

Printed 1i7 t h ~ United States of P,mc:rca Availabie frorii
Natiorral I^cchrircal Infot tnation Ss:-v.ice

U S . Department of Cotnmercc
5285 P+t Rcyal Road, Springfield, Virrjlnla 2216:

N 1 IS piice cocies-Printed Copy: ,404; M i c r o f i c h e A01

This report W ~ S prcpared as an account of work sponsolcd by an a g c x , of the
l lnited StatesGoverrlmciii Nsithei ihellni!& StatesGoverninent nor any ayeiicy
tht?:oof, nor any of their ernployses, makes anv warranty express cr rrrlplied or
assumes any legal liability or responsibility for tile accuracy, completeness, c):
usefillness of any information, apparatus, product, or PiOCZSS disclosed, or
represents that 1;s use wculd not infilnge PI ivaiely owned rights Rzfxoncs herein
to any specific coiniil?rcial product, grocess or service by trhde name tradci-raik,
mamfacturer or otherwise, does not necess;lrily constitute or impiy Its
endorsement. recornitwildation. or fzvoring b y the United Sta!ssGo
any aqency thereof I h e vie and opinions of authors expressed 5erslR do not
riac.?ssarily state or reflect thcse of the United States(Govc-,m;?eiii C I any agency
liie: enf

ORNL/TM-10691

Engineering Physics and Mathematics Division

Mathematical Sciences Section

QR Factorization of a Dense Matrix
on a Hypercube Multiprocessor*

Eleanor Chu
Department of Computer Science

University of Waterloo
Waterloo, Ontario. Canada N2L 3 G l

Alan George?
Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831

?Also a member of the Departments of Computer Science and Mathematics, University of Tennessee,

Knoxville. Tennessee 37996.

February 10. 1988

Research of the first author was supported in part by Canadian Natural
Sciences and Engineering Research Council under grant A8 11 1. Research of
the second author was supported by the Applied Itlathematical Sciences
Research Program, Office of Energy Research, U. S. Department of Energy
under contract DE-AC05-840R21400 with Martin Marietta Energy
Systems, Inc., and by the Science Alliance, a state-supported program a t the
University of Tennessee.

__

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems. Inc.
for the

U. S . DEPARTMENT OF ENERGY
under Contract No. DE-ACO5-84OK2 1400

3 4 4 5 6 0 2 7 4 8 5 0 b

Contents

1 Introduction 1

2 Hypercube Multiprocessors 1

3 Algorithm I 2

4 Performance Analysis of Algorithm I 9

5 Algorithm I1 11

6 Performance Analysis of Algorithm I1 17
6.1 T h e c a s e m > n . . . 18
6.2 The case m 5 n . 20
6.3 Analysis of Storage Requirements . 2.5

7 Numerical Experiments 28
7.1 The Measurement of Serial Time , 28
7.2 The Effect of the Aspect Ratio of the Processor Grid 30
7.3 Further Enhancement . 34

8 Conclusions 38
8.1 A S u m m a r y . . . 38
8.2 Further Work , . 41

9 References 43

iii

Abstract

In this article we describe a new algorithm for computing the QR factorization of a
rectangular matrix on a hypercube niultiprocessor. The scheme involves the embedding
of a twc-dimensional grid in the hypercube network. We employ a global cornmunicatiori
scheme which uses reduridant computation to maintain data proximity, and the mapping
strategy is such that for a fixed number of processors the processor idle time is small
and either constant or grows linearly with the dimension of the matrix. A complexity
analysis tells us what the aspect ratio of the embedded grid should be in terms of
the shape of the matrix and the relative speeds of communication and computation.
Numerical experiments performed on an Intel Hypercube multiprocessor support the
theoretical results.

V

1 Introduction

In this article we present an algorithm for reducing an m x n matrix to upper triangular
form using orthogonal transformations on a hypercube multiprocessor. The scheme involves
the embedding of a two-dimensional grid in the hypercube network. For easy exposition,
we first describe a special case of the algorithm in order to explain some basic strategies
for data mapping and inter-processor communication on the hypercube. We refer to the
special case as Algorithm I, and the general algorithm as Algorithm 11. Finally we propose
further enhancement to reduce both arithmetic and communication costs of Algorithm 11.
This version of the algorithm will be referred to as the enhanced Algorithm 11.

Algorithms I and I1 are based on Givens rotations. The use of Givens transforma-
tions has been widely studied in the literature for parallel implementation on systolic ar-
rays [I ,2,11,14,19], SIMD computers [18], shared-memory multiprocessors [5,6,8,13,15], and
hypercube multiprocessors [3,9,16,17]. When m 1 n, the mathematical computation we
consider is usuallv formulated as

where A is an m x n matrix with full column rank, Q is an rn x rn orthogonal matrix and
R is an upper triangular matrix of order n. When m < n, we have

Q A = (R S) >

where A is an m x n matrix with full row rank, Q is as defined above, R is an upper
triangular matrix of order m, and S is an m x (n - m) rectangular matrix. The matrix
Q is formed as the product of Givens rotations such that the elements of A below the
main diagonal are annihilated one at a time. Since there is much freedom in the order
of applying the Givens rotations, the elements of A can be eliminated by many different
orderings. The independent (or disjoint) rotations induced by a particular ordering can
be computed simultaneously provided there are enough processors available. While the
number of independent rotations increases with the problem size and changes during the
factorization process, the number of processors on a parallel computer is fixed. Therefore,
the independent rotations must be statically or dynamically allocated to the processors
in some way. The choice of a different ordering and the particular strategy of assigning
indcyendent rotations to processors give rise to different parallel algorithms.

There are four parallel Givens algorithms proposed in [3,16,17]. They are all based on
“Givens sequences” , which are sequences of Givens rotations where zeros once created are
preserved. The two new parallel algorithms proposed in this paper can be viewed as dif-
ferent implementations of a particular Givens sequence on the hypercube. Both algorithms
take full advantage of the hypercube topology and require only nearest-neighbor. communica-
tion. They differ from the algorithms in [3,16,17] in communication schemes, data mapping
schemes, arithmetic/communication complexities, and work load distribution.

2 Hypercube Multiprocessors

There are 2d identical node processors in a hypercube multiprocessor of dimension d. Each
processor is uniquely identified by a n integer in {0,1,2, - - ,2d - 1) . If we represent each

1

processor id in the set {0,1,2,. - , 2d - 1) by a d-bit binary string, bd- lbd - z - . bo, then the
hypercube network is constructed by physically connecting each pair of processors whose
id’s differ in one single bit b;, 0 5 i 5 (d - 1). Figure 1 illustrates the binary hypercube
topologies of dimension d = 1,2 and 3.

d = l d e 2 d - - 3

Figure 1: Binary hypercubes of dimension 1, 2 and. 3.

When the node processors on a local-memory multiprocessor cooperate with each other
to solve a problem, they need to communicate data or synchronization information with
each other by exchanging messages. Since the cost of communication increases with the
number of messages, the length of each message, and the length of the path each message
traverses, i t is desirable to aim at reducing all of them in devising parallel algorithms.

In this article we show how redundant computution can be incorporated into the com-
munication algorithm to maintain data proximity so that all processors in the hypercube
can simultaneously exchange data with their neighboring processors. This paradigm is used
in both algorithms we present in this paper. In addition, we show in the second algorithm
how the hypercube topology can be used to reduce the computational cost as well as the
communication cost of a parallel algorithm.

3 Algorithm 1

The first algorithm we propose is based on the Givens sequence illustrated in Figure 2 by
a 16 x 8 matrix. That is, the nonzero elements below the main diagonal of an 712-by-n
matrix are eliminated column by column in the order indicated in Figure 2, where the (i, I C)
entries to he zeroed in the ICth elimination stage are labelled by the integer I;. In the parallel
algorithm, the p processors cooperate to annihilate the m - k nonzero elements in column
k dinring the ICth elimination stage. If a Givens rotation is applied to the ith row and the
j t h row to annihilate the leading nonzero a,,k in the j t h row, then row i is referred to as the
“pivot row”.

As usual with parallel algorithms, we would like to achieve a balanced distribution of
work load and a low volume of data movement and communication. A uniform work load
distribution and a low communication cost contribute directly to the speed-up, which is the
ultimate goal of a concurrent algorithm.

2

(x x x x x x x x
l x x x x x x x
1 2 x x x x x x
1 2 3 x x x x x
1 2 3 4 x x x x
1 2 3 4 5 x x x
1 2 3 4 5 6 x x
1 2 3 4 5 6 7 ~

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

(1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 2: Column-by-column Givens Sequence.

Since there is no globally shared memory in the hypercube, the data must be distributed
among the processing nodes in some way, typically by rows if the computation is row-
oriented, or by columns if the computation is column-oriented. In either case, there is a
decision to be made concerning the way in which the rows or columns axe mapped onto
the processors. For example, given an m-by-n matrix A and p processors Po, P I , P2, - - 7

Pp- l , bZock-mapping may be used, where the first m / p rows (or n i p columns) are assigned
to processor Po, the next m / p rows (or n / p columns) are assigned to processor PI , and so
on. Alternatively, wrup-mapping may be used, where consecutive rows (or columns) are
assigned to consecutive processors, with assignment “wrapping around” to processor Po
after a row (or column) is assigned to processor Pp-1.

Discussion about various mapping strategies for matrix computations can be found in
[7,10,12]. For our purpose, it suffices to observe that if block-mapping is used to assign rows
or columns of A to the p processors, then processor Po will become idle when the first m / p
rows or the first n / p columns of A do not need to be modified any more. The other p - 1
processors could become idle one after another subsequently for the same reason. On the
other hand, the rationale behind the wrap-mapping is to assign the data to the p processors
in such a manner that every processor will be doing approximately the same amount of

computation and communication throughout the entire process except for the last p steps.
Although the p processors will become idle one after another in the last p steps, the idle
time so incurred will not be significant if the work involved for each of these p steps is only
a tiny fraction of the total work.

For Algorithm I, we allocate the m rows to the p processors using a wrap-mapping.
Although wrap-mapping is not essential for the correctness of the algorithms we propose, it
is important for efficiency because the latter depends very much on whether a balanced work
load distribution can be maintained throughout the computing process. Figure 3 illustrates
the wrap mapping of sixteen rows to four processors.

