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ABSTRACT 

A n  algorithm is presented for planning a 2-D collision-free 
path for a mobile robot in an unstructured work environment. 
The algorithm assumes the existence of a pixel map of  all or 
part of the environment, where each pixel is either on 
(implying blocked) or off (implying clear). The goal is to 
compute a "reasonable path" between two points in a minimal 
amount of time, and this is achieved through a "compressed" 
representation of  the pixel map using a modified quadtree 
data structure. pro- 
gramming language, and the results of tests made on "realis- 
t i c "  indoor environments are presented. A discussion on how 
the environmental maps were obtained from sonar range-finder 
data is a l s o  included. 

The algorithm has been coded in the C 

V 
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1. INTRODUCTION 

One of the areas of focus at the Center for Engineering Systems 

Advanced Research (CESAR) program is a mobile system called HERMIES-I1 

(Hostile Environment Robotic Machine Intelligence Experiments: Series 

11). HEXMIES-I1 is a low-cost system developed for initial CESAR exper- 

imental activities on autonomous sensor-based robotic systems for w e  in 

unstructured work environmenrs. Although limited in its basic perfor- 

mance capabilities, HERMIES-I1 incorporates mobility and manipulation as 

well. as sensory feedback functions [Weisbin 8 6 1 .  

The problem under consideration is the automatic planning of a safe 

path for HERMIES-I1 through a workspace cluttered with obstacles. How- 

ever, the results are also applicable to other mobile robots. The dis- 

cussion is limited to two dimensions, but it can be generalized to three 

[Wong 851. The primary goal is to compute the best possible path in the 

shortest amount o f  time using available equipment. We are constrained 

in this endeavor by several things: 

A. The robot operates in a dynamic environment. 

B. Precise positioning of objects in the room is unlikely due to the 

intrinsic uncertainties and resolution limits of the sensors on the 

robot. 

C. Objects in the workspace do not necessarily have "standard" shapes; 

e.g., polyhedra or cylinders with a polygon base. 

D. It may not be feasible to have a complete map of the workspace, 

especially during exploration. 

E. As the robot travels from place to place in its environment it must 

use encoders on its drive and steering motors to keep track of its 

position and orientation. Accumulated errors fram this technLque 

will decrease the certainty of  its knowledge of its own position 

and orientation and thus also the position of  any obstacles in its 

environment [Kak 861.  
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As a result of these considerations we have chosen a technique 

based on a digitized representation of the workspace similar to the ras- 

ter based approach to computer graphics. Previously path planning algo- 

rithms for robots have relied on many different representations of space 

and objects. For example, some researchers have used polyhedra 

[Lozano-Perez 19791 or curved surfaces to model objects. Others have 

partitioned free space into Vornoi regions [O'Dunlaing 19831 or have 

employed graph theoretic techniques [Iyengar 19861 .  Although these 

methods do have the advantage of compactly representing the workspace, 

they often neglect or inadequately consider the problem of  positional 

uncertainty, and as a consequence a small error in the algorithm can be 

amplified to produce a completely incorrect action [Morovec 19871 .  

Using a digitized representation of the workspace has not been 

researched extensively primarily because it usually requires a signifi- 

cantly greater amount of memory for a given environment. In light of 

the decreasing costs of computer memory and the success of the raster 

based approach to computer graphics, it is likely that interest in this 

technique will increase. Digitization can alleviate some of  the prob- 

lems introduced by our constraints: Objects do not have to have special 

shapes in order to be in the environment. Each pixel in the workspace 

grid can be viewed as either occupied or unoccupied (with appropriate 

confidence factors). Unknown areas can be designated as occupied until 

further investigation shows otherwise, thus allowing the robot to build 

its own map o f  the room through exploration. It is even possible, for 

example, to locate permanent features such as walls by convolving digi- 

tized maps [Morovec 871 ;  however, this is not investigated here. 

Once the map is digitized we want to know if navigation paths can 

be planned before they become obsolete. The point here is that if a 

great deal o f  time is spent computing a path that is optimized for dis- 

tance, the environment might change before an attempt could be made to 

execute the path. Moreover, the time saved in executing a shortest dis- 

tance path is not likely to be justified by the longer period of  time 

required in planning such a path. This desire for a "quick" path 

planner l ed  us to the quadtree representation that is explained in Sec- 

tion 3 .  We implemented a technique for searching the quadtree modelled 
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after Wong and Fu [Wong 851. To test the effectiveness of the search 

technique in a simulated robot environment we used experimental data 

obtained in our lab directly from sonar range finders mounted on HER- 

MIES . 

The paper is organized as follows: 'In Section 2 we discuss the 

nature of the world map; i.e., the technique of digitization used. In 

Section 3 we show how this map is represented using a quadtree and how 

the quadtree needs to be modified to facilitate path searching. In Sec- 

tion 4 we explain the method used in the search along with the data 

structures required. In Section 5 we analyze the results of testing the 

path planner on experimentally derived data; and in Section 6 we show 

how that data is generated. In Section 7 we summarize our conclusions, 

and in Section 8 we give directions for future research. 





2. THE r'WORLDrr MAP 

. 

In order to employ the quadtree technique it is necessary to view 

the robot's immediate environment as a square. This facilitates the 

natural recursive nature of the technique which breaks down the square 

into four square quadrants, each of which can be broken down into four 

square quadrants, etc. Moreover, we specify our units of measurement in 

such a way that each side is exactly a power of two number of units. In 

this way the length of a side of any subsquare generated in this process 

is an integral number of units. (In our lab it was convenient to use a 

square that was 32 feet on a side.) Note that if the "real" environment 

is a rectangle (or worse), that it could be imbedded in a square, with 

the excess region simply blocked out. Although this may seem to be 

wasteful of storage, it results in very little overhead in the quadtree 

representation as shall be apparent in Section 3 .  

