
R. c. Fryxeli

........................ ____ ____
Printed ifi t h e L1riilt.d States of America. Available from

N at I on a 1 7ec h ;I ica I I 17 fo i - i i t a i i o n Service
U . S . DFjpal-tmlllt of coiinmrrce

5285 Port Rayal 8:oad. Springfie::j b'iryii- i ia 221 61
NTiS price codes----P;:ated Copy: ,403; hd;crofiche A01

........... I. -___ __ -

.Chis rep3rl \.'!as p r e p as an account 0; wcrk sponsored by an q e n c y
United States Governrr t NcilhsrilleL'r:itedS!at~-,Govsrnriient norany 3

theieof, nor any of thcii er;,pbyees. makcs x y wzriati iy, express or iliipl
assumes any logs1 Iiahlltty or respcnsihllity for the accuracy, coiiip!eteness. or
usefulness of any information, apparatus. pr0dur:t. or ptocess disclosc~ or
represents that its use would not infringe privately owned rights
to any specific commP~ci?l pif?(:luCt. process, or service by trade na(?E. tradematk.
manufacture:. or otherwise. does not ?es*ssarl!y constitute or imply Its
endorsement. recommendation. or favoring by iiie i!nitcd States Gove:r?;nert or
anv agency thereat The viekws and oplnions of authors axpressed he:c:n do not
neccs.ssiiiy state ~r re!lect those of the United States Governmcn? cr any ageccy
!heieof

ORNL/TM- 10481
CESAR-87/20

Engineering Physics and Mathematics Division

NAVIGATION PLANNING USING QUADTREES

R. C. Fryxell

Date Published: November 1.987

Research p a r t i a l l y sponsored by
Albion College, Albion, M I ,

Great Lakes Colleges Associat ion, Ann Arbor, M I
and

U . S . Department of Energy
Off ice o f Basic Energy Sciences

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R2'

3 4 4 5 % 0 2 6 8 4 8 8 8

TABLE OF CONTENTS

ABSTRACT . v

1 . INTRODUCTION . 1 .

2 . THE "WORLD" MAP . 5

3 . GENERATION OF THE QUADTREE REPRESENTATION 7

4 . CONDUCTING THE SEARCH . 1.3

5 . TEST RESULTS . 1 9

6 . GENERATION OF EXPERIMENTAL DATA . 25

7 . CONCLUSIONS . 31 .

8 . FUTURE RESEARCH . 33

REFERENCES . 35

iii

ABSTRACT

A n algorithm is presented for planning a 2-D collision-free
path for a mobile robot in an unstructured work environment.
The algorithm assumes the existence of a pixel map of all or
part of the environment, where each pixel is either on
(implying blocked) or off (implying clear). The goal is to
compute a "reasonable path" between two points in a minimal
amount of time, and this is achieved through a "compressed"
representation of the pixel map using a modified quadtree
data structure. pro-
gramming language, and the results of tests made on "realis-
t i c " indoor environments are presented. A discussion on how
the environmental maps were obtained from sonar range-finder
data is a l s o included.

The algorithm has been coded in the C

V

1

1. INTRODUCTION

One of the areas of focus at the Center for Engineering Systems

Advanced Research (CESAR) program is a mobile system called HERMIES-I1

(Hostile Environment Robotic Machine Intelligence Experiments: Series

11). HEXMIES-I1 is a low-cost system developed for initial CESAR exper-

imental activities on autonomous sensor-based robotic systems for w e in

unstructured work environmenrs. Although limited in its basic perfor-

mance capabilities, HERMIES-I1 incorporates mobility and manipulation as

well. as sensory feedback functions [Weisbin 8 6 1 .

The problem under consideration is the automatic planning of a safe

path for HERMIES-I1 through a workspace cluttered with obstacles. How-

ever, the results are also applicable to other mobile robots. The dis-

cussion is limited to two dimensions, but it can be generalized to three

[Wong 851. The primary goal is to compute the best possible path in the

shortest amount o f time using available equipment. We are constrained

in this endeavor by several things:

A. The robot operates in a dynamic environment.

B. Precise positioning of objects in the room is unlikely due to the

intrinsic uncertainties and resolution limits of the sensors on the

robot.

C. Objects in the workspace do not necessarily have "standard" shapes;

e.g., polyhedra or cylinders with a polygon base.

D. It may not be feasible to have a complete map of the workspace,

especially during exploration.

E. As the robot travels from place to place in its environment it must

use encoders on its drive and steering motors to keep track of its

position and orientation. Accumulated errors fram this technLque

will decrease the certainty of its knowledge of its own position

and orientation and thus also the position of any obstacles in its

environment [Kak 861.

2

As a result of these considerations we have chosen a technique

based on a digitized representation of the workspace similar to the ras-

ter based approach to computer graphics. Previously path planning algo-

rithms for robots have relied on many different representations of space

and objects. For example, some researchers have used polyhedra

[Lozano-Perez 19791 or curved surfaces to model objects. Others have

partitioned free space into Vornoi regions [O'Dunlaing 19831 or have

employed graph theoretic techniques [Iyengar 19861 . Although these

methods do have the advantage of compactly representing the workspace,

they often neglect or inadequately consider the problem of positional

uncertainty, and as a consequence a small error in the algorithm can be

amplified to produce a completely incorrect action [Morovec 19871 .

Using a digitized representation of the workspace has not been

researched extensively primarily because it usually requires a signifi-

cantly greater amount of memory for a given environment. In light of

the decreasing costs of computer memory and the success of the raster

based approach to computer graphics, it is likely that interest in this

technique will increase. Digitization can alleviate some of the prob-

lems introduced by our constraints: Objects do not have to have special

shapes in order to be in the environment. Each pixel in the workspace

grid can be viewed as either occupied or unoccupied (with appropriate

confidence factors). Unknown areas can be designated as occupied until

further investigation shows otherwise, thus allowing the robot to build

its own map o f the room through exploration. It is even possible, for

example, to locate permanent features such as walls by convolving digi-

tized maps [Morovec 871 ; however, this is not investigated here.

Once the map is digitized we want to know if navigation paths can

be planned before they become obsolete. The point here is that if a

great deal o f time is spent computing a path that is optimized for dis-

tance, the environment might change before an attempt could be made to

execute the path. Moreover, the time saved in executing a shortest dis-

tance path is not likely to be justified by the longer period of time

required in planning such a path. This desire for a "quick" path

planner l ed us to the quadtree representation that is explained in Sec-

tion 3 . We implemented a technique for searching the quadtree modelled

3

after Wong and Fu [Wong 851. To test the effectiveness of the search

technique in a simulated robot environment we used experimental data

obtained in our lab directly from sonar range finders mounted on HER-

MIES .

