


This report ?t'?s prepared as an account of w ? r k  sponsorcd hv a l l  dymcy of tho 
United States bovernlfisn! P?tb?r th; U nited StatesGovernKr: nor any agency 
thereof nor any of thetr aiiiployzsc, ..lakes any wrpanty express or i m p ; i ~ $  2 -  

assuiiles any legal liability or responslbiiliy for t h e  3CCui6LY ~oiiiple!e?ess. 91 
of any information, appaia:,is. p lu i lw t  or proccss disclosed or 

reprss-n's 'hat its usc:.:culd io; Infringe 9 ,  date!y own& -qhts Hnference hcrc!? 
fic colllllltiicial nroduct. procssz. orservicsby t iaur  t l d l i i C  :rade,nalh. 

Ilianufac-'.:rsr. =.r othet:-:6:, does ?G: iln~sss;. '3. constitute c' i t ~ p i y  its 
c n d o w - i r ~ t .  recofn ation or favorinn :?s IlnitcGI Stater(-nvsrnr,fant or 
any agsrry thcrc?' ,T'U:S 376 spinions of aut xprcssed her- do not 
neceswrilv state or r n ~ n i ~ c l t  or any agency 
thsrscf 

thcss of thsl lni ted Stat 



ORNL/TM- 10748 

Energy D i v i s i o n  
Decision Systems Research Section 

CONSENSUS FOR BELIEF FUNCTIONS AND 
RELATED UNCERTAINTY MEASURES 

Carl  G. Wagner 
U n i v e r s i t y  o f  Tennessee 

Research supported by 
U . S .  Naval Sea Systems Command 

Date Published - A p r i l  1988 

Prepared by the  
Oak Ridge Nat ional  l a b o r a t o r y  

Oak Ridge, Tennessee 37831 
operated by 

M a r t i n  M a r i e t t a  Energy Systems, I n c .  
f o r  the  

U . S .  Department o f  Energy 
under Contract DE-AC05-840R21400 

3 4 4 5 b  02747b9 b 





CONTENTS 

Abstract ............................................................................ 1 

1 . Introduction ...................................................................... 2 

2 . Consensus Functions .............................................................. 3 

3 . Consensus in the Form of a Belief F'unction 4 

4 . Discussion 7 

References ........................................................................... 8 

........................................ 
........................................................................ 

iii 





1 

CONSENSUS FOR BELIEF FUNCTIONS AND 

RELATED UNCERTAINTY MEASURES 

Carl G. Wagner 

ABSTRACT 

We extend previous work of Lehrer and Wagner, and of McConway, on the consensus of 

probabilities, showing under axioms similar to theirs that (1) a belief function consensus 

of belief functions on a set with at least three members and (2) a belief function consensus 

of Bayesian belief functions on a set with at least four members must take the form of a 

weighted arithmetic mean. 

KEY WORDS AND PHRASES : Belief function, basic probability assignment, Bayesian belief 
function, consensus, Cauchy's equation, Dempster-Shafer theory, uncertainty measure. 
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1. INTRODUCTION. 
A belief function ow a. set Q = (6 ,  . . . 8 k )  is a mapping b ; 2@ + [0,1] such that b ( 0 )  1=1 

positive integers r and every collection AI . . . , -4, of subsets of 0, 

The theory of belief functions was introduced by Shafer (1976) in A Matheintt t ical Theory of 

Ev idence  and provides, among other things, an abstract formulation of lower probabilities, 

studied earlier by Bempster (1967). Every probability measure on the algcbra 2@ is clearly 

a belief function, and we follow Shafer in calling such probability measures Bayes ian  belief 

Closely related to belief functions are mappings m : Z?@ ---t [ O , l ) ,  called basic probabtli ty 

ass ignments  (BPAs), defined by the properties m(0) I= 0 and xAC-m(A4) = 1. Every 

BPA m on 0 induces a belief function b(") on 0 by 

(1.2) b(")(A) = m ( H ) ,  VA C 0, 

and every belief function b on 0 induces a BPA m(*) on 0 by 

func t ions .  