For a given m x n matrix, Algorithm I has n stages, each stage consisting of nine steps.
We first describe the steps for the kth stage. An example is used along the way to help

3

Po Po Po Po Po Po Po Po
PI 1’1 PI Pl Pl PI PI Pl
P2 P2 P2 P2 P2 F-2 P2 P2
p3 P3 P3 p3 P3 P3 1’3 P3
PO PO PO PQ PO PO PO PO
PI Pl 1’1 Pl Pl Pl PI Pl
P2 P2 P2 P2 E! P2 P2 P2
P3 P3 A P3 P3 P3 P3 P3

PI Pl Pl Pl PI PI Pl Pl
P2 P2 P2 P2 P2 P2 P2 P2
P3 P3 P3 P3 P3 P3 P3 P3

Pl 1’1 PI Pl Pl Pl PI Pl
P2 P2 P2 P2 P2 P2 P2 Pz
P3 P3 P3 P3 P3 P3 1’3 P3

PO PO PO PO PO PO Po Po

PO PO PO PO PO PO PQ PQ

Figure 3: Wrap mapping of 16 rows to 4 processors.

explain each of the nine steps. After the details for the kth stage are given, we shall iise an
example to demonstrate how the entire algorithm works and summarize the features of the
communication algorithm we propose. The kth stage of the algorithm can be understood as
two distinct phases, namely an Independent Annihilation Phase (IAP) and a Cooperative
Merging Phase (CMP). Step 1 in the description below corresponds to IAP, and Steps 2 to
9 correspond to CMP. Note that ‘ ‘ b d - l b d - 2 - - . bo” denotes the &bit binary representation
of a processor id.

S t e p 1 (IAP) Among all of the rows with row number i 2 k , each processor uses the lowest
numbered row as the pivot row to eliminate all of the off-diagonal nonzero elements
in the kth column of its remaining rows by Givens rotations.

Using the example in Figure 3, the action of processor Po in the first elimination stage
is illustrated in Figure 4. The leading nonzeros in rows 5, 9 and 13 are annihilated
by applying Givens rotations sequentially to the three pairs of rows, namely {row 1,
row 5}, {row 1, row 9} and {row 1, row 13).

Figure 4: The action of .Po in the first elimination stage.

Therefore, no communication is needed i n the IAP. At the end of this step, every
processor has one row with a nonzero in the kth column. We shall refer to this row
as the “local pivot row”. The (i , k) nonzero entries in these local pivot rows (except
for element (k , k)) are to be annihilated at Steps 2 to 9 in the CMP. Figure 5 displays

4

the remaining nonzero elements at the end of Step 1 for a 16 x 8 example when p = 4
and k = 1. The elements of each local pivot row are marked by its assigned processor
Pi, 0 5 i 5 3. The entries (2, 1), (3 , l) and (4,1> are to be zeroed in the CMP.

I Po Po Po Po Po Po Po Po
Pl Pl Pl Pl Pl Pl Pl A
Pz P2 P2 P2 Pz P2 P2 P2
P3 P3 P3 P3 P3 P3 P3 P3

o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x
o x x x x x x x

(0 x x x x x x x

Figure 5: The distribution of local pivot rows.

Step 2 (CMP) f! t d , where d is the dimension of the hypercube.

Step 3 (CMP) Every processor sends its current local pivot row to the processor whose id
differs in bit €14-~. It also receives a row from the other processor.

For the example in Figure 5 , when k = 1, f! I= d = 2, rows 1 and 3 are thereby made
available to both PO and f2, and rows 2 and 4 are thereby made available to both Pl
and P3 at the end of this step. We shall denote this pair of rows as ?Ipl,* and ? lP2 ,* ,
where p1 and p 2 are their respective row numbers in the matrix A , and p1 < p2.

5

Step 4 (CMP) Each processor computes a Givens rotation to eliminate the element ZLpz,k

by executing the following algorithm.

If row pz is originally assigned to this processor, then row p1, row p2, c p z , k and . s p z , k

are saved so that row p2 can be updated in Step 9.

For the given example, when k = 1 and l = d = 2, Pz saves row 1, row 3, ~ 3 , l and
~ 3 , 1 , and P3 saves row 2, row 4, ~ 4 , l and ~ 4 , l .

Step 5 (CMP) Each processor “updates” row p1 by executing the following algorithm. The
updated row p1 becomes the “current” local pivot row.

For the example in Figure 5 , when IC = 1 and ! = 2, row 1 is modified to become the
current local pivot row in Po and PJ, whereas row 2 is modified to become the current
local pivot row in PI and P3. Note that redundant computation is performed.

S tep 6 (CMP) e+-- k? - 1.

S tep 7 (CMP) If e > 1 then go to Step 3.

Step 8 (CMP) Each processor sends its current local pivot row to the processor whose id
differs in bit bo.

6

Step 9 (CMP) The processor which was originally assigned row k executes the algorithms
given in Step 4 and 5 to update row k. Each other processor modifies the row originally
assigned to it by executing the following algorithm. {Note that this row is either the
higher numbered row currently received or the one saved at Step 4.)

For the given example, when k = 1 and l = 1, processors Po, PI , Pz and P3 will
modify respectively rows 1, 2, 3 and 4 simultaneously in this step.

To demonstrate how Steps 2 to 9 in the CMP work in general, we trace the pair of rows
(p 1 , p z) for three elimination stages in Figures 6-8, where a hypercube of dimension 3 is
employed. The rows to be finally updated in Step 9 are quoted in Figures 6-8. Note that
each processor has exactly one quoted row during each elimination stage.

Figure 6: The lSt Elimination Stage.

Figure 7: The Y d Elimination Stage.

We summarize the features of the proposed coinmunication algorithm below.

7

Figure 8: The 3'd Elimination Stage.

1. Given a hypercube of dimension d , each processor has d neighbors and the comniu-
nication algorithm executed at each elimination stage involves exactly d steps. At
each of the d steps, each processor in the hypercube exchanges a message of the same
length with a neighboring processor. Since the p / 2 exchanges at each step involve p / 2
distinct pairs of processors and use p / 2 separate communication channels, they can
occur simultaneously.

2. Each processor communicates with all of its d neighboring processors in exactly the
same order at every elimination stage. For example, in Figures 6 to 8, processor Po
always communicates with processors P4, then Pz, and lastly PI.

3. It is clear from our description of the algorithm and from Figures 6 to 8 that some
rows are redundantly updated by more than one processor concurrently. For example,
in Figure 6, when l = 3 row 1 is redundantly updated by processor P4, when l = 2
row 1 is redundantly updated by processors Pi, P4 and Ps.

The redundant computation allows us to use the same communication algorithm for
every elimination stage regardless of which processor owns the lowest numbered row.
For example, in Figure 7, among all the rows with row number i 2 2, the second row
of il is the lowest numbered row which needs to be modified last and the most number
of times. Although the lowest numbered row is now located in processor PI instead
of processor PO as in the first elimination stage, the same communication algorithm
combined with the redundant computation makes sure that row 2 is properly updated,
as are the other rows. In addition, the data each processor needs are always located
in its neighboring processor in the hypercube.

4. The proposed communication algorithm can be easily generalized for Algorithm I1
which we shall present in section 5.

5. Note that when k > n --- p + 1, the processors will run out of rows one by one.
Because the algorithm above requires all processors to participate in maintaining data
proximity in the remaining stages, a uniform treatment of all cases can be achieved
by simply assigning dummy data to processors who would otherwise finish earlier.

8

With this trick the algorithm we described for the kth elimination stage can remain
the same for 1 5 I; 5 n.

It is appropriate to point out that Algorithm I differs from the distributed Givens algo-
rithms proposed by Chamberlain and Powell [3] and Pothen et a1 [16,17] in the communica-
tion algorithm we employ for merging the local pivot rows. According to the timing results
t o be discussed in section 7, our idea of using otherwise idle processors to perform redun-
dant computation appears to be effective in keeping the communication algorithm simple,
efficient and versatile for use in a generalized version of Algorithm I and other algorithms.

4 Performance Analysis of Algorithm I

In this section we analyze the performance of Algorithm I in factoring an m x n matrix
using a hypercube of dimension d. Letting p denote the total number of processors, we
have p = 2d. For convenience we assume that m and n are integral multiples of p . In our
analysis we assume that the time required for a multiplicative floating-point operation is
r , and that the time required to transmit q floating-point numbers from one processor to
a neighboring processor is qX -+ p, where /3 is the start-up time for sending a, message and
X is the time needed to transmit a floating-point number across one link between adjacent
processors in the hypercube.

We shall compare the performance of Algorithm I with the sequential Givens algorithm,
for which the total arithmetic cost is given by

n

T,(m, n) = 47 C (m - k)(n - I ; + 1)

2n2(3m - n> 2 4

k= 1

r +- 2mnr - 271 T - -nr , -
I

3 3

when m 2 n, and

m

4r C (m -
k=l

I;)(. - k t 1)

2m2(3n - 4
"'7. - 2mnr + 2m2r - -mr , - -

3 3

when m 5 n.
Note that the wrap mapping of rows of the matrix to the p processors dictates that the

size of the largest submatrix in an individual processor is (r n l p) x (n - k t 1) for the bth
elimination stage when k: = 1,2 , . . , p , and (m/p- l)x (n-k+l) when b = p+l,p+2,. - e , 217,
and so on. When m 2 n, the arithmetic cost of Algorithm I is thus given by

n

+ 2r d(n - k t 1)
k=l

9

2mn - n2
r + n2dr - n2r + () T - 2n2(3m - n) -

3P

+ m P) ? (3)

where d = log, p. For each of the n elimination stages, d "nearest-neighbor" exchanges are
required, involving in the kth stage a row of size (n - k + 1). The communication cost is
therefore given by

k = l k = l

= 2ndP + (n2 + n) dX.

When m 5 n, we have

m

+ 2r d(n -- 5 + 1)
k = l

2m2(3n - m)
T + -- -

3P
m2 + -7 t O(mp)
P

and
m

(2mn - m2) d7 - (2mn - m2) r

m

?;,C(m, n,p) = /? 2d + X 2d(n - k + 1)
k=l k = l

= 2mdP + (2mn - m2 + m) d X .

When m = n, we can further simplify equations (3), (4), (5) and (6) as

T,A(n, " , P I = e (n , n , p)
4n3 n2

- - -r + n2 (log, p) T - n 2 r + -T t O(V)
3P P

(4)

and

T a n , P) = ffb, n, PI

= 2n (log, P) P t n2 (log, P) + R. (log, y) * (8)

Each processor does the same amount of arithmetic, the same number of sends and receives,
sends and receives the same amount of data using separate communication channels at every
step. Thus, the work load balance of this scheme is guaranteed. The wrap mapping of the
upper triangular or trapezoidal factor is also maintained.

