-

MARTIN MARETTA ENERGY SYSTEMS LIBRARIES

3 yy5hL D2LBUAS 8

CRNL/TM- 10481
CESAR-87 /20

JAK RIDGE
NATIONAL |
LABORATORY s .

| | | Navigation Planning
| h S Using Quadirees

§
i
: : i
{ i i
i ; !
i :

B TY I AL |
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES 7

| GEPARTASENT OF ENERDY .

Printed in the United States of America. Available from
National Technicai Information Service
U.S. Department of Commerce
5285 Port Royal foad. Soringfieid, Virgirnia 22161
NTIS price codes—-Printedt Copy: A03; Microfiche AQ1

4

This report was prenarsd as an account of work sponsored by an agency of the
United States Government. Nedhar the United States Governmignt nor any agency
thereat, nor any of their employees. makes any warranty, express or implied, or
assuines any legal liability or responsibility for the accuracy, coiripleteness. or
usefulness of any information, apparatus, progduct, or piocess disclosed, or
represents that its use would notinfringe privately owned rights Heference herein
to any speciiic commercial praduct, process, or service by trade name. tradeimark,
manutaciurer, or otherwise, does not necessanly constitute or imply its
endorsement, recommendation, or favoring by ifie United States Government or
any agency thereci. The views and opinions of authors expressed hersin do not
necessaitly state or reflect those of the United States Government or any agency
thereof

ORNL,/TM-10481
CESAR-87/20

Engineering Physics and Mathematics Division

NAVIGATION PLANNING USING QUADTREES

R. C. Fryxell

Date Published: November 1987

Research partially sponsored by
Albion College, Albion, MI,
Great Lakes Colleges Association, Ann Arbor, MI
and
U.S. Department of Energy
Office of Basic Energy Sciences

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
operated by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R2 1400 B

MARTIN MARIETTA ENERGY SYSTEMS LIBRARIES

VTR

3 yys5k OChO4LE 8

TABLE OF CONTENTS

N 5 N v
INTRODUCT IO . . .o i it it ittt et e i et e en e 1
THE "WORLD" MAP. ... it ittt et ittt it eanaaanannanenn 5
GENERATION OF THE QUADTREE REPRESENTATION.......................... 7
CONDUCTING THE SEARCH. i i i i ittt e e 13
TEST RESULT S . L. i i i i i it i i i ittt e 19
GENERATION OF EXPERIMENTAL DATA.ttt i 25
CONCLUSTIONS . L. it it it it ittt e e nateaneneanes 31
FUTURE RESEARCH. ... oot i i i i i ittt et e et ti e 33
REFERENCE S . L i i i i i ettt et i ae i et aan s 35

iii

ABSTRACT

An algorithm is presented for planning a 2-D c¢ollision-free
path for a mobile robot in an unstructured work environment.
The algorithm assumes the existence of a pixel map of all or
part of the envirooment, where each pixel is either on
(implying blocked) or off (implying clear). The goal is to
compute a "reasonable path" between two points in a minimal
amount of time, and this is achieved through a "compressed"
representation of the pixel map using a modified quadtree
data structure. The algorithm has been coded in the C pro-
gramming language, and the results of tests made on "realis-
tic" indoor environments are presented. A discussion on how
the environmental maps were obtained from sonar range-finder
data is also included.

1. INTRODUCTION

One of the areas of focus at the Center for Engineering Systems
Advanced Research (CESAR) program is a mobile system called HERMIES-1I
(Hostile Environmment Robotic Machine Intelligence Experiments: Series
IT). HERMIES-II is a low-cost system developed for initial CESAR exper-
imental activities on autonomous sensor-based robotic systems for use in
unstructured work environments. Although limited in its basic perfor-
mance capabilities, HERMIES-II incorporates mobility and manipulation as

well as sensory feedback functions [Weisbin 86].

The problem under comnsideration is the automatic planning of a safe
path for HERMIES-II through a workspace cluttered with obstacles. How-
ever, the results are also applicable to other mobile robots. The dis-
cussion is limited to two dimensions, but it can be generalized to three
[Wong 85]. The primary goal is to compute the best possible path in the
shortest amount of time using available equipment. We are constrained

in this endeavor by several things:
A. The robot operates in a dynamic environment.

B. Precise positioning of objects in the room is unlikely due to the
intrinsic uncertainties and resolution limits of the sensors on the

robot.

C. Objects in the workspace do not necessarily have "standard" shapes;

e.g., polyhedra or cylinders with a polygon base.

D. It may not be feasible to have a complete map of the workspace,

especially during exploration.

E. As the robot travels from place to place in its environment it must
use encoders on its drive and steering motors to keep track of its
position and orientation. Accumulated errors from this technique
will decrease the certainty of its knowledge of its own position
and orientation and thus also the position of any obstacles in its

environment [Kak 86].

As a result of these considerations we have chosen a technique
based on a digitized representation of the workspace similar to the ras-
ter based approach to computer graphics. Previously path planning algo-
rithms for robots have relied on many different representations of space
and objects. For example, some researchers have used polyhedra
[Lozano-Perez 1979] oxr curved surfaces to model objects. Others have
partitioned free space into Vornoi regions [O’Dunlaing 1983] or have
employed graph theoretic techniques [Iyengar 1986]. Although these
methods do have the advantage of compactly representing the workspace,
they often neglect or inadequately consider the problem of positional
uncertainty, and as a consequence a small error in the algorithm can be

amplified to produce a completely incorrect action [Morovec 1987].

Using a digitized representation of the workspace has not been
researched extensively primarily because it usually requires a signifi-
cantly greater amount of memory for a given environment. In light of
the decreasing costs of computer memory and the success of the raster
based approach to computer graphics, it is likely that interest in this
technique will increase. Digitization can alleviate some of the prob-
lems introduced by our constraints: Objects do not have to have special
shapes in order to be in the environment. Each pixel in the workspace
grid can be viewed as either occupied or wunoccupied (with appropriate
confidence factors). Unknown areas can be designated as occupied until
further investigation shows otherwise, thus allowing the robot to build
its own map of the room through exploration. It is even possible, for
example, to locate permanent features such as walls by convolving digi-

tized maps [Morovec 87]; however, this is not investigated here.

