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RESPONSE OF OXIDE SCALES TO ENERGETIC PARTICLE TMPACT: INITIAL RESULTS
AND EVALUATION OF EXPERIMENTAL TECHNIQUE"

P. F. Tortorelli and J. R. Keiser

ABSTRACT

The mechanical response of preformed oxide scales to ener-
getic particle bombardment is being studied in a modified scanning
electron microscope. 1Initial results showed that cracking can
occur from single-particle impacts and that local deformation of
the scale is sensitive to the presence of and the method used for
producing the oxide and to the composition of the target alloy.
Preliminary experiments with Fe—20Cr—25Ni—0.7Nb and Fe~20Cr—25Ni-
0.7Nb + 0.13Ce steels revealed no effect of the reactive element
addition on the cracking propensity of the oxide scale. However,
the accommodation of the scale and underlying metal to the strain
caused by impact varied for different concentrations of yttrium
in Ni—20Cr—12A1. Thin oxide scales on Ni—20Cr—12A1-0.1Y were
observed to deform compliantly around the edges of the craters
formed on impact. Data for the Ni—20Cr—12A1-Y alloys suggested
that the ytirium can impart increased resistance to scale defor-
mation under certain conditions. The current technique for evalu-
ating the impact response of oxide scales therefore appears to
offer promise as a way to characterize oxide scales and to gain
information about the validity of certain wmechanisms that deal
with the role of reactive element or dispersoid additions in im-
proving scale adherence. The potential of the technique can be
better evaluated when additional characterization procedures, in-
cluding in situ observations of crack growth and healing, are
included.

1. INTRODUCTION

Protection of metals and metallic alloys from degradation by high-
temperature corrosion normally requires a compact, compliant, adherent
surface layer that is either inert to, or slowly reactive with, the
environment. This surface layer can be a coating or a corrosion product
(normally an oxide) that forms upon initial exposure. (In most practical
high-temperature applications, this layer is either alumina or chromia.)

Because of their importance in protecting the underlying metal from

*Research sponsored by the AR&TD Fossil Energy Materials Program, U.S.
Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc.



attack, much research and development have been conducted on the growth,
stability, and adherence of such oxide scales.

Under aggressive corrosion conditions and/or due to the influence of
thermal cycling or erosion, many oxide scales fail to provide protection
because of cracking and spallation. However, it is now well established
that relatively small concentrations of rare-earth (and other) oxide dis-
persoids or reactive elements in certain alloys can promote the formation
of more adherent oxide scales (see the reviews of dispersoid/reactive ele-
ment effects in refs. 1—-4). Examples of such additions include yttrium in
alumina- and chromia-formers®~!? and ThO,, Y,0,, Ce0,, and Al,0; in Ni-

20 wt % Cr.'%s!% While there is no doubt that these reactive element/
dispersoid (RE) additions generally improve scale adherence, there is con-
siderable debate regarding the mechanism(s) by which such an effect occurs.

Proposed mechanisms®-%»'2,13

include oxide pegging, vacancy annihilation,
modified growth processes that decrease stresses in the scale, enhanced
scale plasticity, and improved chemical bonding in the presence of REs
through their influence on bond strengthening and/or on gettering of indige-
nous impurities that otherwise weaken the adherence of the oxide scale to
the underlying metall

This report describes the first observations of what happens to pre-
formed oxide scales when they are subjected to microscopic impacts. The
purposes of such experiments are to better understand how scales accom-
modate strain in terms of cracking and deformation and to determine what
effect RE additions may have on this response. The information can then be
used to judge the applicability of proposed mechanisms of scale adherence
that deal with enhanced scale plasticity or toughening due to the presence
of reactive elements or rare-earth dispersoids. Preliminary data for thin
scales on prototypic chromia- and alumina-formers are presented, and an
initial evaluation of the Impact Response of Oxide Scales (IR0OXS) technique

is made.
2. EXPERIMENTAL PROCEDURES

The IROXS technique inveolves the use of a unique experimental system

that was designed principally for studies of erosion and corrosion-

16

erosion. The instrument consists of a modified scanning electron micro-

scope (SEM) that incorporates a particle gun, hot stage, and preheated gas



delivery system into its specimen chamber. The gun fires tungsten carbide
spheres (0.34-mm diam) at a target that can be heated to 1100°C. The SEM
and other components of the experimental system have been described in
detail elsewhere.!®

The study of the response of oxide scales to energetic particle bom-
bardment employs the above-described system to impact preformed oxide scales
on a microscepic level and then to characterize the impact response in
terms of (1) the propensity for deformation and cracking, (2) crack growth,
and (3) the tendency for cracks to heal. At this stage, the results con-
sist of only observations of deformation and cracking propensity. Further-
more, while impacts can be made at different incident angles and at any
temperature up to 1100°C, experiments have thus far been conducted at nor-
mal particle incidence and ambient (22—25°C) temperature.

