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ABSTRACT 

This report consi.ders task allocation requirements imposed by advanced 
helicopter designs incorporating mixes of human pilots and intelligent 
machines. Specifically, it develops an analogy between load baI.ancing 
using distributed non-homogeneous multiprocessors and human team 
functions. A taxonomy is presented which can be used to identify task 
combinations likely to cause overload for dynamic scheduling and process 
allocation mechanisms. 
decomposition, separation of  control from data, and communication 
handling for dynamic tasks. Possible effects of  n-p complete scheduling 
problems are noted and a cl.ass of combinatorial optimization methods are 
examined. 

Designer criteria are given for function 
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EXECUTIVE SUMMARY 

The Army Aircrew Aircraft Integration program ( M I )  at NASA Amrs 
Research Center seeks to advance the state of the art in design work 
stations for future Army helicopters. One part of this effort is the 
early consideration of man/machine interactions; in particular, 
interactions among autonomous human and intelligent machine design 
elements which may influence training or personnel requirements. The 
proposed work station must surpass existing facil.ities since future 
rotocraft will make extensive use of intelligent machine support 
systems. The shift of decision making responsibility from pilot to 
aircraft highlights problems requiring fundamental advances in our 
understanding of dynamic task description, symbiotic man/machine 
behavior, and training technol.ogy. The selection of which combat 
factors will have the greatest impact on future designs remains an open 
issue, but some likely sources of problems can be identified. Five 
areas which will have a major impact are environmental instability, 
sustained operational requirements, incomplete tactical knowledge; 
communication, and feedback: 

1. Environmental Instability 

Future battlefield environments will change rapidly. Failure to 
respond quickly to controllable conditions will result in ripple effects 
across highly integrated weapon systems because enemy responses and 
friendly defenses are likely to be automated. Availability of crew 
resources cannot be guaranteed and task tradeoffs to machines may have 
to be made dynamically depending upon the limitations of equipment. 

2 .  Sustained Operations 

Once initiated, rapidly evolving battle scenarios will require 
continuous control and decision making activity. Attempts to delegate 
task functions may result in discontinuous pilot workload depending upoIi 
the capability of the intelligent subsystems to hand off tasks and the 
amount of pilot intervention needed. 

3 .  Incomulete Tactical KnowledEe 

Although many aspects of a mission can be anticipated during the 
design process, the full range of task performances cannot be known i n  
advance since an adaptive and competitive struggle is involved. Thus  
apri.ori task allocations will have to be based 1argel.y on a design 
analysis of known human and system limitations rather than mission 
foreknowledge. 

4 .  Communication 

Battlefield information and i.ts assessment during a mission will be 
demanding but also incomplete and inaccurate. A pilot wi.11 have to 
filter information, and human and machine perceptual limitations will 
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r e s u l t  i n  a simp1ifi.ed i~nter i ia l  model of the t r u e  s t a t e  of the  
b a t t l e f i e l d .  Automa.ted machine- in te l l igent  components w i l l .  a l . so  f i l t e r  
da t a  h u t  may operate  using a d i f f e r e n t  world model. 
overlap must he s u f f i c i e n t  f o r  mutual communication as wel l  a s  accura te  
enough f o r  t a s k  handoff.  
compati~hle d a t a  i n t e r p r e t a t i o n  and judgment processes .  

The degree of 

Both the p i l o t  and the  machine rqi~l.1 r equ i~ re  

5 ,  Indeterninat.e.or..l)gLdyed Feelhack 

P i l o t  and machine ac t ions  can i~nf luence  the same env i romen t  t h a t  
provides  t a s k  performance cues .  Long delays o r  dil.uted e f f r c t s  of  
a c t i o n s  may provi.de asyrichroinous behavioral. cue.?, non-cor re la ted  cues ,  
o r  no cues a t  a l l .  Thus the  world models of Item 4 will need to  p r m i d e  
t a s k  cues vhen ex te rna l  cues a r e  n o t  a v a i l a b l e .  The genera t ion  of such 
models pose a formidable problem f o r  a machi.ne i . n t e l l i gen t  e n t i t y .  

Recognizing t h a t  design i s sues  such a s  those previ~0usJ.y mentioned 
c u r r e n t l y  draw on a very l imi t ed  research  base ,  the  AAAI program o f f i c e  
of NASA Ames i n i t i a t e d  a b a s i c  research con t r ac t  wi . t l i  Oak Ridge National 
Laboratory t o  examine dynamic i n t e r a c t i o n  e f f e c t s  i n  g r e a t e r  d e t a i l .  I n  
p a r t i c u l a r ,  ORNL proposed t o  s tudy whether u se fu l  design insi .ghts could 
he gained through a comparison between human-to-human in te rac t i .ons  and 
analogous func t ions  involving l inked  processors  i n  d i s t r i b u t e d  computing 
systems, One computer used as  a b a s i s  f o r  t h i s  comparison involved a 
c l a s s  of a r c h i t e c t u r e s  r e f e r r e d  t o  as M I M D  o r  mul t ip le  i n s t r u c t i o n  
mul t ip le  da t a  path machines. Typical of t h i s  c l a s s  a r e  the  INTEL iPSC 
and NCUBE hypercube supercomputers. 

