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V 

IMPSOR, A FULLY WCTORIZED FORTRAN CODE FOR 
THREE DIMENSIONAL MOVING BOUNDARY PROBLEMS WITH 

DIRICHLET OR NEUMANN BOUNDAIRY CQNDI"FI0NS 

M. A. Williams 
D. G. Wilson 

This report documents IMPSOR, a F O R T W  code that implements finite difference 

methods for multidimensional moving boundary problems with Dirichlet or Neumann 

boundary conditions on a Cray X-MP. The geometry of the spatial domain is a rectangular 

parallelepiped. The dimensions of the parallelepiped are specified by the user. Dirichlet or 

Neumann boundary conditions may be specified on each face of the box independently. 

The initial conditions are arbitrary. The user defines the initial and boundary conditions 

as well a s  the thermal and physical properties of the problem. Additionally. several 

parameters of the numerical method, e.g. degree of implicitness, time step size, are also 

specified by the user. 
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1. Introduction 

This report documents IMPSOR, a FORTRAN code that implements finite difference 

methods for multidimensional moving boundary problems with Dirichlet or Neumann 

boundary conditions on a Cray X-MP. The name IMPSOR indicates that IMPlicit finite 

dif€erence schemes may be used with an SOR solver. Explicit difference schemes may also 

be chosen depending on an input parameter specified by the user. Implicit finite difference 

schemes yield 8 mildly nonlinear system of equations to be solved at each time step. If an 

implicit scheme is chosen, the nonlinear system is solved using an SOR algorithm described 

in Appendix C. The pmformance of this algorithm is discussed in [2]. The geometry of 

the spatial domain is restricted to rectangular parallelepipeds. The dimensions of the 

parallelepiped are specified by the user. Dirichlet or Neumann boundary conditions may 

be specified on each face of the box independently. The initial conditions are arbitrary. 

The user defines the initial and boundary conditions as well as the thermal and physical 

properties of the problem. Additionally, several parameters of the numerical method, e.g. 

degree of implicitness. time step size, are also specified by the user. 

In section 2. we describe the format of the user-supplied input file and the program- 

generated output files. In section 3. we discuss implementation details of the numerical 

method. A standard implementation of an SOR algorithm inhibits veetorization on a Cray 

X-MP. We describe how these problem are circumvented in IMPSOR. The equations of 

the underlying mathematical model are presented in Appendix A. The discretization of the 

spatial domain and the spatial differencing is summarized in Appendix B. The SOR 

nonlinear system solver is explained in Appendix C. 

2. Input and Output Specifications 

In this section we describe the input data file that must be supplied by the user and the 

output files produced by IMPSOR. 
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2.1 Input Data Fila: 

The thermal and physical properties of the problem. the parameters of the numerical 

method, and the initial and boundary conditions are all defined by the user in an input 

data file named gin. The input data file contains one or more data sets defining these 

variables. Each data set contains 18 records. The data sets within an input file are 

processed sequentially. In this subsection. we describe the FORTRAN format used to read 

each record and the variables contained in that record. The FORTRAN format statement i s  

presented opposite the record number. We express the units of the variables in the MKS 

system. However, any consistent set of units may be used. FORTRAN unit 5 is assigned 

to file gin, the input file. 

Record 1 format (5) 

Record 1 contains the value to be assigned to the Checkpoint indicator. The 

program has the capability of writing partially processed data to a scratch 

file. The scratch file can be read later and the computation restarted. The 

value of the checkpoint indicator is set as follows. 

0 - 

1 - 
2 - 
3 - 

new computation: neither read nor write checkpoint 

new computation; write checkpoint but do not read one 

old computation; read checkpoint but do not write one 

old computation; read checkpoint and also write one 

Record 2-4 format ( lp2e 12.5) 

Records 2 through 4 define the location of the parallelepiped. Record 2 

contains minimum value of the x coordinate in columns 1-12 and the 

maximum value of the x coordinate in columns 13-24. Records 3 and 4 

contain the minimum and maximum values of the y and z coordinates. 

respectively. The units are in meters. 
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Record 5 f o r m t  (6i5) 

Record 5 contains the number of nodes and refinement levels in each 

direction. The number of nodes in the x, y, and z directions must be in 

columns 1-5, columns 6-10. and columns 11-15, respectively. The 

refinement levels in the x. y. and z directions must be in columns 16-20, 

columns 21-25, and columns 26-30. respectively. The code provides far 

automatic refinement of the mesh. If the number of nodes in the x 

direction is nx and the refinement level in the x direction is nxr , then the 

total number of nodes in the x direction used in the computation is 

nx '(nxr .2 + 1). However. the output file will only contain data at 

points corresponding to the nn unrefined mesh points. Similar 

considerations hold for other directions. 