Comparing the parallel time (27; + 7':) with the optimal time (T,/p) for the case

m 2: n, and (p t + 5??) with the optimal time (p 3 / p) for the case In 5 n, we conclude
that Algorithm I is optimal in its leading term.

10

5 Algorithm 11

Algorithm I1 exploits an ernbedding of a y1 x 72 rectangular grid within the hypercube.
The objective of this embedding is to map the processors to a grid so that the processors
in each column or each row of the grid form a subcube. If we let d = dl + d2, y1 = 2 d l ,
and yz = 2 d 2 , then this objective is achieved by requiring that the id’s of the processors in
the same row differ in only the right-most d2 bits, and that the id’s of the processors in the
same column differ in only the left-most d l bits. Note that the communicatjon algorithm
we shall propose requires only a subcube topology in each column and each row of the
grid. Therefore, the adjacent processors in the embedded y1 x 7 2 grid are not required to
be neighbors in the hypercube, and the embedding can be done by mapping processors to
the grid row by row or column by column following the natural order of their processor id.
Figure 9 displays a 4 x 4 grid consisting of 16 processors, and figure 10 displays an 8 x 4
grid consisting of 32 processors.

0000 0001 0010 0011 Po Pl p2 P3

1000 1001 1010 1011 ps p9 p10 p11

0100 0101 0110 0111 p 4 p 5 p6 p7

1100 1101 1110 1111 p12 p13 pl4 PlS

Figure 9: The embedding of a 4 x 4 grid in a hypercube.

00000
00100
01000
0 1100
10000
10100
11000
11100

0000 1
00101
01001
01101
10001
10101
11001
11101

00010
00110
01010
01110
10010
10110
11010
11110

0001 1
00111
01011
01111
1001 1
10111
11011
11111

P2

PlO

-p6

p14

J>lS

9 2 2

f30

p26

Figure 10: The embedding of an 8 x 4 grid in a hypercube.

From now on, we shall refer to the processor in the (i , j) position of the grid by P(i,j)
or by its id. We shall use P(i , *) to denote the subcube consisting of the processors assigned
to the i th row of the grid, and P (* , j) to denote the subcube consisting of the processors
assigned to the j t h column of the grid.

Algorithm I1 is based on the same Givens sequence employed in Algorithm I, In Algo-
rithm 11, the data mapping strategy can be understood as wrapping the rows of the rn x n
matrix around the y1 subcubes, namely P (l , *) , P(2,*) , e a - , and P(yl,*). Within each
subcube P(i ,*) , the elements of each allocated row are wrapped around the y2 processors
according to their column subscripts. Figure 11 illustrates this data mapping strategy for
a 16 x 16 matrix on a 4 x 4 processor grid.

1 3

p 2

Pl 0

9

5 0

p 2

PI 0

p6

pl 4

p6

pl 4

p6

p 2 ‘1 4

p6

pl 4
Pl 0

P Z

p10

9

Pl 0

p2

3 0

P Z

Pl 0

p6

9 4

p6

pl 4

p6

pl 4

p6

pl 4

4

4 0

P Z

Pl 0

P 2

6 0

P Z

Pl 0
PI 4

p6

p14

p6

4

p6

p1 4

p6

Figure 11: The wrap mapping of a 16 x 16 matrix to a 4 x 4 processor grid.

Algorithm I1 has n stages, each consisting of two phases. In the Independent Annihi-
lation Phase (IAP) of the kth elimination stage, each subcube P (i , +) independently anni-
hilates the nonzero elements below the main diagonal in the kth column using its lowest
numbered row as the local pivot row. The algorithm for the IAP requires no communication
between the processors in difkrent subcubes P(il ,*) and P(iz,*), where il # ia, whereas
the processors consisting of each subcube P(i , *) need to communicate among themselves
during the IAP. We assume in the example of this section that a 4 x 4 processor grid is
embedded in a hypercube. Figiire 12 displays the data assigned to the subcube P(l,+),
which is a submatrix consisting of rows 1, 5 , 9 and 13 of a 16 x 16 matrix A . Within the
subcube, the columns of the assigned submatrix are wrapped around the 72 processors of
P(l,+). Letting u ; , ~ denote the (i , j) element of matrix A , Figures 13-16 display the data
assigned to processors P(1, l), P(1,2), P(1,3) and P(1,4) respectively.

p3 \
X
X
X

X
X
X

X
X
X

X
X
x i

p3

p3

p3

Figure 12: The wrap mapping of the submatrix within subcube P(1, *).

12

a1,l a1,5 a1,9 a1,13

a5,l a5,5 a5,9 a5,13

a9,l a9,5 a9,9 a9,13

a13,l a13,5 a13,9 a13,13

Figure 13: Data assigned to processor Po.

I a1,2 a1,6 al,lO a1,14

a5,2 a5,6 %,lo a 5 , ~

a9,2 a9,6 a9JO a9,14

a13,2 a13,6 a13,lO a13,14

Figure 14: Data assigned to processor PI.

a1,3 a1,7 al,ll a1,15

a5,3 a5,7 a5,11 a5,15

a9,3 a9,7 U 9 , l l a9,1s
a13,3 &13,7 a13,ll a13,15

Figure 15: Data assigned to processor Pz.

a1,4 al,8 a1,12 &1,16

a5,4 a5,8 a5,12 a5,16

a9,4 a9,8 a9,12 a9,16

a13,4 a13,8 aL3,12 a13,16

Figure 16: Data assigned to processor P3.

13

To eliminate the nonzeros ~ 5 , 1 ag,l and a13,~ processor PO computes the multiplier
pairs { c p , ~ , s p , ~ } for p = 5’9’13 and updates the “local pivot element”, al , l , by the following
algorithm.

A message containing the “updated” a1,l and all of the computed multiplier pairs will
then be made available to every processor in the subcube P(1, *) using the following recur-
sive exchange algorithm. Recall that the id’s of processors in each subcube P(i ,*) differ
only in their right-most d~ bits. Suppose every processor has a message which must be made
available to every other processor in the subcube, the basic recursive exchange algorithm
works as follows.

e + d2
while 4 > 0 do

send (my message) to processor with i d different

receive a message
e + e - - 1

from my id in bit be-1.

To broadcast the multiplier pairs and the local pivot element to all processors within each
subcube P(i , *)’ we modify the basic recursive exchange algorithm in the following manner.
The processor who has the pivot column will compose a message consisting of the computed
multipliers and the local pivot element, whereas the other processors will simply prepare a
dumniy message, The modified algorithm works as follows.

14

+- d2

while l > 0 do
send (my message) to processor with i d different

receive a message
if (my message) is (dummy message)

!+ - ! -1

from my id in bit be-1.

(my message) e (received message)

Clearly the subcubes P(1, *), P(2, *), P (3 , *) and P(4, *) each perform essentially the same
IAP task with respect to their own data independently and simultaneously. Therefore,
after dz exchanges within each subcube, all processors will have the multipliers they need
to update the remaining elements indepcndently. The resulting matrix has at most y1 rows
with a nonzero in the k th column. For k = 1, Figure 17 illustrates the mapping of the y1
local pivot rows at the end of the IAF.

p5 p6 p7 p4 p5 p6 p7 p% p5 p6
p8 Pg PI0 PI1 PlO PI1 p8 p9 4 0 pll p 8 p!3 p10 pll
p12 p13 p14 plS p12 p13 P14 plS p12 p13 ‘14 p15 plZ p14 p15
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x
O X X X X X X X X X X X X X X X
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x
o x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x \ : x x x x x x x x x x x x x x x

Figure 17: End of tlie IRP during the first elimination stage.

The remaining off-diagonal nonzero elements in the first column can now be eliminated
by the 7 2 subcubes P(*, j) , j = 1,2, - , 7 2 , independently and simultaneously. Figure 18
displays tlie data to be affected in the subcube I) (* , 1) = {Po,P4,P8,P12).

X X X P O x x x g X X X P O x x x

P I 2 x x x PI2 x x x PI2 x x x P I 2 x x x
P8 X X X & X X x p s X X X P S X X X

0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x

(0 x x x x x x x x x x x x x x x

Figure 18: Data distribution in subcube P(*, 1).

Comparing Figure 18 with Figure 5, clearly the task to he performed by the subcube

15

P(4,l) is essentially Steps 2 through 9 of Algorithm I. Of course, the data now refers to
the submatrix in Figure 19, and the subcube P(*, 1) is of dimension d / 2 , and the id’s of
the processors in this subcube differ only in their left-most d / 2 bits. It is straightforward

al,l a1,5 a1,9 a1,13

a2,l a2,5 a2,9 a2,13

a3,l a3,5 a3,9 a3,13

a4,l a4,5 a4,9 a4,13

Figure 19: Data to be processed by subcube P(*, 1).

to modify Step 2 through 9 of Algorithm I to reflect these differences. Recall that during
the IRP, each updated local pivot element was sent to all processors in the respective
subcube together with the multipliers. When IC = 1, { u ~ , ~ , u ~ , ~ , u ~ , ~ , u4,1} are thus available
in subcube P(* , j) for all j. Figure 20 displays the data distribution in the subcube E‘(*, 2).
Note that each processor in the subcube P (* , 2) has one more element in addition to the
data originally assigned.

(P I P] X X X P 1 X X X P 1 X X X P l x x
Ps Ps x x x g X X X P , X X X P , x x
Pg P, x x x p g X X X P , X X X P , x x
Pi3 PIS x x x P13 x x X Pi3 x X X Pi3 x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x X X X X x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x x x x

\ o x x x x x x x x x x x x x x x

Figure 20: Data distribution in subcube P(*, 2) .

Comparing Figure 20 with Figure 5 , it is clear that the task to be performed by the sub-
cube P(*,2) is again essentially the same as described in Steps 2 through 9 of Algorithm I.
The data now refers to the matrix in Figure 21. Note that the elements { u l , l , ~ ~ , l , u 3 , 1 , u ~ , ~ }

I al,l a1,2 a1,6 al,lO a1,14

a2,1 a2,2 a2,6 a2,10 a2,14

a3,1 a3,2 a3,6 a3,10 a3,14

a4,l a4,2 a4,6 a4,lO a4,14

Figure 21: Data to be processed by subcube P(*,2) .

are needed in Step 4 to compute the multipliers. Therefore, the strategg of sending the “up-
dated” local pivot elements together with the multiplers in the IAP is the most economic

16

way to make these elements available to the respective processors. Similar arguments apply
to the subcubes P(*, 3) and P(*, 4).