This research  se l ec t ed  two top ic s  f o r  d e t a i l e d  s tudy .  The f i r s t  
involved t h e  optimum a l l o c a t i o n  of func t ions  and resources  between human 
and iiiachine systems, i .  e .  the  " load balancr  problem". 'The second was a 
determiriation of methods which mi~ght he used t o  more p r e c i s e l y  def ine  
t h e  t a sks  t o  be balanced,  t h e i r  flow of c o n t r o l ,  and the  handling of  
da t a  used f o r  deci.sion making. Because the  human f a c t o r s  and coinputer 
sc ience  communities have d i f f e r e n t  perspec t ives ,  a s ign i f ica .n t  amount of 
t r a n s l a t i o n  was needed to r e c a s t  common d e f i n i t i o n s  and so lu t ions  i n  a 
form amenable f o r  use by M I .  This r epor t  addressed the  a reas  i n  the  
fol lowing way. In the f i r s t  h a l f  of the  r e p o r t ,  a d e f i n i t i o n  of load 
ba1anci .n~  i.s given and a mathematically in sp i r ed  taxonomy f o r  
ca t egor i z ing  mult i~processor  balancing s i tua t ion , s  i s  summarized. The 
purpose of t h e  taxonomy is t o  permit a designer  t o  c l a s s i f y  poten ' i ia l  
h e l i c o p t e r  t a s k  a l l o c a t i o n  s t r a t e g i e s  using t h e i r  s i m i l a r i t y  t o  
c l ~ a s s i c a l  scheduling theory problems. Next, s p e c i f i c  cases  a r e  s tud ied  
hecause t.hey most reseinhle s i t u a t i o n s  which may occur i n  a human innc.hine 
i n t e r a c t i o n .  Solut ions a re  considered which have been successfu l ly  used 
i n  load ha lanc ine  t h a t  requi red  combinator ia l  op t imiza t ion .  P o t e n t i a l  
advantages of s i h u l a t e d  anneal ing and neura l  networks a r e  discussed i n  
t h i s  con tex t .  
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The second half of the report deals with dynamic task decomposition. 
Preliminary guidelines are proposed for decomposition in load sharing 
environments and requirements for decomposition are identified. These 
include the separation of decisions from data, information hiding, 
functional binding, function coupling, and communication dependencies. 
Three AAAI design issues are discussed incidentally during the 
development of the topics: communication management, sensor data 
interpretation, and autonomous adaptability. Briefly summarized issues 
are : 

1. Communication Management, 

The primary motivator for optimum man/machine load balancing is to 
minimize communication while maximi-zing the distribution of workload 
across available processing resources. If a future helicopter's task 
allocation mechanism is not human, it must be capable of communication 
with both human and machine intelligent programs. Underlying knowledge 
representations must absorb new information, express knowledge, and 
solicit battlefield data in human compatible formats (this is to permi.t 
a pilot to override any machine actions if needed). Degrees of human 
machine communication are possible. For example, Greenstein and 
Revesman (1986) consider implicit comiunication in which probable human 
actions are conveyed to the computer through a model of the human's 
action strategy. 
performance even if the capabil.ity of the model used is quite limited. 

2. Data Interpretation 

This has been shown to be effective in improving 

Numeric and perceptual data often needs to be interpreted for the 
pilot in qualitative ways to minimize overload. In the case of machine 
intelligent subsystems, a transformation table must be developed t.o 
permit an autonomous machine to link raw sensor data to task actions. 
Yet data reliability must at some time be judged by both the human and 
machine components. 
plausibility checks based on an evolving mission history, previous 
experience, and factual knowledge. Incomplete or unreliable data may 
permit multiple hypothesis to be devel.oped. Branching decision and 
action possibilities will have to be managed because under appropriate 
circumstances there may be a combinatorial explosion of action chol 1 ces 
resulting in NP hard or P hard task scheduling requirements. 

3 .  &&onomous AdaDtability 

The judgment process should include consistency and 

Intelligent machines should be capable o f  adapting to their 
environment without direct intervention by the pilot. 
imply adaptive learning, extendibility of functions, rapid 
responsiveness, and the ability to be i.nterrupted by unanticipated 
events. Such a system is currently beyond the state of the art. 
Therefore, in addition to basic research on machine learning, 
intelligent software limits should be considered as an integral part of 
design (much as skill and ability impacts will he considered for the 
human). 

Such capabilities 
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I. LOAD BALANCING 

We begin our study of man/machine task sharing with a definition of 

computer load balancing: 

Mad balancing may be defined as a distribution of tasks among 
multiple processors so as to minimize a performance metric while 
simultaneously minimizing interprocessor communication (e.g., 
Kleinrock 1985). 

The most common metric used is execution time although others are 

used such as expenditure rates for resources. Generally, load balancing 

is divided into static load balancing and dynamic load balancing. 

Static load balancing assigns tasks to what appears AT THE TIME to be 

the best processors. Tasks are not moved once initiated under an 

assumption that the result of their execution will not cause a 

fundamental shift in the work load on other processors. Distribution of 

tasks to other processors occurs only when new tasks are introduced. 

Barhen (1985) states that for precedence constrained tasks this type of 

load balancing represents the current state of the art. 

If task execution results in a change in load necessitating movement 

of operations to other processors, then the problem involves dynamic 

load balancing. 

must shed tasks, the handoff of some or all tasks would constitute a 

dynamic load balancing requirement. In these cases, load balancing 

could occur at any time arid involve varying numbers of processors 

depending upon the complexity and resource demands of the task 

Mathematical analysis of static load balancing problems is 

For example, if a pilot begins a combat function and 

documented in a variety of  references on j o b  shop scheduling (e.g., 

Coffman 1976). Such analysis has led to models of typical scheduling 
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situations (Gonzalez 1977). They are usually grouped into taxonomiec 

reflecting a correspondence of job processing configurations with their 

coinputational complexity. Graham et. al. (1979) provi.des a particularly 

useful taxonomic scheme composed of a set of generic job variab1.e~ and 

three multi element fields: alpha, beta, and gamma are used to define 

processing configurations 

I n  the following discussion, this taxonomy has been recast to 

correspond more closely to a human task scheduli.ng environment. We 

begin with a description of six generi-c factors usually applicable to 

al.1 jobs in a system: 

(a) Nrunber of tasks. 

(b) Processing times on one or more processing units, (a single 
task may no t  be executable on only one processor and each 
processor may require different times for the same j o b ) .  

(c) The time during which a task can be performed (e.g., selected 
intervals). 

(d) A due date when a task must o r  should he compl~eted 

(e) A weight giving the importance of the task relative to other 
tasks that could be executed. 

(f) A cost function associated with the completion times f o r  a 
parti~cular task. 

Given values for the generic factors, the processor architecture ( o r  

man/machine  mix^) is then further limited by values in three fields: 

alpha, beta, and gamma. The Alpha fisld reflects machine resources or 

in the case of AAAI, a mix of p i - l o t  and machine capabi~llties (we shal l  

hereafter refer to this as the p i lo t / i n t e l l i een t -mach ine  mix or PIM). 

There are two parts to an alpha field. The first describes the 

structure: 
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(a) 

(b) 

A single unit such as one pilot or one computer 

Identical parallel PIMs where each unit performs each task in 
the same amount of time. 

(c) Uniform PIMs where each unit type can perform the same tasks 
but may have different execution rates. 

(d) Unrelated PIMs each unit performs at its own rate. 

If a single task has multiple steps, a second half of an al.pha field 

is used to specify the type of "shop" required to sequence the task 

steps: 

(a) Open shoE all steps must be performed on the same processor in 
a fixed time, their order is immaterial. 