Record 6 

Record 7 

format (lp3e12.5) 

The constant density. and the solid and liquid heat capacities are specified 

on record 6. The density appears in columns 1-12. The solid heat capacity 

appears in columns 13-24 and the liquid heat capacity appears in columns 

25-36. The units for density are kg/m3. The units for heat capacity are 

kJ/kg-"C. 

format (lg2e12.5) 

The thermal conductivity of the solid and liquid are specified on record 7. 

The conductivity of the solid is in columns 1-12. The conductivity of the 

liquid is in columns 13-24. The units for the conductivities are kg/ms - "C. 
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Record 8 format (Ipae12.5) 

Record 8 contains the latent heat. the critical or melt temperature. and the 

initial temperature. The latent heat is specified in columns 1-12, the 

critical temperature in columns 13-24. and the initial temperature in 

columns 25-36. The units are "C. 

Record 9 format (lp3e12.5) 

Record 9 contains the output time step size. the amount of time to simulate, 

and the maximum number of t h e  steps allowed. The output time step size 

is the time interval at which data are written to the output file. If zero is 

specified and all refinement levels are zero, then the output time step size, 

dtout , is set equal to the time step size used in the numerical method (see 

below). If zero is specified and the refinement levels are not zero, then 

dtout is set equal to the time step size used in the numerical method with 

the unrefined mesh. The output time step size is specified in columns 1-12. 

The amount of time to simulate the phase change process. tquit , is specified 

in columns 13-24. The maximum number of time steps allowed, steps, is 

specified in columns 25-36. If the input value of tp i t  is zero. then tquit 

will be set to dtmt - steps. If the input value of t@t is nonzero, then the 

input value of steps will be ignored. 

Record 10 format (i5.tp2e12.5) 

Record 10 contains parameters required by the numerical method. The SOR 

algorithm for solving the nonlinear system requires an initial 

approximation. The code allows two choices: either the solution from the 

previous time step or the result of an explicit update. The first field 

(columns 1-5) of this record specifies which will be used as the initial 
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Record 11 

approximation. If the value in this field is 0, the solution from the 

previous time step is used. Otherwise. the result of an explicit update is 

used. The second field (columns 6-17) is the degree of implicitness of the 

algorithm to be used. If this parameter is 0, the method is fully explicit. 

If it is 1. the method is fully implicit. Any value between 0 and 1 may be 

chosen. The last field (columns 18-29) is the tolerance, The SOR 

algorithm is halted when the supremum of the difference between two 

successive iterates is less than the specified tolerance. 

format (5.1 p2e 12.5) 

The first field (columns 1-51 contains an indicator for whether the material 

is initially solid or liquid if the initial temperature is equal to the critical 

temperature (see record 8) .  A value of 1 indicates liquid. A value of 0 

indicates solid. The second field (columns 6-17) is the relaxation parameter 

to be used in the SOR algorithm. This value should be between 1 and 2. 

The third data field (columns 18-29). tmult. controls the time step size. 

The maximum allowable time step size for an explicit method is calculated 

based on the parameters of the problem. The time step size used in the 

problem is set equal to the explicit time step multiplied by tmult . 

Record 12-17 format (iS.lpe12.5) 

Records 12 through 17 set the boundary conditions for the east. west, 

north, south. lower. and upper faces of the parallelepiped, respectively. 

The first field (columns 1-51 indicates the type of boundary condition 

imposed. A value of 1 indicates Dirichlet boundary conditions. *4 value of 
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0 indicates Neumann boundary conditions. The second field (columns 

6-17) is the boundary value to be imposed. If Neumann boundary 

conditions are chosen. a positive: number indicates a flux into the box. A 

negative number indicates a flux out of the box. 

Record 18 format (i5) 

Record 18 contains an end of file indicator. If the value in this field 

(columns 1-5) is 1. there are more data sets to be processed. Otherwise, 

execution is terminated after the current data set is processed. 

A sample input data file is given in Table 2-1. 

