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Abstract 

In this article we describe a new algorithm for computing the QR factorization of a 
rectangular matrix on a hypercube niultiprocessor. The scheme involves the embedding 
of a twc-dimensional grid in the hypercube network. We employ a global cornmunicatiori 
scheme which uses reduridant computation to maintain data proximity, and the mapping 
strategy is such that for a fixed number of processors the processor idle time is small 
and either constant or grows linearly with the dimension of the matrix. A complexity 
analysis tells us what the aspect ratio of the embedded grid should be in terms of 
the shape of the matrix and the relative speeds of communication and computation. 
Numerical experiments performed on an Intel Hypercube multiprocessor support the 
theoretical results. 

V 





1 Introduction 

In this article we present an algorithm for reducing an m x n matrix to  upper triangular 
form using orthogonal transformations on a hypercube multiprocessor. The scheme involves 
the embedding of a two-dimensional grid in the hypercube network. For easy exposition, 
we first describe a special case of the algorithm in order to  explain some basic strategies 
for data mapping and inter-processor communication on the hypercube. We refer to the 
special case as Algorithm I, and the general algorithm as Algorithm 11. Finally we propose 
further enhancement to  reduce both arithmetic and communication costs of Algorithm 11. 
This version of the algorithm will be referred to as the enhanced Algorithm 11. 

Algorithms I and I1 are based on Givens rotations. The use of Givens transforma- 
tions has been widely studied in the literature for parallel implementation on systolic ar- 
rays [I ,2,11,14,19], SIMD computers [18], shared-memory multiprocessors [5,6,8,13,15], and 
hypercube multiprocessors [3,9,16,17]. When m 1 n,  the mathematical computation we 
consider is usuallv formulated as 

where A is an m x n matrix with full column rank, Q is an rn x rn orthogonal matrix and 
R is an upper triangular matrix of order n. When m < n, we have 

Q A  = ( R S )  > 

where A is an m x n matrix with full row rank, Q is as defined above, R is an upper 
triangular matrix of order m, and S is an m x ( n  - m)  rectangular matrix. The matrix 
Q is formed as the product of Givens rotations such that the elements of A below the 
main diagonal are annihilated one at a time. Since there is much freedom in the order 
of applying the Givens rotations, the elements of A can be eliminated by many different 
orderings. The independent (or disjoint) rotations induced by a particular ordering can 
be computed simultaneously provided there are enough processors available. While the 
number of independent rotations increases with the problem size and changes during the 
factorization process, the number of processors on a parallel computer is fixed. Therefore, 
the independent rotations must be statically or dynamically allocated to the processors 
in some way. The choice of a different ordering and the particular strategy of assigning 
indcyendent rotations to processors give rise to different parallel algorithms. 

There are four parallel Givens algorithms proposed in [3,16,17]. They are all based on 
“Givens sequences” , which are sequences of Givens rotations where zeros once created are 
preserved. The two new parallel algorithms proposed in this paper can be viewed as dif- 
ferent implementations of a particular Givens sequence on the hypercube. Both algorithms 
take full advantage of the hypercube topology and require only nearest-neighbor. communica- 
tion. They differ from the algorithms in [3,16,17] in communication schemes, data mapping 
schemes, arithmetic/communication complexities, and work load distribution. 

2 Hypercube Multiprocessors 

There are 2d identical node processors in a hypercube multiprocessor of dimension d. Each 
processor is uniquely identified by a n  integer in {0,1,2, - - ,2d  - 1) .  If we represent each 
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processor id in the set {0,1,2,. - , 2d - 1) by a d-bit binary string, bd- lbd - z  - .  bo, then the 
hypercube network is constructed by physically connecting each pair of processors whose 
id’s differ in one single bit b;, 0 5 i 5 ( d  - 1). Figure 1 illustrates the binary hypercube 
topologies of dimension d = 1,2 and 3. 

d = l  d e 2  d - - 3  

Figure 1: Binary hypercubes of dimension 1, 2 and. 3. 

When the node processors on a local-memory multiprocessor cooperate with each other 
to  solve a problem, they need to  communicate data or synchronization information with 
each other by exchanging messages. Since the cost of communication increases with the 
number of messages, the length of each message, and the length of the path each message 
traverses, i t  is desirable to aim at reducing all of them in devising parallel algorithms. 

In this article we show how redundant computution can be incorporated into the com- 
munication algorithm to maintain data proximity so that all processors in the hypercube 
can simultaneously exchange data with their neighboring processors. This paradigm is used 
in both algorithms we present in this paper. In addition, we show in the second algorithm 
how the hypercube topology can be used to reduce the computational cost as well as the 
communication cost of a parallel algorithm. 

3 Algorithm 1 

The first algorithm we propose is based on the Givens sequence illustrated in Figure 2 by 
a 16 x 8 matrix. That is, the nonzero elements below the main diagonal of an 712-by-n 
matrix are eliminated column by column in the order indicated in Figure 2, where the (i, I C )  
entries to  he zeroed in the ICth  elimination stage are labelled by the integer I;. In the parallel 
algorithm, the p processors cooperate to annihilate the m - k nonzero elements in column 
k dinring the ICth elimination stage. If a Givens rotation is applied to  the ith row and the 
j t h  row to annihilate the leading nonzero a,,k in the j t h  row, then row i is referred to as the 
“pivot row”. 

As usual with parallel algorithms, we would like to achieve a balanced distribution of 
work load and a low volume of data movement and communication. A uniform work load 
distribution and a low communication cost contribute directly to the speed-up, which is the 
ultimate goal of a concurrent algorithm. 
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( x x x  x x  x x x 
l x x x x x x x  
1 2 x x x x x x  
1 2 3 x x x x x  
1 2 3 4 x x x x  
1 2 3 4 5 x x x  
1 2 3 4 5 6 x x  
1 2 3 4 5 6 7 ~  

1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  

1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  

( 1  2 3 4 5  6 7 8 

1 2 3 4 5 6 7 8  

1 2 3 4 5 6 7 8  

Figure 2: Column-by-column Givens Sequence. 

Since there is no globally shared memory in the hypercube, the data must be distributed 
among the processing nodes in some way, typically by rows if the computation is row- 
oriented, or by columns if the computation is column-oriented. In either case, there is a 
decision to be made concerning the way in which the rows or columns axe mapped onto 
the processors. For example, given an m-by-n matrix A and p processors Po, P I ,  P2, - - 7  

Pp- l ,  bZock-mapping may be used, where the first m / p  rows (or n i p  columns) are assigned 
to processor Po, the next m / p  rows (or n / p  columns) are assigned to  processor PI ,  and so 
on. Alternatively, wrup-mapping may be used, where consecutive rows (or columns) are 
assigned to  consecutive processors, with assignment “wrapping around” to processor Po 
after a row (or column) is assigned to processor Pp-1. 

Discussion about various mapping strategies for matrix computations can be found in 
[7,10,12]. For our purpose, it suffices to  observe that if block-mapping is used to assign rows 
or columns of A to the p processors, then processor Po will become idle when the first m / p  
rows or the first n / p  columns of A do not need to  be modified any more. The other p - 1 
processors could become idle one after another subsequently for the same reason. On the 
other hand, the rationale behind the wrap-mapping is to assign the data to  the p processors 
in such a manner that every processor will be doing approximately the same amount of 

computation and communication throughout the entire process except for the last p steps. 
Although the p processors will become idle one after another in the last p steps, the idle 
time so incurred will not be significant if the work involved for each of these p steps is only 
a tiny fraction of the total work. 

For Algorithm I, we allocate the m rows to the p processors using a wrap-mapping. 
Although wrap-mapping is not essential for the correctness of the algorithms we propose, it 
is important for efficiency because the latter depends very much on whether a balanced work 
load distribution can be maintained throughout the computing process. Figure 3 illustrates 
the wrap mapping of sixteen rows to four processors. 