Flow shop all steps performed on the same processor but order 
is important (e.g., a fixed pilot procedure). 

Job shop steps can be performed on different processors but 
they must still be completed withi.n a fixed time. 

(b) 

(c) 

The second or Beta field specifies job or task restrictions. We 

have selected four of the most common: 

(a) Job sulittirlg whether tasks can be interrupted and resumed 
later. 

(b) Resource usage what resources a task consumes and 
whether a single resource can be shared. 

(c) Precedence constraints - whether task connections are derived 
from directed graphs, trees, or are unrelated (this will be 
discussed in greater detail below). 

(d) Availability constraints for tasks, also cal.led release 
criteria. 

The third or Gamma field specifies evaluative measures for assessing 

PIM performance and are used to define optimization functions. 

measures often used include: 

Some 

(a) Completion times relative to a schedule (e.g., PERT charts). 

(b) Ideal comoletion times versus actual time (lateness). 

(c) Unit uenalties if completion time is greater than some 
criteria. 



The above taxonozny permits d i f f e r e n t  mixes of  PIMs,  t a s k  

r e s t r i c t i o n s ,  and resources  t o  be formally s t a t e d  using a mathematical 

shorthand and then ident i f i . ed  a s  members of mathematical problem c l a s s e s  

having known computational complexity ( e . g . ,  Garey and Johnson 1 9 7 5 ) .  

For  example, i f  a PIM design was s p e c i f i e d  us ing  the  above as: 

generic  = none 

alpha = 1 p i l o t  

be t a  = precedence 

gamma = max l a t eness  

o r  w r i t t e n  another  way: 

PI14 = ( l P , p r e c .  , L l  

The problem would be t o  mi.nimize the  amount of time a p i l o t  Ealls 

behind schedule i n  an precedence cons t ra ined  s e r i a l  t ask  where only the 

p i l o t  performs the t a sk  func t ions .  If the  problem were in s t ead :  

PIM = (unrelated,precedence,sun-completion] 

The goal would he t o  minimize the  t o t a l  time t o  complete a job  on a 

v a r i a b l e  mix of p i l o t  and i n t e l l i g e n t  machines where preemptive t a s k  

a l l o c a t i o n  was all.owed. The computational complexity of t h i s  type of  

problem i s  c u r r e n t l y  unknown h u t  is coii jectured a s  NP hard .  

Unfortunately,  t h k  conf igura t ion  is very s i m i l a r  t o  what i s  a n t i c i p a t e d  

f o r  poss ib l e  AAAI des igns .  The s t rong  impl ica t ion  from comparison with 

s i m i l a r  mixes i s  t h a t  advanced h e l i c o p t e r  designs w i l l  have t o  use 

opt imiza t ion  methods cu r ren t ly  not  p r a c t i c a l  f o r  r e a l  time use.  If they 

cannot ,  a desi~gner  must c a r e f u l l y  s t r u c t u r e  t a sk  handof€ c a p a b i l i t i ~ e s  to 

avoid a combinator ia l  scheduling explosion and a resu l . t ing  system 

overl.oad. I t  i s  not  we1.l understood how a designer  c o d d  a n t i c i p a t e  a l l  
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such tradeoff situations in advance, but we will now begin to propose 

some possible approaches to minimize the problem. 

1.1. Load Balaneine. Problems 

System designs involving PIMs will inevitably require many 

tradeoffs involving task handling, resource management, and performance. 

Rouse (1981) provides an excellent overview of many problems involved in 

human computer interactions. This report will not duplicate tLhat work 

but an interested reader is advised to study it for its discussion of 

dynamic versus static task tradeoffs and human performance models: 

Techniques that have helped minimize analogous problems encountered in 

homogeneous multiprocessor computing systems will be emphasized in this 

report. 

To begin, a method is required to avoid the probl.em Dijkstra (1.968) 

called "lockout". This has also been called the mutual exclusion 

problem. When a task is split into pieces and distributed among 

asynchronous processors, it may happen that two or more o f  these 

components want to share the same data. If one task component changes 

the shared data base, errors in partial calculations performed on other 

processors can occur from temporal sequence effects. 

but ill advised "fix" for this problem is to tag task components so they 

must wait for other tasks to be completed. However, the waiting peri-od 

then "locks out" computation on other parallel channels and the systeni 

performance slows down to the pace of the blocking element. 

proposed that three adjustments should be made to the way tasks are 

divided to prevent this occurrence: 

A commonly used 

Dijkstra 



6 

(a )  A t  any given t ime,  t a sks  should be synchronized so only one 
t a s k  can perform subtasks a s ses s ing  a previously def ined  
" c r i t i c a l  a rea"  of code involving shared d a t a  opera t ions .  

(b) Data shar ing  must be defined so stopping t a s k  execut ion 
outsi.de a c r i t i c a l  area w i l l  have no impact on any o t h e r  
process .  

Every t a sk  t h a t  needs t o  execute us ing  a c r i t i . ca1  a rea  must 
eventua l ly  be allowed t o  do s o .  

( c )  

Cl-early,  s t r u c t u r i n g  tasks  t o  avoid lock out  i n  s e r i a l  subtasks 

w i l l  p lace  r e s t r i . c t i ons  on t h e  f l e x i b i l i t y  o f  t a sk  a l l o c a t i o n s  wi th in  a 

h e l i c o p t e r  design.  The most obvious impl.ication i.s t h a t  subtasks 

e f f e c t i n g  common da ta  should be performed by the  same PIM element i f  

possib1.e. 

A second problem involves scheduler loading.  I n  a d d i t i o n  t o  lock 

o u t ,  cons idera t ion  must be given t o  the  global. information used t o  

 control^ s e l e c t i o n  of tasks  f o r  process  a l l o c a t i o n .  One key ques t ion  

concerns how much information is requi red .  Typica l ly ,  a designer  

response f o r  many automated systems has been t o  make a l l  poss ib l e  

information a v a i l a b l e  and r e l y  on the  human t o  f i l t e r  i t  o u t .  H i l t z  and 

Turoff (1985)  s tud ied  human performance f o r  high information bandwi-dth 

systems and i d e n t i f i e d  s i x  common b u t  non-optimal human coping 

s t r a t e g i e s  t o  avoid such overl~oad 

(a)  They f a i l e d  t o  respond t o  inpu t s .  