The paper is organized as follows: 'In Section 2 we discuss the

nature of the world map; i.e., the technique of digitization used. In

Section 3 we show how this map is represented using a quadtree and how

the quadtree needs to be modified to facilitate path searching. In Sec-

tion 4 we explain the method used in the search along with the data

structures required. In Section 5 we analyze the results of testing the

path planner on experimentally derived data; and in Section 6 we show

how that data is generated. In Section 7 we summarize our conclusions,

and in Section 8 we give directions for future research.

2. THE r'WORLDrr MAP

.

In order to employ the quadtree technique it is necessary to view

the robot's immediate environment as a square. This facilitates the

natural recursive nature of the technique which breaks down the square

into four square quadrants, each of which can be broken down into four

square quadrants, etc. Moreover, we specify our units of measurement in

such a way that each side is exactly a power of two number of units. In

this way the length of a side of any subsquare generated in this process

is an integral number of units. (In our lab it was convenient to use a

square that was 32 feet on a side.) Note that if the "real" environment

is a rectangle (or worse), that it could be imbedded in a square, with

the excess region simply blocked out. Although this may seem to be

wasteful of storage, it results in very little overhead in the quadtree

representation as shall be apparent in Section 3 .

Consider the following simple example of a robot environment (See

Fig. 2.1). Suppose that the room is 8' on a side and that it is subdi-

vided by a grid into 64 unit squares. Suppose that it is known that

some squares are occupied (either partially or totally). Such squares

are shown as being shaded in Fig. 2.1. The remaining squares are

assumed to be unoccupied and safe for navigation by the robot. Note that

there is nothing special about using 1 ft. squares. Some situations

could call for a finer grid, say, each square is 0.5 ft. on a side, and

others could call for a coarser grid, say, each square is 2 ft. on a

side. (In the former case we would make our units - . 5 ft. in order to

use integer arithmetic in our computations.) Each 1 ft. square pixel

is easily identified by the coordinates of the lattice point that coin-

cides with its lower left hand corner. Thus, for example, the square

with vertices (O , O) , (O , l) , (l , l) , and (1 , O) is identified by (0,O).

The "world" map is then stored as an 8 x 8 binary array, where each

entry is either on (meaning the corresponding square is occupied) or off

(meaning the corresponding square is clear).

It is assumed that the robot is located at some point in the clear

area of the map, and that we wish to plan a path to some other point on

the map. It is also assumed that the robot has a circular cross section

6

T" ORNL-DWG. 87-1 2067

7

6

5

't

3

2

1

Fig. 2.1. Example Workspace Superimposed with Grid

and is represented by a point that corresponds to the center of that

cross section. In order to use this model obstacles need to be "grown"

in the conventional way to compensate for the actual radius of the robot

[Lozano-Perez 7 9 1 .

7

3 . GENERATION OF THE QUADTREE REPRESENTATION

.

The quadtree representation is generated in two stages. The first

stage i s an adaptation of a technique presented by H. Samet [Samet 801.

A s stated above WE! start with a 2" x binary array, where each element

has a value of 1 or -1. Essentially, we repeatedly subdivide the array

into quadrants, subquadrants, etc. until we obtain blocks which consist

entirely of cells with the same value; i.e., all 1 ' s or all -1's. Fig.

3 . 1 shows the blocks that would be produced from the binary array in

Fig. 2.1. A heavy dot is placed in the lower left hand corner of each

block. The "natural" data structure resulting from this process is a

qrradtree. It is a tree of out-degree 4 , where the root node represents

the entire array, the four children of a node represent its quadrants,

and the leaf nodes correspond to those blocks for which no further sub-

division is necessary. F i g . 3.2 shows a quadtree corresponding to Fig.

3 . 1 . Each node of the tree is either black (occupied), white (clear),

or gray (i n need of further subdivision). The quadrants of each square

ORNL-IIWG. 87-12068

7

L

5

Y

I I I I I I
2

2

F i g . 3.1. Workspace Showing Blocks

8

ORNL-DWG. 87-12069

Fig. 3.2. Quadtree Corresponding to Fig. 3.1

subarray a r e numbered as shown i n Fig. 3 . 3 . This corresponds to the

order i n which the ch i ld ren of a node a r e generated. (This imp l i c i t

order ing s impl i f i e s t he s t r u c t u r e of the node t h a t must be s to red i n the

computer.)

ORNL-DWG. 87-12070

Fig. 3.3. Quadrant Ordering Protocol

Each node i n our quadtree i s s t o r e d as a record containing 7

f i e l d s . F i e ld 1 i s a po in te r t o the parent of the node (which i s NULL

i n the case of the roo t node). F i e lds 2 t h r u 5 a r e po in t e r s t o the four

son 's of t h i s node (all o f which are NULL i f t h i s i s a l e a f node).

Fie1.d 6 designates the node type (b lack , whi te , o r g r a y) . And f i e l d 7

9

is

been included in the search tree.

as shown in Fig. 3 . 4 .

a boolean which tells the path planner whether or not this node has

Thus, a typical node may be pictured

Fig. 3 . 4 . Typical Node in Quadtree

Before continuing it is important to note several things. First,

each node of the quadtree corresponds to some quadrant or subquadrant of

the original square array. Furthermore, each quadrant (or subquadrant)

can be identified by two parameters: (1) the coordinates of the lattice

point in its lower left hand corner, and (2) its size. Thus, for exain-

ple, the coordinates (0 , O) correspond to the whole array and to the

first quadrant of the whole array, and hence they are only distinguished

by size. None of this information needs to appear explicitly in the

node itself, however, since it i s given implici-tly by the position of

the node in the tree. In Fig. 3.2 it is easy to see that all subarrays

of the same size are at the same level in the quadtree.

Now suppose that our (pointl) robot is resting at (2 , 2) in the room

represented by Fig. 1.1, and that we are attempting to plan a piecewise

linear path to some goal, say, (7 , 5) , that passes only through other

nodes of the quadtree. To make this path as smooth as possible we need

to augment the quadtree. In particular, we define nodes at the other

three corners of each quadrant (or subquadrant) wherever they are not

already defined [Wong 851. These are shown in Fig. 3 . 5 by the. addition

of more heavy dots. (Compare with Fig. 3 . 1 .) The resulting "modified

quadtree" appears in Fig. 3 . 6 . Notice how the modified quadtree differs

from the original. Essentially, we see a partial expansion of some

former leaf nodes, but the relatively compact representation of the ori-

ginal tree is retained.

10

ORNL-DWG. 87-12072

2

1

Fig. 3.5. Workspace w i t h Modified Blocks

ORNL-DWG. 87-1 207 3

Key: q i = quadrant i, i=l I 2 , 3 , or 4 .

