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IMPSOR, A FULLY VECTORIZED FORTRAN CODE FOR
THREE DIMENSIONAL MOVING BOUNDARY PROBLEMS WITH
DIRICHLET OR NEUMANN BOUNDARY CONDITIONS
M. A. Williams
D. G. Wilson

This report documents IMPSOR, a2 FORTRAN code that implements finite difference
methods for multidimensional moving boundary problems with Dirichlet or Neumann
boundary conditions on a Cray X-MP. The geometry of the spatial domain is a rectangular
parallelepiped. The dimensions of the parallelepiped are specified by the user. Dirichlet or
Neumann boundary conditions may be speéiﬁed on each face of the box independently.
The initial conditions are arbitrary. The user defines the initial and boundary conditions
as well as the thermal and physical properties of the problem. Additionally, several
parameters of the numerical method, e.g. degree of implicitness, time step size, are also

specified by the user.






1. Introduction

This report documents IMPSOR, 2 FORTRAN code that implements finite difference
methods for multidimensional moving boundary problems with Dirichlet or Neumann
boundary conditions on a Cray X-MP. The name IMPSOR indicates that IMPlicit finite
difference schemes may be used with an SOR solver. Explicit difference schemes may also
be chosen depending on an input parameter s.peciﬁed by the user. Implicit finite difference
schemes yield a mildly nonlinear system of equations to be solved at each time step. If an
implicit scheme is chosen, the nonlinear system is solved using an SOR algorithm described
in Appendix C. The performance of this algorithm is discussed in [2]. The geometry of
the spatial domain is restricted to rectangular parallelepipeds. The dimensions of the
parallelepiped are specified by the user. Dirichlet or Neumann boundary conditions may
be specified on each face of the box independently. The initial conditions are arbitrary.
The user defines the initial and boundary conditions as well as the thermal and physical
properties of the problem. Additionally, several parameters of the numerical method, e.g.
degree of implicitness, time step size, are also specified by the user.

In section 2, we describe the format of the user-supplied input file and the program-
generated output files. In section 3, we discuss implementation details of the numerical
method. A standard implementation of an SOR algorithm inhibits vectorization on a Cray
X~-MP. We describe how these problems are circumvented in IMPSOR. The equations of
the underlying mathematical model are presented in Appendix A. The discretization of the
spatial domain and the spatial differencing is summarized in Appendix B. The SOR

nonlinear system solver is explained in Appendix C.

2. Input and Output Specifications
In this section we describe the input data file that must be supplied by the user and the

output files produced by IMPSOR.



2.1 Input Data File

The thermal and physical properties of the problem, the parameters of the numerical
method, and the initial and boundary conditions are all defined by the user in an input
data file named gin. The input data file contains one or more data sets defining these
variables. Each data set contains 18 records. The data sets within an input file are
processed sequentially. In this subsection, we describe the FORTRAN format used to read
each record and the variables contained in that record. The FORTRAN format statement is
presented opposite the record number. We express the units of the variables in the MKS

system. However, any consistent set of units may be used. FORTRAN unit 5 is assigned

to file gin , the input file.

Record 1 format (i5)
Record 1 contains the value to be assigned to the checkpoirit indicator. The
program has the capability of writing partially processed data to a scratch
file. The scratch file can be read later and the computation restarted. The

value of the checkpoint indicator is set as follows.

0 -  new computation; neither read nor write checkpoint

1~ new computation; write checkpoint but do not read one

2 - old computation; read checkpoint but do not write one

3 -  old computation; read checkpoint and also write one
Record 2-4 format (1p2e12.5)

Records 2 through 4 define the location of the parallelepiped. Record 2
contains minimum value of the x coordinate in columns 1-12 and the
maximum value of the x coordinate in columns 13-24. Records 3 and 4
contain the minimum and maximum values of the y and z coordinates,

respectively. The units are in meters.



Record 5§

Record 6

Record 7

format (6i5)
Record 5 contains the number of nodes and refinement levels in each
direction. The number of nodes in the X, y, and z directions must be in
columns 1-5, columns 6-10. and columns 11-15, respectively. The
refinement levels in the x, y. and z directions must be in columns 16-20,
columns 21-25, and columns 26-30, respectively. The code provides for
automatic refinement of the mesh. If the number of nodes in the x
direction is nx and the refinement level in the x direction is nxr, then the
total humber of nodes in the x direction used in the computation is
nx -(nxr -2 + 1). However, the output file will only contain data at
points corresponding to the nx unrefined mesh points. Similar

considerations hold for other directions.

format (1p3e12.5)
The constant density, and the solid and liquid heat capacities are specified
on record 6. The density appears in columns 1-12. The solid heat capacity
appears in columns 13-24 and the liquid heat capacity appears in columns

25-36. The units for density are kg/m> The units for heat capacity are

xJ/kg-°C.

format (1p2e12.5)
The thermal conductivity of the solid and liquid are specified on record 7.
The conductivity of the solid is in columns 1-12. The conductivity of the

liquid is in columns 13-24. The units for the conductivities are kg/ms - °C.