Table 2.1 

0 

0.0 c+oo 1.2 e m  

0.0 c+00 1.0 oeoo 
0.0 e+OO 0.8 WOO 

21 1s 45 0 0 0 

1.0 e 0 0  1.0 e 0 0  1.0 e 0 0  

1.0 e -2 1.0 e - 3  

1.5 c 01 0.0 e 00 0.0 COO 

0.0 e 00 1.5 e 00 0.0 c 00 

1 0.0 e-00 1.0 c-04 

1 1.0 e 0 0  1.0 e 0 0  

0 0.0 e 00 

0 0.0 e 00 

0 0.0 c 00 

0 0.0 e 00 

1 -1.0 e 01 

0 0.0 e 00 

0 

(check pint  indicator) 

(min & max x values) 

(min & max y values) 

(min & may z values) 

(nx, ny, ne and refinement levels) 

(rho, sol & liq ht capacities) 

(sol & liq conductivities) 

(latent ht, tcr, initial temp) 

(dtaut, tquit, last time step) 

(ipcsw,theta,eps) 

(imush,selax,trnult) 

(east wall temp flag, east bc) 

(wat wall temp Rag, west bd 
(north wall temp Bag, north bc) 

(south wall tcmp Bag, south bc) 

(lower wall temp flag, lower bc) 

(upper wall temp flag. upper bc) 

(indicator of more data sets) 
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22 Output Files 

IMPSOR generates two output files: W s w  and grdm- .  The first is designed to be 

read by the user. The second is suitable for a graphics post-processor. 

All data read in from the input data file and some calculated values are written to  

outsw in the form variable = value. The initial temperature distribution on the lower face 

is also written to actsor. For each time step, the temperature and enthalpy distributions 

and the number of SOR iterations required for convergence are written to actsor. The 

beginning of the &sw file generated by lMpsOR with the sample input file in section 2.1 

follows. 

time at beginning of ant data set 2.18100e-03 

1 INPUT DATA and initial data. 

xmin, xmax, min, ymax. zmin, zmax 

0. 1.2000o6too 0. 1.00000e+00 0. 8 . 0 ~ - 0 1  
c 

XU = 21, ny 15, nz - 45, nxny - 391, ntot -17986, nsw 1 

fmtx = 392, lmtx ~17985,  l ~ t y  -17965, I r ~ t z  -17595 

rho- l.OOOe+Oo,cp~- 1.000e+00, V l =  1.ooOe+oO 

rks = 1.000~-02, rkl = 1.OO0e-03, rkmax = 1.OO0e-02, rkavg = 5.5OOe-03 

h = 1.500e41, tcr 5 0. ,K) = 0. ,eo= 1.5Ooe41 

dtout = 3.16%-02, Quit * 1~Jooe+OO, S~CPS = 0. 

ipcsw = 1, theta = 5.ooOe-01. cps = l.OOOe-04 

imush = 1, relax = 1.000cc00. tmult = 5.ooOe+oO 

dx,dy,dz,dt: 5.71429e-02 6.66667~42 1.77778~42 1.58025e-02 

iet = 0, bce = 0. 
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ict - 0, bcc = 0. 

inrt - 0, bcn = 0. 

iut = 0. bcu- 0. 

ilt - 1, bel- -l.oO[k+ol 

x-coords of first vrlum output: 837143e-02 2371430-01 4.28571041 

time = 1580250-02 dt 158025602 # o f  iter - 1 

All parameters used for the current execution of IMPSOR are also written to groutsor. 

Five data records containing this information are written at the top of each output data 

set. Then one data recard is written for each time step and grid point containing the data 

set number. time. x-coordinate index. y-coordinate index. z-coordinate. temperature, and 
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enthalpy. If the x-coordinate index is ix  and the mesh width in the x direction is d x ,  

then the x-coordinate is given by x o  4- ix * dx . Here x o  is the minimum x value specified 

on input record 2. The beginning of the grotitsor file generated by W S O R  with the 

sample input file in section 2.1 follows. 

1-0.50000e+01 0 0 0. 0. 0. 

1-0.40000e+01 0. 0.12000cto1 0. 0.10000a+01 0.50000ecOl 

0. 0.70000a+01 14.30000c+01 0. 0.80000a+00 0. 

1-0.20000e+01 0.10000e+01 0.1oooOo+01 0.1OOOOe+01 0.1oooOe+o1 

1-0.10000e+01 0.10000e41 0.1Ooooe-02 0. 

10.15802~-01 1 

10.15802~-01 2 

10~15802~-01 3 

10.15802~-01 4 

1 0.15802~-01 5 

10.15802~-01 6 

10.15802~-01 7 

10.15802e-01 1 

10.15802~-01 2 

10.15802e-01 3 

10.15802~-01 4 

10.15802e-01 5 

10~15802~-01 6 

10.15802~-01 7 

1 OJ5802e-01 1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

3 

0.26667~41 0. 

0.26667601 0. 

0.26667~41 0. 

0.26667e-01 0. 

0.26667e-01 0. 

0.26667e-01 0. 

0.26667~41 0. 

0.26667~-01 0. 

0.26667a-01 0. 

0.26667~-01 0. 

0.26667~01 0. 

