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CONSENSUS FOR BELIEF FUNCTIONS AND

RELATED UNCERTAINTY MEASURES

Car]l G. Wagner

ABSTRACT

We extend previous work of Lehrer and Wagner, and of McConway, on the consensus of
probabilities, showing under axioms similar to theirs that (1) a belief function consensus
of belief functions on a set with at least three members and (2) a belief function consensus
of Bayesian belief functions on a set with at least four members must take the form of a

weighted arithmetic mean.

KEY WORDS AND PHRASES : Belief function, basic probability assignment, Bayesian belief
function, consensus, Cauchy’s equation, Dempster-Shafer theory, uncertainty measure.



1. INTRODUCTION.

A belief function on a set © = {8, ...6x} is a mapping b : 2° — [0,1] such that 5(f) =
0,5@) = 1, and for all positive integers r and every collection A, ..., A, of subsets of O,
(1.1) WA U--U4,) 2 Y (=t 4.

1(;{11;&64} iel
The theory of belief functions was introduced by Shafer (1976) in A Mathematical Theory of
Evidence and provides, among other things, an abstract formulation of lower probabilities,
studied earlier by Dempster (1967). Every probability measure on the algebra 22 is clearly
a belief function, and we follow Shafer in calling such probability measures Bayesian belief
functions.

Closely related to belief functions are mappings m : 2 — [0, 1], called basic probability
assignments (BPAs), defined by the properties m(@) = 0 and Y, m(A) = 1. Every
BPA m on © induces a belief function (™ on © by i
(1.2) BM(4) = Y m(H), VAC®O,

HCA

and every belief function b on © induces a BPA m(®) on © by
(1.3) m®(4) = S (-1 HIyH), vACHe,

HCA
with m®™) = m and 5" = p (Shafer, 1976, pp. 38-40). To show that a mapping
b:2° — [0,1] is a belief function one may thus avoid checking (1.1), either by exhibiti:
a BPA m such that (™ == b, or by checking that @) = 0,5(©) = 1 and the quantitics
m(®)(A) defined by (1. 3) are nonnegative for all A C ©. Bayesian belief functions are pre-
cisely those belief functions whose associated BPAs are positive only on singleton subsets
of © (Shafer 1976, p. 45).

Denote by B(0), P(©), and M(0©), respectively, the set of all belief functions, Bayesian
belief functions, and BPAs on ©. We shall refer to elements of B(©),P(©), and .M(O)
generically as uncertainty measures. For n > 2, n-tuples B = (b;...,b,)eB"(0),
P =(p1,...,pn)eP™O), and M = (my,...,m,)e M"(0O) are called n-profiles and may
be regarded as registering the individual opinions of n experts as to “where the truth
lies” in @, cast in terms of the relevant uncertainty measure. In this note we consider
the problem of aggregating such opinions into a single consensual measure, subject to two
simple axiomatic restrictions. With the exception of a few cases where © has small car-
dinality, these axioms are shown to imply aggregation by weighted arithmetic averaging,
thus extending previous results of Lehrer and Wagner (1981) and McConway (1981) on

the consensus of probabilities.



2. CONSENSUS FUNCTIONS.

Informally, a consensus function is simply a method of deriving from each profile of uncer-
tainty measures of some fixed type a consensual uncertainty measure of some fixed type.
We shall be interested in four types of consensus functions, corresponding to the (pro-
file type, consensus type) pairs (P™(0), P(0)), (M™(0O), M(9)), (B™(©), B(O)), and
(P™(©)), B(©)). For economy of exposition, the following discussion employs generic
n-profiles U = (u;...,u,)eU™(O), where (U,U,u)e {(P, P, p),(M,M,m),(B, B,b)} and
generic (profile type, consensus type) pairs (U™(0),U*(O)), where (U, U*)c A =
{(P,P),(M, M),(B,B),(P,B)}.

Definition: . A consensus function is a mapping C : U™(OQ) — U*(O) , for fixed n > 2
and fixed (U, U*)e A.