Record 8

Record 9

Record 10

format (1p3e12.5)
Record 8 contains the latent heat, the critical or melt temperature, and the
initial temperature. The latent heat is specified in columns 1-12, the
critical temperature in columns 13-24, and the initial temperature in

columns 25-36. The units are °C.

format (1p3e12.5)
Record 9 contains the output time step size. the amount of time to simulate,
and the maximum number of time steps allowed. The output time step size
is the time interval at which data are written to the output file. If zero is
specified and all refinement levels are zero, then the output time step size,
dtout , is set equal to the time step size used in the numerical method (see
below). If zero is specified and the refinement levels are not zero, then
dtout is set equal to the time step size used in the numerical method with
the unrefined mesh. The output time step size is specified in columns 1-12.
The amount of time to simulate the phase change process, fquit, is specified
in columns 13-24. The maximum number of time steps allowed, steps, is
specified in columns 25-36. If the input value of fquit is zero, then fquit
will be set to dtout - steps. If the input value of tquit is nonzero, then the

input value of steps will be ignored.

format (i5,1p2e12.5)
Record 10 contains parameters required by the numerical method. The SOR
algorithm for solving the nonlinear system requires an initial
approximation. The code allows two choices: either the solution from the
previous time step or the result of an explicit update. The first field

(columns 1-5) of this record specifies which will be used as the initial



Record 11

Record 12-17

-5-

approximation. If the value in this field is 0, the solution from the
previous time step is used. Otherwise, the result of an explicit update is
used. The second field (columns 6-17) is the degree of implicitness of the
algorithm to be used. If this parameter is 0, the method is fully explicit.
If it is 1, the method is fully implicit. Any value between 0 and 1 may be
chosen. The last field (columns 18-29) is the tolerance. The SOR
algorithm is halted when the supremum of the difference between two

successive iterates is less than the specified tolerance.

format (i5,1p2e12.5)
The first field (columns 1-5) contains an indicatorv for whether the material
is initially solid or liquid if the initial temperature is equal to the critical
temperature (see record 8). A value of 1 indicates liquid. A value of 0
indicates solid. The second field (columns 6~17) is the relaxation parameter
to be used in the SOR algorithm. This value should be between 1 and 2.
The third data field (columns 18-29), tmuit, controls the time step size.
The maxixﬁum allowable time step size for an explicit method is calculated
based on the parameters of the problem. The time step size used in the

problem is set equal to the explicit time step multiplied by tmult .

format (i5,1pe12.5)
Records 12 through 17 set the boundary conditions for the east, west,
north, south, lower. and upper faces of the parallelepiped, respectively.
The first field (columns 1—5) indicates the type of boundary condition

imposed. A value of 1 indicates Dirichlet boundary conditions. A value of



0 indicates Neumann boundary conditions. The second field (columns
6-17) is the boundary value to be imposed. If Neumann boundary
conditions are chosen, a positive number indicates a flux into the box. A

negative number indicates a flux out of the box.

Record 18 format (i5)
Record 18 contains an end of file indicator. If the value in this field
(columns 1-5) is 1, there are more data sets to be processed. Otherwise,

execution is terminated after the current data set is processed.

A sample input data file is given in Table 2.1.

Table 2.1

0 (check point indicator)
0.0 ¢+00 1.2 e+00 (min & max x values)
0.0 ¢+00 1.0 e+00 (min & wax y values)
0.0 e+00 0.8 &+00 (min & max z values)
21 15 45 0 0 O (nx, ny, nz and refinement levels)
1.0 ¢00 1.0 ¢00 1.0 e00 (rho, sol & lig ht capacities)
1.0 ¢-2 1.0 ¢-3 (sol & liq conductivities)

1.5 e01 0.0 ¢00 0.0 ¢e00 (latent ht, ter, initial temp)
0.0 ¢c00 1.5 ¢00 0.0 ¢00 (dtout, tquit, last time step)

1 0.0 ¢00 1.0 ¢-04 (ipcsw, theta,eps)

1 1.0 e00 1.0 ¢00 (imush,relax,tmult)

0 0.0 ¢00 (east wall temp flag, east be)

0 0.0 ¢c00 (west wall temp flag, west bc)
0 0.0 ¢00 (north wall temp flag, north be)
0 0.0 ¢00 (south wall temp flag, south be)
1 -1.0 ¢01 (lower wall temp flag, lower bc)
0 0.0 e00 (upper wall temp flag, upper be)
1] (indicator of more data sets)



2.2 Qutput Files

IMPSOR generates two output files: owtsor and grawtsor. The first is designed to be
read by the user. The second is suitable for a graphics post-processor.

All data read in from the input data file and some calculated values are written to
outsor in the form variable = value . The initial temperature distribution on the lower face
is also written to outsor. For each time step, the temperature and enthalpy distributions
and the number of SOR iterations required for convergence are written to outsor. The

beginning of the outsor file generated by IMPSOR with the sample input file in section 2.1

follows.