Figure 22 displays the remaining elements of A after n - 72 elimination stages, where
p = 16 and y2 ;I: 4 in this example. Since (71 4- 7 2 - 2i - 1) more processors will become
idle a t the end of each of the last 72 elimination stages, where 0 5 i 5 (72 - l), the idle
time is proportional to the amount of work each processor is assigned for one stage. When
m = n and y1 = 72 , each processor has exactly one element to be zeroed or modified in
the last 7 2 elimination stages. The idle time thus remains constant regardless of the size
of the matrix. When m > n, 71 processors would become idle after each of the last y2
elimination stages. Because the elements remaining in each processor after n - y2 stages is
proportional to (m - n>/ r l , the idle time grows linearly with m for fixed 71 if (rn - n) >> n.
When m < n, because 72 processors would become idle following each of the last y1 stages,
the idle time grows linearly with n for fixed 7 2 if (n - m) >> m, As we shall see in the
next section, y1 and 7 2 are to be chosen according to the shape of the matrix so that
the performance of Algorithm TI is optimized. The possibility of choosing y1 and yz in
proportion to rn and n implies that the linear growth rate represents the worst case. Note
that in the actual implementation of Algorithm 11, the communication algorithms in both
IAP and CMP phases require all processors to participate regardless of whether there is
any computational work remaining for a particular processor. The idle time vve mentioned
above refers to the duration of time from the moment a processor has completely processed
the assigned data of matrix A to the moment the parallel program ends. Thus the time
such a processor spends working on dummy data is considered as idle time.

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x
X X X X X X X X X X x x x

x x x x x x x x x x x x
x x x x x x x x x x x

x x x x x x x x x x
x x x x x x x x x

x x x x x x x x
x x x x x x x

x x x x x x
x x x x x

~ x x x x x x x x x x x x x x x x

Po P I pz p3

P8 p9 9 0 PI1
p5 p6 p7

p12 p13 p14 p15

Figure 22: Data distribution for the last four elimination stages.

6 Performance Analysis of Algorithm I1

In this section we analyze the performance of Algorithm I1 in factoring an rn x n matrix
on a y1 x 7 2 grid embedded in a hypercube of dimension d , where d = d l + d2, y1 =
and 72 = 2d2. Letting p denote the total number of processors, we have p = yly2 = 2 d . As
before, we assume that m and n are integral multiples of p. The definitions for T , p and X
are as given in section 4.

17

6.1

When m 2 n, we first consider the case 71 2 7 2 . To analyze the total arithmetic cost
of Algorithm 11, let us consider the kth elimination stage. During the IAP phase, the y1
subcubes P(1, *), P(2, *), * ., P(y1, *) are performing essentially the same task on the y1
different submatrices independently and simultaneously. Within each subcube P (i , *) the
submatrix is further divided among the 7 2 processors consisting of the subcube. Letting
(y1/72) = a , the wrap mapping of rows and columns of the matrix to the processor grid
dictates that the size of the largest submatrix in an individual processor is (m/yl) x (n/yZ)
for k = 1,2,- . . ,72, (m/yl) x (n/y2 - 1) for k = 7 2 + l , 7 2 + 2,-.. ,272, - . e , and (rn/yl -
1) X (n/y2 - cy) for k = yi 1- 1, yi 4- 2, * . ,y1 + 7 2 , and so on. The total arithmetic cost for
the IAP is thus

The case m 2 n

2n2(3m - n) 2mn 71 + 7 2
.r+- - -

3P 71

2n2(3m - n) 2mn r - n2 (7) 71 + 7 2 r + - I -
3P 71

+ O (n) . (9)

Reca.11 the the multiplier pairs together with the updated local pivot element must be made
available to the 7 2 processors within each subcube P(i,*) using the recursive exchange
algorithm. The total communication cost for the IAP is thus given by

In the cooperative merging phase (CMP) following the IAP, the 71 processors in each
subcube P (* , j) , 1 5 j 5 7 2 , perform essentially Steps 2 through 9 of Algorithm I. When
k = 1, every processor applies a Givens rotation dl times to a row of size at most (n/y2 + I) ,
and exchanges a row of the same size with a neighboring processor dl times. Note that the
longest row in an individual processor is (n/72 + 1) for k = 1,2, . . - ,72, and (n/y2) for
k = 7 2 + l,y2 + 2,...,2y2, and so on. We thus have

18

and

The total arithmetic and communication costs for Algorithm I1 are thus given by

A T$ (m , n, 71 '72) = TIAP (m, n, 71 7 2) + T&fp (?1 ,71 ,72)

2n2(3m-- n) n2 2rnn

+ O(ndi) (13)

r + --IT + -7- - n2 - -
3P YZ Y1

and

G+,n,71,72) = TICAP(m,n,Yl,Yz) + T:MP(n,rl,Yz)
2mn - n2 n2

71 7 2
= 2nd/3+ d2A + -dlX + O (n d) . (14)

Since '7172 = p , the parallel time of Algorithm II can be expressed as a function of
m, n, y1 and p as given in equation (15).

Tzz (m, n, 71, P) = Ti+ (m, n, 71772) + Trcl (m, n, Yl,Y2)
2n2(3m - + 2mn - n2 n2

3P 71 7 2
d2X + -d1(T + A) I -

t- 2mnr - n2 (v) r + O(nd)

2n2(3m - 7 ~) 2mn - n2 n2

3Y 71 P

+- 2mn 71 r - n 2 (*) r + o (n l o g 2 p) .

Y1

r + (d - dl)X + --Y1d1(7 t A) - -

If 71 5 7 2 , T L P , TihfP and TgMP remain the same as given by eqiiations (lo) , (11)
and (12), whereas TtAP is now computed by equation (16), where we use Li: to denote r2/rl.

2n2(3m-- n) 2mn
7c- I -

3P 71

Comparing (16) with (91, we see that they diEer only in one of the low order terms.
Therefore, for m 2 n, we shall use (15) to compute TIS(nz, n, 71, p) for all values of 71. Note

19

that our analysis of the communication cost, as summarized by equation (14), indicates that
the total number of messages exchanged between each pair of processors is independent of
the choice of 71. Accordingly, the contribution of sturt-up time to the communication cost
of Algorithm I1 remains the same for all values of 71.

One objective of our analysis is to find the value of 71 which minimizes the cost of the
parallel algorithm. To find 71, we set

and obtain

= 0 , (17)

wherc a = l/(ln2).
and 5, the value of 71 which minimizes Tzz(m,n,yl,p) can

be obtained by finding the solution to f(p,yl,:,f) = 0, which is a nonlinear equation
in the variable yl. Since y1 must be an integral power of 2, we choose y1 = 2k for 0 5
k 5 log,p, with 2k as close as possible to the solution of f (p,yl, :, 5) = 0. Although
the “optimal” 71 chosen in this manner does not necessarily minimize Tll(rn,n,yl,p), the
numerical experiments t o be presented in Section 7 indicate that for each test problem, the
execution time of Algorithm I1 using the chosen y1 either achieves or is very close to the
actual minimum over all possible values of 71.

In order t o see how the optimal y1 varies with the ratio ./A, we list in Table 1 the
numerical solution to f (p , 71, E, f) = 0 for different values of T / A when p and m/n remain
fixed. The optimal y17s chosen based on these numerical solutions are displayed in Table 2.
From Tables 1 and 2 we observe that the optimal 71 appears to be very insensitive to the
ratio T / A .

Therefore, for fixed p ,

6.2

Similarly, when rn I: n, we have the cases 71 2 7 2 and y1 1. 7 2 . Although our derivation
below is for the case y1 5 7 2 , TtAp is different only in one of the low order terms when
y1 2 7 2 and FhP, ?gMp and ?gMp remain unchanged. We shall therefore use the following
formula for all values of 71. Letting (y ~ / y l) = 6 , we have

The case rn 5 n

20

1.0 15.34
1.5 20.69

1024 19.8 76.92

.I

Predicted Optimal 71
m r n I Different values of T / X b

ricd Solution to f (p , 71,2, i) = O
Different values of r/X

c I.

256 1.5 8 16 16 16 16 16 16 -.
256 19.8 32 32 64 64 64 64 64

1024 1.0 16 16 16 32 32 32 32

;A:, 1 ;:;I ~ ;:I; 1 10.01 1 10.19 I 10.39
23.79 24.78 27.96 30.13 30.54 31.00

10.85 11.06 11.30
9.64 10.38 12.67 14.19 14.47 14.79

32.87 34.62 40.24 44.08 44.81 45.63

1
1024
1024

9.89 I 10.78 I 13.50 I 15.29 I 15.62 1 18.54

I -~ _ - _ _
1.5 16 16 32 32 32 32 32

19.8 64 64 64 128 128 128 128

Table 1: Numerical Solution to f (p , yl,?, 5) = 0.

Table 2: Predicted Optimal 71 when m 2 n.

21

and

The total parallel arithmetic cost and communication cost are thus given by

and

+ 0 (m 1 0 R z P) - (23)

When rn 5 n, the parallel time of Algorithm I1 can again be expressed as a function of
m, n, 71, and p as given in equation (24) .

+ (m2 1:"") + 0 (m log, p)

T -t (2mnp- ' n 2) dly l (T + A)
- 2m2(3n - ,m)
-

3P

22

+ ?(T + (d - d l p j + (m2 az"") y i r
71

The value of y1 which minimizes ?;I (m, n , y l , p) can now be found by setting

from which we obtain

Similarly, for fixed p , and %, the value of 71 which minimizes p~~(rn, n7 y1 p) can be
obtained by finding the solution to f (p ,+y1,$,$) = 0. As before, y1 must be an integral
power of 2, and we choose it as close to the solution of equation (25) as possible.

In order to see how the optimal y1 varies with the relative speeds of computation and
communication, we list in Table 3 the niimericd solution to f (y, yl,?, f) = 0 for different
values of r / A when p and n/rn remain fixed. The optimal 71's chosen based on these
numerical solutions are displayed in Table 4. Again note that the optimal y1 i s quite
insensitive to the ratios of T to A.

23

r

Table 3: Numerical Solution to fl (p , 71,2, i) = 0.