Consider the following simple example of a robot environment (See 

Fig. 2.1). Suppose that the room is 8' on a side and that it is subdi- 

vided by a grid into 64 unit squares. Suppose that it is known that 

some squares are occupied (either partially or totally). Such squares 

are shown as being shaded in Fig. 2.1. The remaining squares are 

assumed to be unoccupied and safe for navigation by the robot. Note that 

there is nothing special about using 1 ft. squares. Some situations 

could call for a finer grid, say, each square is 0.5 ft. on a side, and 

others could call for a coarser grid, say, each square is 2 ft. on a 

side. (In the former case we would make our units - . 5  ft. in order to 

use integer arithmetic in our computations.) Each 1 ft. square pixel 

is easily identified by the coordinates of the lattice point that coin- 

cides with its lower left hand corner. Thus, for example, the square 

with vertices ( O , O ) ,  ( O , l ) ,  ( l , l ) ,  and ( 1 , O )  is identified by (0,O). 

The "world" map is then stored as an 8 x 8 binary array, where each 

entry is either on (meaning the corresponding square is occupied) or off 

(meaning the corresponding square is clear). 

It is assumed that the robot is located at some point in the clear 

area of  the map, and that we wish to plan a path to some other point on 

the map. It is also assumed that the robot has a circular cross section 
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Fig. 2.1. Example Workspace Superimposed with Grid 

and is represented by a point that corresponds to the center of that 

cross section. In order to use this model obstacles need to be "grown" 

in the conventional way to compensate for the actual radius of the robot 

[Lozano-Perez 7 9 1 .  
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3 .  GENERATION OF THE QUADTREE REPRESENTATION 

. 

The quadtree representation is generated in two stages. The first 

stage i s  an adaptation of a technique presented by H. Samet [Samet 801. 

A s  stated above WE! start with a 2" x binary array, where each element 

has a value of 1 or -1. Essentially, we repeatedly subdivide the array 

into quadrants, subquadrants, etc. until we obtain blocks which consist 

entirely of cells with the same value; i.e., all 1 ' s  or all -1's. Fig. 

3 . 1  shows the blocks that would be produced from the binary array in 

Fig. 2.1. A heavy dot is placed in the lower left hand corner of each 

block. The "natural" data structure resulting from this process is a 

qrradtree. It is a tree of out-degree 4 ,  where the root node represents 

the entire array, the four children of  a node represent its quadrants, 

and the leaf nodes correspond to those blocks for which no further sub- 

division is necessary. F i g .  3.2 shows a quadtree corresponding to Fig. 

3 . 1 .  Each node of  the tree is either black (occupied), white (clear), 

or gray ( i n  need of further subdivision). The quadrants of each square 

ORNL-IIWG. 87-12068 
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F i g .  3.1. Workspace Showing Blocks 



8 

ORNL-DWG. 87-12069 

Fig. 3.2. Quadtree Corresponding to Fig. 3.1 

subarray a r e  numbered as shown i n  Fig.  3 . 3 .  This corresponds to the 

order  i n  which the  ch i ld ren  of a node a r e  generated.  (This imp l i c i t  

order ing s impl i f i e s  t he  s t r u c t u r e  of the  node t h a t  must be s to red  i n  the 

computer.) 

ORNL-DWG. 87-12070 

Fig. 3.3. Quadrant Ordering Protocol 

Each node i n  our quadtree i s  s t o r e d  as a record containing 7 

f i e l d s .  F i e ld  1 i s  a po in te r  t o  the  parent  of  the  node (which i s  NULL 

i n  the case of the roo t  node).  F i e lds  2 t h r u  5 a r e  po in t e r s  t o  the four  

son 's  of  t h i s  node (all o f  which are NULL i f  t h i s  i s  a l e a f  node).  

Fie1.d 6 designates the  node type (b lack ,  whi te ,  o r  g r a y ) .  And f i e l d  7 
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is 

been included in the search tree. 

as shown in Fig. 3 . 4 .  

a boolean which tells the path planner whether or not this node has 

Thus, a typical node may be pictured 

Fig. 3 . 4 .  Typical Node in Quadtree 

Before continuing it is important to note several things. First, 

each node of the quadtree corresponds to some quadrant or subquadrant of 

the original square array. Furthermore, each quadrant (or subquadrant) 

can be identified by two parameters: (1) the coordinates of the lattice 

point in its lower left hand corner, and (2) its size. Thus, for exain- 

ple, the coordinates ( 0 , O )  correspond to the whole array and to the 

first quadrant of  the whole array, and hence they are only distinguished 

by size. None of this information needs to appear explicitly in the 

node itself, however, since it i s  given implici-tly by the position of 

the node in the tree. In Fig. 3.2 it is easy to see that all subarrays 

of the same size are at the same level in the quadtree. 

Now suppose that our (pointl) robot is resting at ( 2 , 2 )  in the room 

represented by Fig. 1.1, and that we are attempting to plan a piecewise 

linear path to some goal, say, ( 7 , 5 ) ,  that passes only through other 

nodes of  the quadtree. To make this path as smooth as possible we need 

to augment the quadtree. In particular, we define nodes at the other 

three corners of each quadrant (or subquadrant) wherever they are not 

already defined [Wong 851. These are shown in Fig. 3 . 5  by the. addition 

of more heavy dots. (Compare with Fig. 3 . 1 . )  The resulting "modified 

quadtree" appears in Fig. 3 . 6 .  Notice how the modified quadtree differs 

from the original. Essentially, we see a partial expansion of some 

former leaf nodes, but the relatively compact representation of the ori- 

ginal tree is retained. 
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Fig. 3.5. Workspace w i t h  Modified Blocks 

ORNL-DWG. 87-1 207 3 

Key: q i  = quadrant i, i=l I 2 , 3 ,  or 4 .  

Fig. 3.6. Quadtree Gorrresponding to Fig. 3.2 
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The e n t i r e  process i s  summarized as fol lows:  F i r s t  compute a s t a r t  

node near the  s t a r t  po in t  and a goal node near  the goal po in t  a s  

descr ibed above. Next use the  search algorithm t o  determine a path 

between the  s t a r t  node and the goal node. If one i s  a v a i l a b l e ,  the 

t o t a l  path cons i s t s  of (1) the  s t a r t  po in t ,  ( 2 )  the  s t a r t  node, ( 3 )  zero 

o r  more intermediate  nodes, ( 4 )  the  goal node, and ( 5 )  the  goal p o i n t ,  

i n  t h a t  o rder .  I t  i s  poss ib l e ,  of course,  t h a t  (1) and ( 2 )  a r e  the  same 

o r  t h a t  ( 4 )  and ( 5 )  a r e  the  same. I n  the  spec ia l  case t h a t  ( 2 )  and ( 4 )  

a r e  the  same we know t h a t  the  s t a r t  po in t  and the goal po in t  a r e  i n  the  

same c l e a r  subquadrant, and the  path simply consists of  (1) and ( 5 ) .  