The initial experiments were performed with alloys of two different
compositions that allowed examination of both chromia- and alumina-forming
materials. The chromia-forwing alloy is an Fe—20Cr—25Ni—0.7Nb (wt %) steel
(denoted below as 20/25/Nb steel) with and without 0.13 wt% Ce additions
and was obtained from Harwell Laboratory, United Kingdom. The other alloy
is wrought Ni—20Cr—12A1 (wt %) containing 0.05-3Y and was provided by
United Technologies Research Center, East Hartford, Connecticut. The two-
phase Ni—20Cr—12A1 consists of BNiAl and 7Ni solid solution.!? Both alloy
types were preoxidized in air for 30 min at 930°C before they were inserted
into the microscope chamber for subsequent impact. This oxidizing treat-
ment does not result in fully mature scales, particularly in the case of
the Ni—20Cr—12A1 alloys, where only very thin oxide scales were selectively
formed (see Fig. 1). Nevertheless, as shown below, the presence of such

scales affected impact response under certain conditions.

3. RESULTS

3.1 Fe—20Cr—25Ni—0.7Nb STEEL

Two specimens each of 20/25/Nb steel and 20/25/Nb + 0.13Ce were
examined in the SEM. In all four cases, regular circular impact craters
were observed. Examples of such craters are shown in Fig. 2. The results
are summarized in Table 1, in terms of crater diameter and visual evidence
of cracks. Most cracking was circumferential, although some radial cracks

were also present (see Fig. 3). The results on cracking do not strongly
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Fig. 1. Polished cross sections of Ni—20Cr—
12A1 alloys oxidized in air at 930°C for 30 min.
(a) 0.05Y. (b) 0.1Y. (c) 0.5Y. (d) 3Y.



JK611
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Fig. 2. (a) Oxidized Fe—20Cr—25Ni—0.7Nb
steel impacted at 44 m/s. (b) Oxidized Fe—
20Cr—25Ni—0.7Nb + 0.13Ce steel impacted at
37 m/s.



Table 1. Diameters of craters formed on oxidized 20/25/Nb steel
by particle impact and observations of cracking

Material Particle velocity Crater diameter Observed

(m/s) (mm) cracks

20/25/Nb 27 0.17 Yes

20/25/Nb 44 0.15 No

20/25/Nb 61 0.23 Yes

20/25/Nb + 0.13Ce 25 0.10 No

20/25/Nb + 0.13Ce 37 0.16 No

JK620

10 um

Fig. 3. Oxidized Fe—20Cr—25Ni—0.7Nb steel
impacted at 27 mm/s.



indicate that the presence of cerium prevented cracking of the oxide scale,
particularly in view of other observations for higher (but unknown) impact
velocities that revealed cracking of the scale formed on a 20/25/Nb + 0.13Ce

steel.

3.2 NiCrAlY

The Ni—-20Cr—12A1 alloys fora a compact alumina scale when they are
oxidized above 1000°C. However, for this scale to provide protection, it
must retain its adherence to the underlying metal as it thickens and under
thermal cycling. However, such adherence is lacking in this alloy system
unless yttrium (or another selected element or dispersoid) is present.
Initial impact experiments with this alloy system used specimens that were
oxidized for short times at 930°C. Observations of the response of these
thin oxide scales to energetic particle impact were then made as a func-
tion of yttrium content. Representative SEM photographs of craters caused
by such impacts are shown in Fig. 4. (Note that the surfaces were only
partially oxidized as a result of the low-temperature, short-time oxidizing
treatment.) The most striking observation was that most of the craters had
irregular peripheral outlines despite impact by a spherical particle. In-
deed, the only circular craters were those formed on the two specimens with
0.1Y; those on oxidized Ni—20Cr—12A1 containing either less (0.05%) or more
(0.5, 1, or 3%) yttrium had irregular boundaries.