Numerical Solution to f (p , y1, E, f) = 0
r n s n I Different values of T / X

Table 4: Predicted Optinial y1 when m 5 n.

24

Comparing the leading term of Tir(m, n,yl,p) with the leading term of T,(m, n) / p for
the case m 2 n, and from comparing the leading term of f;I(m, n, y1,p) with the leading
term of of f,(m, n) / p for the case m 5 n, it can be concluded that Algorithm 11 is optimal
in its leading term.

6.3 Analysis of Storage Requirements

According to our data mapping strategy for Algorithm IT, the rows and columns of a given
matrix are wrap-mapped to y1 and 7 2 processors respectively. Therefore, the processors
will run out of rows and/or columns one by one in the last 71 or 7 2 elimination stages.
As explained earlier, our communication algorithm requires all processors to participate
in maintaining data proximity in every stage. We thus adopted the strategy of assigriing
one more row of all zeros and one more column of all zeros to each processor. The largest
submatrix assigned to a processor is therefore 1: f 11 by 1% t 11. In addition to storing
the submatrix, each processor also needs buffer space for sending and receiving the multi-
pliers (in the IAP) and sending, receiving and saving the pivot row (in the CMP). There
are also integer overhead incurred by choosing particular data structures which facilitate a
clean implementation. Such overhead amounts to (2rn/yl t n/y2 + O (p)) more integers in
our implementation. In the analysis below we consider the total storage requirement on a
single processor as the sum of the primary storage for data and the overhead storage for
buffers, the extra zero row and column, and the integer overhead. The low order terms
which neither vary with m nor vary with n are ignored. The total storage is thus a fiinction
of n7, n, y1 and 72. Since 72 = p / y l , for a given rn x n matrix it is desirable to find the value
of y1 that minimizes the total storage. We assume that the space for storing an integer is
the same as the space for storing a floating-point number in the following aadysis.

Lemma 1 For any given m, n, and y = y1 X yz, the total storuge requirement of Algoritltm
I1 on each node processor is given by

n

P Y1 72 Y2

and
n

P 71 7 2 7 2
mn t Srn t 62 + 5, i f 2 (z + 1) 5 - + 1 .

Proof: As noted earlier, each processor is assigned a submatrix of size (rrr/yl + 1) x
(n/7z + 1). The buffer space for sending and receiving the multipliers is twice the size of
the largest set of multipliers, Le., 2 x 2 (m / y l 4 1). Similarly, the buffer space for sending
and receiving the pivot row is twice the row length of each submatrix, i.e., 2 x (n / y 2 -+ 1).
Since the buffer space for multipliers can be re-used for sending and receiving pivot rows,
it is sufficient to have enough storage for the larger one of thme two buffers. In addition to
the buffer space for sending and receiving the pivot row, in the CMP we need extra buffer
space of 2 x (n/yz + 1) floating-point numbers to save the pair of rows in case the updating
is delayed. Summing up the data storage, buffer storage and the integer overhead given
above we obtained the results in the lemma. 0

25

Theorem 2 For any given m, n and p , the storage requirement of Algorithm II is min-
imized by 71 = 2k, where k E [0, 10g2p] is chosen so that 71 is as close (IS possible to

Jz
Proof:
overlapped, we seek y1 to minimize

Assuming that the buffer space for the multipliers and the pivot row cannot be

n

P 71 72

mn m
S (m , n , y i , y z) = - + 7- t 6- t 7 .

Substituting 72 = p / y 1 , and setting

we obtain

0

Recall that the data of the coefficient matrix only require storage for m n / p floating-point
numbers per processor. Thus it is necessary to address the question of whether the overhead
storage is a significant fraction of the primary storage for the chosen 71. In Corollary 3,
we give the formula for computing the ratio of the overhead storage to the primary storage
mnlp when 71 = Jm.
Corollary 3 When y1 = d?, the ratio of the overhead storage to the primary storuge is
given by

and
n E L n (: 1 7 2

9.3 -+5---,if2 - - + 1 5 - t 1 .

Proof: Substituting y1 in Lemma 1 by ,/’- and 7 2 by p / y l , we obtain

and

The results in the corollary are obtained by computing

and

26

0

Since y1 is unlikely to be exactly equal to d w in practice, we computed the
actual overhead storage and compared with the results obtained from the formula given by
Corollary 3. Letting 7; denote the y1 chosen by Theorem 2, we list in Table 5 the values of
, / w j , yf and the predicted and actual ratio of overhead storage to primary storage
for a set of matrices. The two ratios given as the predicted percentages are obtained by
substituting 71 = d m in each of the two formulas given in Corollary 3. The actual
percentage given in the last column is computed by substituting the chosen rf into the
appropriate formula in Lemma 1.

Table 5: Predicted and Actual Overhead Storage.

For easy comparison, we give in Table 6 the value of 7; as well as the predicted optimal
y1 for the set of matrices listed in Table 5.

Different values of T / X
I 1000 I 10 I 5 I 1 10.2 10.1 I 0

Table 6: Predicted 7: and Predicted Optimal 71.

Corollary 3 implies that the overhead storage will be insignificant if 7 4 n are large and
p << min{nr, n}.

27

7 Numerical Experiments

Our experiments were performed on a 64-processor Intel iPSC Hypercube, and Algorithm
I1 was implemented in FORTRAN. Note that Algorithm I is a special case of Algorithm I1
when the two-dimensional processor grid is chosen to be of dimension p by I. The programs
were compiled using the Ryan-McFarland FORTRAN compiler. We provide timing results
for single-precision and double-precision implementations. The maximum run time over all
the node processors is reported as the parallel execution time for each test problem. Note
that the factoriLation time reported does not include the time for initialization and data
generation.

The execution times (in seconds) of the serial and parallel algorithms are denoted by
T, and T respectively, and as in previous sections, m and n denote the number of rows
and columns of each test matrix and y1 and 72 denote the number of processors along each
dimension of the two-dimensional grid embedded in the hypercube.

Our experiments were designed to measure speed-up, and demonstrate how the aspect
ratio of the processor grid affects the performance of Algorithm 11. We show that when the
predicted optimal aspect ratios are used, the execution time and the storage requirement
either coincide with or are very close to the actual minimum as the theory developed in
previous sections predicts.

7.1

Table 7 reports the serial time T, for each randomly generated test matrix. Note that when
- y l = 7 2 = 1, the two-dimensional processor grid degenerates to a single processor, and
Algorithm I1 involves only the independent annihilation phase (IAP) on a single processor.
Since inter-processor communication is not needed during the IAP, the code for the IAP
running on one node indeed implements the sequential Givens algorithm. We thus measure
T, by the execution time of the parallel code running on a 1 x 1 grid.

Due to the limited memory of 512 kbytes on a single node, the largest matrix we could
factor using one processor was about 200 by 200 in single precision or 150 by 150 in double
precision. In order to measure the speed-up and efficiency of the parallel algorithm, we
needed to estimate the serial factorization time of much larger matrices. For any square
matrix of dimension n, we approximated the factorization time using the formulae

The Measurement of Serial Time

~ , (n) E c1n3 + c2n2 + cgn + c4 , (26)

where c1, c2, c3 and c4 were obtained in the following manner. First note that by equating
T,(n) to the known execution times for n = 100,125,150,175 and 200 (for single-precision
implementation) or n == 50,75,100,125 and 150 (for double-precision implementation),
we obtain five equations and four unknowns. By finding the least-squares solution to the
overdetermined system of equations we obtain the coefficients { c ~ , c z , cg, c4). The estimated
Ts(71) are compared with the actual execution times in Table 8. Since the node processors
on the hypercube do not support multiprogramming, the execution times measured on a
node arc consistent and reproducible. This feature allows us to obtain accurate estimates
based on a relatively small set of samples.

The Sequential Givens Algorithm
Single Precision Double Precision

125
150
175
200

-
The Sequential Givens Algorithm I

Single Precision Double Precision
m n T', (sec) Estimated T, 7n n T, (sec) Estimated T,

100 100 67.500 67.500 sec 50 50 10.800 10.806 sec
125 125 130.465 130.467 sec 75 75 35.400 35.377 sec
150 150 223.890 223.887 sec 100 100 82.600 82.634 sec
175 175 353.760 353.762 sec 125 125 160.000 159.977 sec
200 200 526.095 526.095 sec 150 150 274.800 274.306 sec

90
120
135
160
240
60
80
90

120
160

-

125
150
175
200

60
80
90

120
160
90

120
135
160

1 240

-

-

130.465 75 75
223.890 100 100
353.760 125 125
526.095 150 150
26.830 60 40
62.010 90 60
87.550 120 80

174.600 135 90
477.510 160 120

25.300 40 60
59.300 60 90
84.200 80 120

170.600 90 135
467.000 120 160

35.400
82.600

160.000
274.800

10.100
32.640
75.700

107.020
213.905

9.360
30.995
72.800

103.310
209.510

Table 7: Execution Times of the Sequential Givens Algorithm.

29

7.2

In this section we present numerical experiments t o demonstrate the effect on the execution
time of Algorithm TI induced by varying the aspect ratio of the processor grid. Table 9
gives the timing results obtained from the single-precision implementation of Algorithm 11.
Table 10 gives the double-precision timing results. The minimum execution time for each
test matrix is marked by an asterisk (*).

Recall that for given m, n and p , the predicted optimal y1 varies for different values of
T / X . In Table 2 and Table 4 we computed the predicted values of the optimal 71 for the
ratios of T / A ranging from 0 (T << A) t o 1000 (T >> A). For easy comparison with the actual
optimal execution time T*, we let yf denote the smallest predicted optimal 71, yy denote
the largest predicted optimal 71, and label the execution time corresponding to yf or 7;" as
Tt or T,, respectively for each test matrix in Tables 9 and 10.

Some timing results are missing in the tables. In some cases, we did not obtain the
execution time because of storage limitation. In particular, the maximum number of bytes
that may be sent in a single message on the hypercube is 16K bytes (4000 single-precision or
2000 doi~ble-precision floating-point numbers) and this limit was exceeded for some choices
of y1 and 7 2 . In other cases, for the very large test problems whose factorization is very
expensive, we only provide the timing result for the optimal choice of y1 x 7 2 because the
effect of the shape of the grid on speed-up and efficiency has been well demonstrated on
smaller problems.