(h)  

( c )  They s t o r e d  da ta  i n  some temporary way ( e . g . ,  n o t e s ) .  

(d )  They f i l t e r e d  inpu t .  

(e )  They recoded input  i n t o  another  form ( e . g . ,  l a b e l s )  o r  

( f )  They j u s t  locked out  s e l e c t e d  information systems. 

Although these  s t r a t e g i e s  somet imes  worked f o r  a one processor  

They degraded the  p rec i s ion  of responses .  

system ( t h e  human), m o s t  would c l e a r l y  f a i l  ill  systems were h ighly  



interdependent. A good example is a command and control network which 

reduces large amounts of targeting data. In these situations the most 

common mitigation approach is data filtering. The result (as might be 

anticipated) is often increasing propagation of  incorrect or redundant 

communication across the network. In purely human teams, human 

flexibility usually permits a variety of compensation responses as on- 

the-job experience increases. AAAI designers however will have to 

address the problem of h o w  an intelligent machine could show similar 

adaptability. There are some simple machine examples using concepts of 

linear adaptive filters (e.g., Widrow's work on adaptive antennas)'that 

have been used effectively with raw sensor data. Higher order 

information processing such as expert systems is another question 

although certain applications of fuzzy reasoning may be helpful. 

A third problem is that information that is irrelevant when it is 

first filtered may turn out to be critical after the mix of tasks is 

changed during a dynamic reallocation. Information must be retained for 

some operations while discarded for others. Although no final solutions 

exist at present, some designer strategies that may be helpful for 

minimizing such filtering effects are: 

(a) Summarize data 

(b )  Increase the rate of information feedback for high risk 
interactions. 

Use categorical sorting for information. (c) 

(d) Manipulate message length limitations based on context. 

(e) Use dated message purging. 

(f) Provide periodic system reminders f o r  key information 
categories. 
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Other p a r t s  of designs i n  which humans a r e  information should 

minimize t a sks  vulnerable  t o  proven b i a ses  (Schwartz, K d l b a c k ,  and 

S h r i e r ,  1 9 8 6 ) .  These include:  

( a )  

(b) Confusing consis tency i n  non-independent d a t a  sources  with 

Confusing covar ia t ion  with c o r r e l a t i o n  of events .  

g r e a t e r  r e l i a b i l i t y  of d a t a .  

( c )  Being unduly inf luenced by extreme va lues  i n  information 
( e . g . ,  exaggerated b a t t l e f i e l d  r e p o r t s ) .  

Removing uncertai .nty by ignoring f a c t s .  (d )  

(e )  Finding i l l u s o r y  c o r r e l a t i o n s  t o  support  t h e o r i e s .  

( f )  

( g )  Confusing a cue ' s  l a b e l  with i t s  a c t u a l  information va lue .  

(h) Poor use of s equen t i a l  d a t a .  

Improper use of nega t ive  information 

A s  s t a t e d  above, there  i s  also  a p o t e n t i a l  f o r  combina.toria1 

explosions when at tempting t o  load balance between a human opera tor  and  

a machine. Most t a s k  scheduling programs such as those used f o r  

bus iness  planning assume t h a t  t a sk  demands w i l l  remain s t a t i c ,  a t  l e a s t  

a s  f a r  a s  load i s  concerned and t h a t  the  b e s t  c r i t e r i a  t o  determine 

schedule opt imiza t ion  i s  o v e r a l l  job  time ( e . g . ,  a PERT c h a r t ) .  With a 

human/machine hybrid however, s eve ra l  o the r  f a c t o r s  need t o  be taken 

i n t o  account .  F i r s t  t he re  is the quest ion of a u t h o r i t y .  Not only a r e  

processors  i n  a P:IM mix l i k e l y  t o  d i f f e r  i n  c a p a b i l i t y ,  b u t  machine 

comporieiits must a l s o  remain subordinate  to hunan i n i . t i a t e d  coritrol  . 

'Thus i f  t a s k s  are handed o f f  t o  a machine subsystem and con ta in  dec is ion  

po in t s  a t  which human con t ro l  a u t h o r i t y  would be exerc ised ,  the  machine 

w i l l  have t o  pause t o  communicate with the  p i ~ l ~ o t .  

l e v e l  should become an add i t iona l  f a c t o r  i n  equat ions used t o  balance 

t a s k  load 

In t h i s  way a u t h o r i t y  
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Further, the throughput of a machine processor can be precisely 

specified because the performance characteristics of its hardware are 

known. However as its software becomes more "intelligent" with large 

numbers of decision branches, recursion, and deductive o r  inductive 

reasoning, responses may become very difficult to predict. The 

prediction process itself may take more time than that whic.h would be. 

lost if a non-optimal schedule was selected. A human element manifests 

still greater variability. 

performance risky at best. 

use random variables to provide reaction times for unknown or poorly 

understood processes. Unless a functional decomposition of man/machine 

tasks is unusually successful, it is probahle that scheduling will also 

have to include stochastic elements for the approximation of load 

balancing times. 

scheduling computation methods. 

This makes precise prediction of human 

It is for this reason that many simulations 

Such calculations will impose further burdens on 

Several additional factors would have to be added to genu *rate a 

complete h.uman/machine load balancing equation but go beyond the scope 

of the present paper. These include workload estimation (Casper, 

Shively, and Hart, 1586), physiological and perceptual latencies, 

fatigue, task learning level, error probabilities (Chambers and Nagel, 

1 9 8 5 ) ,  multi-sensor processing capabilities, task durations, precedence 

graph structure, task interruptability, j o b  periodicity, deadli.ne 

criticality, and resource availability schedules. Two other factors, 

communication and task decomposition, will be considered later in this 

paper. First however, we should consider what methods are available to 

implement a task scheduler. 
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1.2. Outimization Usine Neural Networ-kkz 

Given that it is possible to construct a cost function which 

rel.ates the appropriate factors for human/machine loads, what techni~ques 

might serve as options for an AAAI system designer? If we assume for 

the moment that task decomposition methods provided in the next section 

will not remove all combinatorial scheduling instances, we are left with 

the need for techniques capable of providing at least "good" estimates 

of the solution for n-p complete problems. 

programming models (e.g., Chu, Holloway, Land, and Efe, 1980) expand in 

polynomial time and are clearly not suitable. Heuristic models can 

provide approximate solutions to the task allocation problems and 

execute more rapi~dly in time critical or high dimensional cases, but 

they may lack sufficient precision. 

module clustering algorithm (Efe 1.982). Control flow graphs could he 

constructed to represent PIM interrelationships and then used to 

calculate communi.cati.on costs but may not be suitable for highly dynamic 

environments unless task modu1.e~ can be decomposed in very specific 

ways. 