- 

H C A  

(1.3) rn(*)(A) = (-1)'A-H' b ( H ) ,  V A  c_ 0, 
HCA 

with m(bc")) -" m and b(m'b')  = b (Shafer, 1976, pp. 38-40). To show that a mapping 

b : 2' --+ [0,1] is a belief function one may thus avoid checking (l.l), either by exhibiti: 

a BPA m such that bc") = b, or by checking that b(0)  = O , b ( @ )  = 1 and the qiiantitic-, 

rn(')(A) defined by (1.3) are nonnegative for all A C 0. Bayesian belief functions are pre- 

cisely those belief functions whose associated BPAs are positive only 011 singleton subsets 

of 0 (Shafer 1976, p. 45). 
Denote by B(O) ,  P(@), and M ( @ ) ,  respectively, the set of all belief functions, Bayesian 

belief functions, and BPAs on 0. We shall refer to elements of B ( @ ) , P ( O ) ,  and .U(O) 
generically as unee~tainiy  measures .  FOP n 2 2, n-tuples B = ( b ,  . . . , b,) EB"(O) ,  

P = (PI,. . . ,pn) e Pn(@), and M ( m l , .  . . , m,) E M " ( 0 )  itre Palled n-profiles and may 

be regarded as registering the individual opinions of n experts as to "where the truth 

lies" in 0, east in ternis of the relevant iincertainty measure. In this note we consider 

the problem of aggregating such opinions into a single consensual measiire, subject to two 

simple axiomatic restrictions. With the exception of a few cases where 0 has small car- 

dinality, these axioms are shown to imply aggregation by weighted arithmetic averaging, 

thus extending previous results of Lehrer and Wagner (1981) and McConway (1981) on 

the consensus of probabilities. 



3 

2. CONSENSUS FUNCTIONS. 

[nforIna.lEy, a, consensus function is simply a method of deriving from each profile of uncer- 

tainty measures of some fixed type a consensual uncertainty measure of some fixed type. 

We shall be interested in four types of consensus functions, corresponding to the (pro- 

file type, consensus type) pairs (P"(@),  p ( @ ) ) ,  (M"(O) ,  M ( O ) ) ,  (Brz((o), a( @)), and 

(?'"(e)), B( 0)). For econoniy of exposition, the following discussion employs generic 

n-profiles U = ( U I .  . . , u , ) E U ~ ( O ) ,  where ( U , U , U ) E  {(p,ptp),(M,W,7a~),(U,B,b)} a~id 

generic (profile type, consensus type) pairs (U*(@),U*(O)) ,  where (U,tn*) E A .= 

{ ( P ,  7% ( M ,  MI, (4 a>, ( P , W  

Definition: . A C O ~ L S ~ ~ L ~ U S  function is a mapping C : Un(0)  --+ ZA*(@) , for fixed n 2 2 

and fixed (U,U") E A. 

Since, for every n-profile V,C(U) is either a belief function, a Bayesian belief func- 

tion, or a BPA on 0, and since all these uncertainty measures assign 0 the measure 

zero, it is a consequence of the above definition that C(U)(@) = 0. Similarly, when 

U* E (B, P} , C ( U ) ( O )  = 1. We wish to study consensus functions which, for each subset 

A G 0 whose nieasure is not thus predetermined, assigns to A a cclnseIisua1 uncertainty 

measure which depends only on the mea,sures assigned to A by the n experts. Such re- 

strictions on aggregation are CoIrimori in consensus studies and have been variously terrned 

independence, invariance, irrelevance of alternatives, and weak setwise functionality. For 

our purposes the relevant axiomatic restriction is formalized as follows: 

( I ) .  For all A E ~ @  - {0,@}, and if U =U* = M ,  for A = 8 

as well, there exists a fuunction FA : [O, 11" + [Q, 11 such 

that for all UELP(O>, C ( U ) ( A )  = p~(ul(A), . . . , u n ( A ) ) .  

In addition, we shall be interested in the consequences of adopting one or more: of an 

infinite niimher of possible "unanimity yreseIvation" axioms, ( I I ( c ) ) ,  where e E [O, 13, given 

bY 

( I I ( c ) ) .  For all A C 0 and for all UcU"(O) ,  if U ( A )  = ( c , .  . . , c ) ,  

then C(U)(A)  = c .  

Our first theorem recapitulates results implicit in Lehrer and Wagner (1981) and Mc- 

Conway (1981). 