Fig. 3.6. Quadtree Gorrresponding to Fig. 3.2

11

The e n t i r e process i s summarized as fol lows: F i r s t compute a s t a r t

node near the s t a r t po in t and a goal node near the goal po in t a s

descr ibed above. Next use the search algorithm t o determine a path

between the s t a r t node and the goal node. If one i s a v a i l a b l e , the

t o t a l path cons i s t s of (1) the s t a r t po in t , (2) the s t a r t node, (3) zero

o r more intermediate nodes, (4) the goal node, and (5) the goal p o i n t ,

i n t h a t o rder . I t i s poss ib l e , of course, t h a t (1) and (2) a r e the same

o r t h a t (4) and (5) a r e the same. I n the spec ia l case t h a t (2) and (4)

a r e the same we know t h a t the s t a r t po in t and the goal po in t a r e i n the

same c l e a r subquadrant, and the path simply consists of (1) and (5) .

The smoothing algorithm i s then appl ied t o the t o t a l pa th . This has the

v i r t u e s s t a t e d before , and it a l s o e l imina tes the backtracking t h a t i s

o f t en present i n the f i r s t approximation t o the so lu t ion .

1 3

4. CONDUCTING THE SEARCH

Initially, let us assume that the (point) robot is located at one

of the "clear" nodes of the quadtree, called the s t a r t node, and that

the destination is some other node o f the quadtree called the goal node.

Later we will relax this constraint, but: the basic search process will

remain the same. Path planning consists of searching for a piecewise

linear path connecting the start node to the goal node. Such a path is

made up of short line segments connecting nodes of the quadtree.

Construction o f these line segments is restricted as follows: If

we are at node P as shown in Fig. 4.1, we can connect to an adjacent

node in any of the eight directions shown. Such a line segment is

called a primitive p a t h segment [Wong 851. If a primitive path segment

does not intersect any occupied cell of the workspace, it is called p e r -

miss ible . solution path then is a sequence of permissible path seg-

ments.

A

Generally speaking, we would like to make the permissible path seg-

ments as large as possible in order to speed up the search. For exam-

ple, if it is feasible, a two-foot path segment should be preferrable to

a one-foot path segment. With this in mind we initially divide up the

workspace into 22k windows for some initial default value of k. Con-

tinuing with our example, suppose we choose k=2, thus partitioning the 8

x 8 workspace into 24 = 16 windows, each a square 2 ' on Then

letting the start node be the root node of our search tree we build the

search tree in a breadth first manner as follows: From the root node we

add children corresponding to permissible path segments that emanate

from the start node in the workspace. For each new child appended to

the search tree we successively find its children. A s each new node is

added to the search tree the corresponding node in the modified quadtree

is marked occupied so that it will not appear more than once in the

search tree. Moreover, when a new node can be reached from more than

one child having the same parent, we append it to the one that results

in the shorter sequence o f primitive path segments. If no permissible

path segment exists in any of the eight allowable directions, then that

node is closed to further expansion. Path planning is, of course,

a side.

14

OWL-DWG, 87-12074

Fig. 4 . 1 . Legal Directions

complete when the goal node i s found. I f no path can be found a t the

d e f a u l t r e so lu t ion (i n our example t h i s is k=2) , then a f i n e r r e so lu t ion

l e v e l i s t r i e d . A t the new re so lu t ion only p a r t i t i o n s containing obs ta -

c l e s (e . g . gray ones) need t o be f u r t h e r p a r t i t i o n e d . This process i s

continued u n t i l we reach some maximum reso lu t ion . (I n our example t h i s

maximum i s a t t a i n e d a t k=3, which corresponds t o 22k = 64 windows mean-

ing t h a t the wi.ndow s i z e = the p i x e l size.) I f no path i s found a t the

maximui r e so lu t ion , then the algorithm repor t s t h a t a l l p o t e n t i a l paths

t o the goal are blocked.

I n construct ing permissible path segments w e are constrained by the

f o l J.ow ing :

(A) The e i g h t d i r ec t ions defined i n F ig . 4 . 1 a r e f o r nodes a t the

same hierarchy l e v e l i n the modified quadtree. That i s , i f the length

of? the path segment from P t o A0 i s o f length 2 , then the path segment

from P t o A2 i s a l s o o f length 2 (not 1 o r 4 , f o r example). To put i t

another way, i f you are looking f o r neighbors o f node Y i n the modified

quadtree, you only have t o check nodes t h a t a r e a t t he same].eve1 as P

i n the t r e e . If you need t : o move down the t r e e t o a g r e a t e r depth

(corresponding t o a f i n e r r e so lu t ion) you must reach a pos i t i on where

two nodes from two d i f f e r e n t hierarchy l e v e l s coincide. I n the quadtree

t h i s corresponds t o the f i r s t c h i l d , son[O]. That i s , when a quadrant

15

is partitioned into the next finer resolution, it is always true that

the node associated with the first child has the same coordinate

representation as the parent. (See Fig. 3 . 3) . In constructing the

search tree two (or more) nodes having the same coordinate representa-

tion but different hierarchy levels are appended to the same parent.

(B) When checking the eight possible primitive path segments from

node P we need to determine whether or not each path is collision free.

'This can be computed according to the following scheme: (a) For Ai, i =

1,3, 5 or 7, check the node in the modified quadtree that contains the

primitive path segment. If the node is white, the path is collision

free; otherwise there i s a potential collision. (b) For Ai, i = 0 , 2 , 4 ,

o r 6, the path lies between two nodes. Check the nodes in the modified

quadtree that are on either side of the path. If either node is white,

then the path is collision free; otherwise there is a potential colli-

s ion.

A typical node in the search tree can be pictured as shown in Fig.

4 . 2

where,

X,Y are the coordinates of the corresponding node in the quadtree

level specifies the hierarchy level of the corresponding node in the

quadtree. Level 0 is the root node; level 1 is for the first

four quadrants; etc.

parent is a pointer back to the parent of this node in the search

tree.

neighbor is a pointer to right neighbor of this node in the search

tree.

same (x,y) values but a different hierarchy level.

This could he. a sibling or a cousin o r node having the

ORNL-DWG. 87-12075

Fig. 4.2. Typical Search Tree Node

16

Whenever the path planning algorithm is successful, the last node added

to the search tree is in fact the goal node. This node is linked

through its parent pointer field through (possible) intermediate nodes

back to the start node. It is easy to reverse this list yielding a com-

plete legal path from start node to goal node. The result, however, may

contain nodes that force the robot to make unnecessary stops or turns it1

its path.