Graph models and integer 0-1 

An example of this approach is the 

What may ultimately have to be used are the slower techniques of 

combinatorial optimization. One important class is based on a process 

called simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983) and 

fast simulated annealing (Szu 1986). Both of these methods take 

advantage of an analogy between combinatorial optimization in a 

configuration space (in this case it would be the set of tasks to be 

assigned to processors) and the stable energy states of  atoms undergoing 

a thermodynamic cooling process such as in the  annealing of metals. 

Recently, the algorithm has been implemented through the application of 
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a powerful computational technique called simulated neural networks 

(for a review see Jorgensen and Matheus, 1985). Barhen, Toomarian, and 

Protopopescu (1987) have combined the two techniques in order to 

increase the speed of solution convergence which under classical 

simulated annealing is very slow. 

scheduling of tasks on a hypercube M I M E  computer. 

enabled the efficient use o f  multiprocessor scheduling for mobile 

intelligent robots under potential.ly time critical missions. 

has so far only been evaluated for static load balanxing (?..e., the 

tasks and their dependencies were known apriori) but it is being 

extended to dynamic load scheduling (Gulati, Barhen, and Iyengar, 1987). 

Although much faster than existing annealing methods, it may still not 

be sufficiently rapid for AAAI use. A final decision as to scheduling 

techniques must await further evaluations. Consequently for the near 

term we feel it is necessary to emphasize AAAI use design 

reconfigurations that minimize and hopefully avoid combinatorial 

explosion.even though to do so will mean a loss in potent.ia1 aircraft 

performance. 

methods through which such reconfigurations may be effected. 

Their implementation focused on the 

The methodology also 

The method 

Consequently the second part of this report will examine 

1 . 3 .  Conclusions Reaardina Load Balancing 

What conclusions can be drawn from the above discussion that have 

the most immediate impacts for the A M I  program? First, it i s  highly 

probable that without careful limitations on which task handoffs will be 

allowed, a helicopter design using a machine co-pilot concept will be 

combinatorially explosive and hence will probably not he capable of 

effective real-time management by a centralized scheduler. At preseni, 



designs should emphasize task groupings that facilitate flexible task 

reconfigurations in contrast to largely static task and function 

allocations currentl~y used by training decision makers. 

will probably not provide a designer with enough constraints to 

accurately specify an optimal human/hardware mix. 

Current methods 

Second, if a load balancing scheduler is to be used it should be 

careful to avoid task interactions caused by communication and sensor 

data shared resources, and biases introduced by human data filtering and 

decision making. 

Third, although some methods for dealing with combinatorial 

optimization do exist they have been used largely for static problems, 

are too slow for real time, or are still under development. Off the 

shelf methods are not  available for PIM problems and designers wil.1 have 

to consider dynamic task reallocation carefully to avoid introducing 

unanticipated effects during heavy combat loading of the pilot and 

software. 

Computer load balancing in MIND machines is facilitated by a 

separation of data from control. This is a more subt1.e distinction when 

human tasks are involved. Human knowledge often mixes control 

infomiation (such as procedures and heuristics) with parametric data for 

specific situations (instantiations). Computer code oriented toward 

serial processors can safe1.y mi.x the two but  unfortunately PIM load 

balancing requires clearer disthctions to be drawn. Consequently, the 

next section focuses on some insights gaj.ned from a study of how 

computer languages structure their code s o  they are suited for dynamic 

task reallocati.ons. 

to which these ideas might be transferred to human task analysis. 

Lt also begins a preliminary analysis oE the extent 
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11. TASK STRUCTURING FOR DYNAMIC REALLOCATION 

11.1 Funct ional  Decomuosition 

In  1 9 7 2 ,  D .  L. Parnas wrote a seminal paper on t h e  c r i t e r i a  t o  be 

One of t h e  most i n f l u e n t i a l  used i n  decomposing systems i n t o  modules. 

concepts he proposed w a s  c a l l e d  information h id ing .  

t h a t  t o  maintain u s a b i l i t y  i n  the  face  of a changing environment, 

s i t u a t i o n  s p e c i f i c  d e t a i l s  should be excluded from procedures .  These 

d e t a i l s  should be s t o r e d  i n  sepa ra t e  a reas  accessed as d a t a .  Parnas 

argues t h a t  even t h e  s t r u c t u r e  of  t h e  da t a  i t s e l f  might i n  t u r n  be 

p a r t i t i o n e d .  

o r  d i s t r i b u t e d  i n t o  many s m a l l  independent p i eces  so as t o  minimize the  

impact of a s i n g l e  changed v a r i a b l e  on an o v e r a l l  con t ro l  s t r u c t u r e  

Effec ts  of change were minimized by l i m i t i n g  the  range of impact of  any 

s i n g l e  opera t ion .  To implement the  idea  it i s  was important to 

determine how t a sks  could i n t e r a c t .  Thus a taxonomy f o r  t a s k  dependency 

w a s  r equ i r ed .  Brodie (1984) d e t a i l e d  one u s e f u l  dependency concept 

c a l l e d  func t iona l  s t r e n g t h  i n  h i s  d i scuss ion  of t h e  underlying ideas  

used i n  bu i ld ing  t h e  FORTH language. 

func t iona l  s t r e n g t h .  

The b a s i c  idea  was 

Global t a sks  or func t ions  were then def ined  to be "liidden" 

We begin w i t h  h i s  d e f i n i t i o n  of 

Funct ional  s t r e n v t h  i s  a measure of t h e  uniformity of purpose of 
all a c t i v i t i e s  occurr ing wi th in  a t a s k .  

Such a d e f i n i t i o n  sounds n i ce  b u t  t o  be usable  i t  must a l s o  be 

l i nked  t o  t e s t s  that  can be appl ied  by an a n a l y s t  i n  p r a c t i c e .  One 

simple t es t  t o  determine i f  a func t ion  i s  "s t rong" was a r r i v e d  a t  

independently by t r a i n i n g  developers in  desc r ib ing  a w e l l  f onned  t a s k ;  

namely, "can you descr ibe  i t  i n  a s i n g l e  sentence?" For tuna te ly ,  

comput.er sc ience  concepts of func t iona l  s t r e n g t h  have a l s o  s tud ied  the  
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problem and ident i f i -ed  o the r  forins of i n t e r r e l a t i o n s h i p  o r  "binding" 

t h a t  may a l s o  be present  when an i d e a l  c r i t e r i a  of uniformity are n o t  

m e t .  These shoul~d,  i n  p r i n c i p l e ,  be use fu l  f o r  t r a i n i n g  developers t o  

d e t e c t  poorly s t r u c t u r e d  t a s k s .  