Since, for every n-profile U,C(U) is either a belief function, a Bayesian belief func-
tion, or a BPA on 0, and since all these uncertainty measures assign § the measure
zero, it is a consequence of the above definition that C(U)®) = 0. Similarly, when
U e {B,P}, C(U)O) =1. We wish to study consensus functions which, for each subset
A € © whose measure is not thus predetermined, assigns to 4 a consensual uncertainty
measure which depends only on the measures assigned to 4 by the n experts. Such re-
strictions on aggregation are comimon in consensus studies and have been variously termed
independence, invariance, irrelevance of alternatives, and weak setwise functionality. For

our purposes the relevant axiomatic restriction is formalized as follows:

(I). Forall Ac2® —{9,0}), andif U =U* =M, for A=0
as well, there exists a function Fjy : [0,1]™ — [0,1] such

that for all Us U™(©), C(U)(A) = Fa(uy(4),...,un(A)).

In addition, we shall be interested in the consequences of adopting one or more of an

infinite number of possible “unanimity preservation” axioms, (1I{c)), where c¢ [0, 1], given
by
(II(c)). Forall AC O and for all UeU™(O), if U(A) = (c,...,0),
then C(U)(A) = c.

Our first theorem recapitulates results implicit in Lehrer and Wagner (1981) and Me-
Conway (1981).

Theorem 2.1. If U =U* =P and |Q| > 3, or if U =U* = M and |O] > 2, a consen-
sus function C : U™ (©) — U*(O) satisfies axioms (I) and (11(0)) iff there exists a sequence



of weights w,...,w,, nonnegative and summing to one, such that for all A C © and for

allUeU™(O), C(UYNA) =wiuy(A) + -+ + waun(4).

We omit the minor details required to modify the aforementioned results to yield this
theorem, except to note that the lower threshold |©| = 2 for BPAs obtains because a

consensus function in this case is an “allocation aggregation method” (Lehrer and Wagner
1981, Theorem 6.4) for the three “decision variables” m({6:}), m({62}), and m({6;,6)}.

and Wagner (1981).
3. CONSENSUS IN THE FORM OF A BELIEF FUNCTION.

We now examine consensus functions C' : U™(Q) — U*(O) constrained by axioms
(I, (1I(1)), and (II(1/2)), where (U,U*)e {(B,B),(P,B)}. In what follows
X = (z1,...,2n)andY = (yi1,...,yn) denote elements of [0, 1]*, ¢ denotes the n-dimensional
vector (c, ..., c), and all inequalities between vectors are to be understood coordinatewise.
We observe first that if |©| > 3, (I) and (II(1)) imply that the functions F)y posited by

(I) must be identical.

Theorem 3.1. If (U,U*)e{(B,B), (P,B)}, |©] > 3, and C : U*(O) — U*(O) satisfies
axioms (I) and (II(1)), then for all H and Ke2® — {§,0},Fy = Fy, and C satisfies
(11(0)).

PRroo¥r: Suppose first that H is a proper subset of K. For every X €[0,1]", there is obvi-
ously a profile P = (p;...,pn)e P*(©) C B*(O) such that P(H) = (p1(H),...,pa(H) =
X,P(K—-H)=0,and P(K)=1-X. Let A4; = H and A, = K — H. Since C(P)eB(0),
(1.1) and axiom (1) yield

(3.1) C(P)(A1 U Ay) = Fy(X) > Fy(X) + Fr-n(0) — C(P)(9)
= Fy(X) + Fg-n(0) = Fy(X).

Next let A; = HUK and A; = K. In this case (1.1) and axiom (I) yields
C(P)(A1 U Ag) = C(P)((“)) =12 FHU}{;(l) + FK(X) - FH(X),

which, with axiom (I1(1)), yields

(3.2) Fp(X) > Fg(X).

It follows from (3.1) and (3.2) that Fy = Fx whenever H C K.



Suppose now that H and K are arbitrary nonempty proper subsets of ©. If HN K # 0,
then by the preceding argument Fy = Fynxy = Fx. U HNK = Qand HU K is a
proper subset of ©, then Fg = Fyyg = Fg. T HNK = Qand HUK = O then
since |©] > 3,|H| > 2or |K| > 2. Supposing, with no loss of generality, that
|H| > 2, and that 6;c¢ H, it follows that Fy = Fay = Fruey = Fk.
Thus Fy = Fi for all H, K ¢ 2° — {0, ©}, and aggregation is carried out by a single function
F : [0,1)* — [0,1]. Dropping subscripts and setting X = 0in (3.1) then yields
F(0) > 2F(0). Hence, F(0) = 0 and C satisfies (11(0)).