S m o o t h i n g the P a t h

It is a relatively quick process to smooth the path created by the

search tree. There are essentially two cases to consider. (1). There

are nodes on a straight-line path from node P to node Q: These are easy

to detect because they satisfy the equation o f the line connecting, P and

Q in the workspace. The cure is to simply remove them from t:he linked-

list solution.

(2) The straight-line path from node P to Q is shorter than the

actual. path from P to Q and furthermore contains no obstacles. Such a

condition is harder to detect than (1) because every unit cell in the

straight:-line path between nodes P and Q in the workspace m u s t be

checked for potential collisions. If the path is collision f r ee , then

the cure is the same as before: simply remove any intermediate nodes

(between nodes P and Q) in the linked-list solution.

The algorithm is shown in Fig. 4 . 3 . Assume that 'Start' points to

the start node o f the solution list and that 'Goal' points to the goal

node of the solution list. Assume also that the nodes of the list are

structured the same as the nodes of the search tree and are linked

through the parent field.

A d d i n g the Start arid G o a l P o i n t s

In most cases the actual physical starting point o f the path will

not have coordinates that are lattice points o f the grid, and thus it is

necessary to specify that the start p o i n t on the map is the lattice

point that corresponds to the cell that contains the physical starting

p o i n t . Thus, for example, if the physical starting point is (5 . 3 , 3 . 6) ,

17

ORNL-DWG. 87-12076
...

r-

P <- S t a r t ;
Q <- Goal;

While (P f Q)

(
If ((a l l nodes between P and Q a r e on the same l i n e) OR

(t he path between P and Q i s c o l l i s i o n f r e e)) (

remove a l l intermediate nodes between P and Q ;
P <- Q ;
Q i- Goal;
I

Q <- Q.parent;
e l s e

1
r e t u r n (S t a r t) ;

Fig. 4 . 3 . Algorithm f o r Path Smoothing

then the s t a r t point is labeled (5 , 3) . Moreover, the s t a r t p o i n t does

not necessar i ly coincide with a node of the modified quadtree, and hence

we cannot automatically iden t i fy the s t a r t point with the s t a r t node.

Since we would l i k e t o s t a r t the search t r e e using the coarses t p o s s i b l e

r e s o l u t i o n we a re motivated t o make the s t a r t node coincide with the

l a r g e s t c l e a r window t h a t contains the s tar t po in t . Looking a t F i g .

3 . 5 , we would s e l e c t (6 ,2) as the start node corresponding t o the s t a r t

po in t (5,3). S i m i l a r observations may be made f o r the goal o f the path.

Thus, w e spec i fy t h a t the goal po in t on the map i s the l a t t i c e p o i n t

t h a t corresponds t o the c e l l t h a t contains the physical goal po in t . A n d

the goal node i s the l a r g e s t c l e a r window t h a t contains the goal po in t .

(Note t h a t t h i s approach d i f f e r s from t h a t of Wong & Fu [Wong 851 i n

t h a t they fu r the r modify the quadtree u n t i l the s t a r t po in t coincides

with a node i n the t r e e and the goal po in t corresponds with a node i n

the t r e e : Assuming t h a t the s tar t poin t i s i n some white (c l e a r) qua-

d ran t , then t h a t quadrant can be p a r t i t i o n e d i n t o 4 white quadrants.

This process can be continued u n t i l the s t a r t po in t coincides with s o m e

white l ea f of the t r e e . A s imi la r thing can be done f o r the goal

po in t .)

1 9

5. TEST RESULTS

The algorithms discussed here w e r e Implemented i n the C programming

language on a Lambda 2 x 2 computer developed by Lisp Machine Inc. In

addi t ion t o i ts dedicated L i s p processor the Lambda machine contains a

Motorola 68010 microprocessor which handles the code developed i n C .

This code i s designed t o be in tegra ted with RTIME, a cont ro l system

which i s connected t o and operates i n p a r a l l e l with a rea l - t ime expert

system c a l l e d P I C O N . The combined system of P I C O N and RTIME cur ren t ly

runs on the Lambda machine i n our laboratory and acts as a remote con-

t r o l l e r f o r the robot . The algorithm as coded can a l so run indepen-

dent ly of PICON/RTIME and could be i n s t a l l e d on the robot i t s e l f .

Figure 5 . 1 shows a map t h a t i s somewhat t yp ica l of one t h a t i s

derived from sonar range f inder da t a . The map i s 32’x 3 2 ‘ , which seems

t o be a p r a c t i c a l working s i z e . The p i x e l s i z e is l’x l’, which gives

us good reso lu t ion r e l a t i v e t o the three foot diameter o f HERMIES. The

shaded areas represent c e l l s t h a t the robot must avoid. Section 6 shows

how such a map could be obtained. The modified quadtree f o r t h i s map

contains 731 nodes. In conducting the search we s e t the de fau l t resolu-

t i o n a t k-2, thus c r e a t i n g 1 6 windows i n the workspace. Each window i s

8’ x 8 ’ . (For t h i s reason the coordinates o f each s t a r t node i n the

t e s t a r e d i v i s i b l e by 8 .)

Table 5 . 1 summarizes a number of sample runs with var ious s t a r t i n g

nodes and goal nodes. In each case we see the number of nodes generated

i n the search t r e e and the time required t o conduct the i n i t i a l search.

Furthermore, we have l i s t e d f o r the s o l u t i o n path (I) the number of

nodes, (i i) the length of the path, and (i i i) the number of tu rns the

robot will have t o make in order t o negot ia te the path. This i s done

f o r both the i n i t i a l l y derived path and the f i n a l smoothed path. The

time required f o r smoothing the path was i n each case too small t o meas-

u re , and therefore i s not included i n the t a b l e .

Several observations can be made from Table 5 . 1 .

20

ORNL-DWG. 87-12077

Key: A = blocked p ixe l

= blocked window

Fig. 5.1. Typical Map Derived f r o m Sonar Readings

2 1

Table 5.1. Summary of Sample Runs

-
Case
no,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

-

-

S t a r t
node

8 , 8

24, 8

24, 8

24, 8

24, 8

8, 0

16.16

16, 0

24, 8

8 , 8

8, 8

8, 8

8,24

24, 8

24,24

16,16

8, 0

8, 0

8,16

16,24

24, 0

16,16

8,24

24, 0

-
Goal
node

12, 4

24,16

16,16

4,22

30,26

20,24

12.26

28,27

10, 8

24, 8

8,20

8,24

8, 8

24.24

24, 8

6,16

24,24

3, 2

16,16

24, 0

16,24

27,23

21,25

18,13

-

-

tree
nodes

8

18

102

173

154

36

407

50 1

96

19

106

132

67

32

13

133

376

195

4

182

373

427

379

232

._I_

time
(secs 1

-1

‘1

4

10

8

’1

28

37

5

“1

6

6

3

-1

“1

5

24

11

’1

10

24

29

24

13

solution path
node

3

3

5

11

8

9

8

11

5

5

7

8

8

5

5

6

10

4

- d i s t

8.0

8.0

16.0

29.3

20.5

37.0.