Once the map is digitized we want to know 1f navigation paths can
be planned before they become obsolete. The point here is that if a
great deal of time is spent computing a path that is optimized for dis-
tance, the environment might change before an attempt could be made to
execute the path. Moreover, the time saved in executing a shortest dis-
tance path 1is mnot likely to be justified by the longer period of time
required in planning such a path. This desire for a “quick"™ path
planner 1led us to the quadtree representation that is explained in Sec-

tion 3. We implemented a technique for searching the quadtree modelled

after Wong and Fu [Wong 85]. To test the effectiveness of the search
technique in a simulated robot environment we used experimental data

obtained in our lab directly from sonar range finders mounted on HER-
MIES.

The paper is organized as follows: 1In Section 2 we discuss the
nature of the world map; i.e., the technique of digitization used. In
Section 3 we show how this map is represented using a quadtree and how
the quadtree needs to be modified to facilitate path searching. In Sec-
tion 4 we explain the method used in the search along with the data
structures required. In Section 5 we analyze the results of testing the
path planner on experimentally derived data; and in Section 6 we show
how that data is generated. 1In Section 7 we summarize our conclusions,

and in Section 8 we give directions for future research.

2. THE "WORLD" MAP

In order to employ the quadtree technique it is necessary to view
the robot's immediate environment as a square. This facilitates the
natural recursive nature of the technique which breaks down the square
into four square quadrants, each of which can be broken down into four
square quadrants, etc. Moreover, we specify our units of measurement in
such a way that each side is exactly a power of two number of units. 1In
this way the length of a side of any subsquare generated in this process
is an integral number of units. (In our lab it was convenient to use a
square that was 32 feet on a side.) Note that if the "real" environment
is a rectangle (or worse), that it could be imbedded in a square, with
the excess region simply blocked out. Although this may seem to be
wasteful of storage, it results in very little overhead in the quadtree

representation as shall be apparent in Section 3,

Consider the following simple example of a robot environment (See
Fig. 2.1). Suppose that the room is 8' on a side and that it is subdi-
vided by a grid into 64 unit squares. Suppose that it 1is known that
some squares are occupied (either partially or totally). Such squares
are shown as being shaded in Fig. 2.1. The remaining squares are
assumed to be unoccupied and safe for navigation by the robot. Note that
there is nothing special about using 1 ft. squares. Some situations
could call for a finer grid, say, each square is 0.5 ft. on a side, and
others could call for a coarser grid, say, each gquare is 2 ft. on a
side. (In the former case we would make our units = .5 ft. in order to
use integer arithmetic in our computations.) Each 1 ft. square pixel
is easily identified by the coordinates of the lattice point that coin-
cides with its lower left hand corner. Thus, for example, the square
with wvertices (0,0), (0,1), (1,1), and (1,0) is identified by (0,0).
The "world" map is then stored as an 8 x 8 binary array, where each
entry is either on (meaning the corresponding square is occupied) or off

(meaning the corresponding square is clear).

It is assumed that the robot is located at some point in the clear
area of the map, and that we wish to plan a path to some other point on

the map. It is also assumed that the robot has a circular cross section

ORNL-DWG. 87-12067

Fig. 2.1. Example Workspace Superimposed with Grid

and is represented by a point that corresponds to the center of that

cross section. In order to use this model obstacles need to be "grown"

in the conventional way to compensate for the actual radius of the robot

[Lozano-Perez 79].

3. GENERATION OF THE QUADTREE REPRESENTATION

The quadtree representation is generated in two stages. The first
stage 1is an adaptation of a technique presented by H. Samet [Samet 80].
As stated above we start with a 2" x 20 binary array, where each element
has a value of 1 or -1. Essentially, we repeatedly subdivide the array
into quadrants, subquadrants, etc. until we obtain blocks which consist
entirely of cells with the same value; i.e., all 1's or all -1's. Fig.
3.1 shows the blocks that would be produced from the binary array in
Fig. 2.1. A heavy dot is placed in the lower left hand corner of each
block. The "natural" data structure resulting from this process is a
quadtree. It is a tree of out-degree 4, where the root node represents
the entire array, the four children of a node represent 1its quadrants,
and the leaf nodes correspond to those blocks for which no further sub-
division is necessary. Fig. 3.2 shows a quadtree corresponding to Fig.
3.1. Each node of the tree is either black (occupied), white (clear),

or gray (in need of further subdivision). The quadrants of each square

ORNL-DWG. 87-12068

Fig. 3.1. Workspace Showing Blocks

ORNL-DWG. 87-12069

/]

7 7 v

Fig. 3.2. Quadtree Corresponding to Fig. 3.1

subarray are numbered as shown in Fig. 3.3. This corresponds to the
order in which the children of a node are generated. (This implicit
ordering simplifies the structure of the node that must be stored in the

computer.)

ORNL-DWG. 87-12070

Fig. 3.3. Quadrant Ordering Protocol

Each node in our quadtree 1s stored as a record containing 7
fields. Field 1 is a pointer to the parent of the node (which is NULL
in the case of the root node). Fields 2 thru 5 are pointers to the four
son's of this node (all of which are NULL if this is a leaf node).

Field 6 designates the node type (black, white, or gray). And field 7

is a boolean which tells the path planner whether or not this node has
been included in the search tree. Thus, a typical node may be pictured

as shown in Fig. 3.4.

ORNL-DWG. 87-12071

Fig. 3.4. Typical Node in Quadtree

Before continuing it is important to note several things. First,
each node of the quadtree corresponds to some quadrant or subquadrant of
the original square array. Furthermore, each quadrant (or subquadrant)
can be identified by two parameters: (1) the coordinates of the lattice
point in its lower left hand corner, and (2) its size. Thus, for exam-
ple, the coordinates (0,0) correspond to the whole array and to the
first quadrant of the whole array, and hence they are only distinguished
by size. None of this information needs to appear explicitly in the
node itself, however, since it is given implicitly by the position of
the node in the tree. 1In Fig. 3.2 it is easy to see that all subarrays

of the same size are at the same level in the quadtree.