The preceding theorem fails to hold when |©| = 2. For example, the function C, defined
for all BeB™({6:,8,}) by C(B)®) = 0,CBYO) = 1,CB)({4}) =
min {b;({81}),...,b.({61})} and C(B)({6:}) = max {6:({62}),---,ba({62})} yields a
belief function on {6;,6;} for every profile B, and satisfies axioms (I) and (1I(1)),
while Fygy # Flg,}-

Theorem 3.2. If |©| > 3, a consensus function C : B*(Q) — B(0O) satisfies axioms
(I),(1I(1)), and (II(1)) iff there exists a sequence of weights wy,...,w,, nonnegative
and summing to one, such that for all A C © and all BeB"(0),
C(B)A)=wi1 b (A)+ - + wp b, (4).

Proor: Sufficiency: straightforward. Necessity: By Theorem 3.1 there exists a function
F . [0,1]* — [0,1] such that for all BeB"(O)andforalA C O,
C(B)(A) = F(b;(A),...,b,(A)). We show that for all X, Y such that 0 < XY, X4Y <1,
F(X +Y)= F(X)+ F(Y), which implies, by a standard result of functional equations
along with F(1) = 1 (see Lehrer and Wagner 1981, p.122) that F' is a weighted arith-
metic mean. Suppose first that 0 < XY < 1[2 Let M be the BPA profile defined by
M({8:}) = X, M({8:)) = ¥, M({6,,,65}) = 1/2 = X, M({6,,65}) = 1/2 — Y, and
M(A) = Q for all other A C O. Let B be the belief function profile induced by M, as
described in §1. Among other things, B({#:}) = X, B({6;}) = Y, B({6:}) = 0,
B({6:,6:}) = X +Y, B({61,65}) = B({62,63}) = 1/2, and B({6,,6:,8;}) = 1.
Letting C(B) = b, it follows, using axioms (II(1)) and (II(1/2)) where appropriate,
that b({6:)) = F(X),b({8:) = F(¥),{8}) = 0,4({6:,6:}) = F(X +7Y),
b({61,03}) = b({6,,63}) = 1/2, and b({6,,6,,63}) = 1. Let m be the BPA induced by b.
Since m({6,82}) = FX 4+ Y) - F(X) — FY) > 0andm({6,82,6;})
=1-1/2-1/2-F(X+Y)+ F(X)+ F(Y) > 0 it follows that F(X +Y) = F(X)+ F(Y)
whenever 0 < X,Y < _1_/_2 Hence for all X,Y such that 0 < X,Y, X +Y < 1,
F(X+Y)=2F(3(X+Y)) =2FQX +1Y) =2F(1X)+2F(}Y) = F(X) + F(Y),as

desired.



We remark that when © = {6,,0;}, even if Fig ) = F{g,) = F (as need not be the
case, by the remark following the proof of Theorem 3.1), F' is not necessarily a weighted
arithmetic mean. For, as is easily checked, setting C(B)(A) = min {b;(A),...,b,(A)} for
all A C {6,,0,;} yields a belief function on {6,,8;} for all Be B"({6,,6,}), and C satisfies
(I1(1)) and (11(1/2)).

Moreover, axioms (I) and (II(1)) alone are not sufficient to guarantee the conclusion
of Theorem 3.2, for setting C(B)(A) = [b;(A4)] , the greatest integer in b;(A), defines a
mapping C : B*(0) — B(0) satisfying (I) and (II(1)), and C is not a weighted arithrnetic

mean.