For a given m x n matrix, Algorithm I has n stages, each stage consisting of nine steps. 
We first describe the steps for the kth stage. An example is used along the way to help 
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Po Po Po Po Po Po Po Po 
PI 1’1 PI Pl Pl PI PI Pl 
P2 P2 P2 P2 P2 F-2 P2 P2 
p3 P3 P3 p3 P3 P3 1’3 P3 
PO PO PO PQ PO PO PO PO 
PI Pl 1’1 Pl Pl Pl PI Pl 
P2 P2 P2 P2 E! P2 P2 P2 
P3 P3 A P3 P3 P3 P3 P3 

PI Pl Pl Pl PI PI Pl Pl 
P2 P2 P2 P2 P2 P2 P2 P2 
P3 P3 P3 P3 P3 P3 P3 P3 

Pl 1’1 PI Pl Pl Pl PI Pl 
P2 P2 P2 P2 P2 P2 P2 Pz 
P3 P3 P3 P3 P3 P3 1’3 P3 

PO PO PO PO PO PO Po Po 

PO PO PO PO PO PO PQ PQ 

Figure 3: Wrap mapping of 16 rows to 4 processors. 

explain each of the nine steps. After the details for the kth stage are given, we shall iise an 
example to  demonstrate how the entire algorithm works and summarize the features of the 
communication algorithm we propose. The kth stage of the algorithm can be understood as 
two  distinct phases, namely an Independent Annihilation Phase (IAP) and a Cooperative 
Merging Phase (CMP). Step 1 in the description below corresponds to  IAP, and Steps 2 to 
9 correspond to CMP. Note that ‘ ‘ b d - l b d - 2  - - .  bo” denotes the &bit binary representation 
of a processor id. 

S t e p  1 (IAP) Among all of the rows with row number i 2 k ,  each processor uses the lowest 
numbered row as the pivot row to eliminate all of the off-diagonal nonzero elements 
in the kth column of its remaining rows by Givens rotations. 

Using the example in Figure 3, the action of processor Po in the first elimination stage 
is illustrated in Figure 4. The leading nonzeros in rows 5, 9 and 13 are annihilated 
by applying Givens rotations sequentially to the three pairs of rows, namely {row 1, 
row 5}, {row 1, row 9} and {row 1, row 13). 

Figure 4: The action of .Po in the first elimination stage. 

Therefore, no communication is needed i n  the IAP. At the end of this step, every 
processor has one row with a nonzero in the kth  column. We shall refer to  this row 
as the “local pivot row”. The ( i , k )  nonzero entries in these local pivot rows (except 
for element ( k , k ) )  are to be annihilated at Steps 2 to 9 in the CMP. Figure 5 displays 
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the remaining nonzero elements at the end of Step 1 for a 16 x 8 example when p = 4 
and k = 1. The elements of each local pivot row are marked by its assigned processor 
Pi, 0 5 i 5 3. The entries (2, 1), ( 3 , l )  and (4,1> are to be zeroed in the CMP. 

I Po Po Po Po Po Po Po Po 
Pl Pl Pl Pl Pl Pl Pl A 
Pz P2 P2 P2 Pz P2 P2 P2 
P3 P3 P3 P3 P3 P3 P3 P3 

o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  
o x x x x x x x  

( 0  x x x x x x x 

Figure 5: The distribution of local pivot rows. 

Step 2 (CMP) f! t d ,  where d is the dimension of the hypercube. 

Step 3 (CMP) Every processor sends its current local pivot row to the processor whose id 
differs in bit €14-~. It also receives a row from the other processor. 

For the example in Figure 5 ,  when k = 1, f! I= d = 2, rows 1 and 3 are thereby made 
available to both PO and f2, and rows 2 and 4 are thereby made available to both Pl 
and P3 at the end of this step. We shall denote this pair of rows as ?Ipl,* and ? lP2 ,* ,  
where p1 and p 2  are their respective row numbers in the matrix A ,  and p1 < p2.  
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Step  4 (CMP) Each processor computes a Givens rotation to eliminate the element ZLpz,k 

by executing the following algorithm. 

If row pz is originally assigned to this processor, then row p1, row p2, c p z , k  and . s p z , k  

are saved so that row p2 can be updated in Step 9. 

For the given example, when k = 1 and l = d = 2, Pz saves row 1, row 3, ~ 3 , l  and 
~ 3 , 1 ,  and P3 saves row 2, row 4, ~ 4 , l  and ~ 4 , l .  

Step  5 (CMP) Each processor “updates” row p1 by executing the following algorithm. The 
updated row p1 becomes the “current” local pivot row. 

For the example in Figure 5 ,  when IC = 1 and ! = 2, row 1 is modified to become the 
current local pivot row in Po and PJ,  whereas row 2 is modified to  become the current 
local pivot row in PI and P3. Note that redundant computation is performed. 

S tep  6 (CMP) e+-- k? - 1. 

S tep  7 (CMP) If e > 1 then go to Step 3. 

Step  8 (CMP) Each processor sends its current local pivot row to the processor whose id 
differs in bit bo. 
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Step 9 (CMP) The processor which was originally assigned row k executes the algorithms 
given in Step 4 and 5 to update row k. Each other processor modifies the row originally 
assigned to it by executing the following algorithm. {Note that this row is either the 
higher numbered row currently received or the one saved at Step 4.) 

For the given example, when k = 1 and l = 1, processors Po, PI ,  Pz and P3 will 
modify respectively rows 1, 2, 3 and 4 simultaneously in this step. 

To demonstrate how Steps 2 to 9 in the CMP work in general, we trace the pair of rows 
( p 1 , p z )  for three elimination stages in Figures 6-8, where a hypercube of dimension 3 is 
employed. The rows to be finally updated in Step 9 are quoted in Figures 6-8. Note that 
each processor has exactly one quoted row during each elimination stage. 

Figure 6: The lSt Elimination Stage. 

Figure 7: The Y d  Elimination Stage. 

We summarize the features of the proposed coinmunication algorithm below. 
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Figure 8: The 3'd Elimination Stage. 

1. Given a hypercube of dimension d ,  each processor has d neighbors and the comniu- 
nication algorithm executed at each elimination stage involves exactly d steps. At 
each of the d steps, each processor in the hypercube exchanges a message of the same 
length with a neighboring processor. Since the p / 2  exchanges at  each step involve p / 2  
distinct pairs of processors and use p / 2  separate communication channels, they can 
occur simultaneously. 

2. Each processor communicates with all of its d neighboring processors in exactly the 
same order at every elimination stage. For example, in Figures 6 to  8, processor Po 
always communicates with processors P4, then Pz, and lastly PI. 

3. It is clear from our description of the algorithm and from Figures 6 to 8 that some 
rows are redundantly updated by more than one processor concurrently. For example, 
in Figure 6, when l = 3 row 1 is redundantly updated by processor P4, when l = 2 
row 1 is redundantly updated by processors Pi, P4 and Ps. 

The redundant computation allows us to use the same communication algorithm for 
every elimination stage regardless of which processor owns the lowest numbered row. 
For example, in Figure 7, among all the rows with row number i 2 2, the second row 
of il is the lowest numbered row which needs to be modified last and the most number 
of times. Although the lowest numbered row is now located in processor PI instead 
of processor PO as in the first elimination stage, the same communication algorithm 
combined with the redundant computation makes sure that row 2 is properly updated, 
as are the other rows. In addition, the data each processor needs are always located 
in its neighboring processor in the hypercube. 

4. The proposed communication algorithm can be easily generalized for Algorithm I1 
which we shall present in section 5.  

5. Note that when k > n --- p + 1, the processors will run out of rows one by one. 
Because the algorithm above requires all processors to participate in maintaining data 
proximity in the remaining stages, a uniform treatment of all cases can be achieved 
by simply assigning dummy data to  processors who would otherwise finish earlier. 
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With this trick the algorithm we described for the kth elimination stage can remain 
the same for 1 5 I;  5 n. 

It is appropriate to  point out that Algorithm I differs from the distributed Givens algo- 
rithms proposed by Chamberlain and Powell [3] and Pothen et a1 [16,17] in the communica- 
tion algorithm we employ for merging the local pivot rows. According to the timing results 
t o  be discussed in section 7, our idea of using otherwise idle processors to  perform redun- 
dant computation appears to be effective in keeping the communication algorithm simple, 
efficient and versatile for use in a generalized version of Algorithm I and other algorithms. 