17.3

34.2

21.8

25.0

14.8

17.7

19.3

16.0

19.3

14.5

36.7

7.0

:urns

1

0

1

7

4

5

5

7

2

3

2

4

4

0

2

3

5

2

-

e * * * * * * blockt

smoothed path - -

node

2

2

3

4

2

3

5

3

3

3

4

5

4

2

2

4

3

3

_I

d i s t

5 . 6

8.0

12.9

26.1

19.0

32.7

16.8

31.8

17.1

22.6

14.3

17.1

18.2

16.0

16.0

13.8

33.0

5.5

- :urn3 -
0

0

1

2

0

1

3

1

1

1

2

3

2

0

0

2

1

1

1

1

2

2

1

. ,,.,.,.,.,.,.,.. , , , , , -, . . .-.

22

1.

2 .

3 .

4 .

5 .

The time required t o generate the search tree i s l i n e a r l y r e l a t e d

t o the number o f nodes i n the t ree .

The algorithm works b e s t i n cases where the re are no obstruct ions

between the s ta r t and goal nodes. This i s cons i s t en t with our goal

of obtaining a reasonable path i n the s h o r t e s t amount of time.

Longer searches occur t y p i c a l l y when the goal node has one o r more

odd coordinates . This i s s i m p l y due t o the f a c t t h a t f inding a

node l i k e t h i s can only be done by eventual ly extending the search

down t o the f i n e s t r e so lu t ion : 1’ x 1’ windows.

The i n i t i a l so lu t ion path from A t o B i s no t necessa r i ly the same

as the one from B t o A . Examples o f t h i s can be seen i n the f o l -

lowing p a i r s of cases: 1 2 & 13 , 14 & 15 , 20 & 2 1 . Cases 1 2 & 3 3

show t h a t the smoothed path dis tance i n going from B t o A i s not as

s h o r t as the i n i t i a l path dis tance i n going from A t o B . Moreover,

t he number of nodes generated i n the search t r e e i n case 1 3 i s less

than h a l f of the number generated i n case 1 2 . Given the time

required t o f i n d the i n i t i a l path from A t o R , it seems undesirable

t o a l s o compute the path from B t o A on the chance t h a t it might be

s l i g h t l y b e t t e r . However, given t h a t an i n i t i a l path from A t o B

e x i s t s , we cu r ren t ly only apply the smoothing algorithm i n one

d i r e c t i o n ; i . e . , from A t o B . There i s l i t t l e overhead i n a l s o

applying the algorithm backwards, i . e . , from B t o A , and t h i s , i n

f a c t , may be worth the e f f o r t . I n essence t h i s i s what happened i n

cases 20 EX 2 1 when the same i n i t i a l r e s u l t was a r r i v e d a t . There

the smoothing algorithm r e s u l t e d i n a s l i g h t l y s h o r t e r path only i n

case 20 . In comparing cases 14 and 15 , i t i s apparent t h a t the

i n i t i a l so lu t ion i n case 15 deviates (by 2 e x t r a tu rns) from the

s t r a i g h t l i n e so lu t ion path of case 14. The smoothing algorithm

el iminates t h i s dev ia t ion , however.

Case 1.9 shows a s i t u a t i o n where the path i s blocked. Comparing

with F i g . 5 . 1 w e can see t h a t t he the s t a r t l oca t ion was given i n

error s ince it i s a non-clear node. While t h i s would not normally

23

happen i n a " r ea l " s i t u a t i o n , it does show t h a t the algorithm han-

d l e s the problem quickly and co r rec t ly . I f the goal node is i n a

non-clear a r ea , the main algorithm w i l l a l so discover t h i s and

repor t t h a t the path is blocked. However, t h i s i s not usual ly done

quickly, and thus checks are made f o r t h i s s i t u a t i o n before the

ac tua l construct ion of the search t r e e .

6 . The worst case s i t u a t i o n would occur i f we needed t o check every

node i n the quadtree. I n t h a t case the search t r e e would also have

7 3 1 nodes, and the estimated time f o r completion would be 45

seconds. I n our t e s t s , l i s t e d i n Table 5 . 1 and otherwise, no

search has ever exceeded t h i s bound even when the goal has been

blocked.

Aside from those things t h a t can be i n f e r r e d from Table 5 . 1 , we

have made a few other observations:

1. Recall t h a t when a new node i s appended t o , say, node A , i n the

search t r e e , t h a t a check i s made t o see i f t h a t node can be

reached through some other node, say node B , t ha t has the same

parent as node A . I f t h a t i s t r u e , then the new node i s made a

c h i l d o f the node t h a t r e s u l t s i n the sho r t e r sequence of pr imit ive

pa ths . This s o - c a l l e d s i b l i n g check can e a s i l y be removed from the

algorithm t o see what changes would r e s u l t i n the running time and

i n the i n i t i a l so lu t ion path. This was done f o r a l l of the cases

shown i n Table 5 . 1 . In only one case was the ac tua l i n i t i a l path

any d i f f e r e n t from t h a t shown i n the t a b l e , and the smoothing a l g o -

rithm r e s u l t e d i n the same improved path f o r t h a t case. There

seems t o be some decrease i n time r e s u l t i n g from removal of the

s i b l i n g check, which i s estimated t o be about 10 percent , but f o r

most cases the d i f fe rence w a s neg l ig ib l e , and therefore the s i b l i n g

check was deemed worthy of r e t en t ion .

2 . I f the g r i d imposed on the environment were t o be 6 4 x 6 4 (r a the r

than 32 x 3 2) , then the number o f nodes i n the corresponding quad-

tree would t h e o r e t i c a l l y be increased by a f ac to r of 4 . Thus,

24

worst-case search times may be expected to increase by a factor of

4 resulting in possibly intolerably long waits for path planning

with this algorithm. A better solution for a 64 x 64 room may be

to always operate within a smaller moving window, say, 32 x 3 2 .

(See, for example, Morovec [Morovec 8 7 1 .) On the other hand, a 16 x

16 environment yields a worst case solution in the neighborhood of

10 seconds.

25

6 . GENERATION OF EXPERIMENTAL DATA

In this section we describe the procedure used to generate the map

shown in Fig. 5.1. We will briefly describe the hardware used, show how

the information was gathered, and then explain how the data was manipu-

lated to obtain the map. Finally, we will conclude with some sugges-

tions on how to automate the process.