1ime at beginning of first daia set 2.18100¢-03

1 INPUT DATA and initial data.
xmin, Xmax, ymin, ymax, zmin, zmax

0. 1.20000e+00 0. 1.00000¢+00 O. 8.00000e-01
nx = 21,ny= 15, nz= 45, nxny = 391, ntot =17986, nsw = 1
frstx = 392, lastx =179885, lasty =17965, lastz =17595

tho = 1.000e+00, ¢cps = 1.000e+00, cpl = 1.000e+00

rks = 1.000e-02, rkl = 1.000¢-03, rkmax = 1.000e-02, rkavg = 5.500¢-03
h= 1.500e401, tcr = O, , 0= 0. , €0 = 1.590e+01

dtout = 3.160e-02, tquit = 1.500e+00, steps = 0.

ipesw = 1, theta = 5.000e-01, eps = 1.000e-04

imush = 1, relax = 1.000e+00, tmult = 5.000e+00

dx,dydz,dt:  5.71429¢-02 6.66667¢-02 1.77778¢-02 1.58025¢-02

jet= O, bce= O.



fet= O, boe= O.
ist= 0,bcs = 0.
intt= 0,bca= O,
iut= 0,bcu= 0,

itt= 1, bel = -1.0000+01
x-coords of first values output: 8.57143¢-02 2.57143¢-01 4.28571¢-01

time = 1.58025¢-02 dt = 1.58025¢-02 #of iter = 1

begin k level = 3,z = 2.66667¢-02
row j= 3, y= 1.00000e-01

1(*,j,0: 0. 0. 0. 0. 0. 0. 0.

o(*,],10: 1.50000¢+01 1.50000e+01 1.50000e+01 1.50000¢+01 1.50000¢+01 1.50000¢+01 1.50000¢+01
row j= 6,y = 3.00000e-01

t(*,5,k): 0. 0. 0. 0. 0. 0. 0.

(*,j,%): 1.50000¢+01 1.50000¢+01 1.50000e+01 1.50000¢+01 1.50000e+01 1.50000¢+01 1.50000¢+01
ow j= 9,y = 50000001

1(*,3,%): 0. 0. 0. 0. 0. 0. 0,

¢(*,j,k): 1.50000¢+01 1.50000¢+01 1.50000e+01 1,50000¢+01 1.50000¢+01 1,50000¢+01 1.50000¢+01
Tow j= 12,y = 7.00000e-01

#(*,},%): 0. 0. 0. 0. 0. 0. o,

«(*,j,X): 1.50000¢+01 1.50000e+01 1.50000¢+01 1.50000¢+01 1.50000¢+01 1.50000¢+01 1.50000¢+01

All parameters used for the current execution of IMPSOR are also written to growtsor.
Five data records containing this information are written at the top of each output data
set. Then one data record is written for each time step and grid point containing the data

set number, time, x-coordinate index, y-coordinate index, z-coordinate, temperature, and



enthalpy. If the x-coordinate index is ix and the mesh width in the x direction is dx,
then the x~coordinate is given by xo + ix -dx. Here x is the minimum x value specified
on input record 2. The beginning of the groutsor file generated by IMPSOR with the

sample input file in section 2.1 follows.

1-0.50000e+01 O 0 0. 0. 0.
1-0.40000¢+01 0. 0.12000e+01 0. 0.10000e+01 0.50000e+01
1-0.30000e+01 O. 0.800000+00 0. 0. 0.70000e+01

1-0.20000e+01 0.10000e+01 0.10000e+01 0.10000¢+01 0.10000¢+01

1-0.10000¢+01 0.10000e-01 0.10000¢-02 0. 0.15000e+02

1 0.15802¢-01 1 1 0.26667¢-01 0. 0.15000e+02
1 0.15802¢-01 2 1 0.26667¢-01 0. 0.15000¢+02
1 0.15802¢-01 3 1 0.26667¢-01 0. 0.15000e+02
1 0.15802¢-01 4 1 0.26667¢-01 0. 0.15000e+02
1 0.15802¢-01 5 1 0.26667¢-01 0. 0.15000¢+02
1 0.15802¢-01 6 1 0.26667e-01 O. 0.15000¢+02
1 0.15802¢-01 7 1 0.26667¢-01 0, 0.15000¢e+02
1 0.15302¢-01 1 2 0.26667¢-01 O. 0.15000e+02
1 0.15802¢-01 2 2 0.26667¢-01 0. 0.15000e+02
1 0.15802¢-01 3 2 0.26667¢-01 0. 0.15000¢+02
1 0.15802¢-01 4 2 0.26667¢-01 0. 0.15000¢+02
1 0.15802¢-01 5 2 0.26667¢-01 0. 0.15000e+02
1 0.15802¢-01 6 2 0.26667¢-01 0. 0.15000e+02
1 0.15802¢-01 7 2 0.26667¢-01 0. 0.15000¢+02
1 0.15802¢-01 1 3 0.26667¢-01 0. 0.15000e+02
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3. Implementation Details
Most of the computing time used by the numerical method is spent in the iterative
solution of the nonlinear system. Hence, we concentrate on reducing the computation time
used by the SOR algorithm described in Appendix C. We briefly summarize the numerical

method here.