4 Performance Analysis of Algorithm I 

In this section we analyze the performance of Algorithm I in factoring an m x n matrix 
using a hypercube of dimension d. Letting p denote the total number of processors, we 
have p = 2d.  For convenience we assume that m and n are integral multiples of p .  In our 
analysis we assume that the time required for a multiplicative floating-point operation is 
r ,  and that the time required to  transmit q floating-point numbers from one processor to 
a neighboring processor is qX -+ p, where /3 is the start-up time for sending a, message and 
X is the time needed to transmit a floating-point number across one link between adjacent 
processors in the hypercube. 

We shall compare the performance of Algorithm I with the sequential Givens algorithm, 
for which the total arithmetic cost is given by 

n 

T,(m, n)  = 47 C ( m  - k)(n - I ;  + 1) 

2n2(3m - n> 2 4  

k= 1 

r +- 2mnr - 271 T - -nr , - 
I 

3 3 

when m 2 n, and 

m 

4r C ( m  - 
k=l 

I;)( .  - k t 1) 

2m2(3n - 4 
"'7. - 2mnr + 2m2r - -mr , - - 

3 3 

when m 5 n. 
Note that the wrap mapping of rows of the matrix to the p processors dictates that the 

size of the largest submatrix in an individual processor is ( r n l p )  x (n  - k t 1) for the bth 
elimination stage when k: = 1,2 , .  . , p ,  and (m/p- l )x  (n-k+l) when b = p+l,p+2,. - e ,  217, 
and so on. When m 2 n, the arithmetic cost of Algorithm I is thus given by 

n 

+ 2r d(n - k t 1) 
k=l 
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2mn - n2 
r + n2dr - n2r + ( ) T - 2n2(3m - n) - 

3P 

+ m P )  ? (3) 

where d = log, p.  For each of the n elimination stages, d "nearest-neighbor" exchanges are 
required, involving in the kth stage a row of size ( n  - k + 1). The communication cost is 
therefore given by 

k = l  k = l  

= 2ndP + (n2  + n)  dX. 

When m 5 n, we have 

m 

+ 2r d(n -- 5 + 1) 
k = l  

2m2(3n - m )  
T +  -- - 

3P 
m2 + -7 t O(mp) 
P 

and 
m 

(2mn - m2) d7 - (2mn - m2) r 

m 

?;,C(m, n,p) = /? 2d + X 2d(n - k + 1) 
k=l  k = l  

= 2mdP + (2mn - m2 + m) d X .  

When m = n, we can further simplify equations (3), (4), ( 5 )  and (6) as 

T,A(n, " , P I  = e ( n ,  n , p )  
4n3 n2 

- - -r + n2 (log, p )  T - n 2 r  + -T t O(V) 
3P P 

(4) 

and 

T a n ,  P )  = ffb, n, PI 

= 2n (log, P) P t n2 (log, P )  + R. (log, y) * (8) 

Each processor does the same amount of arithmetic, the same number of sends and receives, 
sends and receives the same amount of data using separate communication channels at every 
step. Thus, the work load balance of this scheme is guaranteed. The wrap mapping of the 
upper triangular or trapezoidal factor is also maintained. 

Comparing the parallel time (27; + 7':) with the optimal time (T,/p) for the case 

m 2: n, and ( p t  + 5??) with the optimal time ( p 3 / p )  for the case In 5 n, we conclude 
that Algorithm I is optimal in its leading term. 
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5 Algorithm 11 

Algorithm I1 exploits an ernbedding of a y1 x 72 rectangular grid within the hypercube. 
The objective of this embedding is to  map the processors to a grid so that the processors 
in each column or each row of the grid form a subcube. If we let d = dl  + d2, y1 = 2 d l ,  
and yz = 2 d 2 ,  then this objective is achieved by requiring that the id’s of the processors in 
the same row differ in only the right-most d2 bits, and that the id’s of the processors in the 
same column differ in only the left-most d l  bits. Note that the communicatjon algorithm 
we shall propose requires only a subcube topology in each column and each row of the 
grid. Therefore, the adjacent processors in the embedded y1 x 7 2  grid are not required to  
be neighbors in the hypercube, and the embedding can be done by mapping processors to  
the grid row by row or column by column following the natural order of their processor id. 
Figure 9 displays a 4 x 4 grid consisting of 16 processors, and figure 10 displays an 8 x 4 
grid consisting of 32 processors. 

0000 0001 0010 0011 Po Pl p2 P3 

1000 1001 1010 1011 ps p9 p10 p11 

0100 0101 0110 0111 p 4  p 5  p6 p7 

1100 1101 1110 1111 p12 p13 pl4 PlS 

Figure 9: The embedding of a 4 x 4 grid in a hypercube. 

00000 
00100 
01000 
0 1100 
10000 
10100 
11000 
11100 

0000 1 
00101 
01001 
01101 
10001 
10101 
11001 
11101 

00010 
00110 
01010 
01110 
10010 
10110 
11010 
11110 

0001 1 
00111 
01011 
01111 
1001 1 
10111 
11011 
11111 

P2 

PlO 

-p6 

p14 

J>lS 

9 2 2  

f30 

p26 

Figure 10: The embedding of an 8 x 4 grid in a hypercube. 

From now on, we shall refer to the processor in the ( i , j )  position of the grid by P(i,j) 
or by its id. We shall use P( i ,  *) to  denote the subcube consisting of the processors assigned 
to the i th row of the grid, and P ( * , j )  to denote the subcube consisting of the processors 
assigned to the j t h  column of the grid. 

Algorithm I1 is based on the same Givens sequence employed in Algorithm I, In Algo- 
rithm 11, the data mapping strategy can be understood as wrapping the rows of the rn x n 
matrix around the y1 subcubes, namely P ( l , * ) ,  P(2,*) ,  e a - ,  and P(yl,*).  Within each 
subcube P(i ,*) ,  the elements of each allocated row are wrapped around the y2 processors 
according to their column subscripts. Figure 11 illustrates this data mapping strategy for 
a 16 x 16 matrix on a 4 x 4 processor grid. 
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p 2  

Pl 0 

9 

5 0  

p 2  

PI 0 

p6 

pl 4 

p6 

pl 4 

p6 

p 2  ‘1 4 

p6 

pl 4 
Pl 0 

P Z  

p10 

9 

Pl 0 

p2 

3 0  

P Z  

Pl 0 

p6 

9 4  

p6 

pl 4 

p6 

pl 4 

p6 

pl 4 

4 

4 0  

P Z  

Pl 0 

P 2  

6 0  

P Z  

Pl 0 
PI 4 

p6 

p14  

p6 

4 

p6 

p1 4 

p6 

Figure 11: The wrap mapping of a 16 x 16 matrix to  a 4 x 4 processor grid. 

Algorithm I1 has n stages, each consisting of two phases. In the Independent Annihi- 
lation Phase (IAP) of the kth elimination stage, each subcube P ( i ,  +) independently anni- 
hilates the nonzero elements below the main diagonal in the kth column using its lowest 
numbered row as the local pivot row. The algorithm for the IAP requires no communication 
between the processors in difkrent subcubes P(il ,*) and P(iz,*), where il # ia, whereas 
the processors consisting of each subcube P(i ,  *) need to communicate among themselves 
during the IAP. We assume in the example of this section that a 4 x 4 processor grid is 
embedded in a hypercube. Figiire 12 displays the data assigned to  the subcube P(l,+), 
which is a submatrix consisting of rows 1, 5 ,  9 and 13 of a 16 x 16 matrix A .  Within the 
subcube, the columns of the assigned submatrix are wrapped around the 72 processors of 
P(l,+). Letting u ; , ~  denote the ( i , j )  element of matrix A ,  Figures 13-16 display the data 
assigned to processors P(1, l), P(1,2), P(1,3) and P(1,4) respectively. 

p3 \ 
X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
x i  

p3 

p3 

p3 

Figure 12: The wrap mapping of the submatrix within subcube P(1, *). 
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a1,l a1,5 a1,9 a1,13 

a5,l a5,5 a5,9 a5,13 

a9,l a9,5 a9,9 a9,13 

a13,l a13,5 a13,9 a13,13 

Figure 13: Data assigned to processor Po. 