We w i l l  e l abora t e  on o ther  binding types bear ing  i n  mind that what 

computer sc ience  c a l l s  a func t ion  i s  usua7l.y what t r a i n i n g  developers 

c a l l  a t a sk  and the  operat ions i n  a func t ion  a r e  what developers c a l l  

subtasks .  

There a r e  f i v e  main types of func t iona l  binding t h a t  have been 

i d e n t i f i e d :  

1. Coincidental  binding:  subtasks a r e  lumped toge ther  because 
they o f t e n  occur simultaneously ( r e c a l l  i n  t h e  f i r s t  s e c t i o n  
of th is  r e p o r t  the human b i a s  toward co inc ident  c o r r e l a t i o n ) .  

u i . c c l  bi~nding:  
(value)  i n  order  t o  s e l e c t  opera t ions  ( t h i s  type of s i t u a t i o n  
means a dec is ion  process is nested wi th in  the  t a s k ) .  

3 .  Temuoral~ binding:  the  only r e a l  r e l a t i o n s h i p  between the  
p a r t s  of a t a s k  is t h a t  they must occur a t  the  same time. 

4 .  Communication bicd-i-nA: p a r t s  of a t a sk  a l l  r e f e r  t o  the  same 
da ta  set when they a r e  a c t i v e  (remember we observed the  
p o t e n t i a l  r i .sks of such connections when a func t ion  was 
decomposed i n  mult iprocessing i n  the  concept of " lock o u t " ) .  

Seouent ia l  b inding:  
fact: they become the  input  o r  output  of  o the r  p a r t s .  

Each of these  bindings eEfec ts  the  decomposition of groups of 

If the  e f f e c t s  can be mihimized then the  h id ing  concept of  

2 .  r e l a t e d  p a r t s  of a t a s k  r equ i r e  a f l a g  

5 .  p a r t s  of a t a s k  a r e  r e l a t e d  by the  

t a s k s .  

Parnas can be appl ied  t o  p a r t i t i o n  t a sks  f o r  maximum dynamic 

f l e x i b i l i t y .  Presumably, the designer  would then ga in  g r e a t e r  

opportuni ty  t o  maximize ove ra l l  system perforinance. 

A second use fu l  concept comes from the  l i t e r a t u r e  on s t r u c t u r e d  

software desi.gn (Yourdon and Constant ine,  1 9 7 9 ) .  This dea l s  with the  
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external relationships groups of functions can have to each other. 

concept called "function coupling" may be defined as follows: 

This 

Function coupling is a measure of how functions influence the 
behavior of each other. 

Function coupling is important because individual tasks having 

external coupling are restricted in how they can be decomposed. This is 

in contrast to functional strength where the emphasis is on internal 

relationships within task operations. The concept provides some 

criteria which could be applied to identify task situations which would 

influence PIM load balancing. Four types of coupling are as follows: 

1. Code modification coupling: One task actually changes t h z  
code (or in the case of human tasks the procedural steps) of 
another. 

2. Control cue couulina: One task controls flags or decision 
cues used by another task. 

3 .  Data coupling: One task passes data other than control data 
to another task. (Such local data coupling is better than 
global data coupling. Generally this type of coupling is  
acceptable for dynamic task handoff procedures and can be 
included in a PIM design). 

4 .  Parameter pass couuling: This may well be the nicest type of 
function coupling because only values are passed as  arguments 
when called. 

There are also factors which influence each of these types of 

coupling and how important it is to modify a particular task. These 

include the number of connections linking tasks and whether they include 

internal influences, the complexity of the data exchange going on, i.e. 

the number of items being passed, the type of information, and how long 

the tasks remained coupled during a changing scenario. Some guidelines 

for decoupling tasks include standardizing intertask connections, task 

grouping, and localization of task effe.cts 
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With the above concepts of information hiding, functional stmngth, 

and coupling, what arc tests which an AAAI designer should apply for 

task decomposition in PIN'S? ignoring the clearly static tasks, the 

followi.ng are proposed as part of a design procedure. 

11.2. piagnostic TesLs. for Poor FuncJional Decompqsitions 

We begin with questions that can be used to identify poorly written 

task lists (possibly provided to a designer by a second party outside 

the design process) and follow them by rules which may help i.f further 

task decomposition must be made by the designer. Although 

coming from the computer literature, the similarities to guide1 i.nes for 

human task analysis are interesting (e.g. Rogoff 1 9 8 7 ) .  

1. Does the task description have to be a compound sentence? 

2. Must it use time indexed words such as first or next? 

3. Docs it have a nonspecific object following the verb? 

4 .  Does it use a general verh-like "initi-alize" whi.ch implies 
multiple functions are actually going on? 

5 .  Can  it be rewritten to produce minimum redundancy with 
other tasks? 

We should also provide principles to M I  designers for 

decomposition if tasks fai.1 the above questions. Bel~ow are principles 

that have proven valuable in structuring distributed computer codes: 

1. Re requirement driven, determine funceional components based 
on their  actual^ need to execute. 

2. Group all functions involved in communi.cating data in a 
coimnon interface area. 

3. Define a l l  shared data in terms of objectively measurable 
terms. 

4 .  Look for areas most likely to be effected by change 

5. Look for areas having the most impact on other tasks. 
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6 .  Make sure tasks do not depend upon fluctuating system 
states (if possible). 

11.3. Impacts for Traditional Task Analysis 

We should also consider the impact the above considerations may 

have on traditional task analysis and how these concepts are similar or 

different from existing procedures. In effect an additional step is 

being added to task analysis. Hopefully, tasks decomposed into 

dynamically insensitive pieces will be easier to learn and result in 

improved man/machine designs. This process is not easily categorized in 

a traditional taxonomic sense. Data on task sequence, hierarchy, and 

input/output are usually kept separate from task duties. Situation 

specific data will become separated from tasks but force task changes in 

specific situations (e.g., a mission scenario). 