Since it may be equally important to minimize the storage requirement on each node
processor, it is desirable that 7; in Theorem 2 coincides with the choice of y1 which min-
imizes the execution time. In order to see how Algorithm I1 performs in this aspect, we
label the execution time Corresponding to 7; a s Tt for for each test matrix in Tables 9 and
10.

It is interesting to see that Tt, Te or 1; either coincide with or are very close to the
actual optimal T* for all test matrices in Tables 9 and 10. It is also worth noting that
by embedding an appropriate processor grid we not only minimize the storage usage and
communication/computation cost of the parallel algorithm, but also help balance the work
load and reduce processor idle time. The 1980 x 100 and 100 x 1980 matrices are examples
to demonstrate how a proper choice of y1 can reduce the processor idle time. Clearly the
choice of a I x 64 grid for the 1980 x 100 matrix is equivalent to wrapping the 100 columns
around the 64 processors where each processor is assigned one column or two columns. In
contrast, the choice of a 64 x 1 grid for the same matrix will assign 30 or 31 rows to each
processor. In the former case, because only 36 processors arc assigned two columns, starting
from the 37th elimination stage, the 64 processors will become idle one by one after each
following elimination stage. In the latter case, since only one row from the 30 rows or two
rows from the 31 rows could be the pivot rows, each processor has 29 to 31 rows of data
to process at each of the 100 elimination stages. The reduction of idle time is thus quite
significant while using a 64 x 1 grid for this example. A similar argument applies to the
100 x 1980 example.

Tables 11 and 12 report the estimated speed-up and efficiency for a set of test matrices.

The Effect of the Aspect Ratio of the Processor Grid

30

Table 9: Single-Precision Execution Times of Algorithm 11.

Table 10: Double-Precision Execution Times of Algorithm 11.

31

l ' he speed-up and efficiency are each computed using

Estimated T,
?'

speed-up = ?

and
speed- u p

P
ef iciency = 7

where p is the total number of processors employed, and p = y1 x 7 2 .

The Estimated Speed-up and Efficiency of Algorithm I1
Single Precision

p = 64, m = n = 1000
T, x 64,377 sec = 17 hr 52 Inin 57 sec

Table 11: Estimated Speed-up and Efficiency of Algorithm 11.

32

The Estimated Speed-up and Efficiency of Algorithm I1
Double Precision R

T, M 9,962 sec = 2 hr 46 min 2 sec
71 x 7 2 16 x 1 8 x 2 4 x 4 2 x 8 1 x 16
T (sec) 729 680 676.5* 702 779

ef ic iency 8G% 92% 92%* 89% 80%
speed- up 13.7 14.7 14.7" 14.2 12.8

p = 64, m = n -- 1000
Ts M 79,318 sec = 22 hr 1 min 58 sec

71x72 6 4 x 1 3 2 x 2 1 6 x 4 8 x 8 4 ~ 1 6 1 2 x 3 2 1 x 6 4
T (sec) 1858 1549 1423 1402* 1448 1 1586 1918
speed-up 42.7 51.2 55.7 56.6" 54.8 50.0 41.3
eficdency 67% SO% 87% 89%* 86% 78% 65%

p = 64, m = n = 1200

_ _ - .

T, 136,953 sec = 1 day 14 hr 2 min 33 sec
71x72 6 4 x 1 3 2 x 2 1 6 x 4 8 x 8 4 x 1 6 2 x 3 2 1 x 6 4
T (sec) 2357"
speed- up 58.1*

Table 12: Estimated Speed-up and Efficiency of Algorithm 11.

33

7.3 Further Enhancement

In [16] Pothen and Raghavan proposed a hybrid algorithm for performing orthogonal decom-
position of a rectangular matrix on local-memory multiprocessors. The hybrid algorithm
proposed in [16] can be viewed as a variant of Algorithm I. The difference lies in the follow-
ing two aspects. In the IAP the hybrid scheme uses Householder transformations instead
of Givens rotations to reduce the arithmetic cost. In the CMP the hybrid scheme used a
different communication scheme in merging the local pivot rows. Since Algorithm I is a

special case of Algorithm I1 when a p-by-1 grid is embedded in the hypercube, the strategy
of applying Householder transformations in the IAP can be used to reduce the arithmetic
cost of Algorithm I1 regardless of the choice of 71. Furthermore, when 72 > 1, the use of
Householder transformations during the IAP can also reduce the communication cost of
Algorithm I1 because there are only half as many multipliers to be communicated within
each subcube. In terms of message length, each message to be sent and received during the
IAP is reduced by a factor of 2 when Householder transformations are used.

AS far as our implementation of Algorithm I1 is concerned, the code for the IAP involves
one single subroutine implementing Givens rotations. Therefore, an enhanced version of
Algorithm I1 is immediately obtained by recoding this subroutine using IIouseholder trans-
formations. Note that our communication algorithms and the entire CMP of Algorithm I1
remain unchanged. In this section we report timing results of the enhanced Algorithm I1
and compare its performance with other schemes.

When y1 = 72 = 1, the enhanced Algorithm I1 involves only the IAP phase on one
node and thus implements the sequential IIouseholder algorithm. The serial time T, based
on IIouseholder algorithm is therefore measured by the execution time of the parallel code
running on a 1x1 grid.

Table 13 reports the execution times T, of the sequential Householder algorithm for
some randomly generated test matrices. We again estimated the serial factorization time
TS for large n-by-n matrices by choosing the coefficients for a cubic polynomial T,(n) as
explained earlier in this section. We compare the estimated T,(n) with the actual execution
times in Table 14.

In Table 15 and 16 we show that the aspect ratio of the processor grid has a similar
effect on the enhanced Algorithm 11. An analysis similar to the one in Section 6 can be done
in order to obtain reliable estimates for the best 71 to use in conjunction with the enhanced
version of algorithm 11. Tables 1 7 and 18 report the “estimated” speed-up and efficiency for
a set of test matrices.

34

The Sequentid Householder Algorithm
Single Precision II Double Precision

1
The Sequential IIouseholder Algorithm

Single Precision Double Precision
m n T, (sec) Estimated T, m n T, (sec) Estimated ‘r,

100 100 60.1 60.1 sec 50 50 9.2 9.2 sec
125 125 115.3 115.3 sec 75 75 29.3 29.3 sec
150 150 196.9 196.9 sec 100 100 67.5 67.5 sec
175 175 310.1 310.1 sec 125 125 129.6 129.6 sec
200 200 460.0 460.0 sec 150 150 221.4 221.4 sec

n

-

Table 13: Execution Times of the Sequential Householder Algorithm.

Table 15: Single-Precision Execution Times of the Enhanced Algorithm 11.

35

Table 16: Double-Precision Execution Times of the Enhanced Algorithm 11.

36

..
The Estimated Speed-up and Efficiency of

The Enhanced Algorithm TI
Single Precision

p = 64, rn = n = 1000

7 1 ~ ~ 2 6 4 x 1 3 2 x 2 1 6 x 4 8 x 8 4 x 1 6
T (sec) 1557 1215 1060 l o l l * 1017
speed-up 35.6 45.7 52.3 54.9* 54.5
eficiency 56% 71% 82% 86%" 85%

2 x 3 2 1 x 6 4
1084 1257
51.2 44.1
80% 697;

Table 17: Estimated Speed-up arid Efficiency of Algorithm 11.

I

YIXY:!
T (sec)
speed- up

- efficiency

6 4 x 1 3 2 x 2 1 6 x 4 8 x 8 4 x 1 6 2 x 3 2 1 x 6 4
4580*
59.3*
93%"

~ ~ ~

Table 18: Estimated Speed-up aid Efficiency of The Enhanced Algorithm TI.

-
The Estimated Speed-up and Efficiency of

The Enhanced Algorithm IT
Double I'recision

p = 16, m = n = 500
T, "N 7,873 sec = 2 hr 11 min 13 sec

37

71 x 7 2 1 6 x 1
T (sec) 653
specd-2tl, 12.1
eficiency 76%

8 x 2 4 x 4 2 x 8 1 x 16
572 542* 551 596
13.8 14.5" 14.3 13.2
86% 91%* 89% 83 %

~ 1 x 7 2 6 4 x 1
?'(set) 1819
speed-up 34.3
efficiency 54%

3 2 x 2 1 6 x 4 8 x 8 4 x 1 6 2 x 3 2 1 x 6 4
1399 1214 1138* 1148 1224 1424
44.6 51.4 54.9* 54.4 51.0 43.8
70% 80% 86%" 85% 80% ~ 67%

~ 1 x 7 2
T (sec)
speed- up
eficiency

6 4 x 1 3 2 x 2 1 6 x 4 8 x 8 4 x 1 6 2 x 3 2 1 x 6 4
1905*
56.5"
88%"

We next compare the performance of Algorithm I1 and the enhanced Algorithm I1
in Tables 19 and 20. Note that Algorithm I is the special case of Algorithm I1 when
the processor grid is chosen to be pby-1. Therefore, the enhanced version of Algorithm
I is a FORTRAN implementation (with a different communication scheme) of the hybrid
algorithm proposed in [16]. ln [16] Pothen and Raghavan implemented the hybrid algorithm
in the C language and compared its performance with four other schemes including one
based on the greedy Givens sequence. The latter can be viewed as a variant of Algorithm
I with a difrerent communication scheme.

The timing results listed in Table 19 indicate that the enhanced Algorithm I1 coupled
with the optimal choice of y1 has the fastest execution time. The possible improvement
in execution time by the hybrid scheme over Algorithm I can be seen by comparing the
data in column 1 with the data in column 2. Note that when m / p << n (e.g. p = 64, and
rn x n = 800 x 1200 or m x n = 100 x 1980), the hybrid scheme could become less efficient.
The factor contributing to the longer execution time of the hybrid scheme is that in this
case each submatrix to be reduced by Householder transformations has dimension (m/p) x n
and when (m / p) << n, the saving by Householder transformations is relatively small and is
less than the different overhead caused by employing Householder transformations instead
of Givens rotations. This is not likely to happen when 71 x 7 2 is chosen according to the
shape of the matrix as demonstrated by thc results for the Enhanced Algorithm I1 shown in
the same Table. The possible improvement by the enhanced Algorithm I1 over Algorithm I1
can be seen by comparing the data in column 3 with the data in column 4. As noted earlier,
when y2 = 1, the hybrid scheme has lower arithmetic cost but the same communication
cost compared to Algorithm I; when 7 2 > 1, the enhanced Algorithm I1 not only has lower
arithmetic cost but also has lower communication cost compared to Algorithni 11. This
observation is supported by the timing results in Table 19.