I a1,2 a1,6 al,lO a1,14 

a5,2 a5,6 %,lo a 5 , ~  

a9,2 a9,6 a9JO a9,14 

a13,2 a13,6 a13,lO a13,14 

Figure 14: Data assigned to processor PI. 

a1,3 a1,7 al,ll a1,15 

a5,3 a5,7 a5,11 a5,15 

a9,3 a9,7 U 9 , l l  a9,1s 
a13,3 &13,7 a13,ll a13,15 

Figure 15: Data assigned to processor Pz. 

a1,4 al,8 a1,12 &1,16 

a5,4 a5,8 a5,12 a5,16 

a9,4 a9,8 a9,12 a9,16 

a13,4 a13,8 aL3,12 a13,16 

Figure 16: Data assigned to processor P3. 
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To eliminate the nonzeros ~ 5 , 1  ag,l and a13,~ processor PO computes the multiplier 
pairs { c p , ~ , s p , ~ }  for p = 5’9’13 and updates the “local pivot element”, al , l ,  by the following 
algorithm. 

A message containing the “updated” a1,l and all of the computed multiplier pairs will 
then be made available to  every processor in the subcube P(1, *) using the following recur- 
sive exchange algorithm. Recall that the id’s of processors in each subcube P(i ,*)  differ 
only in their right-most d~ bits. Suppose every processor has a message which must be made 
available to every other processor in the subcube, the basic recursive exchange algorithm 
works as follows. 

e + d2 
while 4 > 0 do 

send (my message) to processor with i d  different 

receive a message 
e + e - - 1  

from my id in bit be-1. 

To broadcast the multiplier pairs and the local pivot element to all processors within each 
subcube P(i ,  *)’ we modify the basic recursive exchange algorithm in the following manner. 
The processor who has the pivot column will compose a message consisting of the computed 
multipliers and the local pivot element, whereas the other processors will simply prepare a 
dumniy message, The modified algorithm works as follows. 

14 



+- d2 

while l > 0 do 
send (my message) to  processor with i d  different 

receive a message 
if (my message) is (dummy message) 

!+ - ! -1  

from my id in bit be-1. 

(my message) e (received message) 

Clearly the subcubes P(1, *), P(2,  *), P ( 3 ,  *) and P(4, *) each perform essentially the same 
IAP task with respect to their own data independently and simultaneously. Therefore, 
after dz exchanges within each subcube, all processors will have the multipliers they need 
to update the remaining elements indepcndently. The resulting matrix has at most y1 rows 
with a nonzero in the k th  column. For k = 1, Figure 17 illustrates the mapping of the y1 
local pivot rows at the end of the IAF. 

p5 p6 p7 p4 p5 p6 p7 p% p5 p6 
p8 Pg PI0 PI1  PlO PI1 p8 p9 4 0  pll p 8  p!3 p10 pll 
p12 p13 p14 plS p12 p13 P14 plS p12 p13 ‘14 p15 plZ p14 p15 
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  
O X X X X X X X X X X X X X X X  
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  
o x x x x x x x x x x x x x x x  

x x x x x x x x x x x x x x x  \ :  x x x x x x x x x x x x x x x 

Figure 17: End of tlie IRP during the first elimination stage. 

The remaining off-diagonal nonzero elements in the first column can now be eliminated 
by the 7 2  subcubes P( *, j ) ,  j = 1,2, - , 7 2 ,  independently and simultaneously. Figure 18 
displays tlie data to be affected in the subcube I ) ( * ,  1) = {Po,P4,P8,P12). 

X X X P O  x x x g  X X X P O  x x x  

P I 2  x x x PI2 x x x PI2 x x x P I 2  x x x 
P8 X X X &  X X x p s  X X X P S  X X X  

0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  
0 x x x x  x x x x  x x x x  x x x  

( 0  x x x x  x x x x  x x x x  x x x  

Figure 18: Data distribution in subcube P(*, 1). 

Comparing Figure 18 with Figure 5, clearly the task to  he performed by the subcube 
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P(4,l) is essentially Steps 2 through 9 of Algorithm I. Of course, the data now refers to 
the submatrix in Figure 19, and the subcube P(*, 1) is of dimension d / 2 ,  and the id’s of 
the processors in this subcube differ only in their left-most d / 2  bits. It is straightforward 

al,l a1,5 a1,9 a1,13 

a2,l a2,5 a2,9 a2,13 

a3,l a3,5 a3,9 a3,13 

a4,l a4,5 a4,9 a4,13 

Figure 19: Data to be processed by subcube P(*,  1). 

to modify Step 2 through 9 of Algorithm I to  reflect these differences. Recall that during 
the IRP, each updated local pivot element was sent to all processors in the respective 
subcube together with the multipliers. When IC = 1, { u ~ , ~ , u ~ , ~ , u ~ , ~ ,  u4,1} are thus available 
in subcube P(* , j )  for all j. Figure 20 displays the data distribution in the subcube E‘(*, 2). 
Note that each processor in the subcube P ( * , 2 )  has one more element in addition to the 
data originally assigned. 

( P I  P] X X X P 1  X X X P 1  X X X P l  x x  
Ps Ps x x x g  X X X P ,  X X X P ,  x x  
Pg P, x x x p g  X X X P ,  X X X P ,  x x  
Pi3 PIS x x x P13 x x X Pi3 x X X Pi3 x x 
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  X X X X  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  
0 x x x x x  x x x x  x x x x  x x  

\ o  x x x x x  x x x x  x x x x  x x  

Figure 20: Data distribution in subcube P(*,  2 ) .  

Comparing Figure 20 with Figure 5 ,  it is clear that the task to  be performed by the sub- 
cube P(*,2)  is again essentially the same as described in Steps 2 through 9 of Algorithm I. 
The data now refers to the matrix in Figure 21. Note that the elements { u l , l , ~ ~ , l , u 3 , 1 ,  u ~ , ~ }  

I al,l a1,2 a1,6 al,lO a1,14 

a2,1 a2,2 a2,6 a2,10 a2,14 

a3,1 a3,2 a3,6 a3,10 a3,14 

a4,l a4,2 a4,6 a4,lO a4,14 

Figure 21: Data to be processed by subcube P(*,2) .  

are needed in Step 4 to compute the multipliers. Therefore, the strategg of sending the “up- 
dated” local pivot elements together with the multiplers in the IAP is the most economic 
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way to  make these elements available to  the respective processors. Similar arguments apply 
to the subcubes P(*, 3) and P(*, 4). 

Figure 22 displays the remaining elements of A after n - 72 elimination stages, where 
p = 16 and y2 ;I: 4 in this example. Since (71 4- 7 2  - 2i - 1) more processors will become 
idle a t  the end of each of the last 72 elimination stages, where 0 5 i 5 (72 - l), the idle 
time is proportional to the amount of work each processor is assigned for one stage. When 
m = n and y1 = 72 ,  each processor has exactly one element to be zeroed or modified in 
the last 7 2  elimination stages. The idle time thus remains constant regardless of the size 
of the matrix. When m > n, 71 processors would become idle after each of the last y2 
elimination stages. Because the elements remaining in each processor after n - y2 stages is 
proportional to  (m - n>/ r l ,  the idle time grows linearly with m for fixed 71 if (rn - n)  >> n. 
When m < n, because 72 processors would become idle following each of the last y1 stages, 
the idle time grows linearly with n for fixed 7 2  if (n - m) >> m, As we shall see in the 
next section, y1 and 7 2  are to be chosen according to  the shape of the matrix so that 
the performance of Algorithm TI is optimized. The possibility of choosing y1 and yz in 
proportion to  rn and n implies that the linear growth rate represents the worst case. Note 
that in the actual implementation of Algorithm 11, the communication algorithms in both 
IAP and CMP phases require all processors to participate regardless of whether there is 
any computational work remaining for a particular processor. The idle time vve mentioned 
above refers to  the duration of time from the moment a processor has completely processed 
the assigned data of matrix A to  the moment the parallel program ends. Thus the time 
such a processor spends working on dummy data is considered as idle time. 

x x x x x x x x x x x x  x x x 

x x x x x x x x x x x  x x x 
X X X X X X X X X X  x x x 

x x x x x x x x x  x x x 
x x x x x x x x  x x x 

x x x x x x x  x x x 
x x x x x x  x x x 

x x x x x  x x x 
x x x x  x x x 

x x x  x x x 
x x  x x x 

~ x x x x x x x x x x x x x  x x x 

Po P I  pz p3 

P8 p9 9 0  PI1 
p5 p6 p7 

p12 p13 p14 p15 

Figure 22: Data distribution for the last four elimination stages. 