More detailed examination of the two specimens containing 0.1Y re-
vealed differences between them. In one case, the impact seemed to break
through the oxide and damage the underlying metal (Fig. 5). On the other
0.1Y specimen, the craters were shallower and the oxide film deformed over
the edges of the craters without cracking or detachment from the underlying
metal (Fig. 6). On the latter specimen, the type of deformation was simi-
lar for both craters despite quite different measured impact velocities
[29 m/s for that shown in Fig. 6(a) and 76 m/s for that in Fig. 6(b)]. The
crater diameter was larger for the specimen formed at higher particle

velocity.
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Fig. 4.
alloys. (a)
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33 m/s. (e)
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Oxidized Ni—20Cr—12AlY
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wt % Y, impacted at
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100 um

Fig. 5. Oxidized Ni—20Cr—12A1-0.1Y impacted
at 30 m/s.

4. DISCUSSION

4.1 SIGNIFICANCE OF RESULTS

Because of the early stage of this investigation and the limited num-
ber of specimens examined, only prelimimary conclusions can be drawn.
However, the above results reveal some rather interesting and potentially
important information about the subject oxide scales. The impact response
of the chromia scale formed on the 20/25/Nb steels differs considerably
from that of most of the mixed oxide scales formed on the NiCrAlY alloys.
This finding is significant because it shows that the impact response is
sensitive to the type of oxide scale present on the alloy. Another impor-
tant result of these preliminary experiments is the demonstration that the

amount of yttrium in the NiCrAlY alloys has an effect on the response of

these materials to impact. Specifically, it appears that the presence of an

optimal yttrium concentration imparts a plasticity to the scale that does
not occur in the absence of this element® or when it is more highly
concentrated to the point where resistance to deformation is possibly

increased.!?®



10

JK640

JK642

50 um
RSt | s i e

Fig. 6. Oxidized Ni—20Cr—12A1-0.1Y. (a) Im-
pacted at 29 m/s. (b) Impacted at 76 m/s.
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The irregular crater outlines observed for the higher yttrium concentrations
may be indicative of the higher deformation resistance of the selectively
formed oxide grains, which yield less than the remainder of the surface
material. However, such a conclusion about the influence of an RE as a
function of its concentration must be confirmed by additional data on both
unoxidized and oxidized materials. It is interesting to note that the
irregular crater boundaries have never been observed previously for similar

impacts on unoxidized metals and alloys!®>!9°2°

and that, in the current
experiments, impacts on unoxidized Ni—20Cr—12Al1 containing 0.5Y and 3Y
resulted in circular craters (see Fig. 7). The presence of the thin scales
on these alloys significantly affected the impact response.

The observed deformation of the oxide scale on the two NiCrAl-0.1Y
specimens (Fig. 6) is also significant: the ability of such a scale to
deform in conformance with the underlying metal attests to a fundamental
plasticity not often associated with oxides. However, this ductility may
be partly associated with the thinness of the oxide, and the practical
importance of this phenomenon awaits data on the response of thicker and
more compact alumina scales that form upon oxidation for longer periods or

at temperatures above 1000°C.

M27021 M27019

100 um

Fig. 7. Impact craters formed on unoxidized Ni—20Cr—12A1. (a) 0.5Y.
(b) 3Y.
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The data for the 20/25/Nb specimens do not indicate that the presence
of a reactive element addition definitely affects the ability of a pre-
formed oxide scale to resist cracking. Therefore, it does not appear that,
at least in this case, the reactive element addition "toughens” the oxide
scale in the sense of substantially reducing the nucleation of or propen-
ity for cracking. However, there may be other effects induced by this RE,
specifically those associated with resistance to further crack growth or
enhanced healing of cracks, that may be revealed in the next phase of this
project (see below).

An important aspect of the comparison of the impact response of scales

"reactive" element additions is the ne-

formed on alloys with and without
cessity of evaluating "equivalent” scales.* Because of the dramatic ef-
fects of RE additions on scale growth kinetics and microstructure, the
scale resulting from a given oxidation treatment for alloys with RE will be
different from those without RE. Exawmples of this difference were found in
the current study, where the amount of retained alumina tended to vary
among the different compositions of the NiCrAlY. Similarly, differences in
scale morphology (as seen from the micrographs im Fig. 2) and thickness can
be found between 20/25/Nb and 20/25/Nb + 0.13Ce steels oxidized under the

same conditions.!!

Therefore, it is important to discuss the response of
oxide scales to energetic impact in terms of both direct and indirect ef-
fects of REs and to use, when possible, specimens with preformed scales of

equivalent thickness by variation of the oxidizing treatment.