Theorem 2.1. If 2.4 = U* = P and 101 2 3, or if U = U* = M a d  101 2 2, a consen- 

sus function C : I'dn(@) -+ U*(O)  satisfies axioms (I) and ( I I ( 0 ) )  iff there exists a sequen,ce 
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of weights w1,. . . , w,, nonnegative and summing to one, such that for all A C 8 and for 

all U & U n ( @ ) ,  C(U)(A)  = ~ l u l ( ~ 4 )  + .  . - + wnun(A).  

We omit the minor details required to modify the aforementioned results to yield this 

theorem, except to note that the lower threshold 101 = 2 for BPAs obtains because a 

consensus function in this case is an "allocation aggregation method" (Lehrer and Wagner 

1951, Theorem 6.4) for the three "'decision variables" rn({&}), rn({&}), and r n ( { & , O , ) } .  

The case U = td* = P and 101 = 2 is essentially characterized by Theorem 6.5 of Lehrer 

and Wagner (1981). 

3. CONSENSUS IN THE FORM OF A BELIEF FUNCTION. 

We now examine consensus functions C : U n ( @ )  + U * ( 0 )  constrained by axioms 

( I ) ,  (11(1)), and (11(1/2)), where (U,M*) E { ( B , B ) , ( P , B ) } .  In what follows 

X = (XI,. . . , 5,) and Y = (y1,. . . , yn) denote elements of [0, l]", c denotes the n-dimensional 

vector ( e , .  . . , c), and all inequalities between vectors are to be understood coordinatewise. 

We observe first that if 101 2 3, ( I )  and (11(1)) imply that the functionsPA posited by 

(I) must be identical. 

Theorem 3.1. I f  (U ,U*)e  { ( B , B ) ,  ( P , D ) } ,  101 2 3, and C : U n ( @ )  -+ ,I[*(@) satisfies 

axioms ( I )  and ( I I ( I ) ) ,  then for all H and ~ € 2 ~  - {8,O},FH = F k ,  and C satisfies 

( I I ( 0 )  1. 
PROOF: Suppose first that H is a proper subset of A-. For every X E [0, l]", there is obvi- 

ously a profile P = ( p l  . . . , p , ) ~ ' P " ( 0 )  C a"(@) such that P ( H >  ( p l ( H ) ,  . . . ,p , (H) = 
X ,  P ( K  - H )  = Q , and P ( K )  = 1 - X .  Let A1 = H and A,  = K - H .  Since C ( P )  E a(@), 
(1.1) and axiom ( I )  yield 

Next let '41 = N U E and A2 = K .  In this case (1.1) and axiom ( I )  yields 

which, with axiom (If'( l)), yields 

It follows from (3.1) and (3.2) that FH = FR- whenever H .I<. 
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Suppose now that H and K are arbitrary nonempty proper subsets of 0. If f? n K # 8, 
then by the preceding argunient FH = F H ~ K  = FK. If H n K = 8 and H U IX' is a 

proper subset of 0, then FH = F&K = FK. If H n K = 8 and H U K = 0 then 

since 101 2 3, ]HI 2. 2 or IKI 2 2. Supposing, with no loss of generality, that 

[HI 2 2, and that 6 , ~  H ,  it follows that FH = F{ei} = FK"{B,.} = F'K. 
Thus FH = FK for all H ,  K E 2° - { 8, a}, arid aggregation is carried out by a single function 

F : [a, 1)" --+ [0,1]. Dropping subscripts and setting X = 0 in (3.1) then yields 

F ( Q )  2 2F(O). Hence, F ( Q )  = 0 and C satisfies ( I I (0) ) .  

The preceding theorem fails to hold when 101 = 2. For example, the function C, defined 

for all B E Bn({61,62}) by C(B)(8) = 0 ,  C(B)(O) = 1 ,  C(B) ( {@l} )  = 

belief function on { 6 , , & }  for every profile B,  and satisfies axioms ( I )  and (11(1)), 

while F{e,} # F ~ B ~ } .  

1nin {b1(~6l}),. . . ,b~({61})} a d  C(B) ( (&})  = {b1({~2}) , . . . ,~~({6,})} yields a 

Theorem 3.2. If 101 2 3, a consensus function C : D"(0) -+ a(@) satisfies axionis 

( I ) ,  ( I I ( l ) ) ,  and (II( 5)) iff there exists a sequence of weights w1,. . . , w,, nonnegative 

mid sununing to one, such that for all A 0 and all B~23"(0 ) ,  

C(B) (A)  ~1 bl ( A )  + * . .  + W n b n ( A ) .  