3.1 Numerical Method
Partitioning the spatial domain and discretizing the governing equations yields the
following nonlinear system at each time step.

eq{l + g:} Tlr;;l §n+1
where

+

iy’ (k2w + KIS D)

OAr

v Uefth + EBYLL).

and

OAt

(ot = b + phx — P TR + kR, TN

QAL
+ ohy? I hae TR + ERfLy TR )

0At
+ oAz ——— kit Th¥n + k55w TR

Here subscripts denote the location in the spatial mesh and the superscript denotes the
time level. See Appendix B for details. The parameter  denotes the degree of implicitness
of the numerical scheme. This nonlinear system is solved using a successive overrelaxation

(SOR) scheme. Let 7J denote the pth iterate of 773! and for compactness, define
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3.1)
0At
zhe = bl + "P"A‘;‘z‘ P ge TPorge + BP0 TPA4)

AL
pay?

At
0z’ Epam Then + Ky 75D,

+

(B2 eme TEjs1x + kf.fivuc Tf,f—lq,k)

+

and

2
0 As (32)

pAx?
0Az
phy?

0Az
pAz?

ch = (kP + kf-—t/bx)

+

(BE p4w + KBV .

For a given node, temperature and thermal conductivity values are lagged one iteration at
advanced points, but not at previous points. This constitutes a Gauss-Seidel iteration.
Then the iterative form of the equation to be solved is

efdt + ch tHi =z . (3.3)
The quantity zfj; is computed. Then a new approximation to the temperature, 75; 1is cal-

culated using z%; . Details may be found in Appendix C.

3.2 Cray X-MP Implementation
We first consider an implementation with enthalpies and temperatures are stored in
three-dimensional arrays e (nx iy .nz) and t{(nx ,ny .nz), respectively. Psuedo-code for
this SOR algorithm may be written as follows.
while (time <tquit ) do
fork =1tonz
for j =1tony

fori =1 to nx
compute (i ,j k)
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end
end
end
while (snorm > tolerance ) do
fork =1tonz
for j =1 tony
fori =1tonx
compute thermal conductivities
compute z(i ,j k) and c(i.j k)
compute SOR temperature, tnew
fi=j=k=1
then snorm = | tnew —t(i,j k) |
else snorm = max{ snorm, | tnew —t(i.j k) 1}
set t (i ,j k) = tnew
end
end
end
endwhile
output data
time = time + At
endwhile

The details of computing z and ¢ are omitted here. The computation of z and ¢ is
different at boundary nodes than it is at interior nodes. This does not present any
dificulty. Boundary nodes are easily recognized, i.e. i = 1 corresponds to a west boundary
node, i = nx corresponds to an east boundary node, etc. and calculations are modified
accordingly.

Code based on the above pseudo-code could be implemented on either a serial or vector
computer. However, the efficiency on a serial machine may be very different from the
efficiency on a vector processor. We are interested in an efficient vector implementation for
the Cray X-MP. The Cray X-MP performs identical calculations on long vectors very
quickly. Calculations in the innermost loops are candidates for vectorization. The number
of passes through the loop is the vector length. The speed of the Cray X-MP increases as
the vector length increases. Vector lengths of at least 20 are required to acheive any
significant increase in speed. In the above psuedo-code, the length of the vectors in the

innermost loop is only nx . Interchanging the order of the loops might increase the vector
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length. However the longest vector length possible using the three-dimensional array data
structure is max {nx.ny.nz } . This is the motivation for storing the temperature and
enthalpy values in vectors.

An ordering of the nodes unfolds the three dimensional enthalpy and temperature
arrays into vectors. It’ converts an nx Xnay Xnz array into a vector of length
nx -ny -nz. In the natural ordering, nodes are consecutively numbered from left to right,
front to back, and bottom to top. Suppose ¢, j, and & are the row, column and level
indices of the three dimensional array. Then the corresponding index, ! say, of the vector
isl =i+ (j—1)nx + (k — Dnx 'ny. Also, given the index [ of the vector, i, j,and k
are given by

k = Integer [l —1)/(nx ny)l+ 1

j = Integer [ — (k — Dnx ny)/nx]+ 1

i =l—(k-Dnxny—((—1nx.

Using this notation, the discrete equations for interior nodes may be written as

eptl = pOAZ;tz k2 S{pst — TP*Y — & ATPH — T4)) 3.4)
+ OAt [k;lﬁl(Tln-rtz}c — Tln+l)— kg;jl(Tln+1__ T[n’_:i)]
pAy?
¢ B L, — TP - kPO - 1)
pAzz 24
+ b,
where
bp= op+ DAL g (L — TR k(TR — TR (3.5)
pAx ’
1-0)At n n n n n
+ La;)?"[k?l,t(ﬂmx - ") - k&, — TP, )
"""9 At n n n
+ (-0)Ac k8 (Tlinsmy = T1) = k2 /(T = TPyl

pAz?
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Here
key = k(@) + k(T14))72, kw, = (e(Ty) + k(T;-))/2,
by, = G@) + kTan )2, ks = (k(T) + k(Tynx )72,
ky, = @)+ kTinmy /2. and  kp; = (T + k(Typuny /2.

Pseudo-code for the SOR algorithm using this ordering is as follows.

while ( time <tquit ) do
forl =1tonx ‘ny ‘nz
compute b(?)
end
while (snorm > tolerance ) do
forl=1tonx -ny 'nz
compute kE,l . kw'[ . kN,l , ks,l . kU,l , and kL,l
compute z(l) and c¢(l)
compute SOR temperature, tnew
ifl =1
then snorm = | tnew — ¢ (1) |
else snorm = max { snorm., | thew —¢t (1) 1 }
set t (1) = tnew
end
endwhile
output data
time = time + At
endwhile

The vector length in this pseudo-code is nx -ny -nz. Thus, if all calculations could be
vectorized, one expects a Cray X-MP implementation based on this pseudo-code to run
faster than a Cray X-MP implementation based on the previous psuedo-code.