6 Performance Analysis of Algorithm I1 

In this section we analyze the performance of Algorithm I1 in factoring an rn x n matrix 
on a y1 x 7 2  grid embedded in a hypercube of dimension d ,  where d = d l  + d2,  y1 = 
and 72 = 2d2.  Letting p denote the total number of processors, we have p = yly2 = 2 d .  As 
before, we assume that m and n are integral multiples of p.  The definitions for T ,  p and X 
are as given in section 4. 
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6.1 

When m 2 n, we first consider the case 71 2 7 2 .  To analyze the total arithmetic cost 
of Algorithm 11, let us consider the kth  elimination stage. During the IAP phase, the y1 
subcubes P(1, *), P(2, *), * ., P(y1, *) are performing essentially the same task on the y1 
different submatrices independently and simultaneously. Within each subcube P ( i ,  *) the 
submatrix is further divided among the 7 2  processors consisting of the subcube. Letting 
(y1/72) = a ,  the wrap mapping of rows and columns of the matrix to  the processor grid 
dictates that the size of the largest submatrix in an individual processor is (m/yl) x (n/yZ) 
for k = 1,2,- . . ,72,  (m/yl) x (n/y2 - 1) for k = 7 2  + l , 7 2  + 2,-.. ,272, - . e ,  and (rn/yl - 
1) X (n/y2 - cy) for k = yi 1- 1, yi 4- 2, * .  ,y1 + 7 2 ,  and so on. The total arithmetic cost for 
the IAP is thus 

The case m 2 n 

2n2(3m - n) 2mn 71 + 7 2  
.r+- - - 

3P 71 

2n2(3m - n )  2mn r - n2 (7) 71 + 7 2  r + -  I - 
3P 71 

+ O ( n ) .  (9) 

Reca.11 the the multiplier pairs together with the updated local pivot element must be made 
available to the 7 2  processors within each subcube P(i,*) using the recursive exchange 
algorithm. The total communication cost for the IAP is thus given by 

In the cooperative merging phase (CMP) following the IAP, the 71 processors in each 
subcube P ( * , j ) ,  1 5 j 5 7 2 ,  perform essentially Steps 2 through 9 of Algorithm I. When 
k = 1, every processor applies a Givens rotation dl times to a row of size at  most (n/y2 + I) ,  
and exchanges a row of the same size with a neighboring processor dl times. Note that the 
longest row in an individual processor is (n/72 + 1) for k = 1,2, . . - ,72,  and (n/y2) for 
k = 7 2  + l,y2 + 2,...,2y2, and so on. We thus have 
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and 

The total arithmetic and communication costs for Algorithm I1 are thus given by 

A T$ (m ,  n,  71 '72) = TIAP (m, n, 71 7 2 )  + T&fp (?1 ,71 ,72 )  

2n2(3m--  n)  n2 2rnn 

+ O(ndi) (13) 

r + --IT + -7- - n2 - - 
3P YZ Y1 

and 

G+,n,71,72) = TICAP(m,n,Yl,Yz) + T:MP(n,rl,Yz) 
2mn - n2 n2 

71 7 2  
= 2nd/3+ d2A + -dlX + O ( n d ) .  (14) 

Since '7172 = p ,  the parallel time of Algorithm II can be expressed as a function of 
m, n, y1 and p as given in equation (15). 

Tzz (m,  n, 71, P )  = Ti+ (m,  n, 71772)  + Trcl (m, n, Yl,Y2) 
2n2(3m - + 2mn - n2 n2 

3P 71 7 2  
d2X + -d1(T + A) I - 

t- 2mnr - n2 (v) r + O(nd)  

2n2(3m - 7 ~ )  2mn - n2 n2 

3Y 71 P 

+- 2mn 71 r - n 2 ( * ) r + o ( n l o g 2 p ) .  

Y1 

r +  (d - dl)X + --Y1d1(7 t A) - - 

If 71 5 7 2 ,  T L P ,  TihfP and TgMP remain the same as given by eqiiations ( lo) ,  (11) 
and (12), whereas TtAP is now computed by equation (16), where we use Li: to denote r2/rl. 

2n2(3m-- n) 2mn 
7c- I - 

3P 71 

Comparing (16) with (91, we see that they diEer only in one of the low order terms. 
Therefore, for m 2 n, we shall use (15) to compute TIS( nz, n, 71, p) for all values of 71. Note 
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that our analysis of the communication cost, as summarized by equation (14), indicates that 
the total number of messages exchanged between each pair of processors is independent of 
the choice of 71. Accordingly, the contribution of sturt-up time to the communication cost 
of Algorithm I1 remains the same for all values of 71. 

One objective of our analysis is to find the value of 71 which minimizes the cost of the 
parallel algorithm. To find 71, we set 

and obtain 

= 0 ,  (17) 

wherc a = l/(ln2). 
and 5, the value of 71 which minimizes Tzz(m,n,yl,p) can 

be obtained by finding the solution to f(p,yl,:,f) = 0, which is a nonlinear equation 
in the variable yl. Since y1 must be an integral power of 2, we choose y1 = 2k for 0 5 
k 5 log,p, with 2k as close as possible to the solution of f (p,yl, :, 5) = 0. Although 
the “optimal” 71 chosen in this manner does not necessarily minimize Tll(rn,n,yl,p), the 
numerical experiments t o  be presented in Section 7 indicate that for each test problem, the 
execution time of Algorithm I1 using the chosen y1 either achieves or is very close to the 
actual minimum over all possible values of 71. 

In order t o  see how the optimal y1 varies with the ratio ./A, we list in Table 1 the 
numerical solution to f ( p ,  71, E, f) = 0 for different values of T / A  when p and m/n remain 
fixed. The optimal y17s chosen based on these numerical solutions are displayed in Table 2. 
From Tables 1 and 2 we observe that the optimal 71 appears to be very insensitive to  the 
ratio T / A .  

Therefore, for fixed p ,  

6.2 

Similarly, when rn I: n, we have the cases 71 2 7 2  and y1 1. 7 2 .  Although our derivation 
below is for the case y1 5 7 2 ,  TtAp is different only in one of the low order terms when 
y1 2 7 2  and FhP, ?gMp and ?gMp remain unchanged. We shall therefore use the following 
formula for all values of 71. Letting ( y ~ / y l )  = 6 ,  we have 

The case rn 5 n 
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1.0 15.34 
1.5 20.69 

1024 19.8 76.92 

.I 

Predicted Optimal 71 
m r n  I Different values of T / X  b 

ricd Solution to f ( p ,  71,2, i) = O 
Different values of r/X 

c I. 

256 1.5 8 16 16 16 16 16 16 -. 
256 19.8 32 32 64 64 64 64 64 

1024 1.0 16 16 16 32 32 32 32 

;A:, 1 ;:;I ~ ;:I; 1 10.01 1 10.19 I 10.39 
23.79 24.78 27.96 30.13 30.54 31.00 

10.85 11.06 11.30 
9.64 10.38 12.67 14.19 14.47 14.79 

32.87 34.62 40.24 44.08 44.81 45.63 

1 
1024 
1024 

9.89 I 10.78 I 13.50 I 15.29 I 15.62 1 18.54 

I -~ _ -  _ _  
1.5 16 16 32 32 32 32 32 

19.8 64 64 64 128 128 128 128 

Table 1: Numerical Solution to f ( p ,  yl,?, 5) = 0. 

Table 2: Predicted Optimal 71 when m 2 n. 
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and 

The total parallel arithmetic cost and communication cost are thus given by 

and 

+ 0 ( m 1 0 R z P )  - (23) 

When rn 5 n, the parallel time of Algorithm I1 can again be expressed as a function of 
m, n,  71, and p as given in equation (24) .  