Now suppose that our (point) robot is resting at (2,2) in the room
represented by Fig. 1.1, and that we are attempting to plan a plecewise
linear path to some goal, say, (7,5), that passes only through other
nodes of the quadtree. To make this path as smooth as possible we need
to augment the quadtree. In particular, we define nodes at the other
three corners of each quadrant (or subquadrant) wherever they are not
already defined [Wong 85]. These are shown in Fig. 3.5 by the addition
of more heavy dots. {Compare with Fig. 3.1.} The resulting "modified
quadtree" appears in Fig. 3.6. Notice how the modified quadtree differs
from the original. Essentially, we see a partial expansion of some
former leaf nodes, but the relatively compact representation of the ori-

ginal tree is retained.

/]

Key:

Fig.

10

ORNL-DWG. 87-12072

ORNL-DWG. 87-12073

1

4

0 2 &
Fig. 3.5. Workspace with Modified Blocks

/]
¥4
ql/ Q2

] ¢ /] 3 [I B
q2y \a43 q2 |q2
O OnooDe ookD O U

qi = quadrant i, i=1,2,3, or 4.

3.6. Quadtree Corrresponding to Fig. 3.2

/)

[

11

The entire process is summarized as follows: First compute a start
node near the start point and a goal node near the goal point as
described above. Next use the search algorithm to determine a path
between the start node and the goal node. 1If one is available, the
total path consists of (1) the start point, (2) the start node, (3) zero
or more intermediate nodes, (4) the goal node, and (5) the goal point,
in that order. It is possible, of course, that (1) and (2) are the same
or that (4) and (53) are the same. In the special case that (2) and (4)
are the same we know that the start point and the goal point are in the
same clear subquadrant, and the path simply consists of (1) and (5).
The smoothing algorithm is then applied to the total path. This has the
virtues stated before, and it also eliminates the backtracking that is

often present in the first approximation to the solution.

13

4. CONDUCTING THE SEARCH

Initially, let us assume that the (point) robot is located' at one
of the "clear" mnodes of the quadtree, called the start node, and that
the destination is some other node of the quadtree called the goal node.
Later we will relax this constraint, but the basic search process will
remain the same. Path planning consists of searching for a piecewise
linear path connecting the start node to the goal mode. Such a path is

made up of short line segments connecting nodes of the quadtree.

Construction of these line segments is restricted as follows: 1f
we are at mnode P as shown in Fig. 4.1, we can connect to an adjacent
node in any of the eight directions shown. Such a 1line segment is
called a primitive path segment [Wong 85]. If a primitive path segment
does not intersect any occupied cell of the workspace, it is called per-

missible. A solution path then is a sequernce of permissible path seg-

ments.

. Generally speaking, we would like to make the permissible path seg-
ments as large as possible in order to speed up the search. For exan-
. ple, if it is feasible, a two-foot path segment should be preferrable to
a one-foot path segment., With this in mind we initially divide up the
workspace into 22K windows for some initial default value of k. Con-
tinuing with our example, suppose we choose k=2, thus partitioning the 8
% 8 workspace into 26 =~ 16 windows, each a square 2' on a side. Then
letting the start node be the root node of our search tree we build the
search tree in a breadth first manner as follows: From the root node we
add children corresponding to permissible path segments that emanate
from the start node in the workspace. For each new child appended to
the search tree we successively find its children. As each new node is
added to the search tree the corresponding node in the modified quadtree
is marked occupied so that 1t will not appear more than once in the
search tree. Moreover, when a new node can be reached from more than
one c¢hild having the same parent, we append it to the one that results
in the shorter sequence of primitive path segments. TIf no permissible
path segment exists in any of the eight allowable directions, then that

node is closed to further expansion. Path planning 1is, of course,

14

ORNL-DWG. 87-12074

ﬁ] It: Ai

A
A A, 3

Fig. 4.1. Legal Directions

complete when the goal node is found. If no path can be found at the
default resolution (in our example this is k=2), then a finer resolution
level is tried. At the new resolution only partitions containing obsta-
cles (e.g. gray ones) need to be further partitioned. This process is
continued until we reach some maximum resolution. (In our example this
maximum is attained at k=3, which corresponds to 22k — 64 windows mean-
ing that the window size = the pixel size.) If no path is found at the
maximum resolution, then the algorithm reports that all potential paths

to the goal are blocked.

In constructing permissible path segments we are constrained by the

following:

(A) The eight directions defined in Fig. 4.1 are for nodes at the
same hierarchy 1level in the modified quadtree. That is, if the length
of the path segment from P to AQ is of length 2, then the path segment
from P to A2 is also of length 2 (not 1 aor 4, for example). To put it
another way, if you are looking for neighbors of node P in the modified
quadtree, you only have to check nodes that are at the same level as P
in the tree. If you need to move down the tree to a greater depth
(corresponding to a finer resolution) you must reach a position where
two nodes from two different hierarchy levels coincide. 1In the quadtree

this corresponds to the first child, son[0). That is, when a quadrant

15

is partitioned into the next finer resolution, it is always true that
the node associated with the first child has the same coordinate
representation as the parent. (See Fig. 3.3). In constructing the
search tree two (or more) nodes having the same coordinate representa-

tion but different hierarchy levels are appended to the same parent.

(B) When checking the eight possible primitive path segments from
node P we need to determine whether or not each path is collision free.
This can be computed according to the following scheme: (&) For Aji, i =
1,3, 5 or 7, check the node in the modified quadtree that contains the
primitive path segment. If the node is white, the path 1is collision
free; otherwise there is a potential collision. (b) For Aj, i = 0,2,4,
or 6, the path lies between two nodes. Check the nodes in the modified

quadtree that are on either side of the path. TIf either node is white,

then the path is collision free; otherwise there is a potential colli-
sion.
A typical node in the search tree can be pictured as shown in Fig.