0.26667~-01 0. 

0.26667c-01 0. 

0.26667~-01 0. 

0.26667~-01 0. 
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3. Implementation Details 

Most of the computing time used by the numerical method is spent in the iterative 

solution of the nonlinear system. Hence. we concentrate on reducing the computation time 

used by the SOR algorithm described in Appendix C. We briefly summarize the numerical 

method here. 

3.1 Numerical Methad 

Partitioning the spatial domain and discretizing the governing equations yields the 

following nonlinear system at each time step. 

e$' + &$' T$' = ($' 
where 

and 

Here subscripts denote the location in the spatial mesh and the superscript denotes the 

time level. See Appendix B for details. The parameter 0 denotes the degree of implicitness 

of the numerical scheme. This nonlinear system is solved using a successive overrelaxation 

(SORI scheme. Let I= / jk  denote the p th iterate of 7'62' and for compactness. define 
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and 

For a given node. temperature and thermal conductivity values are lagged one iteration at 

advanced points. but not at previous points. This constitutes a Gauss-Seidel iteration. 

Then the iterative form of the equation to be solved is 

e$;'+ cfia 78;' = z$k . (3.3) 

The quantity tpik is computed. Then a new approximation to the temperature, 7$l is cal- 

culated using z& . Details may be found in Appendix C. 

3.2 Crag X-MP Implementation 

W e  &st consider an implementation with enthalpies and tezpratures  are dored in 

and t (nx f l y  JL~ :  1, respectively. Psuedo-code for three-dimensional arrays e (nx ~ t y  f i z  

this SOR algorithm may be written as follows. 

while (time <tquiS do 

for j = 1 tony 
f o r k  = 1 to nz 

for i = 1 to 1uc 
compute b Ci . j  A 1 
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end 
end 

end 
while (snwm > tolrrrsnce do 

for k = 1 to nz 
for j = 1 to pty 

for i = 1 to nx 
compute thermal conductivities 
compute z ( i  , j R 1 and E ( i  , j R 
compute SOR temperature. tnew 

t h e n s w m  = I tnew - t ( i , j R )  I 
eLsesnorrn = maxIsnorm. I tnew - t ( i , j , k )  I ) 
set t ( i  , j  . k )  = t m  

i f i = j = k = l  

end 
end 

end 
endwhile 
output data 
time = t i m  + A t  

endwhile 

The details of computing z and c are omitted here. The computation of z and c is 

different at boundary nodes than it is at interior nodes. This does not present any 

difficulty. Boundary nodes are easily recognized. i.e. i = 1 corresponds to a west boundary 

node. i = nx corresponds to an east boundary node, etc. and calculations are modified 

accordingly. 

Code based on the above pseudo-code could be implemented on either a serial or vector 

computer. However, the efficiency on a serial machine may be very different from the 

efficiency on a vector processor. We are interested in an efficient vector implementation for 

the Cray X-MP. The Cray X-MP performs identical calculations on long vectors very 

quickly. Calculations in the innermost loops are candidates for vectorization. The number 

of passes through the loop is the vector length. The p e d  of the Cray X-M.P increases as 

the vector length increases. Vector lengths of at least 20 are required to acheive any 

significant increase in speed. In the above psuedo-code, the length of the vectors in the 

innermost loop i s  only nx . Interchanging the order of the loops might increase the vector 
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length. However the longest vector length possible using the three-dimensional array data 

structure is max { ILX , ny , nz 1 . mis is the motivation for storing the temperature and 

enthalpy values in vectors. 

An ordering of the nodes unfolds the three dimensional enthalpy and temperature 

arrays into vectors. It converts an RX Xny Xnz array into a vector of length 

nx - ny nz . In the natural ordering. nodes are consecutively numbered from left to right, 

front to back. and bottom to top. Suppose i , j .  and k are the row, column and level 

indices of the three dimensional array. Then the corresponding index, I say, of the vector 

i s Z ~ i + ( j - l ) n x + ( k - l ) n x  *ny. AlmgiventheindexZ o f thevec to r , i , j , andk  

are given by 

k = Integer [(Z - l ) / (nx  ny )I + 1 

j = Integer [(I - (k  - 1)tuc ny>/nx)+ 1 

i = Z - ( k - l ) n x n y - ( j - I ) n x .  