The smoothing algorithm i s  then appl ied t o  the  t o t a l  pa th .  This has the 

v i r t u e s  s t a t e d  before ,  and it a l s o  e l imina tes  the  backtracking t h a t  i s  

o f t en  present  i n  the f i r s t  approximation t o  the  so lu t ion .  
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4. CONDUCTING THE SEARCH 

Initially, let us assume that the (point) robot is located at one 

of the "clear" nodes of the quadtree, called the s t a r t  node,  and that 

the destination is some other node o f  the quadtree called the goal node.  

Later we will relax this constraint, but: the basic search process will 

remain the same. Path planning consists of searching for a piecewise 

linear path connecting the start node to the goal  node. Such a path is 

made up of short line segments connecting nodes of  the quadtree. 

Construction o f  these line segments is restricted as follows: If 

we are at node P as shown in Fig. 4.1, we can connect to an adjacent 

node in any of the eight directions shown. Such a line segment is 

called a primitive p a t h  segment [Wong 851.  If a primitive path segment 

does not intersect any occupied cell of the workspace, it is called p e r -  

miss ible .  solution path then is a sequence of permissible path seg- 

ments. 

A 

Generally speaking, we would like to make the permissible path seg- 

ments as large as possible in order to speed up the search. For exam- 

ple, if it is feasible, a two-foot path segment should be preferrable to 

a one-foot path segment. With this in mind we initially divide up the 

workspace into 22k windows for some initial default value of k. Con- 

tinuing with our  example, suppose we choose k=2,  thus partitioning the 8 

x 8 workspace into 24 = 16 windows, each a square 2 '  on Then 

letting the start node be the root node of  our search tree we build the 

search tree in a breadth first manner as follows: From the root node we 

add children corresponding to permissible path segments that emanate 

from the start node in the workspace. For each new child appended to 

the search tree we successively find its children. A s  each new node is 

added to the search tree the corresponding node in the modified quadtree 

is marked occupied so that it will not appear more than once in the 

search tree. Moreover, when a new node can be reached from more than 

one child having the same parent, we append it to the one that results 

in the shorter sequence o f  primitive path segments. If no permissible 

path segment exists in any of the eight allowable directions, then that 

node is closed to further expansion. Path planning is, of course, 

a side. 
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Fig. 4 . 1 .  Legal Directions 

complete when the  goal node i s  found. I f  no path can be found a t  the 

d e f a u l t  r e so lu t ion  ( i n  our example t h i s  is k=2) ,  then a f i n e r  r e so lu t ion  

l e v e l  i s  t r i e d .  A t  the  new re so lu t ion  only p a r t i t i o n s  containing obs ta -  

c l e s  ( e . g .  gray ones) need t o  be f u r t h e r  p a r t i t i o n e d .  This process i s  

continued u n t i l  we reach some maximum reso lu t ion .  ( I n  our example t h i s  

maximum i s  a t t a i n e d  a t  k=3,  which corresponds t o  22k = 64 windows mean- 

ing  t h a t  the  wi.ndow s i z e  = the  p i x e l  size.) I f  no path i s  found a t  the 

maximui r e so lu t ion ,  then the  algorithm repor t s  t h a t  a l l  p o t e n t i a l  paths 

t o  the  goal are blocked. 

I n  construct ing permissible path segments w e  are constrained by the  

f o l  J.ow ing : 

( A )  The e i g h t  d i r ec t ions  defined i n  F ig .  4 . 1  a r e  f o r  nodes a t  the  

same hierarchy l e v e l  i n  the  modified quadtree.  That i s ,  i f  the  length 

of? the path segment from P t o  A0 i s  o f  length 2 ,  then the path segment 

from P t o  A2 i s  a l s o  o f  length 2 (not 1 o r  4 ,  f o r  example). To put  i t  

another way, i f  you are looking f o r  neighbors o f  node Y i n  the  modified 

quadtree,  you only have t o  check nodes t h a t  a r e  a t  t he  same ].eve1 as P 

i n  the  t r e e .  If you need t : o  move down the  t r e e  t o  a g r e a t e r  depth 

(corresponding t o  a f i n e r  r e so lu t ion )  you must reach a pos i t i on  where 

two nodes from two d i f f e r e n t  hierarchy l e v e l s  coincide.  I n  the quadtree 

t h i s  corresponds t o  the f i r s t  c h i l d ,  son[O]. That i s ,  when a quadrant 
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is partitioned into the next finer resolution, it is always true that 

the node associated with the first child has the same coordinate 

representation as the parent. (See Fig. 3 . 3 ) .  In constructing the 

search tree two (or more) nodes having the same coordinate representa- 

tion but different hierarchy levels are appended to the same parent. 

(B) When checking the eight possible primitive path segments from 

node P we need to determine whether or not each path is collision free. 

'This can be computed according to the following scheme: (a) For Ai, i = 

1,3, 5 or 7, check the node in the modified quadtree that contains the 

primitive path segment. If the node is white, the path is collision 

free; otherwise there i s  a potential collision. (b) For Ai, i = 0 , 2 , 4 ,  

o r  6, the path lies between two nodes. Check the nodes in the modified 

quadtree that are on either side of the path. If either node is white, 

then the path is collision free; otherwise there is a potential colli- 

s ion. 

A typical node in the search tree can be pictured as shown in Fig. 

4 . 2  

where, 

X,Y are the coordinates of the corresponding node in the quadtree 

level specifies the hierarchy level of the corresponding node in the 

quadtree. Level 0 is the root node; level 1 is for the first 

four quadrants; etc. 

parent is a pointer back to the parent of this node in the search 

tree. 

neighbor is a pointer to right neighbor of this node in the search 

tree. 

same (x,y) values but a different hierarchy level. 