4.2

where,

X,¥ are the coordinates of the corresponding node in the quadtree.

level specifies the hierarchy level of the corresponding node in the
quadtree. Level 0 is the root node; level 1 is for the first
four quadrants; etc.

parent is a pointer back to the parent of this node in the search
tree.

neighbor is a pointer to right neighbor of this node in the search
tree. This could be a sibling or a cousin or node having the

same (x,y) values but a different hierarchy level.

ORNL~DWG. 87-12075

Fig. 4.2. Typical Search Tree Node

16

Whenever the path planning algorithm is successful, the last node added
to the search tree is in fact the goal node. This node is linked
through its parent pointer field through (possible) intermediate nodes
back to the start node. It is easy to reverse this list yielding a com-
plete legal path from start node to goal node. The result, however, may

contain nodes that force the robot to make unnecessary stops or turns in

its path.
Smoothing the Path

It is a relatively quick process to smooth the path created by the
search tree,. There are essentially two cases to consider. (1). There
are nodes on a straight-line path from node P to node Q: These are easy
to detect because they satisfy the equation of the line connecting P and

Q in the workspace. The cure is to simply remove them from the 1linked-

list solution.

(2) The straight-line path from node P to Q is shorter than the
actual path from P to Q and furthermore contains no obstacles. Such a
condition is harder to detect than (1) because every unit cell in the
straight-line path between nodes P and Q 1in the workspace must be
checked for potential collisions. If the path is collision free, then
the ecure 1is the same as before: simply remove any intermediate nodes

(between nodes P and Q) in the linked-list solution.

The algorithm is shown in Fig. 4.3. Assume that 'Start’ points to
the start node of the solution list and that ’'Goal’ points to the goal
node of the solution list. Assume also that the nodes of the list are
structured the same as the nodes of the search tree and are linked

through the parent field.
Adding the Start and Goal Points

In most cases the actual physical starting point of the path will
not have coordinates that are lattice points of the grid, and thus it is
necessary to specify that the start point on the map 1is the 1lattice
point that corresponds to the cell that contains the physical starting

point. Thus, for example, if the physical starting point is (5.3,3.6),

17

ORNL-DWG. 87-12076

P <- Start;
Q <- Goal;

While (P = Q)
{ .

If ((all nodes between P and Q are on the same line) OR
(the path between P and Q is collision free)) {

remove all intermediate nodes between P and Q;
P <- Q;
Q <- Goal;
}

else
Q <- Q.parent;

}

return (Start);

Fig. 4.3. Algorithm for Path Smoothing

then the start point is labeled (5,3). Moreover, the start point does
not necessarily coincide with a node of the modified quadtree, and hence
we cannot automatically identify the start point with the start node.
Since we would like to start the search tree using the coarsest possible
resolution we are motivated to make the start node coincide with the
largest clear window that contains the start point. Looking at Fig.
3.5, we would select (4,2) as the start node corresponding to the start
point (5,3). Similar observations may be made for the goal of the path.
Thus, we specify that the goal point on the map is the lattice point
that corresponds to the cell that contains the physical goal point. And
the goal node is the largest clear window that contains the goal point.
(Note that this approach differs from that of Wong & Fu [Wong 85] in
that they further wmodify the quadtree until the start point coincides
with a node in the tree and the goal point corresponds with a node in
the tree: Assuming that the start point is in some white (clear) qua-
drant, then that quadrant can be partitioned into 4 white quadrants.
This process can be continued until the start point coincides with some
white leaf of the tree. A similar thing can be done for the goal

point.)

19

5. TEST RESULTS

The algorithms discussed here were implemented in the C programming
language on a Lambda 2 x 2 computer developed by Lisp Machine Inc. 1In
addition to its dedicated Lisp processor the Lambda machine contains a
Motorola 68010 microprocessor which handles the code developed in C.
This code 1s designed to be integrated with RTIME, a control system
which 1is connected to and operates in parallel with a real-time expert
system called PICON. The combined system of PICON and RTIME currently
runs on the Lambda machine in our laboratory and acts as a remote con-
troller for the robot. The algorithm as coded c¢an also run indepen-

dently of PICON/RTIME and could be installed on the robot itself,

Figure 5.1 shows a map that is somewhat typical of one that is
derived from sonar range finder data. The map is 32'x 32', which secems
to be a practical working size.’ The pixel size is 1'x 1', which gives
us good resolution relative to the three foot diameter of HERMIES. The
shaded areas represent cells that the robot must avoid. Section 6 shows
how such a map could be obtained. The modified quadtree for this map
contains 731 nodes. In conducting the search we set the default resolu-
tion at k=2, thus creating 16 windows in the workspace. Each window is
8’ x 8'. (For this reason the coordinates of each start node in the

test are divisible by 8.)

Table 5.1 summarizes a number of sample runs with various starting
nodes and goal nodes. 1In each case we see the number of nodes generated
in the search tree énd the time required to conduct the initial search.
Furthermore, we have listed for the solution path (i) the number of
nodes, (ii) the length of the path, and (iii) the number of turns the
robot will have to make in order to negotiate the path. This is done
for both the initially derived path and the final smoothed path,. The
time required for smoothing the path was in each case too small to meas-

ure, and therefore is not included in the table.

Several observations can be made from Table 5.1.

32

30

el

.

ORNL-DWG. 87-12077

20

blocked window

A = blocked pixel

Key:
Typical Map Dexrived from Sonar Readings

5.1.

Fig.