We now focus on vectorizing the calculations in the innermost loop. To insure that
vectorization is not inhibited, interdependencies among vector elements must be avoided
and calculations at interior and boundary nodes must be identical. Computing the Gauss-
Seidel iterate of T (i) requires the current iterate of 7'(i —nxny ), T(i —nx), and T (i —1).
This creates an interdependency among vector elements. The interdependency can be
eliminated by renumbering the nodes using a red/black ordering. In a red/black ordering,

odd numbered nodes are thought of as "red” and even numbered nodes as thought of as
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"black." We require an odd number of nodes per row and column. Thus all neighbors of
a given node are of the opposite color. Nodes of one color are updated and then nodes of
the opposite color are updated. This decreases the vector length by a factor of 2. In our
implementation, red nodes are updated first using black nodal values from the previous
time step. Black nodes are then updated using the new red nodal values. In effect, we
make two Jacobi-type updates to get one Gauss-Seidel iteration. For a more complete
description of red/black ordering and a discussion of its effects on convergence of Gauss-
Seidel iterations, see [3].

When the nodes are numbered with a natural or red/black ordering. boundary nodes
are scattered throughout the temperature and enthalpy vectors. Thus, arranging the
computation so that boundary and interior node calculations are identical is more difficult.
In our implementation, boundary values are stored in the vectors along with the nodal
values. Consider a three dimensional parallelepiped with the mesh described in Appendix
B. Boundary data is required along the faces of this box. "Boundary data nodes" are
placed along these faces to store the boundary data. Then the total number of nodes in x,
y.and z directions is (nx +2), (ny +2), and (nz +2), respectively. When unfolding the
three dimensional array, a boundary data node is numbered as any other node. Thus the
first and last (nx +2)-(ny +2) elements of the vector contain boundary data from the
top and bottom of the box. If Dirichlet boundary conditions are imposed, then the

temperature at a boundary data node is stored at the appropriate place in the temperature
vector. If Neumann boundary conditions are imposed, then -g*-t— flux is stored in the

appropriate location in the temperature vector. Here d* is either dx, dy, or dz depending
on at which face the flux is imposed. The user specifies the type of boundary condition

imposed on each face and the constant boundary values (cf section 2.1, records 12-17).
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Rewriting the nonlinear system gives some insight into the modifications required at
boundary nodes. Substituting the expressions for z and ¢ into equation (3.3) and

rearranging terms yields the following expression.

3.6)
et = ff;‘—z—tkg,,cffﬂ— 721 = KNPt = 1Y)
v AL e Gl ~ 12D — RGP — 7p3L)]
pAy
6A: — pP¥Ly . pptl(op+l _ op+l
+ pA22 [kg,l('rf«kmy Tf ) kf,l (Tf T[p—nxny)]
+ b7,
where
3.7
bt = ¢ + Q:e—)zé't‘[kf,z(Tz"ﬂ - ) — &, (IF — TP,))
pAx
-0
+ DR [ TPy — T = R TF = TP,
—0)A
+ %E)Tt'[kﬁ,z(rt'%my = TP — k2 (TP — TPpuny)l.
Here
ke = (k(T) + k(Ty4))2, kwo = k@) + k(T )2,
ky = @)+ k(Tp4n )2, ks = k(T + k(T0))/2,

kot = G+ kg ))/2, and k= &K@ + & (Tpopiny ))/2.

Suppose Dirichlet boundary conditions are imposed along the west wall. If node! isa
west boundary node, T (I —1) is the boundary temperature. Then the only modifications

required are that k§*}(r7 " — 7231) be replaced by 2 -k Hr Pt — 724D in (3.6) and
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k% T/ — TFy) be replaced by 2-kf (Tf ~ T7,) in (3.7) for all west boundary
nodes. See Appendix B for details. Similar modifications occur along other walls where
Dirichlet boundary conditions are imposed.

Now suppose Neumann boundary conditions are imposed along the west wall. If node
I is a west boundary node, T (I ~1) contains the imposed flux. This flux may be added to
bf* vefore the iteration begins. Also, the ky ; term must be eliminated from both (3.6)
and (3.7). Equivalently, we may replace k(77! — 724 by 0- kg P — 725D in
(3.6) and k% (Tf — Tfy) by 0-kf (I — T7-y) in (3.7) for all west boundary nodes.
Similar modifications occur along other walls where Neumann boundary conditions are
imposed. This motivates the creation of boundary mask vectors. -

Seven boundary mask vectors are created to distinguish between interior nodes, boun-
dary nodes, and boundary data nodes. The mask vector corresponding to the boundary
data nodes, nbdy is defined as follows.
nbdy ) = 1 if node.i is a boundary data node

Q  otherwise
The other six mask vectors correspond to the six faces of the parallelepiped. If Dirichlet
boundary conditions are applied on the east face. then the mask vector corresponding to

the east face, nxrt , is defined as follows.