Traditional task analysis usually places an artificial hierarchical 

decomposition on task dependencies whether or not a scenario implies it. 

Current techniques used for task analysis thus cause a distortion of 

training i.n at least three ways: 

1. It implies that training courses (and associated pilot 
learning) should follow a hierarchical structure. 

2. It implies levels in artificially imposed task hierarchies 
can and should be separated into instructional modules. (This 
discourages recogniti~on of utilization patterns common across 
multiple contexts). 

3. It implies personnel requirements vary due to different 
hierarchical levels that may not exist in the real world 
problem domain. 

A second question is: "Given the use of object ori-ented language in 

the AAAI models are the above requirements readily captured by object 

oriented programming?" The answer is a qualified no. The "object" of 

object oriented programming is a portion of code that can be invoked by 
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a s i n g l e  name. To paraphrase Brodie ( 1 9 8 4 ) ,  such code can perform more 

than one func t ion .  To s e l e c t  a p a r t i h ~ i l a r  func t ion ,  an ob jec t  i s  

invoked and passed a s e t  of parameters .  Regarding information h i~d j~ng ,  

ob jec t  o r i en ted  programming involves a s i m i l a r  philosophy because 

program change i s  much e a s i e r  h u t  t he re  a r e  a l s o  d i f f e rences :  

1. Objects o f t e n  conta in  complex branching s t r u c t u r e s  t o  
determine which of many func t ions  they should perform. The 
h ighly  modularized task decomposition approach proposed above 
sepa ra t e s  con t ro l  da t a  from t a sks  and invokes func t ions  
d i r e c t l y .  

2 .  Objects usua l ly  a r e  w r i t t e n  as se l f - con ta i~ned  e n t i t i e s ,  thus 
they dup l i ca t e  code. An approach which atomizes operat i~ons 
such as that  proposed above f a c i l i t a t e s  redundancy reduct ion  
and thus the  recogni t ion  of commnn el-ements between t a sks  
( f o r  example, as i n  t h e  t i g h t  compilat ion c h a r a c t e r i s t i c s  of 
FORTH code).  

3 .  An ob jec t  i s  def ined t o  work with a predetermined set of cases .  
I t  is d i f f i c u l t  t o  add new scenar ios  whereas func t iona l ly  
independent u n i t s  a r e  e a s i l y  extensi-ble .  I n  the case of himan 
t a s k s ,  t h i s  might imply a way t o  i d e n t i f y  which new tasks  can 
he added t o  a job  with minimum r e t r a i n i n g .  

A s  can he seen ,  i f  AAAI i s  to use the  f u l l  power of  functional^ 

decomposition it  must he ab1.e t o  separa te  da t a  from procedures.  Thus, 

i t  is a l s o  i.mportant t o  determine w h a t  methods of d a t a  decomposition 

might be a v a i l a b l e .  

11.4 Data Separat ion 

W e  can th ink  of a t  l e a s t  two  ins tances  where a PIM would be 

d i r e c t l y  impacted by the  e f f e c t i v e  sepa ra t ion  o f  t a s k  func t ions  and 

con t ro l  da t a :  f i r s t ,  executing a previ.oilsly t r a i n e d  procedure on new 

equipment, and second at tempting t o  switch between d i f f e r e n t  opera t iona l  

modes as condi t ions change (as might occur when a t a sk  w a s  handed o f f  

bctween t w o  PIM elements of d i f f e r e n t  computational power.) F i r s t ,  as 

we d i d  f o r  func t ion  decomposition, i t  i s  use fu l  t o  def ine  ques t ions  t h a t  
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might be used to assess the impact of required information on the 

allocation of data used by dynamic functions. The following are 

suggested: 

1. What is the probability that data will be reused? 

2. What is the probability of procedural changes? 

3 .  What is the smallest set of  interacting data? 

4 .  Can structures and algorithms that share knowledge about how 
they collecti.vely work be grouped? 

5 .  Can redundancy be minimized? 

Although these questions are helpful in identifying which elements 

of data could be clustered into smaller units, they say little about how 

to best represent information used by a decomposed task. Several 

frameworks have been proposed each of which has strengths and 

weaknesses. Structured english offers precision but can often be too 

hard to read quickly when human data demands are high. Decision trees 

do a nice job of representing logical branching but can be very hard to 

simplify as witnessed by standard task analysis. It appears at present 

that decision tables may be the best compromise. Some of their features 

include a clear graphic representation, ability to easily transfer to 

machine coding schemes, and a structure that permits backtracking o f  

task calls. What the best graphic display method is for the use of 

decision table data or whether a tabular structure may best be left 

invisible to the pilot is an open question. 

We have now considered how tasks can be decomposed, how information 

may be represented in data structures, and how to find which tasks may 

be interrelated. One remaining area not discussed so far concerns 

communication requirements during load balancing. The final section 

will consider that problem 
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11.5. Communication 

Symbi.otic i n t e g r a t i o n  of man and i n t e l l i g e n t  machine has  an 

assumption t h a t  e f f e c t i v e  communi~cation can take p lace  between a l l  

e n t i t i e s  i.nvolved. In the  case of humans, such communication r equ i r e s  

team o r  group cooperat ion.  The s tudy of team performance enhanceincnt 

has  been a major concern of  organiza t iona l  psychology f o r  many years  and 

has  been recognized a s  a d i f f i c u l t  t o p i c  t o  quant i fy  bec.aT.ise of 

ind iv idua l  d i f f e rences .  A s  complex as  these  in te rac t i .ons  a r e  f o r  humans 

however, people haye c e r t a i n  common f a c t o r s  which a t  l e a s t  permit 

i n t e r a c t i v e  at ta inment  of shared goa ls .  PIMs however c r e a t e  a ne,#. 

s i t u a t i o n .  

One problem i s  how t o  assure  a conunon frame of  r e fe rence .  Like a 

sc ience  f i c t i o n  cha rac t e r  a t tempting t o  comzunicate with t o t a l l y  a l i e n  

s p e c i e s ,  t h e r e  is no guarantee t h a t  d i f f e r e n t  sensing and cogni t ive  

mechanisms of p i l o t s  an3 machines share  common frames of re ference .  For  

example, imagine t r y i n g  t o  communicate the  d i f f e r e n t  Eskimo words f o r  

snow (s igni f i . can t  f o r  an a r c t i c  s e a l  hunt ing c u l t u r e )  t o  an Aus t r a l i an  

abor i~gine  whose environment i s  d e s e r t  sand. O r  consider  t r y i n g  t o  

coopera t ive ly  hunt BISON bombers with a s i l i c o n  based l i f e  form ( a  PIM 

computing element?) which has  microsecond responses and sees  i n  the  

i n f r a r e d  spectrum. 