Tacwak T =<l &
= N
< <T < {<C
> < &
kT | <& [d] @ Ai%
< |<x |<T clriaia < <
A= a
<!
T
kr | ‘ =
< KT (Gl
KL<l < . 54
ala T : &l
<L N 5
< P A
T . <<]
<z < i< |
el &
” y;
< ' 5 3
aja|ala
<la
BE I|T
<l 1< <L, < "
< ala
| |« <
T {<T .
&l < 1< <
Aﬂﬁﬂﬁ < Hia < < Iﬁ
nao o geiaialal igiaalal [alala] [afE ajalaiga
< &« T I T ITT r SRR
¢ <« afnalogate T T | |<la4
SERMERE L, DL R

21

Table 5.1. Summary of Sample Runs

Case| Start Goal tree time solution path smoothed path -
no. node node nodes | (secs)| node| dist {turns| node| dist {turns]
1 8, 8112, 4 8 "1 3 8.0 1 2 5.6 0
2 24, 8 | 24,16 18 ~1 3 8.0 0 2 8.0 0
3 24, 8 | 16,16 102 q 5 16.0 1 3 12.9 1
4 24, 8 4,22 173 10 11 29.3 7 4 26.1 2
5 24, 8 | 30,26 154 8 8 20.5 q 2 19.0 0
6 8, 0} 20,24 36 ~1i 9 37.0. 5 3 32.7 1
7 16,16 | 12,26 407 28 8 17.3 5 S) 16.8 3
8 16, 0 | 28,27 501 37 11 34.2 7 3 31.8 1
9 24, 8 |10, 8 96 5 5 21.8 . 2 3 17.1 1
10 8, 824, 8 19 “1 5 25.0 3 3 22.6 1
11 8, 8 8,20 106 6 7 14.8 2 4 14.3 2
12 8, 8 8,24 132 6 8 17.7 4 5 17.1 3
13 8,24 8, 8 67 3 8 19.3 4 4 18.2 2
14 24, 8| 24,24 32 "1 5 16.0 0 2 16.0 0
15 24,24 | 24, 8 13 ~1 5 19.3 2 2 16.0 0
16 16,16 6,16 133 5 (3 14.5 3 4 13.8 2
17 8, 0| 24,24 376 24 10 36.7 5 3 33.0 1
18 8, 0 3, 2 195 11 4 7.0 2 3 5.5 1
19 8,16 | 16,16 q \11 Kxxxxkx blocked *¥xxxxs
20 16,24 | 24, O 182 10 8 | 27.3 1 3 26.5 1
21 24, 0 | 16,24 373 ;4 8 27.3 1 3 27.3 1
22 16,16 | 27,23 427 29 9 17.9 6 4 15.6 2
23 8,249 | 21,25 379 24 10 18.2 3 q 17.2 2
24 24, 0 | 18,13 232 13 5 17.3 3 3 16. 4 1

b,

22

The time required to generate the search tree is 1linearly related

to the number of nodes in the tree.

The algorithm works best in cases where there are no obstructions
between the start and goal nodes. This is consistent with our goal

of obtaining a reasonable path in the shortest amount of time.

Longer searches occur typically when the goal node has one or more
odd coordinates. This is simply due to the fact that finding a
node like this can only be done by eventually extending the search

down to the finest resolution: 1’ x 1' windows.

The initial solution path from A to B is not necessarily the same
as the one from B to A. Examples of this can be seen in thé fol-
lowing pairs of cases: 12 & 13, 14 & 15, 20 & 21. Cases 12 & 13
show that the smoothed path distance in going from B to A is not as
short as the initial path distance in going from A to B. Moreover,
the number of nodes generated in the search tree in case 13 is less
than half of the number generated in case 12. Given the time
required to find the initial path from A to B, it seems undesirable
to also compute the path from B to A on the chance that it might be
slightly better. However, given that an initial path from A to B
exists, we currently only apply the smoothing algorithm in one
direction; 1i.e., from A to B. There is little overhead in also
applying the algorithm backwards, i.e., from B to A, and this, in
fact, may be worth the effort. In essence this is what happened in
cases 20 & 21 when the same initial result was arrived at. There
the smoothing algorithm resulted in a slightly shorter path only in
case 20. In comparing cases 14 and 15, it 1is apparent that the
initial solution in case 15 deviates (by 2 extra turns) from the
straight line solution path of case 1l4. The smoothing algorithm

eliminates this deviation, however.

Case 19 shows a situation where the path 1is blocked. Comparing
with Fig. 5.1 we can see that the the start location was given in

error since it is a non-clear node. While this would not normally

have

23

happen 1in a "real" situation, it does show that the algorithm han-
dles the problem quickly and correctly. If the goal node is in a
non-clear area, the main algorithe will also discover this and
report that the path is blocked. However, this is not usually done
quickly, and thus checks are made for this situation before the

actual construction of the search tree.

The worst case situation would occur if we needed to check every
node in the quadtree. In that case the search tree would also have
731 nodes, and the estimated time for completion would be 45
seconds. In our tests, listed in Table 5.1 and otherwise, no

search has ever exceeded this bound even when the goal has been

blocked.

Aside from those things that can be inferred from Table 5.1, we

made a few other observations:

Recall that when a new node is appended to, say, mnode A, in the
search tree, that a check 1is made to see if that node can be
reached through some other node, say node B, that has the same
parent as mnode A. If that is true, then the new node is made a
child of the node that results in the shorter sequence of primitive
paths. This so-called sibling check can easily be removed from the
algorithm to see what changes would result in the running time and
in the initial solution path. This was done for all of the cases
shown in Table 5.1. 1In only one case was the actual initial path
any different from that shown in the table, and the smoothing algo-
rithm resulted in the same improved path for that case. There
seems to be some decrease in time resulting from removal of the
sibling check, which is estimated to be about 10 percent, but for
most cases the difference was negligible, and therefore the sibling

check was deemed worthy of retention.

If the grid imposed on the environment were to be 64 x 64 (rather
than 32 x 32), then the number of nodes in the corresponding quad-

tree would theoretically be increased by a factor of 4. Thus,

24

worst-case search times may be expected to increase by a factor of
4 resulting in possibly intolerably long waits for path planning
with this algorithm. A better solution for a 64 x 64 room may be
to always operate within a smaller moving window, say, 32 x 32.
(See, for example, Morovec [Morovec 87].) On the other hand, a 16 x
16 environment yields a worst case solution in the neighborhood of

10 seconds.