PROOF: Sufficiency: straightforward. Necessity: By Theorem 3.1 there exists a function 

F : [0,1]" 4 [0,1] such that for all BED"(@) and for all A C_ 0, 

C ( B ) ( A )  = F(b1 (A ) ,  . . . , b,(A)). We show that for all X ,  Y such that 0 5 X ,  Y,X+Y 5 1, 

F ( X  + Y )  = F ( X )  + F ( Y ) ,  which implies, by a standard result of functional equations 

along with F(1)  = 1 (see Lehrer and Wagner 1981, p.122) that F is a weighted arith- 

metic mean. Suppose first that 0 5 X , Y  5 1/2. Let M be the BPA profile defined by 

M ( { @ , } )  = X ,  M ( { 6 2 } )  = Y, M ( { 6 1 , , 6 3 ) )  = - 1/2 - X ,  M({&,&)) = I_ 1/2 - Y, and 

M ( A )  = 0 for all other A 2 0. Let B be the belief function profile induced by M ,  as 

described in $1. Among other things, B((61))  = X ,  B ( {&})  = Y, .El({&}) = 0, 

q{@l ,@, t )  = X + y, J3({61,83}) = B({@2,63}) = 9, and q { 4 , 6 2 , w )  = 1. 
Letting C ( B )  = b, it follows, using axioms (11(1)) axid (11(1/2))  where appropriate, 

that b({@l}) = qq, b ( { @ 2 } )  = F ( Y ) ,  b ( { 6 3 } )  = 0, b({@1,@2}) = F ( X  + Y ) ,  
b ( { 6 1 , 8 3 } )  = b ( { & , 6 3 } )  = 1/2, and b({@1,6,,&}) = 1. Let m be the BPA induced by b. 

Since m({6,,&}) = F ( X  + Y )  - F ( X )  - F ( Y )  2 Oandrn({81,6~,&}) 

= 1 - 1/2 - 1/2 - F ( X  + Y )  + F ( X )  + F ( Y )  2 0 it follows that F ( X  + Y )  = F ( X )  + F ( Y )  
whenever Q 5 X ,  Y 5 1/2. Hence for all X, Y such that Q 5 X, Y, X + Y 5 1, 

F ( X  + U )  = 2 F ( $ ( X  + Y ) )  = 2 F ( $ X  + $ Y )  = 2 F ( $ X )  + 2 F ( $ Y )  = F ( X )  + F ( Y ) , a s  

desired. 

I_ 

- 
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We remark that when 8 = {&,&}, even if F{o1) = F{e2) = F (as need not be the 

case, by the remark following the proof of Theorem XI), F is not necessarily a weighted 

arithmetic mean. For, as is easily checked, setting C ( B ) ( A )  = min {b , (A) ,  . . . , b, (A)}  for 

all A C { &,&} yields a helief function on (81,623 for all B E Is"( { 61, e,}), and C satisfies 

(II(1)) and (11(1/2)). 

Moreover, axioms ( I )  and (ZZ( 1)) alone are not sufficient to guarantee the conclusion 

of Theorem 3.2, for setting C ( B ) ( A )  = [bl(A)] , the greatest integer in h,(A), defines a 

mapping C : B"(0) + B(@> satisfying (I) and (11(1)), and C is not a weighted arithmetic 

mean I 

3.3. If 101 2 4, a consensus fiinction C : Pn(8) ---f B ( 0 )  satisfies axioms 

(I), ((11(1)), and (II(1/2)) ifF there exists a sequence of weights w1,. . . , w I L ,  

nonnegative and summing to  one, such that for all X J ~ P " ( 0 )  and for aII A & 0,  

C ( P ) ( A )  - w l p l ( A )  + " ' .  + w n p n ( A ) .  