+ ( m2 1:"") + 0 ( m  log, p )  

T -t ( 2mnp- ' n 2 )  dly l (T  + A )  
- 2m2(3n - ,m) 
- 

3P 
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+ ?(T + (d - d l p j  + ( m2 az"") y i r  
71 

The value of y1 which minimizes ?;I (m,  n , y l , p )  can now be found by setting 

from which we obtain 

Similarly, for fixed p ,  and %, the value of 71 which minimizes p~~(rn, n7 y1 p )  can be 
obtained by finding the solution to f (p ,+y1,$ ,$)  = 0. As before, y1 must be an integral 
power of 2, and we choose it as close to the solution of equation (25) as possible. 

In order to  see how the optimal y1 varies with the relative speeds of computation and 
communication, we list in Table 3 the niimericd solution to f (y, yl,?,  f) = 0 for different 
values of r / A  when p and n/rn remain fixed. The optimal 71's chosen based on these 
numerical solutions are displayed in Table 4. Again note that the optimal y1 i s  quite 
insensitive to  the ratios of T to A. 
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r 

Table 3: Numerical Solution to fl ( p ,  71,2, i) = 0. 

Numerical Solution to f ( p ,  y1, E, f) = 0 
r n s n  I Different values of T / X  

Table 4: Predicted Optinial y1 when m 5 n. 
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Comparing the leading term of Tir(m, n,yl,p) with the leading term of T,(m, n ) / p  for 
the case m 2 n, and from comparing the leading term of f;I(m, n, y1,p) with the leading 
term of of f,(m, n ) / p  for the case m 5 n, it can be concluded that Algorithm 11 is optimal 
in its leading term. 

6.3 Analysis of Storage Requirements 

According to  our data mapping strategy for Algorithm IT, the rows and columns of a given 
matrix are wrap-mapped to  y1 and 7 2  processors respectively. Therefore, the processors 
will run out of rows and/or columns one by one in the last 71 or 7 2  elimination stages. 
As explained earlier, our communication algorithm requires all processors to participate 
in maintaining data proximity in every stage. We thus adopted the strategy of assigriing 
one more row of all zeros and one more column of all zeros to  each processor. The largest 
submatrix assigned to a processor is therefore 1: f 11 by 1% t 11. In addition to  storing 
the submatrix, each processor also needs buffer space for sending and receiving the multi- 
pliers (in the IAP) and sending, receiving and saving the pivot row (in the CMP). There 
are also integer overhead incurred by choosing particular data structures which facilitate a 
clean implementation. Such overhead amounts to  (2rn/yl t n/y2 + O ( p ) )  more integers in  
our implementation. In the analysis below we consider the total storage requirement on a 
single processor as the sum of the primary storage for data and the overhead storage for 
buffers, the extra zero row and column, and the integer overhead. The low order terms 
which neither vary with m nor vary with n are ignored. The total storage is thus a fiinction 
of n7, n, y1 and 72. Since 72 = p / y l ,  for a given rn x n matrix it is desirable to find the value 
of y1 that minimizes the total storage. We assume that the space for storing an integer is 
the same as the space for storing a floating-point number in the following aadysis. 

Lemma 1 For any given m, n, and y = y1 X yz, the total storuge requirement of Algoritltm 
I1 on each node processor is given by 

n 

P Y1 72 Y2 

and 
n 

P 71 7 2  7 2  
mn t Srn  t 62 + 5, i f 2  (z  + 1) 5 - + 1 .  

Proof: As noted earlier, each processor is assigned a submatrix of size (rrr/yl + 1) x 
(n/7z + 1). The buffer space for sending and receiving the multipliers is twice the size of 
the largest set of multipliers, Le., 2 x 2 ( m / y l  4 1). Similarly, the buffer space for sending 
and receiving the pivot row is twice the row length of each submatrix, i.e., 2 x ( n / y 2  -+ 1). 
Since the buffer space for multipliers can be re-used for sending and receiving pivot rows, 
it is sufficient to have enough storage for the larger one of thme two buffers. In addition to 
the buffer space for sending and receiving the pivot row, in the CMP we need extra buffer 
space of 2 x (n/yz + 1) floating-point numbers to save the pair of rows in case the updating 
is delayed. Summing up the data storage, buffer storage and the integer overhead given 
above we obtained the results in the lemma. 0 
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Theorem 2 For any given m, n and p ,  the storage requirement of Algorithm II is min- 
imized by  71 = 2k, where k E [0, 10g2p] is chosen so that 71 is as close (IS possible to 

Jz 
Proof: 
overlapped, we seek y1 to  minimize 

Assuming that the buffer space for the multipliers and the pivot row cannot be 

n 

P 71 72 

mn m 
S ( m , n , y i , y z )  = - + 7- t 6- t 7 .  

Substituting 72 = p / y 1 ,  and setting 

we obtain 

0 

Recall that the data of the coefficient matrix only require storage for m n / p  floating-point 
numbers per processor. Thus it is necessary to address the question of whether the overhead 
storage is a significant fraction of the primary storage for the chosen 71. In Corollary 3, 
we give the formula for computing the ratio of the overhead storage to  the primary storage 
mnlp when 71 = Jm. 
Corollary 3 When y1 = d?, the ratio of the overhead storage to the primary storuge is 
given by 

and 
n E L n  (: 1 7 2  

9.3 -+5---,if2 - - + 1  5 - t 1 .  

Proof: Substituting y1 in Lemma 1 by ,/’- and 7 2  by p / y l ,  we obtain 

and 

The results in the corollary are obtained by computing 

and 
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0 

Since y1 is unlikely to be exactly equal to  d w  in practice, we computed the 
actual overhead storage and compared with the results obtained from the formula given by 
Corollary 3. Letting 7; denote the y1 chosen by Theorem 2, we list in Table 5 the values of 
, / w j ,  yf and the predicted and actual ratio of overhead storage to  primary storage 
for a set of matrices. The two ratios given as the predicted percentages are obtained by 
substituting 71 = d m  in each of the two formulas given in Corollary 3. The actual 
percentage given in the last column is computed by substituting the chosen rf into the 
appropriate formula in Lemma 1. 

Table 5:  Predicted and Actual Overhead Storage. 

For easy comparison, we give in Table 6 the value of 7;  as well as the predicted optimal 
y1 for the set of matrices listed in Table 5. 

Different values of T / X  
I 1000 I 10 I 5 I 1 10.2 10.1 I 0 

Table 6: Predicted 7:  and Predicted Optimal 71. 

Corollary 3 implies that the overhead storage will be insignificant if 7 4  n are large and 
p << min{nr, n}. 
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7 Numerical Experiments 

Our experiments were performed on a 64-processor Intel iPSC Hypercube, and Algorithm 
I1 was implemented in FORTRAN. Note that Algorithm I is a special case of Algorithm I1 
when the two-dimensional processor grid is chosen to be of dimension p by I. The programs 
were compiled using the Ryan-McFarland FORTRAN compiler. We provide timing results 
for single-precision and double-precision implementations. The maximum run time over all 
the node processors is reported as the parallel execution time for each test problem. Note 
that the factoriLation time reported does not include the time for initialization and data 
generation. 

The execution times (in seconds) of the serial and parallel algorithms are denoted by 
T, and T respectively, and as in previous sections, m and n denote the number of rows 
and columns of each test matrix and y1 and 72 denote the number of processors along each 
dimension of the two-dimensional grid embedded in the hypercube. 

Our experiments were designed to measure speed-up, and demonstrate how the aspect 
ratio of the processor grid affects the performance of Algorithm 11. We show that when the 
predicted optimal aspect ratios are used, the execution time and the storage requirement 
either coincide with or are very close to the actual minimum as the theory developed in 
previous sections predicts. 

7.1 

Table 7 reports the serial time T, for each randomly generated test matrix. Note that when 
- y l  = 7 2  = 1, the two-dimensional processor grid degenerates to a single processor, and 
Algorithm I1 involves only the independent annihilation phase (IAP) on a single processor. 
Since inter-processor communication is not needed during the IAP, the code for the IAP 
running on one node indeed implements the sequential Givens algorithm. We thus measure 
T, by the execution time of the parallel code running on a 1 x 1 grid. 