: 2 if nodei is an east boundary node
nxrt(i)= | 0 if nodei is a boundary data node
1 otherwise

If Neumann boundary conditions are applied on the east face. then nxrt is modified as

follows.

0 if node i is an east boundary node
nxrt(i)= {0 if nodei isa boundary data node
1  otherwise
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The other mask vectors, nxlft, nyrt, nylft, nzrt, and nzlft, are similarly defined.

With the mask vectors so defined, computation of z, ¢, and b can be identical for
interior, boundary, and boundary data nodes. After each of the thermal conductivities,
kw,i. kg, ks 1. ky,1. ki, and ky ;. are computed as described in [3]. they are replaced
by nxift() -kw,;. nxrt(l) kg, nylft) ks, nyrt (1) -ky,. nzift(l) k;,;, and
nzrt (1) - ky ;. respectively. Prior to the iteration, some additional processing must be done
at boundary nodes where Neumann boundary conditions are imposed. The imposed flux,

which is stored in ' (I —1) is simply added to 5. Psuedo-code for this algorithm follows.

initialize variables
start (1) = nx 'ny + 1
start (2) = start (1) + 1
while (time <tquit ) do
forl=1tonx ‘ny ‘nz
compute b (1)
end
Add contributions from Neumann boundary conditions to b
while (snorm > tolerance ) do
fori =110 2
for I =start (i) to (nx+1) -(ny+1)-(nz+1) by 2
compute kEJ s kw_; ’ kN,l , ks't. kU,l , and kL,l
set kE,l = nxrt (I )'kE,l
set kW,l =nxift ¢/ )'kw,z
set kN,l = ayrt (l )‘kN,l
set kS,l = nylft(l )’ks’;
set kU,l = nzrt (l )'kU,l
set kL,l = nzlft (l)'kL,l
compute z(I) and c(1)
compute SOR temperature, tnew
ifi=1
then snorm = | tnew —¢ (1) |
else snorm = max{ snorm, | tnew —t (1) 1}
set t (1) = nbdy (I )tnew
end
end
endwhile
output data
time = time + At
endwhile

Computation of the thermal conductivities and tnew is described in detail in [3]. The i

loop controls the red/black ordering. The I loop is executed first for the red nodes and
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then for the black. As was previously mentioned, this eliminates vector dependencies.
However, the CFT compiler will still see a vector dependency in the [ loop. In our
FORTRAN implementation, the compiler directive CDIR IVDEP is issued preceding the {
loop. This instructs the compiler to ignore any apparent vector dependencies and allow
vector execution of the loop.

This version of the SOR algorithm requires more storage than the version using three
dimensional arrays. The additional storage enables us to create longer vectors and
vectorize all calculations. Thus, we feel the small increase in storage is justified.

Performance results of this algorithm are presented and discussed in [2].






(1]
2]
(3]
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Appendix A. Enthalpy Formulation
The enthalpy formulation of a Stefan problem consists of a parabolic partial
differential equation and an auxiliary relationship. The partial differential equation relates
changes in enthalpy to temperature gradients. The auxiliary relationship expresses
entbalpy as a function of temperature. The enthalpy formulation we consider is expressed
as follows. Determine a temperature distribution T'(x £) and an enthalpy distribution

e (x .t) that satisfy

pe = div(k(T)grad T). (A1)
where
r
frﬂc(r)d-r T<T,,
e= {[0,H] Tr'=T,, (A2)

r
Jredr+m  T>7..

Here ¢ is the enthalpy, T is the temperature, kK (T') is the thermal conductivity, ¢ (') is
the heat capacity. p is the constant density, and H is the latent heat. x is a vector
denoting position in the 'spatial domain. Note that enthalpy is multi-valued when
T=T,.

If the heat capacities are constant in the solid and liquid. the enthalpy/temperature

relation (A.2) reduces to

e=1{[0,H] T=T7T,, (A.3)
g (T ~T)+H T >71 .

Here cg:; and cy;, are the specific heats of the solid and liquid respectively. See Figure 1.

In this case, the relation can also be expressed as



Enthalpy/Temperature Relationship

C

cr

Figure 1. Enthalpy/Temperature Relationship

..VZ..
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Ta'+e/cSal eéO.
T= {T, 0<e<Hd, (A.4)
T, + (e—=H)/ ez e 2 H,

where temperature is a single-valued function of enthalpy.

The partial differential equation (A.1) is derived from the First Law of
Thermodynamics (conservation of energy) and Fourier's Law. Let ¢ denote the heat flux.

Then these relationships can be expressed as follows:

pe; = —div(g), (Conservation of Energy)

g=~k(T)gradT. ' (Fourier's Law)

It is useful to think of the partial differential equation in this way when formulating the

numerical problem.

The spatial domain we consider is a rectangular parallelepiped. Thus we assume a
Cartesian coordinate system. Let ¢;,¢2.and ¢3 denote the x,y, and z components of ¢,
respectively. Then the conservation of energy law, Fourier’s Law, and the partial

differential equation (A.1) can be expressed in Cartesian coordinates as follows:

pe, =— [(41)x + (g2), + (g3); ] (A.5)
¢ = [ql.qz-qslr = —k(T) [Tx T, .T, ]’. (A6)
pe. = k(TIT) + (T)T,), + (T)T,), . (A.7)

In Appendix B we discuss an implicit finite difference approximation to these equations.
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Appendix B. Numerical Formulation
In this section, we discuss a numerical formulation of the mathematical problem. We
first describe how the spatial domain is partitioned. Then we describe an implicit finite
difference approximation of the governing partial differential equation. Finally, we present

the mildly nonlinear system of equations resulting from the implicit approximation.