25

6. GENERATION OF EXPERIMENTAL DATA

In this section we describe the procedure used to generate the map
shown in Fig. 5.1. We will briefly describe the hardware used, show how
the information was gathered, and then explain how the data was manipu-
lated to obtain the map. Finally, we will conclude with some sugges-

tions on how to automate the process.
A, Hardware Considerations

A ring of five sonar-sensing elements is mounted on the "head" of
the robot approximately 2.75' from the floor. Each element consists of
a phased array of four Polaroid transceivers, allowing for a mnarrow
effective beam width and rapid scan rate. Fast servo-drives permit the
sonar ring to be stepped quickly; the time required to scan a 180 degree
region in front of HERMIES is seven seconds. The computer resident on
HERMIES-IT currently uses the poly-Forth operating system and the Forth
language. Forth word definitions have been used to construct a HERMIES
command language. A radio link transmits these commands from the Lambda
machine to the on-board processor in ASCII format. In particular, the
Forth word command "WIDESCAN" causes HERMIES to do a 360 degree sonar
scan of its environment. This consists of 120 individual scans spaced 3
degrees apart. The 120 numbers are returned to the Lambda machine via

the radioc link.
B. Gathering the Data for the Map

The obstacles were set up in the laboratory work environment as
shown in Fig. 6.1. These primary obstacles are solid blocks mounted on
casters that can easily be moved about the room. Each obstacle is
approximately four feet tall and has a non-smooth surface that reduces
sonar reflections. The walls shown at the left and the top of the fig-
ure have a relatively smooth texture. There is also a six foot wide
steel door shown in the upper left hand corner. Generally speaking
there was a lot of open space to right and below the figure, which makes
the work enviromment somewhat free of clutter compared to other labora-
tories. The "low level clutter” shown in the figure consisted of some

flat rectangular shaped cardboard packages stacked about 12 inches high.

26

ORNL-DWG. 87-12078

I, 0

W47 77
tof Tefer

" T

27

HERMIES was precisely placed at eight different locations in the work
environment in order to obtain different views of the obstacles and to
avoid dead reckoning errors that would be present if we allowed HERMIES
to navigate from viewpoint to viewpoint. At each location HERMIES was
given a WIDESCAN command, and the resulting 120 scan returns were stored
in a file (along with the information showing the orientation, 1i.e.,
cartesian coordinates and heading of HERMIES when the WIDESCAN was exe-
cuted).

C. Building the Map

The formation of the "final" map involves the construction and
maintenance of what some authors have termed a certainty grid. See, for
example, [Moravec 87]. To do this we maintain several arrays each of
which has dimensions corresponding to the square workspace that ulti-
mately becomes our world map. In our example this is 32'x 32'. The
first array, called misses, is used to record the number of times each
1'x 1’ pixel is observed to be empty, and the second, called hits, Iis
used to record the number of times that each pixel is observed to have
some sort of obstacle in it. We utilize the data from each WIDESCAN
command as follows: Each of the 120 scan returns represents the dis-
tance (measured in tenths of a foot) to a perceived obstacle relative to
the robot orientation. The scans are taken every 3 degrees clockwise
starting directly behind the robot. Thus, we have the polar coordinates
of each reading relative to HERMIES orientation. These are transformed
in a straightforward manner to cartesian coordinates on the square

workspace. This yields a set of 120 cartesian coordinates:
{ (xs[1], ys[i]) | 0 <= 1 <= 119 }

Assuming that the cells in arrays misses and hits are all initialized to
zero, then for each 1 we update these cells in a very simple manner:
The cell that contains the point (xs[i},ys[i]) is marked a hit by adding
one to the value of that cell in array hits. (Recall that each cell is
identified with the integer coordinates of its lower left hand corner.
Thus, for example, if (xs{i],ys[i]) = (2.7,3.25), then we would incre-
ment the value of hits[2][3] by‘ 1. All other pixels under a line

28

segment connecting the robot and the point (xs[i),ys[i]) are marked
clear by subtracting 1 from the value in the corresponding cell of array

misses.

Because sonar vision tends to be myopic and because our map has
finite dimensions, we make several small adjustments in the above

scheme:

(i) When the point (xs[i],ys[i]) is outside the bounds of our
workspace, we cannot, of course, record a hit in array hits. We do,
however, mark clear all of the cells between the robot and the "hit"
point that are within the bounds of the array misses. This situation
can occur if the distant reading is due to a reflection or due to the
fact that the workspace is not physically bounded by four walls.

(ii) When the point (xs[i],ys[i]) is mot out of bounds, but is
beyond some preset threshold distance that is imposed by the program, we
choose not to record a hit in array hits since the sonar return is very
likely due to a reflection and thus would give us a false reading.
(Note that this does not solve the specular reflection problem, nor Iis
it our intention to do so in this paper.) In this case we do mark clear
all of the cells in array misses between the robot and the point that
are also within the threshold distance. For our test cases this thres-

hold was set at 18 feet.

(iii) A lower threshold is also maintained so that sonar readings
less than this number are regarded as erroneous and are discarded. For
example, in our situation it is impossible for any obstacle to be any

nearer than 1 ft. to the robot.

After processing one set of 120 scans we have two arrays that con-
tain, respectively, numbers which represent votes for a particular
situation. We need to combine these votes in some precise way that will
determine which cells are designated blocked and which are designated
clear in the final map. We must do this in the face of conflicting
information which says that some cells appear to be blocked when viewed

from one location, but clear when viewed from another 1location. More-

over, for any particular viewpoint it is easy to see that if a pixel is

29

near the robot it will have more sonar scan lines passing through it
than a pixel that is far away. Hence empty pixels near the robet will

get a lot more votes in array misses than empty pixels far from the

robot. Similarly, an obstacle near the robot will have more "hits" in
the pixels it occupies than the same size obstacle at a greater dis-
tance.