Due to the limited memory of 512 kbytes on a single node, the largest matrix we could 
factor using one processor was about 200 by 200 in single precision or 150 by 150 in double 
precision. In order to  measure the speed-up and efficiency of the parallel algorithm, we 
needed to estimate the serial factorization time of much larger matrices. For any square 
matrix of dimension n,  we approximated the factorization time using the formulae 

The Measurement of Serial Time 

~ , ( n )  E c1n3 + c2n2 + cgn + c4 , (26) 

where c1, c2, c3 and c4 were obtained in the following manner. First note that by equating 
T,(n) to  the known execution times for n = 100,125,150,175 and 200 (for single-precision 
implementation) or n == 50,75,100,125 and 150 (for double-precision implementation), 
we obtain five equations and four unknowns. By finding the least-squares solution to the 
overdetermined system of equations we obtain the coefficients { c ~ , c z ,  cg, c4). The estimated 
Ts(71) are compared with the actual execution times in Table 8. Since the node processors 
on the hypercube do not support multiprogramming, the execution times measured on a 
node arc consistent and reproducible. This feature allows us to obtain accurate estimates 
based on a relatively small set of samples. 



The Sequential Givens Algorithm 
Single Precision Double Precision 

125 
150 
175 
200 

- 
The Sequential Givens Algorithm I 

Single Precision Double Precision 
m n T', (sec) Estimated T, 7n n T, (sec) Estimated T, 

100 100 67.500 67.500 sec 50 50 10.800 10.806 sec 
125 125 130.465 130.467 sec 75 75 35.400 35.377 sec 
150 150 223.890 223.887 sec 100 100 82.600 82.634 sec 
175 175 353.760 353.762 sec 125 125 160.000 159.977 sec 
200 200 526.095 526.095 sec 150 150 274.800 274.306 sec 

90 
120 
135 
160 
240 
60 
80 
90 

120 
160 

- 

125 
150 
175 
200 

60 
80 
90 

120 
160 
90 

120 
135 
160 

1 240 

- 

- 

130.465 75 75 
223.890 100 100 
353.760 125 125 
526.095 150 150 
26.830 60 40 
62.010 90 60 
87.550 120 80 

174.600 135 90 
477.510 160 120 

25.300 40 60 
59.300 60 90 
84.200 80 120 

170.600 90 135 
467.000 120 160 

35.400 
82.600 

160.000 
274.800 

10.100 
32.640 
75.700 

107.020 
213.905 

9.360 
30.995 
72.800 

103.310 
209.510 

Table 7: Execution Times of the Sequential Givens Algorithm. 
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7.2 

In this section we present numerical experiments t o  demonstrate the effect on the execution 
time of Algorithm TI induced by varying the aspect ratio of the processor grid. Table 9 
gives the timing results obtained from the single-precision implementation of Algorithm 11. 
Table 10 gives the double-precision timing results. The minimum execution time for each 
test matrix is marked by an asterisk (*). 

Recall that for given m, n and p ,  the predicted optimal y1 varies for different values of 
T / X .  In Table 2 and Table 4 we computed the predicted values of the optimal 71 for the 
ratios of T / A  ranging from 0 (T << A) t o  1000 (T >> A). For easy comparison with the actual 
optimal execution time T*,  we let yf denote the smallest predicted optimal 71, yy denote 
the largest predicted optimal 71, and label the execution time corresponding to  yf or 7;" as 
Tt or T,, respectively for each test matrix in Tables 9 and 10. 

Some timing results are missing in the tables. In some cases, we did not obtain the 
execution time because of storage limitation. In particular, the maximum number of bytes 
that may be sent in a single message on the hypercube is 16K bytes (4000 single-precision or 
2000 doi~ble-precision floating-point numbers) and this limit was exceeded for some choices 
of y1 and 7 2 .  In other cases, for the very large test problems whose factorization is very 
expensive, we only provide the timing result for the optimal choice of y1 x 7 2  because the 
effect of the shape of the grid on speed-up and efficiency has been well demonstrated on 
smaller problems. 

Since it may be equally important to minimize the storage requirement on each node 
processor, it is desirable that 7; in Theorem 2 coincides with the choice of y1 which min- 
imizes the execution time. In order to see how Algorithm I1 performs in this aspect, we 
label the execution time Corresponding to 7; a s  Tt for for each test matrix in Tables 9 and 
10. 

It is interesting to  see that Tt, Te or 1; either coincide with or are very close to  the 
actual optimal T* for all test matrices in Tables 9 and 10. It is also worth noting that 
by embedding an appropriate processor grid we not only minimize the storage usage and 
communication/computation cost of the parallel algorithm, but also help balance the work 
load and reduce processor idle time. The 1980 x 100 and 100 x 1980 matrices are examples 
to demonstrate how a proper choice of y1 can reduce the processor idle time. Clearly the 
choice of a I x 64 grid for the 1980 x 100 matrix is equivalent to wrapping the 100 columns 
around the 64 processors where each processor is assigned one column or two columns. In 
contrast, the choice of a 64 x 1 grid for the same matrix will assign 30 or 31 rows to  each 
processor. In the former case, because only 36 processors arc assigned two columns, starting 
from the 37th elimination stage, the 64 processors will become idle one by one after each 
following elimination stage. In the latter case, since only one row from the 30 rows or two 
rows from the 31 rows could be the pivot rows, each processor has 29 to 31 rows of data 
to process at each of the 100 elimination stages. The reduction of idle time is thus quite 
significant while using a 64 x 1 grid for this example. A similar argument applies to the 
100 x 1980 example. 

Tables 11 and 12 report the estimated speed-up and efficiency for a set of test matrices. 

The Effect of the Aspect Ratio of the Processor Grid 
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Table 9: Single-Precision Execution Times of Algorithm 11. 

Table 10: Double-Precision Execution Times of Algorithm 11. 
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l ' he  speed-up and efficiency are each computed using 

Estimated T, 
?' 

speed-up = ? 

and 
speed- u p  

P 
ef iciency = 7 

where p is the total number of processors employed, and p = y1 x 7 2 .  

The Estimated Speed-up and Efficiency of Algorithm I1 
Single Precision 

p = 64, m = n = 1000 
T, x 64,377 sec = 17 hr 52 Inin 57 sec 

Table 11: Estimated Speed-up and Efficiency of Algorithm 11. 

32 



The Estimated Speed-up and Efficiency of Algorithm I1 
Double Precision R 

T, M 9,962 sec = 2 hr 46 min 2 sec 
71 x 7 2  16 x 1 8 x 2  4 x 4  2 x 8  1 x 16 
T (sec) 729 680 676.5* 702 779 

ef ic iency 8G% 92% 92%* 89% 80% 
speed- up 13.7 14.7 14.7" 14.2 12.8 

p = 64, m = n -- 1000 
Ts M 79,318 sec = 22 hr 1 min 58 sec 

71x72 6 4 x 1  3 2 x 2  1 6 x 4  8 x 8  4 ~ 1 6 1 2 x 3 2  1 x 6 4  
T (sec) 1858 1549 1423 1402* 1448 1 1586 1918 
speed-up 42.7 51.2 55.7 56.6" 54.8 50.0 41.3 
eficdency 67% SO% 87% 89%* 86% 78% 65% 

p = 64, m = n = 1200 

_ _ - .  

T, 136,953 sec = 1 day 14 hr 2 min 33 sec 
71x72 6 4 x 1  3 2 x 2  1 6 x 4  8 x 8  4 x 1 6  2 x 3 2  1 x 6 4  
T (sec) 2357" 
speed- up 58.1* 

Table 12: Estimated Speed-up and Efficiency of Algorithm 11. 
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7.3 Further Enhancement 

In [16] Pothen and Raghavan proposed a hybrid algorithm for performing orthogonal decom- 
position of a rectangular matrix on local-memory multiprocessors. The hybrid algorithm 
proposed in [16] can be viewed as a variant of Algorithm I. The difference lies in the follow- 
ing two aspects. In the IAP the hybrid scheme uses Householder transformations instead 
of Givens rotations to  reduce the arithmetic cost. In the CMP the hybrid scheme used a 
different communication scheme in merging the local pivot rows. Since Algorithm I is a 

special case of Algorithm I1 when a p-by-1 grid is embedded in the hypercube, the strategy 
of applying Householder transformations in the IAP can be used to reduce the arithmetic 
cost of Algorithm I1 regardless of the choice of 71. Furthermore, when 72 > 1, the use of 
Householder transformations during the IAP can also reduce the communication cost of 
Algorithm I1 because there are only half as many multipliers to be communicated within 
each subcube. In terms of message length, each message to be sent and received during the 
IAP is reduced by a factor of 2 when Householder transformations are used. 