B.1 Discretization of the Spatial Domain

We partition the rectangular parallelepiped [0,lx]x [O ly1x[0,1z] as follows. Given
positive integers nx, ny,and nz, weset Ax =lIx/nx, Ay = ly/ny.and Az = [z/nz. (We
require that nx and ny be odd for reasons to be explained later in this section.) Let
x;=jAx for j=0,1. 2,....,nx,y;, = j Ay for j = 0.1.2...v..ny. and z; = j Az for
j=0,1,2,...,nz. We partition the intervals [0,Ix], [0,Iy], and [0,1z] as follows.
Denote by I; the interval (x;_1.x;) for j = 1.2,....nx, by J; the interval (y;_,.y,) for
j=1,2,...,ny.and by K, the interval (z;_.z;) for j = 1.2,....nz. TheI,J,and X
intervals are the intervals for which the model provides approximations for average
enthalpy and temperature values. Denote by Z; the interval (x; — Ax/2, x; + Ax/2) for
l1=12,..,nx~—1 by M the interval (y; — Ay /2, y, + Ay/2) for I = 1,2,... ny — 1,
and by P the interval (z; —~ Az/2. 7z, + Az/2) for 1 = 1,2,..., nz — 1. Denote by L, the
interval (0, Ax/2) and by L,. the interval (Ix — Ax /2. Ix). Similarly, denote by M, the
interval (0,Ay/2), by M,, the interval (ly — Ay /2, ly), by P, the interval (0, Az /2),
and by £, tﬁe interval (Iz — Az/2, Iz). The L, M, and P intervals are intervals for
which the model requires approximate values of the thermal conductivities. Figure 2

shows how the 7 and L intervals interleave.

. Il . 12 - 13 x I4 * 15 * IG * I‘, * 18 L ]
-[I1 * Lz » LB’ * L4 *® Ls » L6 * L7 £ La

Figure 2. Interleaved Intervals I; and L; for j=0,1, -
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The domain [0,lx] % [0.2y]1X% [0,1z] is partitioned by I; XJ; X K; fori = 1,2,....nx,
j=12,....ny and k =1,2,...,nz. Nodes are located in the centers of the three
dimensional cells defined by I; XJ; XK, for i=1,2,...,nx, j=12....,ny, and
k=1,2,...,nz. For example consider a 5 X5 X3 grid. All cross sections parallel to the
xy -, xz-, or yz -planes through (i +%) Az or i +¥%) Ay or i +%) Ax fori =0,1,..., 4
are as depicted in Figure 3.

Node ijk is an interior node if ieps{2.3.....nx—~1},
jeps{2,3.....,ny—1}, and keps{2.3. .. ..nz~1}. Otherwise, node ijk is a boundary

node.

@ ® L] ® L ]
® ® L4 ® e
® ® ® ® L}
[ ® L ] L] ®
® ® ® ® ®

Figure 3. Cross Section of a 5 X35 X5 grid.
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B.2 Finite Difference Approximation to the Partial Differential Equation

We discretize the partial differential equation (A.7) by first discretizing the
conservation of energy relation (A.5). The time derivative and the spatial derivatives are
replaced by standard forward difference quotients. The following is a discrete analog of
(A.5).

+6
0 el — el - gl —arB + g2 %s — aP s + @i — gl (B.1)
At Ax Ay Az ’ .

Here 0 € [0,1] and
F*¥ = (1—-9)F" + 9F~*,

gi—w, ¢ denotes the heat flux into the cell J; XJ; XK, in the x-direction and g;,y J
denotes the heat flux out of the cell I; XJ; XKX; in the x-direction. Similarly,
gi j—wx and g; ;4w denote the flux in and out of the (ijk )th cell in the y -direction and
gij x-% and ¢;; z 414 denote the flux in and out of the (ijk )th cell in the z-direction. We
may think of the (ijk )th equation (B.1) as representing an energy balance associated with
the (i jk Jth node. Thus we may speak of an equation "at a node."

All nodes, including boundary nodes, are centered in a cell with dimensions
Ax XAy XAz. Thus equation (B.1) holds at both interior and boundary nodes.

We next discretize Fourier's Law using centered difference quotients as follows:

‘Ti-l, e — Ty

Gi-ngr =Kioywz . i i
‘Tuc ~TisLt

Givn e K i ! Ax'+ 1.