A s  mentioned i n  t h e  iritroducti.on, it i s  a d a p t a b i l i t y  which o f f e r s  a 

research  path t o  overcome such l a rge  mismatches between men and 

machines. In scenar ios  where environments can be a n t i c i p a t e d  and common 

t a sk  requirements can be designed i n t o  an intel l . i .gent  machine, the  need 

f o r  adapt ive i .n te l l igence  can he minimized. But,  as the  na ture  o f  team 

i n t e r a c t i o n s  become complex, such 3s where PIMs share  work and 
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authority, required levels of intelligence and adaptability must be 

considered carefully. Central to both is a machine that learns about 

its PIM partners and communicates to obtain information supporting that 

learning. A tradeoff occurs in that communication is usually resource 

intensive and runs counter to the second tenet of load balancing whi.ch 

is to minimize communication 

A s  discussed above, one way this problem is handled in 

multiprocessing systems is to remove control structures from functions 

and embed them in shared data bases. The main factor forcj.ng control 

structure isolation is exponential complexity caused by multip1.e 

decision branches. That complexity tends to make procedures rigid and 

unadaptive. In particular, control structures that depend upon locally 

computed data force sequentiality while control structures with many 

logical branches become serially linked and hence subject to the binding 

and coupling described above 

Whether one can separate control structures from procedures to 

minimize communication in human tasks is still a speculative issue at 

present. However an AAAI designer might try the following techniques: 

(a) Replace decisions with tests for values that can be looked up in 
an external data base (much like a bl.ackboard Logic). 

(b) Drive control decisions from external decision tables rather 
than if-then conditionals in task procedures. 

( c )  Group rare decisions together. Separate them from other 
functions. Examine whether components of the special case czn 
be categorized using previously defined areas. 

1 1 . 6 .  Conclusions About Decomuosition 

We now draw conclusions about the topic of task decomposition and. 

passing tasks between multiprocessor systems. We began with benefits 

such an approach has for handling of an environment with rapid changes 



such as those in the Executive Summary. First, environmental change 

under a strategy of maximum functional decomposition impacts only a 

limited subset of the total set of job tasks and should not ripple 

across the entire interactive PIM structure 

Second, functional. decomposition ideas have already proved useful 

for multi-programmer development of large integrated software systems. 

In these projects, code is focused on a broad problem objective even 

though written autonomously by many different programmers. Many of th- 

underlying code management techniques also seem suited to a reversal of 

the usual process where predetermined man/machi~ne interactions must be 

divided into cooperative but independent units. 

Third, there are some possible guidelines that could be used to 

obtain such properti~es. Summarized by their general area the proposed 

ideas were: 

(a)  Implicit function calls; 

(b) Implicit data passing; 

(c) Direct access of memory (possible with  machine systems 
but requiring data base access or  external memory for 
humans such as a dynamically changing displays); 

(d) Tasks defined in terms of immediately executed 
operations; and 

(e) Conuriunicatj~on not as data passing but rather command 
passing. 

The latter occurs because in a functional decomposition approach, 

communication does not exist merely to pass data, because data calls are 

j.mplicit. Kather communication enables tasks to be performed. 

Communication loads are 1MTI.iCIT in such a task definition. The hidden 

limitati-on of current communi.cation methods where passing raw data 

between men and machines occurs is that procedures that requi.re detailed 
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advanced planning become counterproductive. What is usually needed most 

in battlefield environments is flexibility. Traditional methods of 

procedural specification force rigidity because they are not organized 

with change as a central concept. 

A fourth point concerns where the control of task scheduling should 

reside. In MIMD machines the scheduler is part of the computer and the 

channel for all data flow. It interprets data in exactly the same way 

as the processors, and receives the output of the processors prior to 

any interface with the outside world. In contrast, a human pilot does 

not receive (in fact may actively not desire) all information coming i.n 

from the outside world. He may perceive the world in a focused or 

biased manner relative to intelligent support systems, may not have 

direct control over the interface of those systems with the environment, 

and may or may not choose to interact with supporting hardware and 

software. 

Thus, in order to be queried, world models used by intelligent 

subsystems must be compatible with the world model of the user. This is 

a special type of communication problem and focuses attention upon the 

data exchanged between the pilot and the machine support system as well 

as the location of that data (in the pilot’s mind, an external data 

base, residence on a particular processor, or embedded in computer 

code). This report primarily stressed the minimizati.on of communication 

through restructuring of tasks; specifically, how decision branches 

might be separated from algorithms, and algorithms from data in such a 

way as to facilitate dynamic allocation of tasks. 

In the first section we presented a taxonomic structure for. 

describing design situations. Categorization of PIMs used a three field 
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classification scheme composed of: (1) task data (e.g., number of 

operations, processing times, rei-ease dates for activities, importaince 

weightings, and open shop, flow shop, or job shop environments): (2) 

relationships among task. units like preemption, precedence, and 

processing time constraints; and ( 3 )  optimality criteria (which 

speci.fi.ed the c o s t  functionals defining the optimization). 

The resu1.t of a taxonomic analysis was that the dynamic 

man/hel.icopter interface problem was probably of a mathematical class 

that was n-p complete (although this was conjectured not proven). That 

is the scheduling decision problem as defined by the most probable 

architecture for asynchronous, nori-homogeneous, real time processes in a 

dynamic environment was combinatorially explosive. Optimized global 

task al~location would require methods capable of solving such problems. 

Unfortunately the existing computational methods are limited. One 

current research approach that showed promise was the use of simulated 

neural networks. We cauti.on however about near term limitations of the 

approach and suggests that until the technology is fully developed the 

pilotfielicopter task domains may initially be better served by 

constraining allocations by limiting schedule confl.i.cts I i. e. , hard 

divisions of labor defined on functionally decomposed tasks. 

It is clear that many aspects of human/helicopter interactioii 

present a challenging problem for AAAI. What is equally clear from an 

analysis of probl.ems encountered in multiprocessor scheduling is that 

many insights remain to be gained from a formal study of communication 

structures, data flow, and functional decomposition. A workstation for 

future helicopter designs provides an excellent. testbed for that 

analysis. 
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