Using this notation, the discrete equations for interior nodes may be written as 

+ b?, 

where 

(3.4) 
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Here 

Pseudo-code for the SOR algorithm using this ordering is as follows. 

while ( time <tquit ) do 
for2 = I  t o m  *ny 'nz 

end 
while (srumn > tdwmce ) do 

compute b (I ) 

for I = I to RX .ny 'nz 

compute z ( I  and c (2 
compute SQR temperature. t m  
i f 2 = 1  
t h e n s m  = I t m  - - t ( I )  I 
else s w m  = max( s m ,  I t m  - t  (I) I ] 
set t ( 2 )  = t m  

compute kE.2 k W . 1  kN,1* ks,1 kU.1 and kL.2 

end 
endwhile 
output data 
time = t i m  + A t  

endwhile 

The vector length in this pseudo-code is m .ny -nz. Thus. if all calculations could be 

vectorized. one expee& a Cray X-MB implementation based on this pseudo-code to run 

faster than a Cray X-MP implementation based on the previous psuedo-code. 

We now focus on vectorizing the calculations in the innermost loop. To insure that 

vectorization is not inhibited, interdependencies among vector elements must be avoided 

and calculations at interior and boundary nodes must be identical. Computing the Gauss- 

Seidel iterate of T ( i  ) requires the current iterate of T ( i  -nxny ). T ( i  -nx>,  and T (i -1). 

an interdependency among vector elements. The interdependency can be 

eliminated by renumbering the nodes using BL red/black ordering. In a red/black ordering. 

odd numbered nodes are thought of as "red" and even numbered nodes as thought of as 
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"black." We require M odd number of nodes per row and column. Thus all neighbors of 

a given node are of the opposite color. Nodes of one color are updated and then nodes of 

the opposite color are updated. This decreases the vector length by a factor of 2. In our 

implementation. red nodes are updated first using black nodal values from the previous 

time step. Black nodes are then updated using the new red nodal values. In effect, we 

make t*wo Jacobi-type updates to get one Gauss-Seidel iteration. For a more complete 

description of rediblack ordering and a discussion of its effects on convergence of Gauss- 

Seidel iterations. see 131. 

When the nodes are numbered with a natural or red/black ordering, boundary nodes 

are scattered throughout the temperature and enthalpy vectors. Thus, arranging the 

computation so that boundary and interior node calculations are identical is more difficult. 

In our implementation. boundary values are stored in the vectors along with the nodal 

values. Consider a three dimensional parallelepiped with the mesh described in Appendix 

B. Boundary data is required along the faces of this box. "Boundary data nodes" are 

placed along these faces to store the boundary data. Then the total number of nodes in x , 

y , and z directions is (nr + 21, (ny + 2). and (w -t 2). respectively. When unfolding the 

three dimensional array. a boundary data node is numbered as any other node. Thus the 

first and last (nx 4- 2) + (ny + 2 )  elements of the vector contain boundary data from the 

top and bottom of the box. If Diichlet boundary conditions are imposed. then the 

temperature at  a boundary data node is stored at the appropriate place in the temperature 

dt 
d* 

vector. If Neumann boundary conditions are imposed. then - fZux is stored in the 

appropriate location in the temperature vector. Here d* is either dx , dy , or dz depending 

on at which face the flux is imposed. The user specifies the type of boundary condition 

imposed on each face and the constant boundary values (cf section 2.1, records 12-17). 
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Rewriting the nonlinear system gives some insight into the modifications required at 

boundary nodes. Substituting the expressions for z and c into equation (3.3) and 

rearranging terms yields the following expression. 

where 

Suppose Dirichlet boundary conditions are imposed along the west wall. If node 2 is a 

west boundary node. T(2-1) is the boundary temperature. Then the only modifications 

required are that k&f:(rP+' - rpG1) be replaced by 2 - k&f/(rp+' - ~f'~) in (3.6) and 
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l w c r t ( i ) =  

nodes. See Appendix B for details. Similar modifications occur along other walls where 

Dirichlet boundary conditions are imposeb. 

2 
0 ifnodei isaboundarydatanode 
1 otherwise 

if node i is an east boundary node 

Now suppose N-M boundary conditions are imposed along the west wall. If node 

ltnrt (i = 

I is a west boundary node, T (1 -1) contains the imposed flux. This flux may be added to 

&? before the iteration begins. Also. the kw,r term must be eliminated from both (3.6) 

and (3.7). Equivalently. we may replace k&f;'(Tp+' - Tp!.$l) by 0 * k&f)(TP+' - T P ~ ' )  in 

(3.6) and k$,,(Tr - T&1) by O.k$,i(Tf - Tin-l in (3.7) for all west boundary nodes. 

0 
0 
1 otherwise 

if node i is an east boundary node 
if node i is a boundary data node 

Similar modifications occur along other walls where Neummn boundary conditions are 

imposed. This motivates the creation of boundary mask vectors. 