A. Hardware Considerations

A ring of five sonar-sensing elements is mounted on the '"head" of'

the robot approximately 2 . 7 5 ' from the f l o o r . Each element consists of

a phased array of four Polaroid transceivers, allowing for a narrow

effective Fast servo-drives permit the

sonar ring to be stepped quickly; the time required to scan a 180 degree

region in front o f HERMIES is seven seconds. The computer resident on

HERMIES-I1 currently uses the poly-Forth operating system and the Forth

language. Forth word definitions have been used to construct a HERMIES

command language. A radio link transmits these commands from the Lambda

machine to the on-board processor in ASCII format. In particular, the

Forth word command "WIDESCAN" causes HERMIES to do a 3 6 0 degree sonar

scan o f its environment. This consists of 120 individual scans spaced 3

degrees apart. The 120 numbers are returned to the Lambda machine via

the radio link.

beam width and rapid scan rate.

B. Gathering the Data for the Map

The obstacles were set up in the laboratory work environment as

shown in Fig . 6.1. These primary obstacles are solid blocks mounted on

casters that can easily be moved about the room. Each obstacle is

approximately fou r feet tall and has a non-smooth surface that reduces

sonar reflections. fig-

ure have a relatively smooth texture. There is also a six f o o t wide

steel door shown in the upper left hand corner. Generally speaking

there was a lot of open space to right and below the figure, which makes

the work environment somewhat free of clutter compared to other labora-

tories. The "low level clutter" shown in the figure consisted of some

flat rectangular shaped cardboard packages stacked about 12 inches high.

The walls shown at the left and the top of the

26

ORNI,-DWG. 87-1 2078

Key: A = robot viewpoint

= obstacle or wall

Fig. 6.1. Obstacles, Walls, and Robot Viewpoints in CESAR Laboratory

27

HERMIES was precisely placed at eight different locations in the work

environment in order to obtain different views of the obstacles and to

avoid dead reckoning errors that would be present if we allowed HERMIES

to navigate from viewpoint to viewpoint. At each location HERMIES was

given a WIDESCAN command, and the resulting 120 scan returns were stored

in a file (along with the information showing the orientation, i.e.,

Cartesian coordinates and heading of HERMIES when the WIDESCAN was exe-

cuted).

C. Building the Map

example, [Moravec 871. To do this we

which has dimensions corresponding

mately becomes our world map. In our

first array, called misses, is used

l ' x 1' pixel is observed to be empty,

The formation of the "final" map involves the construction and

maintenance of what some authors have termed a cer ta in ty grid. See, for

maintain several arrays each of

to the square workspace that ulti-

example this is 32'x 3 2 ' . The

to record the number of times each

and the second, called h i t s , is

used to record the number of times that each pixel is observed to have

some sort of obstacle in it. We utilize the data from each WIDESCAN

command as follows: Each of the 120 scan returns represents the dis-

tance (measured in tenths of a foot) to a perceived obstacle relative to

the robot orientation. The scans are taken every 3 degrees clockwise

starting directly behind the robot . Thus, we have the polar coordinates

of each reading relative to HERMIES orientation. These are transformed

in a straightforward manner to Cartesian coordinates on the square

workspace. This yields a set of 120 Cartesian coordinates:

Assuming that the cells in arrays misses and hits are all initialized to

zero, then for each i we update these cells in a very simple manner:

The cell that contains the point (xs[i],ys[i]) is marked a hit by adding

one to the value of that cell in array hits. (Recall tha t each cell is

identified with the integer coordinates of its lower left hand corner.

Thus, for example, if (xs[i],ys[i]) = (2 . 7 , 3 . 2 5) , then we would incre-

ment the value of hits[2][3] by 1. All other pixels under a line

28

segment connecting the robot and the point (xs[i],ys[i]) are marked

clear by subtracting 1 from the value in the corresponding cell of array

misses.

Because sonar vision tends to be myopic and because our map has

finite dimensions, we make several small adjustments in the above

scheme :

(i) When the point (xs[i],ys[i]) is outside the bounds of our

workspace, we cannot, o f course, record a hit in array hits. We do,

however, mark clear all of the cells between the robot and the "hit"

point that are within the bounds of the array misses. This situation

can occur if the distant reading is due to a reflection or due to the

fact that the workspace is not physically bounded by four walls.

(ii) When the point (xs[i],ys[i]) is not out of bounds, but is

beyond some preset threshold distance that is imposed by the program, we

choose not to record a hit in array hits since the sonar return is very

likely due to a reflection and thus would give us a false reading.

(Note that t h i s does not solve the specular reflection problem, nor is

it our intention to do so in this paper.) In this case we do mark clear

all o f the cells in array misses between the robot and the point that

are also within the threshold distance. For our test cases this thres-

hold was set at 18 feet.

(iii) A lower threshold is also maintained so that sonar readings

1.ess than this number are regarded as erroneous and are discarded. For

example, in our situation i t is impossible for any obstacle to be any

nearer than 1 ft. to the robot.

After processing one set of 120 scans we have two arrays that con-

tain, respectively, numbers which represent votes for a parti-cular

situation. We need to combine these votes in some p r e c i s e way that: will

determine which cells are designated blocked and which are designated

clear in the final map. We must do this in the face of conflicting

inEormation which says that some cells appear to be blocked when viewed

from one location, but clear when viewed from another location. More-

over, for any particular viewpoint it is easy to see that if a pixel is

29

near the robot it w i l l have more sonar scan l i n e s passing through it

than a p i x e l t h a t is f a r away. Hence empty p ixe l s near t he robot W i l l

ge t a l o t more votes i n a r r ay misses than empty p i x e l s f a r from the

robot . S imi l a r ly , an obs tac le near the robot w i l l have more " h i t s " i n

the p ixe l s it occupies than the same s i z e obs tac le a t a g rea t e r dis-

tance .

One way we have attempted t o resolve the c o n f l i c t i s a s follows:

F i r s t , w e process a l l e igh t s e t s of scans, accumulating a l l the informa-

t i o n i n a r r ays misses and h i t s . W e a r e assuming t h a t the more views we

have of the environment the b e t t e r our chances should be f o r obtaining a

good map. When t h i s i s done we compute the c e r t a i n t y f a c t o r o f each

c e l l by f i r s t computing our measure of belief t h a t it i s occupied and

our measure of disbelief t h a t it i s occupied. The measure of b e l i e f ,

c a l l e d mb, i s computed by simply d iv id ing the number of votes f o r t h a t

c e l l i n a r r ay h i t s by the maximum number of vo tes i n any c e l l of h i t s .