In Table 20 we list the storage requirement for each of the four schemes. The storage
requirement of the enhanced Algorithm I1 is either the minimum or different from the
minimum for less than 0.1%.

Finally, in view of the improvement in execution time and storage requirement by em-
ploying Householder transformations in the Independent Annihilation Phase of A 4 1 g ~ ~ ithm
11, the saving by reducing the length of each message in the IAP by a factor of 2 appears to
br quite significant. Thus, instead of employing Householder transformations in the 1,4P,
we might reduce the execution time and storage requirement of Algorithm I1 by simply stor-
ing the multiplier pair corresponding to each Givens rotation as a single real number using
the economical storage technique proposed by Stewart in [21]. At the cost of compressing
and retrieving the rotations, the parallel algorithm employing Givens rotations would have
the same communication cost and storage requirement as the one employing Householder
transformations in the IAP phase, and their performances would be comparable.

8 Conclusions

8.1 A Summary

In this paper we considered the problem of factoring a dense rectangular matrix on a hyper-
cube multiprocessor. The proposed algorithm involves the embedding of a two-dimensional

38

~~

Table 19: Comparing The Enhanced Algorithm TI with Other Schemes.

39

Storage Requirement (in 4-byte words)

64
64

1

800 1200 46788 46788 34216' 34242
100 1980 32 780--- 32780 8626 8592'

--__

40

grid in the hypercube network, and our analysis of the algorithm determines how the aspect
ratio of the embedded processor grid should be chosen in order to minimize the execution
time or storage usage. The algorithm was implemented in FORTRAN and tested on an
Intel iPSC hypercube with 64 processors. Our numerical experiments demonstrate the ef-
fect of the aspect ratio on the performance of the parallel algorithm and show that the
execution time or storage requirement using the predicted aspect ratio is very close to the
actual minimum for the test matrices

Another feature of the algorithm proposed in this article is that redundant computations
are incorporated in a communication scheme which takes full advantage of the hypercube
topology. With the proposed communication scheme the data are always exchanged be-
tween neighboring processors. Furthermore, because the exchanges at each step involve
distinct pairs of processors and employ separate communication channels, they can occur
simultaneously. The latter feature is important in reducing traffic congestion in the net-
work. It is expected that in future generations of hypcrcubes special hardware support may
achieve a situation where sending a message to a processor several hops away may not take
significantly longer than sending the message to a neighbor. Ilowever, the problem of traffic
congestion will still exist. The communication scheme we proposed in this paper provides
a solution to this problem.

The extensive experimental results presented in Section 7 also show that the proposed
algorithm can be efficiently implemented and various enhancements can be easily incoryo-
rated to further reduce the execution time and storagc requirement.

8.2 Further Work

Recall that when we applied Algorithm I1 to a dense square matrix, substantial saving in
execution time and storage usage were obtained by embedding a two-dimensional grid in
the hypercube network compared to employing the hypcrcube as a linear array. A natural
question to ask is whether Algorithm 11 can be adapted to parallelize other numerical
algorithms efficiently. In this section we give such an example by applying the ideas of
Algorithm I1 to parallelize Gaussian elimination with pairwise pivoting on a hypercube
multiprocessor. We briefly review the pairwise pivoting scheme and sketch how to adapt
Algorithm I1 for this task.

The method of Gaussian elimiiiatiori using triangularization by elementary stabilizcd
matrices constructed by pairwise pivoting is analyzed by Sorensen in [20]. It is shown that
a variant of this scheme which is suitable for implementation on n parallel computer is
numerically stable although the error bound is larger than the one for the standard partial
pivoting algorithm. The serid algorithm and its analysis are given in detail in [20]. For
our purpose, it is sufficient to note that the variant we are considering can be understood
as applying a 2 x 2 elementary matrix to each pair of rows in a fashion similar to applying
Givens rotations. Recall that in the Givens scheme, we apply the rotation of the following
form to a pair of rows to annihilate a leading nonzero element from one of the rows.

s = (-s c s) .

For Gaussian elimination with pairwise pivoting, this elementary 2 x 2 matrix will be of tbe

41

following form

where P is a 2 x 2 permutation. Therefore, to annihilate one element, only one row of data is
modified. The serial arithmetic cost is therefore one half of the Givens scheme. If the work
load is evenly distributed among the multiple processors, then the parallel arithmetic cost is
also one half of the p a r d e l Givens scheme. We can further improve the numerical stability
without any cost by performing partial pivoting whenever parallelism can be maintained.

Following our description of Algorithm I1 in Section 5, we shall have each processor
perform Gaussian elimination with “partial pivoting” in the IAP phase at each reduction
step. After that all of the processors can cooperate to perform Gaussian elimination with
”pairwise pivoting” in the CMP phase to eliminate the leading nonzeros in the local pivot
rows. Note that with the wrap mapping a balanced work load distribution can be maintained
throughout the entire elimination process as long as the kth row of A is reduced to the kth
row of the upper triangular factor [4]. Therefore, explicit permutations during the CAP at
the kth reduction step are needed only when the pair of rows involvm row k and row k is not
chosen as the pivot row. Whenever this happens, our communication scheme ensures that
both rows are present in the two processors involved. The explicit permutation can thus
be done at no extra cost by carefully delaying the actual modification until the very last
step. Another point worthy of noting is that there is no redundant computation involved
simply because the row to be further exchanged is not modified. The analysis of the parallel
scheme would be similar t o the performance analysis of Algorithm 11.

42

References

[I] II. M. AHMED, J. DELOSME, A N D M. MORF, Highly concurrent computing structures
for matrix arithmetic and signal processing, Computer, 15 (1982), pp. 65-82.

[2] A. BOJANCZYK, R. P. BRENT, A N D 11. T. K U N G , Numerically stable solution of
dense systems of linear equutions using mesh-connected pmessors , SIAM J. Sci. Stat.
Comput., 5 (1984), pp. 95-104.

[3] R. M. CHAMBERLAIN A N D M. J. D. POWELL, QR Factorization for Linear Lcnst
Squares Prublems on the I€ypercube, Tech. Rep. CCS 86/10, Dept. of Science and
Technology, Chr. Michelsen institute, Bergen, Norway, 1986.

[4] E. C. 13. CHIJ A N D J. A. GEORGE, Gaussian elimination with partial pivoting and
load bnlancing on a multiprocessor, Parallel Computing, 5 (1987), pp. 65-74.

[51 - , QR Factorization of a derase matrix on a shared-memory multip~.ocessor, Tech.
Rep. ORNLL/TM-10581, Mathematical Sciences Section, Oak Ridge National Labora-
tory, Oak Ridge, Tennessee 37831, October 1987.

[6] M. COSNARD, J. MULLER, A N D Y . ROBERT, Parallel QR Decomposition of n Rect-
angular Mutrix, NuIner. Math., 48 (1986), pp. 239 249.

[7] G . ,J. DAVIS, Column L U factor.ization with pivoting on a hypercube multiprocessor,
Tech. Rep. 6219, Mathematical Sciences Section, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831, 1985.

[8] J . J. DONGARRA, A. 11. SAMEH, A N D D. C. SORENSEN, Implementation of so~ne
concurrent algorithms for matrix factorization, Pasde l Computing, 3 (1985), pp. 25-
34.

[9] I,. ELDEN, A Parallel QR Decomposition Algorithm, Tech. Rep., Department of Sci-
entific Computing, Uppsala University, and Department of Mathematics, Linkoping
University, October 1987.

[lo] G. A. GEIST A N D M. T. HEATH, ParaZlel Cholesky factorization on a hypercube mul-
tiprocessor, Tech. Rep. ORNL-6211, Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee, 1985.

[ll] W. M. GENTLEMAN A N D €1. T. K U N G , Matrix triangularization by systolic arrup ,
in Real Time Signal Processing IV: SPIT;: Proceeding, Society of Photo-Optical Instru-
mentation Engineers, Bellingharn, WA, 1981, pp. 19-26.

[E] M. T. HEATH, Parallel Cholesky factorizution in niessage passirig multiprocessor envi-
ronments, Tech. Rep. ORNL-6150, Mathematical Sciences Section, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, 1985.

[13] R. E. LORD, J. S. ICOWACIK, AND S . P. KUMAR, Solving linear. algebraic equations
on an MIMD computer, J. Assoc. Comput. Mach., 30 (1953), pp. 103-117.

[14] F. T. LUK, A rotation method for computing the QB-decomposition, SIAM J. Sci. Stat.
Comput., 7 (1986), pp. 452-459.

[15] J. J. MODI A N D M. R. B. CLARKE, An Allernntive Givens Ordering, Numer. Math.,
43 (1984), pp. 83-90.

43

[I61 A . P o ' r H E N A N D P. RAGHAVAN, Distributed orthogonal factorization: Givens and
Householder algorithms, Tech. Rep., Department of Compiiter Science, The Pennsyl-
vania State University, University Park, PA 16802, July 1987.

[17] A . POTHEN, J. SOMESH, A N D U. VEMULAPATI, Orthogonal factorization on
a distributed memory multiprocessor, in Proc. Hypercube Multiprocessors 1987,
M. T. Heath, ed., SIAM, Philadelphia, PA, 1987, pp. 587-596.

[18] A. H. SAMEH A N D D. J. KUCK, On stable parallel linear system solvers, J. ACM, 25

~ 9 1 I___. , A parallel QR algorithm for symmetric tridingonal matrices, IEEE Trans. Com-

[20] D. C. SORENSEN, Analysis of pairwise pivoting in Gaussian elimination, Tech.

[21] G. W. S T E W A R T , The economical storage o fp lane rotations, Numer. Math., 25 (1976),

(1978), pp. 81-91.

puters., C-26 (1977), pp. 147-153.

Rep. ANL/MCS-TM-26, Argonne National Laboratory, Argonne, IL, February 1984.

pp. 137-138.

44

ORNL/TM- 106 9 1

INTERNAL DISTRIBUTION

1-5.
6.
7.
8.

9-13.
14.

17.
15-16.

18-22.
23-27.

28.
29.
30.
31.
32.