PROOF: Sufficiency: str-aightforwarcrl. Necessity: By Theorem 3.1 there exists a function 

F : [0, 11" + ( O , 1 ]  such that for all P e p n ( @ )  and for all A C 0,  

C(P)(A) = F ( p l ( A ) ,  . . . , P , ~ ( A ) ) .  As in the proof of the preceding theorem, to establish 

that b;' is a weighted arithmetic., mean we need only show that 

f"(X + Y )  F ( X )  + F ( Y )  for all X and Y such that 1. 5 X ,  Y, X -t Y 2 2. 
For X axid Y as above, consider the Bayesian belief function profile P for which 

P ( { & } )  = X , P ( ( & } )  = Y , P ( { & } )  = 1 - X - Y, and P({8,}j = 0 for all i 2 4. Letting 

C ( P )  = b, it follows, using axiom (11) where appropriate, that b ( ( 8 1 ) )  = F ( X ) ,  

b ( { & } )  = F ( Y ) ,  b ( { & , & } )  = F ( X + Y ) , b ( { & , & } )  = F ( l  - X ) ,  and b ( { & , 8 2 , & } )  = 1. 

For 141 = (81) and A2 = {&}, (1.1) implies that 

(3-3) F ( S  + Y )  2 F ( X )  + Y ( Y ) ,  0 5 X , Y ,  x -+ Y 5 1. 

For AI = { & , & }  and A2 = { 8 2 , 6 3 } ,  (1.1) implies that 12 F ( X + Y ) t - F ( 1 - X ) - ~ ; ' ( Y ) ,  

which is equivalent to 

(3.4) F ( X )  + F ( Y )  L F ( X  + Y )  + [ F ( X )  + F(1- X )  - 11, 0 5 x, Y,  x + Y < 1. 

Now suppose that X 2 I_ 1 / 2  and let P be the Bayesian belief function profile for 

which P((B1)) = P ( { 0 3 } )  = X - __ 1/2, P ( { & } )  = P ( { & } )  = 1 - X ,  and P ( { 6 ; } )  = Q 

Letting C ( P )  = b, it follows, using axiom (11(1/2)) where appropriate, 

that b ( { b } )  = F(I - X ) ,  B ( {&,&})  = b ( { & , & } )  = 1/2, and b({81,62)@3}) = F ( X ) .  

for all z 1 5. 
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For AI = ( & , & }  and A2 = (02, &}, (1.1) implies that F ( X )  2 1/2 + 1/2 - F(  1 - X ) ,  i.e., 

that 

which, with (3.3) for Y = 1 - X ,  yields 

and hence, of course, 

(3.7) F ( X )  + F(1- X )  = 1, 0 5 x 5 1/2. - 

Combining (3.3), (3.4), and (3.7), we see that 

It follows from (3.8) that for all X , Y  such that 0 5 X , Y ,  X + Y 5 1, F ( X  + Y )  = 
F(  p + ( $ X  + Y ) )  = F(  $X) + F (  3 X  + Y )  = F(  3 X )  + F( $X) + F ( Y )  = F ( X )  -k F ( Y ) ,  
which completes the proof. 

The condition IS1 2 4 in the preceding theorem is essential. When 101 = 3, for ex- 

ample, setting C ( p 1 , .  . . ,p,)(A) = min { p l ( A ) , p ~ ( A ) }  for all A C 0 defines a mapping 

C : ?,(e) --+ B ( 8 )  for which axioms (I),(II(l)), and (11(1/2)) hold, and C is not a 

weightcd arithmetic mean. 

4. Discussion. 

Since a weighted arithmetic mean of Bayesian belief functions is always Bayesian, The- 

orenis 3.2 and 3.3 imply, with just a few exceptions, that ‘‘preservation of Bayesianity” 

is implicit in axioms (I), ( I I (  l)), and ( I I (  1/2)). As shown by the example 

C ( B ) ( A )  = [bl(A)] ,  deleting (II(1/2)) as a restriction on consensus formation allows for 

the resolution of disagreement in a profile of V ( 0 )  by means of a non-Bayesian consensus, 

an attractive possibility in our view. Consensual belief functions with a structure richer 

than those materializing in this example would obviously be desirable. We are currently 

studying this possibility under weaker constraints on consensus formation, requiring no 

preservation of unanimity, and allowing the consensual uncertainty measure assigned to 

each A 0 to be a function of the individual measures assigned to A as well as to subsets 

N C 0 in certain classes naturally related to A such as { H  : A C N} and { H  : H n A  # 0). 
The only results to date in this area appear to be those of Aczel, Ng, and Wagner (1984), 

where consensual probability without unanimity preservation is investigated. 
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