S imi l a r ly , the measure of d i s b e l i e f , md, i s computed using a r r ay misses.

The c e r t a i n t y f a c t o r , c f , equals mb - md.

The next s t e p i s t o pick some threshold va lue , say 0 , t o decide

whether o r not the c e l l should be viewed a s occupied. That i s , i f f o r a

given c e l l we f i n d cf > 0 , we c a l l t h a t c e l l occupied and mark it with a

+l. W e a r e saying t h a t there i s more evidence t h a t the c e l l i s occupied

than the re i s t h a t t h a t the c e l l i s c l e a r . Conversely, i f cf <- 0 , we

say t h a t it i s c l e a r . One problem with using 0 as the threshold va lue ,

even though it seems t o be the "na tura l" value i n t h i s s i t u a t i o n , is

t h a t i t considers cells for which no information was gathered t o be t o

be empty. That i s , i f a c e l l has received no " h i t s " and no "misses",

then mb - md = 0 , and the re fo re , cf = 0 . A " sa fe r " so lu t ion would be t o

consider such a c e l l a s occupied u n t i l proven otherwise. Introducing a

s l i g h t negat ive b i a s t o the threshold , say - .01, solves t h i s problem.

This has the e f f e c t of " f i l l i n g in" enclosed areas and blocking out

a reas behind wa l l s . In Fig. 6 . 2 we show a por t ion of a map der ived from

the l ab conf igura t ion of Fig. 6 . 1 using a sonar emulator t h a t e l imates

r e f l e c t i o n s . Figure 6 .2a shows the c e l l s t h a t a r e marked blocked f o r

the three primary obs tac les when a c e r t a i n t y f a c t o r o f 0 .0 i s used.

30

Figure 6.2b shows what happens when the c e r t a i n t y f a c t o r equals -0 .01 .

Figure 5 . 1 shows a map derived from the work environment of F ig , 6 . 1

using real sonar da t a and a c e r t a i n t y f a c t o r of -0.02.

ORNX,-DWG. 87-12079

1
6.2a. cf = 0.0

I I_

6.2b. cf = 0.01

Key: = a c t u a l obstacle

A = blocked p i x e l

Fig . 6 . 2 . Pixel Maps of Three Obstacles Shown i n F ig . 6 . 1

The c e r t a i n t y f a c t o r can be used as a s a f e t y device: For example,

i f we want t o increase the number of occupied c e l l s around those areas

where obstacles are l i k e l y t o e x i s t , thereby decreasing t h e l ikel ihood

of planning a path through an obs t ac l e , we merely have t o lower the

threshold even more. This w i l l grow the obstacles i n a nonuniform way

t h a t u t i l i z e s the da t a w e have co l l ec t ed . The process can be c a r r i e d t o

extreme, of course, s ince eventually near ly every c e l l w i l l be c l a s s i -

f i e d as blocked, and there w i l l be no reason f o r planning any pa ths .

The techniques w e used here f o r computing the measure of b e l i e f and

measure of d i s b e l i e f are r e l a t i v e l y crude ways o f normalizing the da t a

i n a r r ays h i t s and misses. We have experimented with soiiie minor modifi-

c a t i o n s , but without s i g n i f i c a n t improvement i n the resu l . t s . We have

found tillat the maps generated have proved s a t i s f a c t o r y f o r t e s t i n g the

path planning algorithm, which w a s the primary goal o f our research.

31

7 . CONCLUSIONS

The path planning algorithm based on the quadtree representation of

the workspace as currently implemented on the 68010 processor yields

solutions within the limits of real time operation of the robot provided

that the workspace environment is no larger than 32 units on a side.

For larger environments it may be necessary to use some kind of window-

ing technique so that the workspace window is within these bounds.

A l s o , a hierarchy of grid maps could be employed as suggested by Morovec

[Morovec 871. When a clear path exists the algorithm works extremely

fast, usually under one second, but does not necessarily produce a

straight solution prior to the application of the smoothing algo-

rithm.

line

The method is generalizable to three dimensions as pointed out by

Wong & Fu [Wong 851. However, in the context we are using here the

extra computation time would not be justified. This is due in part to

the lack of precise information about the environment. Most of all it

is due to the fact that the path m u s t be planned quickly since the

environment is likely to change before the robot can navigate the path.

The C language has proved to be a useful implementation language

for this algorithm. First of all, the program is relatively portable

and therefore llkely to remain functional for a longer period of time in

our laboratory than, say, a LISP version. It is also likely to run fas-

ter than might be allowed by other languages; and if it is ported to a

machine with parallel architecture, it could conceivably run even faster

or handle a larger workspace. For example, if implemented on a hyper-

cube architecture, a single processor could be dedicated to each map in

a hierarchy of grid maps.

The algorithm should work well in combination with other techniques

for navigation. For example, we plan to interface this path planner

with a real time expert system that would only execute the path planner

when the appropriate conditions existed. Furthermore, this system would

continually monitor the progress of the robot while it is navigating the

planned path and take alternative action if the path is unexpectedly

blocked. Alternative action might include modifying or aborting the

planned path, using a different path planner, retreating from an attack-

ing object, etc,

3 3

There are several dir+ctions in which we may pursue research con-

nected with the algoriehm :rtplemented.

Modification of the A l g o r i t h m

We need to determine i f the speed of the ale;orithm can be improved

by modifying the current search algorithm. For example, a best-first

technique with a distance heuristic can be implemented and tested in

fairly straightforward manner. Next, w e need to know if the performance

of this essentially serial algorithm can be improved on a. parallel

machine since later versions of HERMIES will have an on-board NCUBE.

This appears to be a more difficult problem, and, in fact, may prove to

be not feasible. Also, the three dimensional counterpart of this algo-

rithm should be examined. Studies suggest that going to three dimen-

sions would at least triple the execution time [Wong 851, but using a

parallel machine could in fact keep the execution time close to the

present: bounds. (T h i s is because the algorithm needs to be applied to

each of three mutually orthogonal views of the environment, and these

applications can be made in parallel.) Finally, we need to determine

how to make the algorithm work in a larger environment: That is, we

need to examine the feasiblity of employing a moving window and/or a

hierarchy of grid maps to compensate for the need to use a relatively

small workspace.

Testing of the Algorithm in New Situations

One of our goals was to interface this algorithm with a real time

expert system and to test it in a dynamic environment. It would also be

helpful to know how effective this algorithm might be in the actual

building This,

of course, requires the robot to move about the workspace to get dif-

ferent views, and in this process the robot is likely to deviate f rom

che orientation it "thinks" it has. Solving the reorientation problem

is not a trivial matter, and this would make exploration difficu1.t.

