully
since it is affected by other considerations, such as the
commands that duplicate existing Centix system command
names.

The commands that duplicate existing Centix system
command names can be used by either making an adjustment
to the user’'s PATH or providing the full specification of

the path to where the command is located. The adjustment

66

to the user’s PATH is not advised, and requiring the user
to supply a full path name to a command is tedious.
Currently the operating system provides no system
help files to assist the user and documentation is poor.
The help feature developed for the BTOS commands imple-
mented in Centix is a good place to begin addressing the

users' requirements for system level help facilities.

Handling Duplicate BTOS-Centix Names

It is not recommended that the "edit"” command be
implemented in a real environment for several reasons.
In addition to the problem of where to 1locate the
command, the implementation only provides for the
prompting of the file name and still requires that the
user be familiar with the text editor. Most users who
are experienced enough to be editing files probably are
not in need of this simple form filling mode implementa-
tion.

The implementation of the "print" command described
in this thesis needs some consideration before it is
installed in the user’'s environment. The functions this
version provides (i.e., those of specifying print queue,
number of copies, the deletion of files after printing)
can be and were accomplished using Centix commands.

However, the ability to provide the inexperienced user

67

with a command that has & form similar to the more
familiar BTOS environment has merit. The "print” command
presented in this thesis uses the Centix "lpr” command.
If it 1is determined that the users, 1n particular those
to whom these new commands are available, will not need
the system’s "print” command, then it would be reasonable
to implement a PATH change to gain access to this "new"”
"print” command.

]

The "remove directory” command as implemented here is
adequate in the sense that a user cannot remove a
directory that contains files without choosing the
"delete all files" option provided by the form filling
method. However, because BTOS does not permit nested
subdirectories and Centix does, there is an inconsistency
between the BTOS command and the command implemented

here. The author recommends that the writing of a C

program be investigated to implement the command.

Centix has a "set” command which is used to display
currently set shell variables. Because Centix commands
all consist of one "word"” (or combination of characters

"

not including white spaces), set” of "set directory

"

protection” or ‘"set protection” will invoke the system's

" t

Il
set" command.

The functions this "set" command provides can be and
were accomplished using Centix commands (chmod). The use

of "chmod" requires an understanding of the three types

68

of Centix wusers, how to determine appropriate access
privileges, and then how +to assign them. However, the
ability to provide the inexperienced user with a command
that has a form similar to the more familiar BTOS
environment has merit. The commands to set protection
presented here provide consistency.

The use of the Centix "set” command may not be
required by most of the wusers in the environment de-

scribed in this thesis, but the ability to set protection

levels 1is, If the users, in particular those to whom
these new commands are available, will not need the
svstem’s set command, then it would be reasonable to

implement a PATH change to gain access to this different
"set” command.

It is not recommended that the “sort” command
developed in this thesis be implemented in a real
environment without further discussion with the users for
several reasons. There is a major difference in the
intended use of the BTOS and the Centix sorts. The BTOS
"sort"” is used on records with a special structure. The
Centix "sort" is wused to sort 1lines of files. To
implement the Centix "sort" with a BTOS front-end may be

deceptive and confusing.

Centix has a "type" command which gives the path to
the argument which i1s a Centix command. The need for
the Centix’s "type" command should be examined and

69

weighed against the need for a BTOS-like "type” command.
If it 1s determined that the Centix system’s command is
not needed by the wusers and that the BRTOS function is
needed, then the choice to change the user’s PATH would

be reasonable.

The Ideal Implementation

The work developed in this thesis was done based on
knowledge of the intended wuser community but without
their direct input. Designing user interfaces reqguires
knowledge of the user and user input. However, sometimes
the users either don't know what they want or what is
possible to implement given the resources (hardware and
software) at hand. Consequently, the ideal situation is
one in which the development of interfaces is a joint
effort between the designer and wuser with the process
being iterative. The work presented here has applied
user interface theory to a real situation. The resulting
menus and commands are one step in the iterative process
to produce a user interface. That process will continue
because the work presented in this thesis is part of an
ongoing project which provides support to the particular
government agency.