This could he. a sibling or a cousin o r  node having the 

ORNL-DWG. 87-12075 

Fig. 4.2. Typical Search Tree Node 
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Whenever the path planning algorithm is successful, the last node added 

to the search tree is  in fact the goal node. This node is linked 

through its parent pointer field through (possible) intermediate nodes 

back to the start node. It is easy to reverse this list yielding a com- 

plete legal path from start node to goal node. The result, however, may 

contain nodes that force the robot to make unnecessary stops or turns it1 

its path. 

S m o o t h i n g  the P a t h  

It is a relatively quick process to smooth the path created by the 

search tree. There are essentially two cases to consider. (1). There 

are nodes on a straight-line path from node P to node Q: These are easy 

to detect because they satisfy the equation o f  the line connecting, P and 

Q in the workspace. The cure is to simply remove them from t:he linked- 

list solution. 

(2) The straight-line path from node P to Q is shorter than the 

actual. path from P to Q and furthermore contains no obstacles. Such a 

condition is harder to detect than (1) because every unit cell in the 

straight:-line path between nodes P and Q in the workspace m u s t  be 

checked for potential collisions. If the path is collision f r ee ,  then 

the cure is the same as before: simply remove any intermediate nodes 

(between nodes P and Q) in the linked-list solution. 

The algorithm is shown in Fig. 4 . 3 .  Assume that 'Start' points to 

the start node o f  the solution list and that 'Goal' points to the goal 

node of  the solution list. Assume also that the nodes of the list are 

structured the same as the nodes of the search tree and are linked 

through the parent field. 

A d d i n g  the Start arid G o a l  P o i n t s  

In most cases the actual physical starting point o f  the path will 

not have coordinates that are lattice points o f  the grid, and thus it is 

necessary to specify that the start p o i n t  on the map is the lattice 

point that corresponds to the cell that contains the physical starting 

p o i n t .  Thus, for example, if the physical starting point is ( 5 . 3 , 3 . 6 ) ,  
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P <- S t a r t ;  
Q <- Goal; 

While ( P  f Q )  

( 
If ( ( a l l  nodes between P and Q a r e  on the same l i n e )  OR 

( t he  path between P and Q i s  c o l l i s i o n  f r e e ) )  ( 

remove a l l  intermediate nodes between P and Q ;  
P <- Q ;  
Q i- Goal; 
I 

Q <- Q.parent;  
e l s e  

1 
r e t u r n  ( S t a r t )  ; 

Fig.  4 . 3 .  Algorithm f o r  Path Smoothing 

then the s t a r t  point is  labeled ( 5 , 3 ) .  Moreover, the s t a r t  p o i n t  does 

not  necessar i ly  coincide with a node of  the modified quadtree,  and hence 

we cannot automatically iden t i fy  the s t a r t  point  with the s t a r t  node. 

Since we would l i k e  t o  s t a r t  the search t r e e  using the coarses t  p o s s i b l e  

r e s o l u t i o n  we a re  motivated t o  make the s t a r t  node coincide with the 

l a r g e s t  c l e a r  window t h a t  contains the s tar t  po in t .  Looking a t  F i g .  

3 . 5 ,  we would s e l e c t  (6 ,2 )  as the start  node corresponding t o  the s t a r t  

po in t  (5,3). S i m i l a r  observations may be made f o r  the goal o f  the path.  

Thus, w e  spec i fy  t h a t  the goal po in t  on the map i s  the l a t t i c e  p o i n t  

t h a t  corresponds t o  the c e l l  t h a t  contains  the physical  goal po in t .  A n d  

the goal node i s  the l a r g e s t  c l e a r  window t h a t  contains  the goal po in t .  

(Note t h a t  t h i s  approach d i f f e r s  from t h a t  of Wong & Fu [Wong 851 i n  

t h a t  they fu r the r  modify the quadtree u n t i l  the  s t a r t  po in t  coincides 

with a node i n  the t r e e  and the goal po in t  corresponds with a node i n  

the t r e e :  Assuming t h a t  the s tar t  poin t  i s  i n  some white ( c l e a r )  qua- 

d ran t ,  then t h a t  quadrant can be p a r t i t i o n e d  i n t o  4 white quadrants.  

This process can be continued u n t i l  the s t a r t  po in t  coincides with s o m e  

white l ea f  of the t r e e .  A s imi la r  thing can be done f o r  the goal 

po in t .  ) 
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5. TEST RESULTS 

The algorithms discussed here  w e r e  Implemented i n  the  C programming 

language on a Lambda 2 x 2 computer developed by Lisp Machine Inc.  In  

addi t ion  t o  i ts  dedicated L i s p  processor the Lambda machine contains a 

Motorola 68010 microprocessor which handles the  code developed i n  C .  

This code i s  designed t o  be in tegra ted  with RTIME, a cont ro l  system 

which i s  connected t o  and operates  i n  p a r a l l e l  with a rea l - t ime expert  

system c a l l e d  P I C O N .  The combined system of  P I C O N  and RTIME cur ren t ly  

runs on the Lambda machine i n  our laboratory and acts as a remote con- 

t r o l l e r  f o r  the robot .  The algorithm as coded can a l so  run indepen- 

dent ly  of  PICON/RTIME and could be i n s t a l l e d  on the robot i t s e l f .  

Figure 5 . 1  shows a map t h a t  i s  somewhat t yp ica l  of one t h a t  i s  

derived from sonar range f inder  da t a .  The map i s  32’x 3 2 ‘ ,  which seems 

t o  be a p r a c t i c a l  working s i z e .  The p i x e l  s i z e  is l’x l’, which gives 

us good reso lu t ion  r e l a t i v e  t o  the three foot  diameter o f  HERMIES. The 

shaded areas  represent  c e l l s  t h a t  the robot must avoid. Section 6 shows 

how such a map could be obtained. The modified quadtree f o r  t h i s  map 

contains 731 nodes. In  conducting the search we s e t  the de fau l t  resolu-  

t i o n  a t  k-2, thus c r e a t i n g  1 6  windows i n  the workspace. Each window i s  

8’ x 8 ’ .  (For t h i s  reason the coordinates o f  each s t a r t  node i n  the 

t e s t  a r e  d i v i s i b l e  by 8 . )  

Table 5 . 1  summarizes a number of  sample runs with var ious s t a r t i n g  

nodes and goal nodes. In each case we see the number of  nodes generated 

i n  the search t r e e  and the time required t o  conduct the i n i t i a l  search.  