Theorem 3.3. If |©@| > 4, a consensus function C : P*(0) — B(O) satisfies axioms
(I),((II(1)), and (II1(1/2)) iff there exists a sequence of weights wi,...,w,,

nonnegative and summing to one, such that for all PeP™(0) and for all A C O,

C(P)(A) = wlpl(A) +otwy pn(A)'

PROOF: Sufficiency: straightforward. Necessity: By Theorem 3.1 there exists a function
F . [0,1] — [0,1] such that for all PeP*(©)andforall4A C O,
C(P)(A) = F(p1(A),...,pn(A)). As in the proof of the preceding theorem, to establish
that ¥ i1s a weighted arithmetic mean we need only show that
FIX+Y)=FX)+ F(Y)forall X and Y suchthat 0 < X,Y, X +Y <1.

For X and Y as above, consider the Bayesian belief function profile P for which
P({6,:}) = X,P({6:}) =Y,P({6:}) =1— X —Y, and P({6;}) = 0 for all ¢ > 4. Letting
C(P) = b, it follows, using axiom (I]) where appropriate, that ({6:1}) = F(X),
¥({62}) = F(Y), b({91v92}) =F(X +Y),b({62,65}) = F(1 - X), and b({6:,6;,63}) = 1.
For A; = {6;} and A; = {62}, (1.1) implies that

(3.3) F(X+Y)> F(X)+F(Y), 0<X)Y,X+Y<L1l

For A] = {91,92} and A2 = {92,03}, (11) implies that 1 2 F(X +Y) +- F(l ~X) —1’.’()/),
which is equivalent to

(34) FX)+FY)>FX+Y)+[F(X)+F1-X)-1, 0<X,Y, X+Y <1

Now suppose that X > 1/2 and let P be the Bayesian belief function profile for
which P({0,}) = P({8:}) = X — 1/2, P({6:}) = P({6:}) = 1 — X, and P({6,}) = 0
for all ¢ > 5. Letting C(P) = b, it follows, using axiom (II(1/2)) where appropriate,
that b({62}) = F(1 — X), B({61,0.}) = b({62,0s}) = 1/2, and b({61,8,,03}) = F(X).



For A; = {6:,6,} and Az = {6,,65}, (1.1) implies that F(X) > 1/2+1/2—- F(1-X), i.e,
that

(3.5) FX)+F1-X)>1, 1/2<X<1,
which, with (3.3) for ¥ = 1 — X, yields

(3.6) F(X)+F(1-X)=1 1/2<X<1,
and hence, of course,

(3.7) F(X)+F1-X)=1, 0<X<1/2
Combining (3.3), (3.4), and (3.7), we see that

(3.8) F(X+Y)=FX)+FY), 0<X)Y,X+Y<1;X<1/2

It follows from (3.8) that for all X,Y such that 0 < XYV, X +Y <1, F(X +7Y) =
FAX+(AX+Y)=FiX)+FEX+Y)=FAX)+ FEX)+ F(Y) = F(X) + F(Y),
which completes the proof.

The condition |©| > 4 in the preceding theorem is essential. When |©| = 3, for ex-
ample, setting C(p1,...,pa)(A) = min {p;(A),p2(A)} for all A C O defines a mapping
C : PY©O) — B(©) for which axioms (I),(II{(1)), and (I1{(1/2)) hold, and C is not a

weighted arithmetic mean.

4. Discussion.

Since a weighted arithmetic mean of Bayesian belief functions is always Bayesian, The-
orems 3.2 and 3.3 imply, with just a few exceptions, that “preservation of Bayesianity”
is implicit in axioms (I),(II(1)), and (1I(1/2)). As shown by the example
C(B)(A) = [b1(A4)], deleting (I1(1/2)) as a restriction on consensus formation allows for
the resolution of disagreement in a profile of P*(0) by means of a non-Bayesian consensus,
an attractive possibility in our view. Consensual belief functions with a structure richer
than those materializing in this example would obviously be desirable. We are currently
studying this possibility under weaker constraints on consensus formation, requiring no
preservation of unanimity, and allowing the consensual uncertainty measure assigned to
each A C O to be a function of the individual measures assigned to A as well as to subsets
H C O in certain classes naturally related to A suchas {H : AC H} and {H : HNA # 0}.
The only results to date in this area appear to be those of Aczel, Ng, and Wagner (1984),

where consensual probability without unanimity preservation is investigated.
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