One way we have attempted to resolve the conflict 1is as follows:
First, we process all eight sets of scans, accumulating all the informa-
tion in arrays misses and hits. We are assuming that the more views we
have of the environment the better our chances should be for obtaining a
good map. When this is done we compute the certainty factor of each
cell by first computing our measure of belief that it is occupied and
our measure of disbelief that it is occupied. The measure of belief,
called mb, is computed by simply dividing the number of votes for that
cell in array hits by the maximum number of votes In any cell of hits.
Similarly, the measure of disbelief, md, is computed using array misses.
The certainty factor, cf, equals mb - md.

The next step is to pick some threshold value, say 0, to decide
whether or not the cell should be viewed as occupied. That is, if for a
given cell we find cf > 0, we call that cell occupied and mark it with a
+1. We are saying that there is more evidence that the cell is occupied
than there is that that the cell is clear. Conversely, if cf <= 0, we
say that it is clear. One problem with using O as the threshold value,
even though it seems to be the "natural" value 1in this situation, is
that it considers cells for which no information was gathered to be to
be empty. That is, if a cell has received no "hits" and no "misses",
then mb = md = 0, and therefore, ¢f = 0. A "safer" solution would be to
consider such a cell as occupied until proven otherwise. Introducing a
slight negative bias to the threshold, say -.01, solves this problem.
This has the effect of "filling in" enclosed areas and blocking out
areas behind walls. 1In Fig. 6.2 we show a portion of a map derived from
the lab configuration of Fig. 6.1 using a sonar emulator that elimates
reflections. Figure 6.2a shows the cells that are marked blocked for

the three primary obstacles when a certainty factor of 0.0 is wused,

30

Figure 6.2b shows what happens when the certainty factor equals -0.01.
Figure 5.1 shows a map derived from the work environment of Fig. 6.1

using real sonar data and a certainty factor of -0.02.

ORNL~DWG. 87-12079

A ! a
ala _afAa
A a
=] . s q
—
AlAl _JAlA
A A Y2375 0
A A a8l
L lalal _ AlA
6.2a. cf = 0.0 6.2b. eof = 0.01

Key: VA = actual obstacle
A = blocked pixel

Fig. 6.2. Pixel Maps of Three Obstacles Shown in Fig. 6.1

The certainty factor can be used as a safety device: For example,
if we want to increase the number of occupied cells around those areas
where obstacles are likely to exist, thereby decreasing the likelihood
of planning a path through an obstacle, we merely have to lower the
threshold even more. This will grow the obstacles in a nonuniform way
that utilizes the data we have collected. The process can be carried to
extreme, of course, since eventually nearly every cell will be classi-

fied as blocked, and there will be no reason for planning any paths.

The techniques we used here for computing the measure of belief and
measure of disbelief are relatively crude ways of normalizing the data
in arrays hits and misses. We have experimented with some minor modifi-
cations, but without significant improvement in the results. We have
found that the maps generated have proved satisfactory for testing the

path planning algorithm, which was the primary goal of our research.

31

7. CONCLUSIONS

The path planning algorithm based on the quadtree representation of
the workspace as currently implemented on the 68010 processor yields
solutions within the limits of real time operation of the robot provided
that the workspace environment is no larger than 32 units on a side.
For larger environments it may be necessary to use some kind of window-
ing technique so that the workspace window is within these bounds.
Also, a hierarchy of grid maps could be employed as suggested by Morovec
[Morovec 87]. When a clear path exists the algorithm works extremely
fast, usually under one second, but does mnot mnecessarily produce a
straight 1line solution prior to the application of the smoothing algo-
rithm.

The method is generalizable to three dimensions as pointed out by
Wong & Fu [Wong 85]. However, in the context we are using here the
extra computation time would not be justified. This is due in part to
the lack of precise information about the environment. Most of all it
is due to the fact that the path must be planned quickly since the

environment is likely to change before the robot can navigate the path.

The € language has proved to be a useful implementation language
for this algorithm. First of all, the program is relatively portable
and therefore likely to remain functional for a longer period of time in
our laboratory than, say, a LISP version. It is also likely to run fas-
ter than might be allowed by other languages; and 1If it is ported to a
machine with parallel architecture, it could conceivably run even faster
or handle a larger workspace. For example, if implemented on a hyper-
cube architecture, a single processor could be dedicated to each map in
a hierarchy of grid maps.

The algorithm should work well in combination with other techniques
for mnavigation. For example, we plan to interface this path planner
with a real time expert system that would only execute the path planner
when the appropriate conditions existed. Furthermore, this system would
continually monitor the progress of the robot while it is navigating the
planned path and take alternative action if the path is unexpectedly
blocked. Alternative action might include modifying or aborting the
planned path, using a different path planner, retreating from an attack-

ing object, etc,

33

&. FUTURE RESEARCH

There are several dirsctions in which we may pursue ressarch con-

nected with the algorithm implemented.
Modification of the Algorithm

We need to determine if the speed of the algorithm can be improved
by modifying the current search algorithm. For example, a best-first
technique with a distance heuristic can be implemented and tested in
fairly straightforward manner. Next, we need to know if the performance
of this essentially serial algorithm can be improved on a parallel
machine since later versions of HERMIES will have an on-board NCUBE.
This appears to be a more difficult problem, and, in fact, may prove to
be mnot feasible. Also, the three dimensional counterpart of this algo-
rithm should be examined. Studies suggest that going to three dimen-
sions would at 1least triple the execution time [Wong 85], but using a
parallel machine could in fact keep the execution time close to the
present bounds. (This is because the algorithm needs to be applied to
each of three mutually orthogonal views of the environment, and these
applications can be made in parallel.) Finally, we need to determine
how to make the algorithm work in a larger environment: That 1is, we
need to examine the feasiblity of employing a moving window and/or a
hierarchy of grid maps to compensate for the need to use a relatively

small workspace.
Testing of the Algorithm in New Situations

One of our goals was to interface this algorithm with a real time
expert system and to test it in a dynamic enviromment. It would also be
helpful to know how effective this algorithm might be in the actual
building of a map starting with no knowledge of the environment. This,
of course, requires the robot to move about the workspace to get dif-
ferent views, and in this process the robot is likely to deviate from
the orientation it "thinks" it has. Solving the reorientation problem
is mnot a trivial matter, and this would make exploration difficult.
Also in this connection the problem of choosing the next place to go to

seek a mnew view would have to be solved. As HERMIES acquires new

34

sensing devices the collecting of experimental data should 1lead to
improved room maps, which subsequently could be tested in conjunction

with this algorithm.