Seven boundary mask vectors are created to distinguish between interior nodes, boun- 

dary nodes. and boundary data nodes. The mask vector corresponding to the boundary 

data nodes, nbdy is defined 8s fo1lows. 

The other six mask vectors correspond to the six faces of the parallelepiped. If Dirichlet 

boundary conditions are applied on the east face. then the mask vector corresponding to 

the cast face, tLltrt, is defined as follows. 

If Neumann boundary conditions are applied on the east face. then nnrt is modified as 

follows. 
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The other mask vectors. nxl f t , nyrt , nyl f t . nmt , and nzl f t , are similarly defined. 

With the mask vectors so defined. computation of z .  c .  and b can be identical for 

interior, boundary, and boundary data nodes. After each of the thermal conductivities. 

k w , l ,  k E , l ,  k s , l ,  R N , ~ ,  kL,t , and k U . 1 ,  are computed as described in [31. they are replaced 

by nxl f t ( I  kw, l .  nxrt ( I  - kE , 1 ,  nyl f t (1 1 ks.1. nyrt (1 - kN.1. nzl f t (1 kL,l .  and 

nzrt ( I )  respectively. Prior to the iteration. some additional processing must be done 

at boundary nodes where Neumann boundary conditions are imposed. The imposed flux, 

which is stored in T (1 -1 )  is simply added to bp. Psuedo-code for this algorithm follows. 

initialize variables 
start(1) = ILX .ny + 1 
start(2) = start(1) t 1 
while ( time Ctquit do 

compute b ( I  1 
f o r l  = 1 tonx  any .nz 

end 
Add contributions from Neumann boundary conditions to b 
while ( s m  > tdwmce ) do 

for i = I to 2 
for 1 =s tmt ( i )  to ( n x + 1 ) . ( n y f l ) - ( n z + l )  b y 2  

compute k , i  kw,1 ~ N J  I ~ S J .  ku.1. and kL.1 
set R E o I  = m t  (1 )*kE,i 

set kw,l = d f t  (1 )-kw,l 

set R s , ~  = nyl f t ( l ) .ks , l  
set ku.1 = w t  (1 ).kU,l 
set k t , l  = nzlf t (l)-kL,l 
compute z (2 and c (1 ) 
compute SOR temperature. t m  
i f l = l .  
thenstaornr = I t m  - t ( l )  I 
ekesnarm =max(stuTrm. I t m  - t ( I )  I ] 
set t (l 1 = nQdy (I ).tnew 

Set kN,i = Ylfl(l 1.kN.i 

end 
end 

endwhile 

time = time 4- A t  
output data 

endwhile 

Computation of the thermal conductivities and tnav is described in detail in [3]. The i , 
loop controls the redlblack ordering. The I loop is executed first for the red nodes and 
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them for the black. As was previously mentioned, this elhimites vector dependencies. 

However. the CPT compiler will still see a vector dependency in the I loop. In our 

FORTRAN implementation. the compiler directive CDIR IVDEP is imed preceding the I 

loop. This instructs the compiler to ignore any apparent vector dependencies and allow 

vector execution of the loop. 

This version of the SOR algorithm requires more storage than the version using three 

dimensional arrays. The additional storage enables us to create longer vectors and 

vcctorize all calculations. Thus, we feel the small increase in storage is justified. 

Performance results of this algorithm are presented and discrassed in 121. 
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Appendix A Enthalpy Formnulation 

The enthalpy formu~ation of a Stefan problem conskts of a parabolic partial 

differential equation and an auxiliary relationship. The partial differential equation relates 

changes in enthalpy to temperature gradients. The auxiliary relationship expresses 

enthalpy as a function of temperature. The enthalpy formulation we consider is expressed 

as follows. Determine a temperature distribution T ( x  $1 and an enthalpy distribution 

e ( x  ,t ) that satisfy 

Pet div(k(T1gra.d T ) ,  (A.1) 

where 

T =  T , .  (A.2) 

Here e is the enthalpy. T is the temperature, k (T) is the thermal conductivity. c (2") is 

the heat capacity. p is the constant density, and H is the latent heat. n is a vector 

denoting position in the spatial domain. Note that enthalpy is multi-valued when 

T = T,. 

If the heat capacities are constant in the solid and liquid. the enthalpy/temperature 

relation (A.2) reduces to 

Here c s  and C L ~  are the specific heats of the solid and liquid respectively. See Figure 1. 

In this case, the relation can a b  be expressed as 
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T = 
T, + e/cSd e G o ,  
T, Q < e  <€€, 
T, + ( e - H > /  cL4 e Z H .  

\ 

(A.4) 

The partial differential equation (A.1) is derived from the First Law of 

Thermodynamics (conservation of energy> and Fourier’s Law. Let q denote the heat flux. 