E. Chu
J. B. Drake
E. L. Frome
G. A. Geist
J. A. George
L. J. Gray
R. F. IIarbison
M. T. Heath
J. K. Ingersoll
F. C . Maienschein
T. J. Mitchell
J. L. Nave
E. G . Ng
G . Ostrouchov
C. H. Romine

33-37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.
41-50

R. C. Ward
D. G. Wilson
A . Zucker
J. J. Dorning (Consultant)
G. 11. Golub (Consultant)
R . M. ITaralick (Consultant)
D. Steiner (Consultant)
Cxntral Research Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library
Docu men t Reference Stat ion
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

51. Dr. Donald M. Austin, Office of Scientific Computing. Office of Energy Research,
ER-7. Germantown Building. U.S. Department of Energy. Washington, DC
20545

52. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon

53. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State

54. Dr. Chris Bischof. Department of Computer Science, Upson Hall, Cornel1

55. Prof. Ake Bjorck, Department of Mathematics, T,inkoping University, Linkoping

56. Dr. James C. Browne, Department of Computer Sciences, University of Texas,

57. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for

58. Dr. Donald A. Calahan. Department of Electrical and Computer Engineering.

59. Dr. Tony Chan. Department of Mathematics, University of California. 1-0s

60. Dr. Jagdish Chandra, Army Research Office, P.0. Box 12211, Research Triangle

61. Dr. Paul Concus. Mathematics and Computing, Lawrence Berkeley Laboratory,

Graduate Center. 19600 N.W. Walker Road, Reaverton, OR 97006

University, University Park. PA 16802

University, Ithaca. NY 14850

58183. Sweden

Austin, TX 78712

Atmospheric Research, P. 0. Box 3000, Boulder. CO 80307

University of Michigan, Ann Arbor, MI 48109

Angeles, 405 lfiilgard Avenue, Los Angeles, C,4 90024

Park, North Carolina 27709

Berkeley, CA 94720

45

62. Major James M. Crowley, Acting Director, Air Force Office of Scientific Research,
Building 410. Bolling Air Force Base. Washington. DC 20332

63. Dr. Jane K. Cullum. IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

64. Dr. George Cybenko. Department of Computer Science, Tufts University,
Medford, MA 02155

65. Dr. George J. Davis, Department of Mathematics, Georgia State University,
Atlanta, GA 30303

66. Dr. Jack J. Dongarra, Mathematics and Computer Science Division. Argonne
National Laboratory. 9700 South Cass Avenue, Argonne, 1L 60439

67. Dr. Iain Duff. CSS Division, Ilarwell Isaboratory. Didcot, Oxon OX11 ORA,
England

68. Professor Pat Eberlein Department of Computer Science. Suny/Buffalo, Buffalo,
NY 14260

69. Dr. Stanley Eisenstat. Departmmt of Computer Science, Yale University. P.O.
Box 2158 Yale Station, New Ilavm. CT 06520

70. Dr. Lars Elden. Department of Mathematics. Linkoping University, 581 83
Linkoping, Sweden

71. Dr. Howard C. Elman, Computer Science Department. University of Maryland,
College Park. hlD 20742

72. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West,
Tukwila, WA 98188

73. Dr. Peter Fenyes, General Motors Research l,aboratory, Department 15, GM
Technical Center, Warren, MI 4809-90

74. Professor David Fisher, Department of Jfathernatics, Harvey Mudd College,
Clareniont, CA 91711

75. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of
'Technology, Pasadena, CA 91125

76. Dr. Paul 0. Frederickson, Computing Division, T>os Alamos National Laboratory,
Los Alamos. NM 87545

77. Dr. Fred N. Fritsch, L-300. $lathematics a n d Statistics Division, Lawrence
Livermore National Laboratory, P.0. Box 808 . I.ivermore, CA 94550

78. Dr. Robert E. Funderlic. Department of Computer Science. North Carolina State
University, Raleigh, NC 27650

79. Dr. Dennis B. Gannon, Computer Science Department, Indiana University,
Hloomington, IN 47405

80. Dr. David M. Gay, Bell Laboratories. 600 Rlountain Avenue, Murray IIi11. NJ
07974

81. Dr. C . William Gear. Computer Science Department, University of Illinois.
Urbana, Illinois 61801

82. Dr. W. Morven Gentleman, Division of Electrical Engineering. National Research
Council, Building M-50, Room 344 . Montreal Road, Ottawa, Ontario, Canada
K1A OR8

46

83. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook

84. Prof. Gene W. Colub. Computer Science Building, UNIACS - 2321. University of

85. Dr. Joseph F. Grcar. Division 8331, Sandia National Laboratories, Livermore. CA

86. Dr. Don E. Heller, Physics and Computer Science Department, Shell

87. Dr. F. J. Helton. GA Technologies, P. 0. Box 81608. San Diego. CA 92188

88. Dr. Robert E. Huddleston. Computation Department. Lawrence Livermore

89. Dr. Ilse Ipsen. Department of Computer Science, Yale University, P.O. Box 2158

90. Dr. Harry Jordan, Department of Electrical and Computer Engineering,

91. Dr. Bo Kagstrom, Institute of Information Processing. University of Umea. 5-

92. Dr. Linda Kaufman, Bell Laboratories. 600 hlountain Avenue, Murray Hill. NJ

93. Dr. Robert J. Kee, Applied Mathematics Division 8331. Sandia National

94. Ms. Virginia Klema, Statistics Center. E40-131, MTT, Cambridge. MA 02139

95. Dr. Richard Lau, Office of Naval Research. 1030 E. Green Street, Pasadena, CA
91101

96. Dr. Alan J. Laub, Department of Electrical and Computer Engineering,
University of California, Santa Barbara. CA 931 06

97. Dr. Robert L. Lamer, Army Research Ofice. P.O. Rox 12211, Research Triangle
Park, North Carolina 27709

98. Dr. Charles Lawson, Applied Mat hematics Group. Jet Propulsion Laboratory,
California Institute of Technology, M/S 506-232, 4800 Oak Grove Drive,
Pasadena, CA 91103

99. Prof. Peter D. Lax, Director, Courant Jnstitute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, NY 10012

100. Dr. Michael R. Leuze, Computer Science Department. Box 1679 Station €3,
Vanderbilt University, Nashville, TN 37235

101. Dr. John G. Lewis, Boeing Computer Services. P. 0. Box 24346, M/S 7L-21,
Seattle, WA 98124-0346

102. Dr. Heather M. Liddell. Director. Center for Parallel Computing. Department of
Computer Science and Statistics. Queen Mary College. University of London,
Mile End Road, London E l 4NS. England

103. Dr. Joseph Liu, Department of Computer Science, York University. 4700 Keele

Drive, Reading, MA 01867

Maryland. College Park. MD 20742

94550

Development Co.. P.O. Box 481. Houston, TX 77001

National J,aboratory. P.O. Box 808. Livermore. CA 945.50

Yale Station, New Haven, CT 06520

University of Colorado, Boulder, CO 80303

901 87 Umea, SWEDEN

07974

Laboratories, Livermore, CA 94550

Street, Downsview, Ontario, Canada M3.I 1 P3

47

104. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca,

105. Dr. Thomas A. Manteuffel. Computing Division, Los Alamos National

106. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79,

107. Dr. Cleve Moler. Dana Computer. 550 Del Ray Avenue, Sunnyvale, CA 94086

108. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland,
College Park. MD 20742

109. Maj. C. E. Oliver, Ofice of the Chief Scientist, Air Force Weapons Laboratory,
Kirtland Air Force Base, Albuquerque, NM 871 15

110. Dr. James M. Ortega, Department of Applied Mathematics, University of
Virginia, Charlottesville. VA 22903

111. Prof. Chris Paige. Computer Science Department, 805 Sherbrooke Street, W.
Montreal, Quebec. CANADA H3A 2K6

112. Dr. John F. Palmer, NCUBE Corporation. 915 E. LaVieve Lane, Tempe, AZ
85284

113. Professor Roy P. Pargas. Department of Computer Science, Clemson University,
Clemson, SC 29634-1906

114. Prof. Beresford N. Parlett, Department of Mathematics, IJniversity of California,
Berkeley, CA 94720

115. Prof. Merrell Patrick, Department of Computer Science, Duke University,
Durham, NC 27706

116. Dr. Robert J. Plemmons. Departments of Mathematics and Computer Science,
North Carolina State University, Raleigh, NC 27650

117. Dr. John K. Reid, CSS Division. Building 8.9. AERF: Harwell, Didcot, Oxon,
England OX11 ORA

118. Dr. John R. Rice, Computer Science Department, Purdue University, West
Lafayette. IN 47907

119. Dr. Garry Rodrigue, Numerical Ma thematics Group, Lawrence Livermore
Laboratory. Livermore. CA 94550

120. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,
NC 27706

121. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois.
Urbana, IL 61801

122. Dr. Michael Saunders, Systems Optimization Laboratory. Operations Research
Department, Stanford University. Stanford, CA 94305

123. Dr. Robert Schreiber, Department of Computer Science. Rensselaer Polytechnic
Institute, Troy, NY 12180

124. Dr. Martin H. Schultz. Department of Computer Science, Yale University, P.O.
Box 2158 Yale Station, New Haven, CT 06520

125. Dr. David S. Scott, Intel Scientific Computers. 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

NY 14853

I.,aboratory. Los Alamos. NM 8 7545

Pasadena, CA 91125

48

126. Dr. Lawrence F. Shampine. Numerical Mathematics Division 5642. Sandia
National Laboratories, P.O. Box 5800 . Albuquerque, NM 87115

127. Dr. Danny C. Sorensen. Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South C a s Avenue, Argonne. IL 60439

128. Prof. 6. W. Stewart, Computer Science Department. University of Maryland,
College Park, MD 20742

129. Dr. Kosmo D. Tatalias, Atlantic Aerospace Electronics Corporation. 6404 Ivy
Lane, Suite 300, Greenbelt, MD 20770-1 406

130. Prof. Charles Van Loan, Department of Computer Science, Cornell University,

131. Dr. Robert G. Voigt. ICASE. MS 132-C. NASA 1,angley Research Center,

132. Dr. Andrew B. White, Computing Division. TAX Alamos National Laboratory.

133. Dr. Arthur Wouk. Army Research Office, P.O. Box 12211. Research Triangle

134. Dr. Margaret Wright, Operations Research J)epartment/SOL, Stanford

135. Office of Assistant Manager for Energy Research and Development, Department

Ithaca. NY 14853

Hampton, VA 23665

Los Alamos. NM 87545

Park, North Carolina 27709

University, Stanford. CA 94305

of Energy, Oak Ridge Operations Office. Oak Ridge. TN 37830

136-145. Technical Information Center

49