The goal of the work presented in this thesis was to

apply current user interface design techniques to a

70

specific environment. The environment is one which
consists of users with 1little experience with computers
confronted with a hardware environment that has two very
different operating systems.

Research into current user interface design practices
and methodologies was conducted. The information learned
from this exercise was then combined with an analysis of
user needs and abilities to develop a user interface.
The development of the interface had an overall goal of
reducing the visible differences between two very differ-
ent systems by making the interfaces consistent and
familiar.

This goal was achieved by creating a set of commands
(using form filling) for the one operating system
(Centix) that resembles the same set of commands in the
other operating system (BTOS). The commands were
enhanced to accommodate differences in individual users
by the addition of a command language syntax.,

In recognition of the fact that one type of user will

use Centix only to access applications developed with a

data base management system, a menu system for an
application was designed. The menu system design was
based on menu system design guidelines. Features were
added to respond to frequent wusers’ need to quickly

access the menu system without traversing the complete

menu hierarchy.

If there were an unlimited supply of resources
(human, software, and hardware) to develop a user
interface for the environment described in this thesis,

the approach to that development would have been differ-

ent. The work would have started with an analysis of the
needs of the users. Users would be involved in this
process.

Once the requirements had been documented, an

analysis of how to meet these requirements would be
conducted. The first consideration would be the types of
software needed and the last consideration would be the
hardware. 'The possible choices and combinations are many
and could be the topic of another thesis.

This thesis has demonstrated how sound user interface
design principles can be successfully applied even to a

situation which is bounded by many constraints.

BIBLIOGRAPHY

BIBLIOGRAPHY

Botterill, J. H., "The Design Rationale of the System/38
User Interface,” IBM Systems Journal, Vol. 21, No. 4,
1982, pp. 384-423.

Branscomb, L. M., and J. €. Thomas, "Ease of Use: A
System Design Challenge,” IBM Systems Journal, Vol. 23,
No. 3, 1984, pp. 224-235,

Burroughs Corporaticn, B20 Systems Standard Software
Operations Guide, Burroughs Corporation, Detroit,
Michigan, 1985,

Burroughs Corporation, XE 500 Centix System User’s Guide,
Volume I, Burroughs Corporation, Detroit, Michigan, 1986,

Butler, T. W., "Computer Response Time and User Perform-
ance During Data Entry,” The Bell System Technical
Journal, July/August 1984, Vol. €3, No. 6, Part 2, pp.
1007-1018.

Christie, Bruce (editor), Human Factors of Information
Technology in the Office, John wWiley and Sons, Chiches-
ter, 1985.

Coke, E. U., and M. E. Koether, "A Study of +the Match
Between the Stylistic Difficulty of Technical Documents

and the Reading Skills of Technical Personnel,” The Bell
System Technical Journal, Vol. 62, No. 6, Part 3,

July/August 1983, pp. 1849-1864.

Cole, Ian, Mark Lansdale, and Bruce Christie, "Dialogue
Design Guidelines {Chapter 10)," Human Factors of
Information Technology in the Office (ed. Bruce Chris-

tie), John Wiley and Sons, Chichester, 1985, pp. 212-241.

Crawford, Chris, "The Atari “Tutorial - Part 10: Human
Engineering,” BYTE, June 1982, pp. 302-318.

DATAPRO Research Corporation, "Burroughs B 25," DATAPRO
Reports on Microcomputers, DATAPRO Research Corporation,
Delran, New Jersey, July 1985, pp. CM11-117MM-101 ~ CM11-
117TMM-107.