Then these relationships can be expressed as follows: 

pet = - div (q >. (Conservation of Energy) 

p = -R(T)gradT.  (Fourier’s Law) 

It is useful to think of the partial differential equation in this way when formulating the 

numerical problem. 

The spatial domain we consider is a rectangular parallelepiped. Thus we assume a 

Cartesian coordinate system. Let QI. 42. and 43 denote the x ,  y . and z components of q ,  

respectively. Then the conservation of energy law. Fourier’s Law, and the partial 

differential equation (A.1) can be expressed in Cartesian coordinates as follows: 

p e t  = (k(T)T,> ,  + ( k ( T ) T , ) ,  + ( k ( T ) T , ) ,  . (A.7) 

In Appendix B we discuss an implicit finite difference approximation to these quatiam. 





Appendix B. Numerical Formulation 

In this section, we discuss a numerical formulation of the mathematical problem. We 

first describe how the spatial domain is partitioned. Then we describe an implicit finite 

difference approximation of the governing partial dilkential equation. Finally, we present 

the mildly nonlinear system of equations resulting from the implicit approximation. 

3.1 Discretization of the Spatial I)omaia 

We partition the rectangular parallelepiped IO, Zx 1 X [O. Zy 1 X [O. Zz 1 as follows. Given 

positive integers I IX .  n y  , and nz. we set A x  = Ir/nx.  A y  = l y / n y ,  and Az = l z / n z .  (We 

require that nn and ny be odd for reasons to be explained later in this section.) Let 

x J =  j h x  for j = O . l .  2 ..... ? t x . y j = j A y  f o r j = 0 . 1 . 2  ..... n y . a n d z j =  j A z  for 

j =E 0.1.2,. . . .nz. We partition the intervals [O,IX]. [O, l y l ,  and [O,Zz] as follows. 

Denote by 11 the interval (xj-1. X I  ) for j = 1.2,. , . I ?tx , by JJ the interval (yj +. y j  ) for 

j = 1,2,. . . , ny ,  and by K1 the interval (irl-l.zj for j = 1.2,. . .,TU. The I, J ,  and K 

intervals are the intervals for which the model provides approximations for average 

enthalpy and temperature values. Denote by 4 the interval ( X I  - A x  12. XI -I- AX /2> for 

2 = 1.2. ..., nx - 1 ,  by Mt the interval - Ay 12. y1 + Ay/2) for E = 1.2. ..., ny - 1, 
and by Pl the interval (zl - A2 /2, zl 4- A X  12) for I 1,2, ..”, nz - 1. Denote by Lo the 

interval (0, A x  12) and by & the interval (2.x - Az 12. Ex 1. Similarly, denote by M o  the 

interval (0. Ay/2). by M,) the interval (Zy - b y / 2 .  Zy), by PO the interval (0, Az/2). 

and by P, the interval (lz - Az/Z 22). The L. M. and P intervals are intervals for 

which the model requires approximate values of the thermal conductivities. Figure 2 

shows how the 1 and L intervals interleave. 

Figure 2. Interleaved Intervals 11 and LJ for j = 0, 1, * - - . 
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The domain [0, Ix 1 X [O. Zy 1 X [O. Zz 1 is partitioned by Ii X Jj X Kk for i = 1.2. . . . . ILX , 
j = 1.2.. . . ,ny and k = 1.2.. . . .nz. Nodes are located in the centers of the three 

dimensional cells defined by I* X J j  X K b  fox i = 1.2 , .  . . ,nx,  j = 1 ,2 , .  . . . a y ,  and 

k = 1.2.. . . , nz . For example consider a 5 X 5 X 5 grid. All cross sections parallel to the 

xy-,x2-,oryz-planesthrough(i+Ih)~ or( i+%>Ay or(i+%)Ax fori = 0 . 1 .  . . . .  4 

are as depicted in Figure 3. 

Node ijk is an interior node if ieps { 2.3. . . . , nx -1 1” 

jeps { 2.3. . . . , ny -1 }, and keps { 2,3. . . ., nz -1 ). Otherwise, node i jk  is a boundary 

node. 

e e e e 

e e 

Figure 3. Cross Section of a 5 X 5 X 5 grid. 
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B.2 Finite Dif€erence Appmxhation to the Partial MBEercnthl Equation 

We discretize the partial d&eruntial equation (A.7) by first discretizing the 

conservation of energy relation (A.5). The time derivative and the spatial derivatives are 

replaced by standard forward difference quotients. The following is a discrete analog of 

(AS). 