Furthermore, we have l i s t e d  f o r  the s o l u t i o n  path ( I )  the number of 

nodes, ( i i )  the length of the path,  and ( i i i )  the number of  tu rns  the 

robot will have t o  make in  order t o  negot ia te  the path.  This i s  done 

f o r  both the i n i t i a l l y  derived path and the f i n a l  smoothed path.  The 

time required f o r  smoothing the path was i n  each case too small t o  meas- 

u re ,  and therefore  i s  not included i n  the t a b l e .  

Several  observations can be made from Table 5 . 1 .  
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Key: A = blocked p ixe l  

= blocked window 

Fig. 5.1. Typical Map Derived f r o m  Sonar Readings 
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Table 5.1. Summary of Sample Runs 

- 
Case 
no, 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

- 

- 

S t a r t  
node 

8 ,  8 

24, 8 

24, 8 

24, 8 

24, 8 

8, 0 

16.16 

16, 0 

24, 8 

8 ,  8 

8, 8 

8, 8 

8,24 

24, 8 

24,24 

16,16 

8, 0 

8, 0 

8,16 

16,24 

24, 0 

16,16 

8,24 

24, 0 

- 
Goal 
node 

12, 4 

24,16 

16,16 

4,22 

30,26 

20,24 

12.26 

28,27 

10, 8 

24, 8 

8,20 

8,24 

8, 8 

24.24 

24, 8 

6,16 

24,24 

3, 2 

16,16 

24, 0 

16,24 

27,23 

21,25 

18,13 

- 

- 

tree 
nodes 

8 

18 

102 

173 

154 

36 

407 

50 1 

96 

19 

106 

132 

67 

32 

13 

133 

376 

195 

4 

182 

373 

427 

379 

232 

._I_ 

time 
(secs 1 

-1 

‘1 

4 

10 

8 

’1 

28 

37 

5 

“1 

6 

6 

3 

-1 

“1 

5 

24 

11 

’1 

10 

24 

29 

24 

13 

solution path 
node 

3 

3 

5 

11 

8 

9 

8 

11 

5 

5 

7 

8 

8 

5 

5 

6 

10 

4 

- d i s t  

8.0 

8.0 

16.0 

29.3 

20.5 

37.0. 

17.3 

34.2 

21.8 

25.0 

14.8 

17.7 

19.3 

16.0 

19.3 

14.5 

36.7 

7.0 

:urns 

1 

0 

1 

7 

4 

5 

5 

7 

2 

3 

2 

4 

4 

0 

2 

3 

5 

2 

- 

e * * * * * *  blockt 

smoothed path - -  

node 

2 

2 

3 

4 

2 

3 

5 

3 

3 

3 

4 

5 

4 

2 

2 

4 

3 

3 

_I 

d i s t  

5 . 6  

8.0 

12.9 

26.1 

19.0 

32.7 

16.8 

31.8 

17.1 

22.6 

14.3 

17.1 

18.2 

16.0 

16.0 

13.8 

33.0 

5.5 

- :urn3 - 
0 

0 

1 

2 

0 

1 

3 

1 

1 

1 

2 

3 

2 

0 

0 

2 

1 

1 

1 

1 

2 

2 

1 

. , . . . . . . . . . . . . .,.,.,.,.,.,.,.. , , , , , -, . . .-. . . . . .. . . . . . . . . .... 
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1. 

2 .  

3 .  

4 . 

5 .  

The time required t o  generate the search tree i s  l i n e a r l y  r e l a t e d  

t o  the  number o f  nodes i n  the t ree .  

The algorithm works b e s t  i n  cases where the re  are no obstruct ions 

between the  s ta r t  and goal  nodes. This i s  cons i s t en t  with our goal 

of obtaining a reasonable path i n  the  s h o r t e s t  amount of time. 

Longer searches occur t y p i c a l l y  when the  goal node has one o r  more 

odd coordinates .  This i s  s i m p l y  due t o  the  f a c t  t h a t  f inding a 

node l i k e  t h i s  can only be done by eventual ly  extending the  search 

down t o  the f i n e s t  r e so lu t ion :  1’ x 1’ windows. 

The i n i t i a l  so lu t ion  path from A t o  B i s  no t  necessa r i ly  the  same 

as the  one from B t o  A .  Examples o f  t h i s  can be seen i n  the  f o l -  

lowing p a i r s  of  cases: 1 2  & 13 ,  14 & 15 ,  20 & 2 1 .  Cases 1 2  & 3 3  

show t h a t  the  smoothed path dis tance i n  going from B t o  A i s  not  as 

s h o r t  as the  i n i t i a l  path dis tance i n  going from A t o  B .  Moreover, 

t he  number of  nodes generated i n  the  search t r e e  i n  case 1 3  i s  less  

than h a l f  of the  number generated i n  case 1 2 .  Given the  time 

required t o  f i n d  the i n i t i a l  path from A t o  R ,  it seems undesirable 

t o  a l s o  compute the  path from B t o  A on the  chance t h a t  it might be 

s l i g h t l y  b e t t e r .  However, given t h a t  an i n i t i a l  path from A t o  B 

e x i s t s ,  we cu r ren t ly  only apply the  smoothing algorithm i n  one 

d i r e c t i o n ;  i . e . ,  from A t o  B .  There i s  l i t t l e  overhead i n  a l s o  

applying the algorithm backwards, i . e . ,  from B t o  A ,  and t h i s ,  i n  

f a c t ,  may be worth the e f f o r t .  I n  essence t h i s  i s  what happened i n  

cases  20 EX 2 1  when the  same i n i t i a l  r e s u l t  was a r r i v e d  a t .  There 

the  smoothing algorithm r e s u l t e d  i n  a s l i g h t l y  s h o r t e r  path only i n  

case 20 .  In comparing cases 14 and 15 ,  i t  i s  apparent t h a t  the 

i n i t i a l  so lu t ion  i n  case 15 deviates  (by 2 e x t r a  tu rns)  from the 

s t r a i g h t  l i n e  so lu t ion  path of  case 14. The smoothing algorithm 

el iminates  t h i s  dev ia t ion ,  however. 