4.2 EVALUATION OF TECHNIQUE

The experimental data served to demonstrate a principal required con-
dition for the IROXS technique: that "microscopic” cracking of oxide
scales can be induced by the use of high-velocity spherical particles.
More importantly, our preliminary findings showed that even relatively unso-
phisticated examination of the impact respouse of preformed oxide scales
reveals some sensitivity to the presence of scales and to compositional

differences. The IROXS technique thus has potential for furthering our

*Personal communication from M. J. Bennett, Harwell Laboratory,
Oxfordshire, United Kingdom, to P. F. Tortorelli, Oak Ridge National
Laboratory, 0Oak Ridge, Tennessee, July 1987.
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understanding of the influence of certain RE additions on scale charac-
teristics. The preliminary data will be of more value when combined with
those from the additional (and more difficult) characterizations to be in-
cluded in the impact response experiments that will be conducted in the
next phase of this study. These will include in situ observations of
crack growth (and perhaps spallation) during rapid cooling in the SEM and
of crack healing while an impacted specimen is held at temperature. When
systematically made as a function of RE additions to chromia- and alumina-
formers, these observations can contribute to the development of appropriate
mechanisms of scale adherence in systems of importance to high-temperature
applications. As such, even negative results, that is, no effects of addi-
tions on cracking or deformation of impacted scales, can be of value in
judging the merits of particular models.

The attractiveness of the IROXS technique is that it is, in principle,
relatively simple and straightforward (apart from the equivalent scale
complication discussed above) and yields results that relate directly to
the accommodation of strain by oxide scales. However, the technique's
advantages and uniqueness of approach have to be considered in light of the
atypical source of stress (particle impact) and the various experimental
problems, which include the quantification of cracking propensity, the dif-
ficulty of locating and imaging craters (particularly irregular ones), and
the apparent lack of correlation of crater size with measurements of par-
ticle velocity. This latter problem, however, may be related.to the
measurement difficulties associated with small projectiles moving at high

speeds!®

and may not be indicative of an inconsistent material response to
impact. Despite these drawbacks, the use of microscopic impact response
seems to hold promise as a new and different way of acquiring information
on the characteristics of oxide scales and of gaining insight into the

mechanisms by which they remain adherent to the underlying metal.
5. FUTURE WORK
The next series of experiments using the IROXS technique will involve

impacts made as a function of temperature on specimens that have well-

characterized and more fully developed oxide scales. This plan not only
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follows from natural experimental progression, but is also intended to
address the important "equivalent scale” considerations discussed above.
Furthermore, the full potential of the technique will be explored by eval-
vation of two other methods of characterization of the cracks that may form
upon impact. One method is the observation of crack growth in the SEM
during cooling of the specimen from impact temperature (if a sufficiently
large AT can be induced) to investigate whether RE additions affect this
stage of cracking. The second method involves conducting experiments on
cracked scales in which the specimen is held at elevated temperature in the
SEM after impact; any tendency for crack healing is monitored in situ in
the presence or absence of an oxidizing species. Such observations can
directly test a model in which RE additions exert a positive influence on
scale adherence by promoting the healing of cracks created by growth
stresses. Indeed, it is known that crack healing can occur below a criti-
cal strain rate?! and it is interesting to speculate on whether REs can

enhance this process and thus reduce corrosion and improve scale adherence.

6. SUMMARY

Initial results from the study of the response of preformed oxide
scales to energetic single-particle bombardment showed that cracking can
be induced by such impacts in a modified SEM and that the local deformation
was sensitive to the presence of the scale and the composition of the oxi-
dized target alloy. Prelininary experiments with Fe—20Cr—25Ni—0.7Nb and
Fe—~20Cr—25Ni—0.7Nb + 0.13Ce steels revealed no tendency for the reactive
element addition to modify the cracking propensity of the oxide scale. The
accommodation of the oxide scale to the strain caused by impact varied for
different concentrations of yttrium in Ni—20Cr—12Al1. Thin oxide scales on
Ni~-20Cr—12A1-0.1Y were observed to compliantly deform around the edges of
the craters forwmed on impact. Data for the Ni—20Cr—12A1-Y alloys suggest
that the yttrium can impart increased resistance to scale deformation under
certain conditions.

The IROXS technique appears to offer promise as a way to characterize
oxide scales and to gain insight into the validity of certain mechanisms

that deal with the role of reactive element or dispersoid additions in
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improving scale adherence. Its full potential can be evaluated when addi-
tional characterization procedures, including in situ observations of crack
growth and healing, are examined. When used with data on crack healing
tendencies, the IROXS technique offers a direct test of a model in which
reactive elements or dispersoid additions to the metallic alloy promote
healing of cracks in the scales and lead to better scale adherence and

reduced corrosion.
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