Here 8 E. 10.11 and 

qi*,Jk denotes the heat flUX ht0 the Cdl Ii X J j  x& h the X -direction and q i+y , jk  

denotes the heat flux Out of the Cell Ii X J j  X K k  in the %-direction. Similarly. 

qi ,) and qi +%h denote the flux in and out of the ( i jk  )th cell in the y -direction and 

qij $4 and qij$+% denote the flux in and out of the (ijk )th cell in the zdirectian. We 

may think of the (i jk )th equation (B.1) as representing an energy balance associated with 

the ( i jk  )th node. Thus we may speak of an equation "at a node." 

All nodes, including boundary nodes. are centered in a cell with dimensions 

A x  X A y X Az . Thus equation (B.1) holds at both interior ilnd boundary nodes. 

We next discretize Fourier's Law using centered difference quotients as follows: 

qi-%.jk * ki  -HJk 

We take kiltHJk to be 
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Similar expressions hold for qi J , qi ,I +45& , q i j  -H. and h +H. 

Some of these expressions for flux are not defined at boundary nodes. At. west 

boundary nodes, nodes with i = 1. qi+& is not defined in this way since Tojk  is not 

defined. Similar statements apply at other boundary nodes. Expressions for flux at 

boundary nodes will be discussed below. Substituting these expressions for flux into 

(B.11, expanding and rearranging terms gives the following discrete equation at each 

interior node. 

At boundary nodes, equivalent fluxes must be calculated from the boundary conditions. If 

the incoming flux is specified on the west wall. p = qbap(O,y,z,t), then 

qin_HSfk = qMy ( 0, ( j  --Ih)Ay . (k --Ih)Az , n At 1. Flux boundary conditions on other walls 

are treated similarly. 

If temperature is specified on the west wall, T = TM? (0. y , z , t 1, then we approximate 

Q?+.J~ aS follows: 



- 31- 

Here T&k denotes the boundary temperature. T $ j k  S Tuy ( 0, (f 4 ) A y  , (k - M ) h  , n At ) . 
(aX/ 2) appears in the denominator instead of Ax because the distance between the b u n -  

dary and the boundary node is (&/ 2). Temperature boundary conditions on other walk 

are treated similarly. 

Equation (€3.2) may be rewritten in a different form. For compactness, d&ne 

and 

Then. equation (B.2) can be written as 

e$' + (42' T$' = {&!' , 

Again, appropriate modifications must be rnade to 6 and 5' at boundary nodes. 
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Appendix C. Successive Qverrelaxation Algorithm 

C. M. Elliott and J. R. Bckendon [I] suggest using successive overrelaxation (SORI to 

solve simultaneously for T@' and e$$'. Let 7% denote the p th iterate of Tifjgl and €or 

compactness. define 

@k = b e k  

and 

Note that for a given node. temperature and thermal conductivity values are lagged one 

iteration at advanced points. but not at previous points. This constitutes a Gauss-Seidel 

iteration. Our iterative form of the equation to be solved is 

+ cfik r@l= z& . e. 1) 
Starting with an initial approximation to Tezl. T&. a candidate temperature, Gt is corn- 
puted for'successive p 's from 

This assignment will be explained below. 



Another candidate tcrnpmture, t ,  is calculated using SQR from 

tfit"l= T f i t  + d?/jp-- 7 & ) ,  (C.3) 

where o e [l. 2) is the relaxation parameter. A discussion of the optimal choice for LL) can 

be found in [l]. 

The SOR temperature. 7̂  fig', is chosen if %$' and T& both lie on the same side of T, : 

the Gauss-Seidel temperature, 7" fit1. is chosen otherwise. Precisely stated 

This choice avoids oscillation about T,. Once the iteration has converged to I sufficient 

tolerance, after p Z= R iterations may, I I T ~  - rR-' Il,is less than E and we set 

T$' = T& and calculate eczl using 

(C.4) e$l = 26;'- cijt R-1 p + 1  ilk . 
To explain the assignment of  T P J ~ I  in (C.2). we first define f (s) zz z/jt - s and 

note from (C.1) that f ( ~ 8 2 ~ )  will be the ( p  t1 ) th  approximation ta the enthalpy. It is 

easy to show that if f (T,) < 0, then f (~4;~) < 0; if 0 < f (T,) < If, then 

0 < f ( r$ t l )  < H and if f (T, 1 >/ H .  then f (~fi$') 3 H. Consider the first branch of 

(C.2). Since f (T,) 6 0, we have f (rbk+l) 6 0 and the enthalpy/temperature relatiom- 

ship is 

Solving this and (C.1) for 7" fig1 yields 

The assignments af the second and third branches in (C.2) can be justified similarly. 
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