Case 1.9 shows a s i t u a t i o n  where the  path i s  blocked. Comparing 

with F i g .  5 . 1  w e  can see  t h a t  t he  the s t a r t  l oca t ion  was given i n  

error s ince  it i s  a non-clear node. While t h i s  would not  normally 
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happen i n  a " r ea l "  s i t u a t i o n ,  it does show t h a t  the algorithm han- 

d l e s  the problem quickly and co r rec t ly .  I f  the goal node is  i n  a 

non-clear a r ea ,  the main algorithm w i l l  a l so  discover t h i s  and 

repor t  t h a t  the path is  blocked. However, t h i s  i s  not usual ly  done 

quickly,  and thus checks are made f o r  t h i s  s i t u a t i o n  before the 

ac tua l  construct ion of the search t r e e .  

6 .  The worst case s i t u a t i o n  would occur i f  we needed t o  check every 

node i n  the  quadtree.  I n  t h a t  case the search t r e e  would also have 

7 3 1  nodes, and the estimated time f o r  completion would be 45 

seconds. I n  our t e s t s ,  l i s t e d  i n  Table 5 . 1  and otherwise,  no 

search has ever exceeded t h i s  bound even when the goal has been 

blocked. 

Aside from those things t h a t  can be i n f e r r e d  from Table 5 . 1 ,  we 

have made a few other  observations:  

1. Recall  t h a t  when a new node i s  appended t o ,  say,  node A ,  i n  the 

search t r e e ,  t h a t  a check i s  made t o  see  i f  t h a t  node can be 

reached through some other  node, say node B ,  t ha t  has the same 

parent  as node A .  I f  t h a t  i s  t r u e ,  then the new node i s  made a 

c h i l d  o f  the node t h a t  r e s u l t s  i n  the sho r t e r  sequence of  pr imit ive 

pa ths .  This s o - c a l l e d  s i b l i n g  check can e a s i l y  be removed from the 

algorithm t o  see what changes would r e s u l t  i n  the running time and 

i n  the i n i t i a l  so lu t ion  path.  This was done f o r  a l l  of  the cases 

shown i n  Table 5 . 1 .  In  only one case was the ac tua l  i n i t i a l  path 

any d i f f e r e n t  from t h a t  shown i n  the t a b l e ,  and the smoothing a l g o -  

rithm r e s u l t e d  i n  the same improved path f o r  t h a t  case.  There 

seems t o  be some decrease i n  time r e s u l t i n g  from removal of the 

s i b l i n g  check, which i s  estimated t o  be about 10  percent ,  but  f o r  

most cases the d i f fe rence  w a s  neg l ig ib l e ,  and therefore  the s i b l i n g  

check was deemed worthy of r e t en t ion .  

2 .  I f  the g r i d  imposed on the environment were t o  be 6 4  x 6 4  ( r a the r  

than 32 x 3 2 ) ,  then the number o f  nodes i n  the corresponding quad- 

tree would t h e o r e t i c a l l y  be increased by a f ac to r  of 4 .  Thus, 
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worst-case search times may be expected to increase by a factor of 

4 resulting in possibly intolerably long waits for path planning 

with this algorithm. A better solution for a 64 x 64 room may be 

to always operate within a smaller moving window, say, 32 x 3 2 .  

(See, for example, Morovec [Morovec 8 7 1 . )  On the other hand, a 16 x 

16 environment yields a worst case solution in the neighborhood of  

10 seconds. 
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6 .  GENERATION OF EXPERIMENTAL DATA 

In this section we describe the procedure used to generate the map 

shown in Fig. 5.1. We will briefly describe the hardware used, show how 

the information was gathered, and then explain how the data was manipu- 

lated to obtain the map. Finally, we will conclude with some sugges- 

tions on how to automate the process. 

A. Hardware Considerations 

A ring of five sonar-sensing elements is mounted on the '"head" of' 

the robot approximately 2 . 7 5 '  from the f l o o r .  Each element consists of 

a phased array of four Polaroid transceivers, allowing for a narrow 

effective Fast servo-drives permit the 

sonar ring to be stepped quickly; the time required to scan a 180 degree 

region in front o f  HERMIES is seven seconds. The computer resident on 

HERMIES-I1 currently uses the poly-Forth operating system and the Forth 

language. Forth word definitions have been used to construct a HERMIES 

command language. A radio link transmits these commands from the Lambda 

machine to the on-board processor in ASCII format. In particular, the 

Forth word command "WIDESCAN" causes HERMIES to do a 3 6 0  degree sonar 

scan o f  its environment. This consists of 120 individual scans spaced 3 

degrees apart. The 120 numbers are returned to the Lambda machine via 

the radio link. 

beam width and rapid scan rate. 

B. Gathering the Data for  the Map 

The obstacles were set up in the laboratory work environment as 

shown in Fig .  6.1. These primary obstacles are solid blocks mounted on 

casters that can easily be moved about the room. Each obstacle is 

approximately fou r  feet tall and has a non-smooth surface that reduces 

sonar reflections. fig- 

ure have a relatively smooth texture. There is also a six f o o t  wide 

steel door shown in the upper left hand corner. Generally speaking 

there was a lot of  open space to right and below the figure, which makes 

the work environment somewhat free of clutter compared to other labora- 

tories. The "low level clutter" shown in the figure consisted of some 

flat rectangular shaped cardboard packages stacked about 12 inches high. 

The walls shown at the left and the top of  the 
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Key: A = robot viewpoint 

= obstacle or wall 

Fig. 6.1. Obstacles, Walls, and Robot Viewpoints in CESAR Laboratory 
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HERMIES was precisely placed at eight different locations in the work 

environment in order to obtain different views of the obstacles and to 

avoid dead reckoning errors that would be present if we allowed HERMIES 

to navigate from viewpoint to viewpoint. At each location HERMIES was 

given a WIDESCAN command, and the resulting 120 scan returns were stored 

in a file (along with the information showing the orientation, i.e., 

Cartesian coordinates and heading of HERMIES when the WIDESCAN was exe- 

cuted). 