ETy) + k(Tipq50)
Eivnge = 2 )

We take ki:_'-_%.}l: to be
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Similar expressions hold for g; j—wz . i) 4%k » 9ij £ -4 80d Gij 4 4%

Some of these expressions for flux are not defined at boundary nodes. At west
boundary nodes, nodes with i = 1, g, 5 is not defined in this way since T o;t is not
defined. Similar statements apply at other boundary nodes. Expressions for flux at
boundary nodes will be discussed below. Substituting these expressions for flux into
(B.1), expanding and rearranging terms gives the following discrete equation at each

interior node.

n 9At ™
gjkﬂ = [k:+%,jk(Ti"+'§bk - Ti’}:l)"‘ k:—%ﬂc( ¢ - ~11k)] (8.2)
9At n '
+ [kiflvz.k(Ti"f«l}l,t - uk l)" kij—vx,k(qu - Txnj+-11,k)]
+ Az [krdl, (TRtL. — 7MY gn+l @t — T34
A T o2 Wijk+naN i) kel ijk l],k"% j,k -1
+ B0
where
n n (1_9 At n n n n n
by = el + "";A—;)'r el e (Terge — THe) — kP (The — TPy )] (B.3)
(1 O)At n n
o+ W 2y oux TPy s1p = The) — kD5 up (Thy — TPy
1—0)A¢ n n n
+ ‘(“;A"z)-z"‘[kukm(f'wnl = THe) = kfj p—sp(THe — TH x-1)].

At boundary nodes. equivalent fluxes must be calculated from the boundary conditions. If
the incoming flux is specified on the west wall, ¢ = g4s,(0,y.2,t), then
gl sk = qeay (0.(j—%)Ay . (k—%)Az ,n At ). Flux boundary conditions on other walls
are treated similarly.

If temperature is specified on the west wall, T = Tp,,(0,y.2,¢), then we approximate

giw i as follows:
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. e+ k@ s, -,
Qi—%,jk l ) l AX.’/ 2 .

Here T'G;, denotes the boundary temperature, 7'3;; = Tsy, (0,(j —%)Ay . (k—1)Az .n Az ).
(Ax/ 2) appears in the denominator instead of Ax because the distance between the boun-
dary and the boundary node is (Ax/ 2). Temperature boundary conditions on other walls

are treated similarly.

Equation (B.2) may be rewritten in a different form. For compactness, define

£u+1 f OAt
- pAx?

9At

5 (RS + k23D

——5 e + E020)

0Ar
* PAAz el 5w + EEE) .

and

ntl e 1n 0Ar
(il = 065 + DAx? (el TR + EP3L, TRAL)

fAr n
+ by = (kP hn TR + PN TP L)

eAt
= (ke Fw TH M + KDY TO3L)).

Then, equation (B.2) can be written as
eift + &5t Thet = {hdt.

Again, appropriate modifications must be made to £ and { at boundary nodes.
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Appendix C. Successive Overrelaxation Algorithm
C. M. Elliott and J. R. Ockendon {1] suggest using successive overrelaxation (SOR) to

solve simultaneously for T7;'? and efji!. Let 7{u denote the pth ijterate of 773! and for

compactness, define

eAt
zf = bl + 5 Py TP + &P3L, TP
QAL
+ (k? TP + EPJfL,, TPt
pAy? iitex Tii+v1x J-%x Piti)
0A:
t 5 (R psw Than + k5% 7530
plAz
and
0Ar 9Ae
Ct}:lk = 2 (kz-b%,jk + kxp-jl;kl,]k) + el (’C, FE:'Y - + k ~1/z,k)
pAx pAy
+ 0AL

oAz (Bfpam + A5

Note that for a given node. temperature and thermal conductivity values are lagged one
iteration at advanced points, but not at previous points. This constitutes a Gauss-Seidel
iteration. Our iterative form of the equation to be solved is

ehit + cfy T’ = zf, (c.1)
Starting with an initial approximation to T3¢, vJ,. a candidate temperature, 7 He is com-

puted for successive p s from

St Tor + 2 if 25y — P T €0,
iy +
Th = T if 0<z2fe~ e Tow < H, (c2)
Cig T + 2B
el + o if 28 — e T, 2 H .

This assignment will be explained below.
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Another candidate temperature, 7 , is calcvlated using SOR from
T = h + 0 (T B~ 1R, (C.3)
where w € [1, 2) is the relaxation parameter. A discussion of the optimal choice for @ can
be found in [1].
The SOR temperature, 7 i1, is chosen if 7/}i* and 7/}, both lie on the same side of 7., ;

the Gauss-Seidel temperature, T i, is chosen otherwise. Precisely stated

o, if G — T)GER - T,.) SO,
ThY, if G — T)@E RS — T) > 0.

This choice avoids oscillation about 7,.. Once the iteration has converged to a sufficient
tolerance, after p = R iterations say, 178 — 7871 || islessthan € and we set
T = 5, and calculate ef};? using

el = 2t — of TR (c.4)

To explain the assignment of 7/} in (C.2), we first define f (s) = zf, — cf s and

note from (C.1) that f (7§#1) will be the (p +1)th approximation to the enthalpy. It is
easy to show that if f(7,) <O, then f(rff) S0 if 0< f(T,) < H, then
0< f(r3fY) < H andif f (T,) 2 H.then f (77#') 2 H. Consider the first branch of
(C.2). Since f (T) € 0, we bave f (#1) € 0 and the enthalpy/temperature relation-
ship is

efil = co (T B — T ).

Solving this and (C.1) for 7 2! yields

7 pH = Cool Ter + Zl
L che + o

The assignments of the second and third branches in (C.2) can be justified similarly.
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