35

REFERENCES

Brooks, R. A., "Solving the Find-Path Problem by Good Representation of
Free Space," IEEE Trans. on Systems, Man, and Cybernetics, Vel. SMC-13,
3, March/April 1983.

Crowley, J. L., "Navigation for an Intelligent Mobile Robot," IEEE Jour-
nal of Robotics and Automation, Vol. RA-1, 1, March 1985.

Drumheller, M. "Mobile Robot Localization Using Sonar," IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. PAMI-9, 2, 325-332,
March 1987. '

Elfes, A., "A Sonar-Based Mapping and Navigation System," Proc. of the
1986 IEEE Inter. Conf. on Robotics and Automation, San Francisco, CA,
1151-1156, April 7-10, 1986.

Flynn, A. M., "Redundant Sensors for Mobile Robot Navigation," WM.S.
Thesis, Dept. of Electrical Engineering and Computer Science, MIT, Cam-
bridge, MA, September 1985.

Goldstein, M., F. G. Pin, G. de Saussure, C. R, Weisbin, "3-D World
Modeling Based Based on Combinatorial Geometry for Autnonomous Robot
Navigation," Proc. of IEEE Inter. Conf. on ' Robotics and Automation,
March 30-April 2, 1987,

Iyengar, S§. S., C. C. Jorgensen, S. V. N. Rao, and C. R. Weisbin, "Robot
Navigation Algorithms Using Learned Spatial Graphs," Robotics, &4, Part
2, 93-100, April-June 1986.

Kak, A. C., B. A. Roberts, K. M. Andress, and R. L. Cromwell, "Experi-
ments in the Integration of World Knowledge with Sensory Information for
Mobile Robots,"™ Robot Vision Lab, Purdue University. W. Lafayette, IN
1986.

L]

Kambhampati, S., and L. S. Davis, "Multiresolution Path Planning for
Mobile Robots," IEEE Journ. of Robotics and Automation, Vol. RA-2, 3,
135-145, September 1986.

Lozano-Perez, T., and M. A. Wesley, "An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles," Communications of the
ACM, Vol. 22, 10, 560-570, 1979.

Moravec, H. P. "Certainty Grids for Mobile Robots," Proc. of the JPL
Workshop on Telerobotics, Pasadena, CA, January 1987.

Moravec, H. P. and A. E. Elfes, "High Resolution Maps from Wide Angle
Sonar," Proceedings of the 1985 IEEE International Conference on

Robotics and Automation, 116-121, St. Louis, MO, March 1985.

36

0'Dunlaing, C. and C. K. Yap, "The Voronoi Method for Motion-Planning:
T. The Case of a Disk," Technical Report 53, Courant Institute of
Mathematical Sciences, 1983.

Rich, E., Artificial Intelligence, McGraw-Hill, 1983,

Samet, H., "An Algorithm for Converting Rasters to Quadtrees," IEEE
Trans. on Pattern Analysis and Machine Intelligence, PAMI-3, 1, 93-95,
January 1981.

Samet, H., "Distance Transform for Images Represented by Quadtrees,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4,
3, 298-303, May 1982,

Samet, H., A. Rosenfeld, C. A. Shaffer, R. E. Webber, "Quadtree Region
Representation in Cartography: Experimental Results," IEFE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-13, 6, 1148-1154,
November/December 1983,

Samet, H., "Region Representation: Quadtrees from Binary Arrays," Com-
puter Graphics and Image Processing, 13, 88-93, 1980.

Weisbin, C. R., G. de Saussure, D. Kammer, "Self Controlled: A Real-Time
Expert System for an Autonomous Mobile Robot," Computers in Mechanical
Engineering, Vol. 5, 2, 12-19, September 1986.

Wong, E. K., and K. S. Fu, "A Hierarchical-Orthogonal-Space Approach ¢to
Collision-Free Path Planning," Proc. of the 1985 IEEE Inter. Conf. on
Robotics and Automation, St. Louis, MO, 506-511, March 1985.

Zahn, C. T., Notes, A Guide to the C Programming Language, Yourdon
Press, New York 1979.

37

DISTRIBUTION LIST

ORNL/TM-10481
CESAR-87/20

Internal Distribution

1. S. M. Babeock 20. L. Parker

2. D. Barnett 2. F. G. Pin

3. M. Beckerman 22. D. B. Reister

4, B. Burks 23. P. Spelt

5. G. de Saussure 24, C. R. Weisbin

6. J. R. Einstein 25. V. Baylor (Univ. Relations)

7-11. R. C. Fryxell 26. J. J. Dorning (consultant)

12 C. W. Glover 27. G. H. Golub (consultant)
13. E. Halbert 28. R. Haralick (consultant)
14. W. R. Hamel 29. D. Steiner (consultant)

15. D. Jollay 30. EPMD Reports Office

16. J. P. Jones 31. Central Research Library
17. S. Killough 32. ORNL Technical Library

18. F. C. Maienschein Document Reference Section
19. R. C. Mann 33-34. Laboratory Records

35. ORNL Patent Office
36. Laboratory Records - RC

External Distribution

37. Office of the Assistant Manager, Energy Research and Development
DOE-ORO, 0Oak Ridge, Tennessee 37831

3

38. Dr. William Hoffman, Director of ACM/GLCA Oak Ridge Science
Semester, Denison University, Granville, OH 43023

39. Dr. David W. Kammer, Physics Dept., Albion College, Albion,
MI 49224

40. Drx. Daniel Poteet, Provost, Albion College, Albion, MI 49224

41-70. Technical Information Center, P.O. Box 62, Oak Ridge, TN 37831