DATAPRO Research Corporation, "Burroughs XE500 Series,"”
DATAPRO Reports on Micros and Personal Computers, DATAPRO
Research Corporation, Delran, New Jersey, July 1985, pp.
M09-112-301 - M08-112-308. '

Dzida, W., S. Herda, and W. D. Itzfeldt, "User-Perceived

Quality of Interactive Systems,” IEEE Transactions on
Software Engineering, July 1978, Vol. SE-4, No. 4, pp.
270-276.

Field, Anne R., "The Next Boom in Computers: Services,"

Business Week, July 7, 1886, No. 2954, pp. 72-73.

Foley, James D., Victor L. Wallace, and Peggy Chan, "The
Human Factors of Computer Graphics Interaction Tech-
niques," IEEE Computer Graphics and Applications,
November 1984, Vol. 4, No. 11, pp. 13-48.

Furnas, G. W., T. K. Landauer, L. M. Gomez, and 8. T.
Pumais, "Statistical Semantics: Analysis of the Potential
Performance of Key-Word Information Systems,” The Bell
Syvstem Technical Journal, Vol. 62, No. 6, Part 3,
July/August 1983, pp. 1753-1806.

Good, Michael D., John A. Whiteside, Dennis R. Wixon, and
Sandra J. Jones, "Building a User-Derived Interface,”
Communications of the ACM, October 1984, Vol. 27, No. 10,
pp. 1032-1043.

Hammer, Michael, "The Future of End-~User Computing”,
Kevnote Address at 1986 FOCUS Users Group, New Orleans,
1986.

Helander, G. S., "Improving System Usability for Business
Professionals,” IBM Syvstems Journal, Vol. 20, No. 3,

1981, pp. 294-305.

Intercomputer Communications Corp., Intercom 1500 PT 1500
Terminal Emulation for BZ2x Micros, Intercomputer Commu-
nications Corp., Cincinnati, Ohio, 1986.

James, E. B., "The User Interface,” The Computer Journal,
Vol. 23, No. 1, February 1980, pp. 25-28.

Karhan, C. J., C. A. Riley, M. S8. Schoeffler, "Designing
and Evaluating Standard Instructions for Public Tele-
phones,” The Bell System Technical Journal, Vol. 62, No.
6, Part 3, July/August 1983, pp. 1827-1848.

Kochan, Stephen G. and Patrick H. Wood, UNIX Shell
Programming, Hayden Book Company, Hasbrouck Heights, New
Jersey, 1985,

Krakowsky, P., "Searching for a UNIX User Interface,"”
Attage, May/June 1985, pp. 36-37.

Landauer, T. kK., S. T. Dumais, L. M. Gomez, and G. W.
Furnas, "Human Factors in Data Access,” The Bell System
Technical Journal, November 1882, Vol. 61, No. 9, Part 2,
pp. 2487-2510.

Martin, James, ugg ign of Man-Computer Dislogues, Pren-
tice-Hall, Inc., glewood Cliffs, New Jersey, 1873.
Meads, Jon A., "Friendly or Frivolous?", Datamation,

April 1, 1985, pp. 96-100.

Peterson, James L., "A Note On Undetected Typing Errors,’
Communications of the ACM, July 1986, Vol. 29, No. 7, pp.
633-637

Rushinek, Avi and Sara F. Rushinek, "What Makes Users
Happy?", Communications of the ACM, July 1986, Vol. 29,

No. 7, pp. 591-598.

Schwarz, Elmar, Ion P. Beldie, and Siegmund Pastoor, "A
Comparison of Paging and Scrolling for Changing Screen
Contents by Inexperienced Users, Human Factors, Vol. 25,
No. 3, June 1983, pp. 265-282.

Shneiderman, Ben, Scftware Psychology: Human Factors in
Computer Information S\atth, Winthrop Publishers, Cam-
bridge, Hassachusctts 1980.

Slator, Brian M., Matthew F. Anderson, and %walt Conley,
"Pvgmalion at the Interface,” Communications of the ACM,
July 1986, Vol. 29, No. 7, pp. 599-604.