C. Building the Map 

example, [Moravec 871.  To do this we 

which has dimensions corresponding 

mately becomes our world map. In our 

first array, called misses,  is used 

l ' x  1' pixel is observed to be empty, 

The formation of  the "final" map involves the construction and 

maintenance of what some authors have termed a cer ta in ty  grid. See, for 

maintain several arrays each of 

to the square workspace that ulti- 

example this is 32'x 3 2 ' .  The 

to record the number of times each 

and the second, called h i t s ,  is 

used to record the number of times that each pixel is observed to have 

some sort of obstacle in it. We utilize the data from each WIDESCAN 

command as follows: Each of the 120 scan returns represents the dis- 

tance (measured in tenths of a foot) to a perceived obstacle relative to 

the robot orientation. The scans are taken every 3 degrees clockwise 

starting directly behind the robot .  Thus, we have the polar coordinates 

of  each reading relative to HERMIES orientation. These are transformed 

in a straightforward manner to Cartesian coordinates on the square 

workspace. This yields a set of 120 Cartesian coordinates: 

Assuming that the cells in arrays misses and hits are all initialized to 

zero, then for each i we update these cells in a very simple manner: 

The cell that contains the point (xs[i],ys[i]) is marked a hit by adding 

one to the value of that cell in array hits. (Recall tha t  each cell is 

identified with the integer coordinates of its lower left hand corner. 

Thus, for example, if (xs[i],ys[i]) = ( 2 . 7 , 3 . 2 5 ) ,  then we would incre- 

ment the value of hits[2][3] by 1. All other pixels under a line 
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segment connecting the robot and the point (xs[i],ys[i]) are marked 

clear by subtracting 1 from the value in the corresponding cell of array 

misses. 

Because sonar vision tends to be myopic and because our map has 

finite dimensions, we make several small adjustments in the above 

scheme : 

(i) When the point (xs[i],ys[i]) is outside the bounds of our 

workspace, we cannot, o f  course, record a hit in array hits. We do, 

however, mark clear all of  the cells between the robot and the "hit" 

point that are within the bounds of the array misses. This situation 

can occur if the distant reading is due to a reflection or due to the 

fact that the workspace is not physically bounded by four walls. 

(ii) When the point (xs[i],ys[i]) is not out of bounds, but is 

beyond some preset threshold distance that is imposed by the program, we 

choose not to record a hit in array hits since the sonar return is very 

likely due to a reflection and thus would give us a false reading. 

(Note that t h i s  does not solve the specular reflection problem, nor is 

it our intention to do so in this paper.) In this case we do mark clear 

all o f  the cells in array misses between the robot and the point that 

are also within the threshold distance. For our test cases this thres- 

hold was set at 18 feet. 

(iii) A lower threshold is also maintained so that sonar readings 

1.ess than this number are regarded as erroneous and are discarded. For 

example, in our situation i t  is impossible for any obstacle to be any 

nearer than 1 ft. to the robot. 

After processing one set of  120 scans we have two arrays that con- 

tain, respectively, numbers which represent votes for a parti-cular 

situation. We need to combine these votes in some p r e c i s e  way that: will 

determine which cells are designated blocked and which are designated 

clear in the final map. We must do this in the face of conflicting 

inEormation which says that some cells appear to be blocked when viewed 

from one location, but clear when viewed from another location. More- 

over, for any particular viewpoint it is easy to see that if a pixel is 
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near the  robot it w i l l  have more sonar scan l i n e s  passing through it 

than a p i x e l  t h a t  is f a r  away. Hence empty p ixe l s  near t he  robot W i l l  

ge t  a l o t  more votes  i n  a r r ay  misses than empty p i x e l s  f a r  from the  

robot .  S imi l a r ly ,  an obs tac le  near the  robot w i l l  have more " h i t s "  i n  

the  p ixe l s  it occupies than the  same s i z e  obs tac le  a t  a g rea t e r  dis-  

tance .  

One way we have attempted t o  resolve the  c o n f l i c t  i s  a s  follows: 

F i r s t ,  w e  process a l l  e igh t  s e t s  of scans,  accumulating a l l  the informa- 

t i o n  i n  a r r ays  misses and h i t s .  W e  a r e  assuming t h a t  the  more views we 

have of the  environment the b e t t e r  our chances should be f o r  obtaining a 

good map. When t h i s  i s  done we compute the c e r t a i n t y  f a c t o r  o f  each 

c e l l  by f i r s t  computing our measure of belief t h a t  it i s  occupied and 

our measure of disbelief t h a t  it i s  occupied. The measure of  b e l i e f ,  

c a l l e d  mb, i s  computed by simply d iv id ing  the number of  votes  f o r  t h a t  

c e l l  i n  a r r ay  h i t s  by the  maximum number of vo tes  i n  any c e l l  of  h i t s .  

S imi l a r ly ,  the measure of d i s b e l i e f ,  md, i s  computed using a r r ay  misses.  

The c e r t a i n t y  f a c t o r ,  c f ,  equals  mb - md. 

The next s t e p  i s  t o  pick some threshold va lue ,  say 0 ,  t o  decide 

whether o r  not  the  c e l l  should be viewed a s  occupied. That i s ,  i f  f o r  a 

given c e l l  we f i n d  cf > 0 ,  we c a l l  t h a t  c e l l  occupied and mark it with a 

+l. W e  a r e  saying t h a t  there  i s  more evidence t h a t  the  c e l l  i s  occupied 

than the re  i s  t h a t  t h a t  the  c e l l  i s  c l e a r .  Conversely, i f  cf <- 0 ,  we 

say t h a t  it i s  c l e a r .  One problem with using 0 as the  threshold va lue ,  

even though it seems t o  be the "na tura l"  value i n  t h i s  s i t u a t i o n ,  is  

t h a t  i t  considers  cells  for which no information was gathered t o  be t o  

be empty. That i s ,  i f  a c e l l  has received no " h i t s "  and no "misses",  

then mb - md = 0 ,  and the re fo re ,  cf  = 0 .  A " sa fe r "  so lu t ion  would be t o  

consider such a c e l l  a s  occupied u n t i l  proven otherwise.  Introducing a 

s l i g h t  negat ive b i a s  t o  the threshold ,  say - .01,  solves t h i s  problem. 