A l s o in this connection the problem of choosing the next place to go to

seek a new view would have to be solved. As HERMTES acquires new

of a map starting with no knowledge of the environment.

34

sensing devices the collecting of experimental data should lead to

improved room maps, which subsequently could be tested in conjunction

w i t h this algorithm.

35

REFERENCES

Brooks, R. A . , "Solving the Find-Path Problem by Good Representation of
Free Space," IEEE Trans. 011 Systems, M a n , and Cybernetics, V o l . SMC-13,
3 , March/April 1983.

Crowley, J. L., "Navigatiot: for an Intelligent Mobile Robot," IEEE Jour-
nal of Robotics and Automation, V o l . RA-1, 1, March 1985.

Drumheller, M. "Mobile Robot Localization Using Sonar," IEEE Trans. on
Pattern Analysis and Machine Intelligence, V o l . PAMI-9, 2 , 325-332,
March 1987.

Elfes, A., "A Sonar-Based Mapping and Navigation System," Prcc. of the
1986 IEEE I n t e r . Conf. on Robotics and Automation, San Francisco, CA,
1 1 5 1 - 1 1 S d , April 7-10, 1986.

Flynn, A . M., "Redundant Sensors for Mobile Robot Navigation," M.S.
Thesis, Dept. of Electrical Engineering and Computer Science, MIT, Cam-
bridge, MA, September 1985.

Goldstein, M., F. G . Pin, G . de Saussure, C . R. Weisbin, "3-D World
Modeling Based Based on Combinatorial Geometry for Autnonomous Robot
Navigation," Proc. of IEEE Inter. Conf. on Robotics and Automation,
March 30-April 2 , 1987.

lyengar, S. S., C. C. Jorgensen, S. V. N. Rao, and C. R . Weisbin, "Robot
Navigation Algorithms Using Learned Spatial Graphs," Robotics, 4, Part
2 , 93-100, April-June 1986.

Kak, A. C . , B. A. Roberts, K. M. Andress, and R. L. Cromwell, "Experi-
ments in the Integration of World Knowledge with Sensory Information for
Mobile Robots," Robot Vision Lab, Purdue University. W. Lafayette, IN.,
1986.

Kambhampati, S,, and L. S. Davis, "Multiresolution Path Planning f o r
Mobile Robots," IEEE J o u m . of Robotics and Automation, Vol. RA-2, 3 ,
135-145, September 1986.

Lozano-Perez, T. , and M. A. Wesley, "An Algorithm €or Planning
Collision-Free Paths Among Polyhedral Obstacles,t' Communications of the
ACM, V o l . 22, 10, 560-570, 1979.

Moravec, H. P. "Certainty Grids for Mobile Robots," Proc. of the JPL
Workshop on Telerobotics, Pasadena, CA, January 1987.

Moravec, H. P. and A . E. Elfes, "High Resolution Maps from Wide Angle
Sonar, Proceedings of the 1985 IEEE International Conference on

Robotics and Automation, 116-121, St. Louis , MO, March 1985.

3s

O'Dunlaing, @. and C. K. Yap, "The Voronoi Method for Motion-Planning:
1. The Case of a Disk," Technical Report 53, Courant Institute of
Mathematical Sciences, 1983.

Rich, E., Artificial Intelligence, McGraw-Hill, 1983.

Samet, H., "An Algorithm f o r Converting Rasters t o Quadtrees," IEEE
Trans. on Pattern Analysis and Machine Intelligence, PAMI-3, 1, 93-95,
January 1981.

Samet, H., "Distance Transform for Images Represented by Quadtrees,"
IEEE Transactions on Pat-tern Analysis and Machine Intelligence, PAMI-4,
3 , 298-303, May 1982.

Samet, H., A . Rosenfeld, C. A. Shaffer, R. E. Webber, "Quadtree Region
Representation in Cartography: Experimental Resul-ts," IEEE Transactions
on Systems, Man, and Cybernetics, V o l . SMC-13, 6 , 1148-1154,
Novernber/December 1983.

Samet, H., "Region Representation: Quadtrees from Rinary Arrays," Com-
puter Graphics and Image Processing, 13, 88-93, 1980.

Weisbin, C. R., G . de Saussure, D. Kammer, "Self Controlled: A Real-Time
Expert System for an Autonomous Mobile Robot," Computers in Mechanical
Engineering, V o l . 5 , 2 , 12-19, September 1986.

Wong, E. K., and K. S . Fu, "A Hierarchical-Orthogonal-Space Approach to
Collision-Free Path Planning," Proc. of the 1985 IEEE Inter. Conf. on

Roborics and Automation, St. Louis, MO, 506-511, March 1985.

Zahn, C . T., Notes, A Guide to the C Programming Language, Yourdon
Press, New York 1979.

37

DISTRIBUTION LIST

1. s .
2 . D.
3 . M.
4 . B.
5 . G .

6. J.
7-11. R .
12. c.
1 3 . E.
1 4 . W.
15. D.
16. J.
17. S .

1 8 . F.
1 9 . R .

M. Babcock
Barne t t
Beckerman
Burks
de Saussure
R. Einstein
C. Fryxell
W. Glover
Halbert
R. Wamel
J o l l a y
P. Jones
Ki 1 lough
C . Maienschein
C . Mann

OhYL/TM- 1 0 4 8 1
CESAR-87/20

Tzaternal Distribution

2 0 .
2 1 .
2 2 .
2 3 .
24.
2 5 .
2 6 .
27 .
2 8 .
2 9 .
30 .
31.
3 2 .

3 3 - 3 4 .

3 5 .

36

L. Parker
F. G . Fin
D. B. Reister
P. Spelt
C . R. Weisbin
V. Baylor (Univ. Relations)
J. J. Dorning (consultant)
6 . H. Golub (consultant)
R. Haralick (consultant)
D. Steiner (consultant)
EPMD Reports Office
Central Research Library
ORNL Technical Library

Laboratory Records
ORNL Patent Office
Laboratory Records - RC

Document Reference Section

External Distribution

37. Office of the Assistant Manager, Energy Research and Development,
DOE-ORO, Oak Ridge, Tennessee 37831

3 8 . Dr. William Hoffman, Director o f ACM/GLCA Oak Ridge Science
Semester, Denison University, Granville, OH 4 3 0 2 3

3 9 . Dr. David W. Kammer, Physics Dept., Albion College, A l b i o n ,

MI 4 9 2 2 4

4 0 . Dr. Daniel Poteet, Provost, Albion College, Albion, MI 4 9 2 2 4

4 1 - 7 0 . Technical Information Center, P.O. Box 62, Oak Ridge, TN 3.7831

.