Sobell, Mark G., "The Shell: Standard Input, Output, and
Shell Scripts,” Attage, August 1985, pp. 10-11.

Sobell, Mark G., "The Shell: Using Variables and Command
Line Arguments,’ Attage, September 1985, pp. 12-~14.

Sobell, Mark G., "The Shell: What Is 1It, How Does It
Work?", Attage, July 1985, pp. 38-39.

Streeter, L. A., J. M. Ackroff, =and G. A. Taylor, "On
Abbreviating Command Names," THe Bell System Technical

Journal, Vol. 62, No. 6, Part 3, July/August 1983, pp.
1807-1826.

Thadhani, A. J., "Interactive User Productivity,” IBM
Systems Journal, Vol. 20, No. 4, 1981, pp. 407-423.

Tracz, William J., "Computer Programming and the Human
Thought Process,’ §cftkarp - Practice and Experience,
Vel. 9, 1979, pp. 127-137

76

Voelcker, John, Paul Wallich, and Glenn Zorpette,
"Personal Computers Part 2: Applications - Lessons Learn-
ed,"” IEEE Spectrum, May 1986, Vol. 23, No. 5, pp. 62-64.

Yavelberg, T. S., "Human Performance Engineering Consid-
erations for Very Large C(Computer-Based Systems: The End
User, The Bell System Technical Journal, May/June 1982,
Vol. 61, No. 5, pp. 765~797.

—~3
-3

APPENDICES

APPENDIX A

08

SignOn $5.0.8

!Seiec!amn ! Enter an application name or leave this line blank !
H ! to display a Command form !
e e e - 4 e e e e e e m — e o m e e e e = = = H
1Password | Enter your assigned password (optional) !
L e B e e e e e m e — o — e e m m e e — e — = e :
iDay/DatefTime ! Enter the current day, date and time (if not already setl) §

Then press the GO key.

Ysery mame {e.g. ., Allen)
Password
Dates/Time (2.g. , Fri Sep 9, 1983 8:00 am)

18

Executive 5.0.4 (0OS t1ClstrLf{sSp-5.0.4) User name: candidate
Path: {Sysl{candidate) Sat Oct 11, 1986 11:00 AM

1Selection ! Enter an application name or leave this line blank !

H 1 to display a Command form. !
e o e o e e e e e e e e e e e e e m e !
tPassword ! Enter your assigned password (optional) !
e - T i e il }
iDay/Date/Time ! Enter the current day, date and time (if not already set) !

Then press the GO key.
User name (e.g., Allen) candidate
Password

Date/Time {(#.g., Fri Sep 9, 1982 8:00 am)

Command

Executive 5.0.4 (0SS 1iClstrLisSp-5.0.4) User name . candidate
Path. {Sysl(candidate) Sat Dot 131, 1986 11:01 AM

13election ! Enter an application name or leave this line blank !
! ! to display a Command form. !

iPassword) Enter your assigned password {optional). !
R e ittt T e T e i e el i
IDay/Date/Time ! Enter the curvent day, date and time {(if nol already set) 3
Then press the GO key
Yser name {e.g. , Allen) candidate

Fassword
Date/Time (e,g., Fri Sep 9, 1983 8:00 am)

Command intercom 1500

€8

Executive 5 0.4 (0OS t1ClstrLfsSp-5.0.4) User name: candidate
Path: [Sysl{candidate) Sat Oct 11, 1986 11:02 AM

Command intercom 1500
intercom 1500
fIinterface (cluster, A, or B, default = cluster)]

[Command filel

APPENDIX B

Executive $5.0.4 (0S5 t1ClstrLisSp-5.06.4)
Path: {SysJI{(RSL?>

Command

Commands are:
Append
Asynchronous Terminal Emulator
Backup Volume
Batch
Batch Status
Bootstrap
Change Page Format
Change Volume Name
Cluster Status
Console
C