This has the e f f e c t  of " f i l l i n g  in"  enclosed areas  and blocking out 

a reas  behind wa l l s .  In  Fig.  6 . 2  we show a por t ion  of  a map der ived from 

the  l ab  conf igura t ion  of Fig.  6 . 1  using a sonar emulator t h a t  e l imates  

r e f l e c t i o n s .  Figure 6 .2a  shows the c e l l s  t h a t  a r e  marked blocked f o r  

the three  primary obs tac les  when a c e r t a i n t y  f a c t o r  o f  0 .0  i s  used. 
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Figure 6.2b shows what happens when the  c e r t a i n t y  f a c t o r  equals -0 .01 .  

Figure 5 . 1  shows a map derived from the work environment of F ig ,  6 . 1  

using real  sonar da t a  and a c e r t a i n t y  f a c t o r  of  -0.02. 

ORNX,-DWG. 87-12079 

1 
6.2a. cf = 0.0 

I I_ 

6.2b. cf = 0.01 

Key: = a c t u a l  obstacle  

A = blocked p i x e l  

Fig .  6 . 2 .  Pixel  Maps of Three Obstacles Shown i n  F ig .  6 . 1  

The c e r t a i n t y  f a c t o r  can be used as a s a f e t y  device: For example, 

i f  we want t o  increase the  number of occupied c e l l s  around those areas 

where obstacles  are l i k e l y  t o  e x i s t ,  thereby decreasing t h e  l ikel ihood 

of planning a path through an obs t ac l e ,  we merely have t o  lower the 

threshold even more. This w i l l  grow the  obstacles  i n  a nonuniform way 

t h a t  u t i l i z e s  the  da t a  w e  have co l l ec t ed .  The process can be c a r r i e d  t o  

extreme, of course,  s ince  eventually near ly  every c e l l  w i l l  be c l a s s i -  

f i e d  as blocked, and there  w i l l  be no reason f o r  planning any pa ths .  

The techniques w e  used here  f o r  computing the  measure of b e l i e f  and 

measure of d i s b e l i e f  are r e l a t i v e l y  crude ways o f  normalizing the  da t a  

i n  a r r ays  h i t s  and misses.  We have experimented with soiiie minor modifi- 

c a t i o n s ,  but  without s i g n i f i c a n t  improvement i n  the  resu l . t s .  We have 

found tillat the  maps generated have proved s a t i s f a c t o r y  f o r  t e s t i n g  the 

path planning algorithm, which w a s  the primary goal o f  our research.  



31 

7 .  CONCLUSIONS 

The path planning algorithm based on the quadtree representation of 

the workspace as currently implemented on the 68010 processor yields 

solutions within the limits of real time operation of the robot provided 

that the workspace environment is no larger than 32 units on a side. 

For larger environments it may be necessary to use some kind of window- 

ing technique so that the workspace window is within these bounds. 

A l s o ,  a hierarchy of grid maps could be employed as suggested by Morovec 

[Morovec 871. When a clear path exists the algorithm works extremely 

fast, usually under one second, but does not necessarily produce a 

straight solution prior to the application of the smoothing algo- 

rithm. 

line 

The method is generalizable to three dimensions as pointed out by 

Wong & Fu [Wong 851. However, in the context we are using here the 

extra computation time would not be justified. This is due in part to 

the lack of precise information about the environment. Most of all it 

is due to the fact that the path m u s t  be planned quickly since the 

environment is likely to change before the robot can navigate the path. 

The C language has proved to be a useful implementation language 

for this algorithm. First of all, the program is relatively portable 

and therefore llkely to remain functional for a longer period of time in 

our laboratory than, say, a LISP version. It is also likely to run fas- 

ter than might be allowed by other languages; and if it is ported to a 

machine with parallel architecture, it could conceivably run even faster 

or handle a larger workspace. For example, if implemented on a hyper- 

cube architecture, a single processor could be dedicated to each map in 

a hierarchy of grid maps. 

The algorithm should work well in combination with other techniques 

for navigation. For example, we plan to interface this path planner 

with a real time expert system that would only execute the path planner 

when the appropriate conditions existed. Furthermore, this system would 

continually monitor the progress of the robot while it is navigating the 

planned path and take alternative action if the path is unexpectedly 

blocked. Alternative action might include modifying or aborting the 

planned path, using a different path planner, retreating from an attack- 

ing object, etc, 
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There are several dir+ctions in which we may pursue research con- 

nected with the algoriehm :rtplemented. 

Modification of the A l g o r i t h m  

We need to determine i f  the speed of the ale;orithm can be improved 

by modifying the current search algorithm. For example, a best-first 

technique with a distance heuristic can be implemented and tested in 

fairly straightforward manner. Next, w e  need to know if the performance 

of this essentially serial algorithm can be improved on a. parallel 

machine since later versions of HERMIES will have an on-board NCUBE. 

This appears to be a more difficult problem, and, in fact, may prove to 

be not feasible. Also, the three dimensional counterpart of  this algo- 

rithm should be examined. Studies suggest that going to three dimen- 

sions would at least triple the execution time [Wong 851,  but using a 

parallel machine could in fact keep the execution time close to the 

present: bounds. ( T h i s  is because the algorithm needs to be applied to 

each of three mutually orthogonal views of the environment, and these 

applications can be made in parallel.) Finally, we need to determine 

how to make the algorithm work in a larger environment: That is, we 

need to examine the feasiblity of employing a moving window and/or a 

hierarchy of grid maps to compensate for the need to use a relatively 

small workspace. 

Testing of the Algorithm in New Situations 

One of our goals was to interface this algorithm with a real time 

expert system and to test it in a dynamic environment. It would also be 

helpful to know how effective this algorithm might be in the actual 

building This, 

of course, requires the robot to move about the workspace to get dif- 

ferent views, and in this process the robot is likely to deviate f rom 

che orientation it "thinks" it has. Solving the reorientation problem 

is not a trivial matter, and this would make exploration difficu1.t. 

A l s o  in this connection the problem of choosing the next place to go to 

seek a new view would have to be solved. As HERMTES acquires new 

of a map starting with no knowledge of the environment. 
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sensing devices the collecting of experimental data should lead to 

improved room maps, which subsequently could be tested in conjunction 

w i t h  this algorithm. 
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