AS far as our implementation of Algorithm I1 is concerned, the code for the IAP involves 
one single subroutine implementing Givens rotations. Therefore, an enhanced version of 
Algorithm I1 is immediately obtained by recoding this subroutine using IIouseholder trans- 
formations. Note that our communication algorithms and the entire CMP of Algorithm I1 
remain unchanged. In this section we report timing results of the enhanced Algorithm I1 
and compare its performance with other schemes. 

When y1 = 72 = 1, the enhanced Algorithm I1 involves only the IAP phase on one 
node and thus implements the sequential IIouseholder algorithm. The serial time T, based 
on IIouseholder algorithm is therefore measured by the execution time of the parallel code 
running on a 1x1 grid. 

Table 13 reports the execution times T, of the sequential Householder algorithm for 
some randomly generated test matrices. We again estimated the serial factorization time 
TS for large n-by-n matrices by choosing the coefficients for a cubic polynomial T,(n) as 
explained earlier in this section. We compare the estimated T,(n) with the actual execution 
times in Table 14. 

In Table 15 and 16 we show that the aspect ratio of the processor grid has a similar 
effect on the enhanced Algorithm 11. An analysis similar to the one in Section 6 can be done 
in order to  obtain reliable estimates for the best 71 to  use in conjunction with the enhanced 
version of algorithm 11. Tables 1 7  and 18 report the “estimated” speed-up and efficiency for 
a set of test matrices. 
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The Sequentid Householder Algorithm 
Single Precision II Double Precision 

1 
The Sequential IIouseholder Algorithm 

Single Precision Double Precision 
m n T, (sec) Estimated T, m n T, (sec) Estimated ‘r, 

100 100 60.1 60.1 sec 50 50 9.2 9.2 sec 
125 125 115.3 115.3 sec 75 75 29.3 29.3 sec 
150 150 196.9 196.9 sec 100 100 67.5 67.5 sec 
175 175 310.1 310.1 sec 125 125 129.6 129.6 sec 
200 200 460.0 460.0 sec 150 150 221.4 221.4 sec 

n 

- 

Table 13: Execution Times of the Sequential Householder Algorithm. 

Table 15: Single-Precision Execution Times of the Enhanced Algorithm 11. 
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Table 16: Double-Precision Execution Times of the Enhanced Algorithm 11. 
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.. 
The Estimated Speed-up and Efficiency of 

The Enhanced Algorithm TI 
Single Precision 

p = 64, rn = n = 1000 

7 1 ~ ~ 2  6 4 x 1  3 2 x 2  1 6 x 4  8 x 8  4 x 1 6  
T (sec) 1557 1215 1060 l o l l *  1017 
speed-up 35.6 45.7 52.3 54.9* 54.5 
eficiency 56% 71% 82% 86%" 85% 

2 x 3 2  1 x 6 4  
1084 1257 
51.2 44.1 
80% 697; 

Table 17: Estimated Speed-up arid Efficiency of Algorithm 11. 

I 

YIXY:! 
T (sec)  
speed- up 

- efficiency 

6 4 x 1  3 2 x 2  1 6 x 4  8 x 8  4 x 1 6  2 x 3 2  1 x 6 4  
4580* 
59.3* 
93%" 

~ ~ ~ 

Table 18: Estimated Speed-up aid Efficiency of The Enhanced Algorithm TI. 

- 
The Estimated Speed-up and Efficiency of 

The Enhanced Algorithm IT 
Double I'recision 

p = 16, m = n = 500 
T, "N 7,873 sec = 2 hr 11 min 13 sec 

37 

71 x 7 2  1 6 x  1 
T (sec) 653 
specd-2tl, 12.1 
eficiency 76% 

8 x 2  4 x 4  2 x 8  1 x 16 
572 542* 551 596 
13.8 14.5" 14.3 13.2 
86% 91%* 89% 83 % 

~ 1 x 7 2  6 4 x 1  
?'(set) 1819 
speed-up 34.3 
efficiency 54% 

3 2 x 2  1 6 x 4  8 x 8  4 x 1 6  2 x 3 2  1 x 6 4  
1399 1214 1138* 1148 1224 1424 
44.6 51.4 54.9* 54.4 51.0 43.8 
70% 80% 86%" 85% 80% ~ 67% 

~ 1 x 7 2  
T (sec)  
speed- up 
eficiency 

6 4 x 1  3 2 x 2  1 6 x 4  8 x 8  4 x 1 6  2 x 3 2  1 x 6 4  
1905* 
56.5" 
88%" 



We next compare the performance of Algorithm I1 and the enhanced Algorithm I1 
in Tables 19 and 20. Note that Algorithm I is the special case of Algorithm I1 when 
the processor grid is chosen to  be pby-1. Therefore, the enhanced version of Algorithm 
I is a FORTRAN implementation (with a different communication scheme) of the hybrid 
algorithm proposed in [16]. ln [16] Pothen and Raghavan implemented the hybrid algorithm 
in the C language and compared its performance with four other schemes including one 
based on the greedy Givens sequence. The latter can be viewed as a variant of Algorithm 
I with a difrerent communication scheme. 

The timing results listed in Table 19 indicate that the enhanced Algorithm I1 coupled 
with the optimal choice of y1 has the fastest execution time. The possible improvement 
in execution time by the hybrid scheme over Algorithm I can be seen by comparing the 
data in column 1 with the data in column 2. Note that when m / p  << n (e.g. p = 64, and 
rn x n = 800 x 1200 or m x n = 100 x 1980), the hybrid scheme could become less efficient. 
The factor contributing to  the longer execution time of the hybrid scheme is that in this 
case each submatrix to be reduced by Householder transformations has dimension (m/p)  x n 
and when ( m / p )  << n, the saving by Householder transformations is relatively small and is 
less than the different overhead caused by employing Householder transformations instead 
of Givens rotations. This is not likely to happen when 71 x 7 2  is chosen according to the 
shape of the matrix as demonstrated by thc results for the Enhanced Algorithm I1 shown in 
the same Table. The possible improvement by the enhanced Algorithm I1 over Algorithm I1 
can be seen by comparing the data in column 3 with the data in column 4. As noted earlier, 
when y2 = 1, the hybrid scheme has lower arithmetic cost but the same communication 
cost compared to  Algorithm I; when 7 2  > 1, the enhanced Algorithm I1 not only has lower 
arithmetic cost but also has lower communication cost compared to Algorithni 11. This 
observation is supported by the timing results in Table 19. 

In Table 20 we list the storage requirement for each of the four schemes. The storage 
requirement of the enhanced Algorithm I1 is either the minimum or different from the 
minimum for less than 0.1%. 

Finally, in view of the improvement in execution time and storage requirement by em- 
ploying Householder transformations in the Independent Annihilation Phase of A 4 1 g ~ ~  ithm 
11, the saving by reducing the length of each message in the IAP by a factor of 2 appears to 
br quite significant. Thus, instead of employing Householder transformations in the 1,4P, 
we might reduce the execution time and storage requirement of Algorithm I1 by simply stor- 
ing the multiplier pair corresponding to each Givens rotation as a single real number using 
the economical storage technique proposed by Stewart in [21]. At the cost of compressing 
and retrieving the rotations, the parallel algorithm employing Givens rotations would have 
the same communication cost and storage requirement as the one employing Householder 
transformations in the IAP phase, and their performances would be comparable. 

8 Conclusions 

8.1 A Summary 

In this paper we considered the problem of factoring a dense rectangular matrix on a hyper- 
cube multiprocessor. The proposed algorithm involves the embedding of a two-dimensional 
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Table 19: Comparing The Enhanced Algorithm TI with Other Schemes. 
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Storage Requirement (in 4-byte words) 

64 
64 

1 

800 1200 46788 46788 34216' 34242 
100 1980 32 780--- 32780 8626 8592' 

--__ 
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grid in the hypercube network, and our analysis of the algorithm determines how the aspect 
ratio of the embedded processor grid should be chosen in order to minimize the execution 
time or storage usage. The algorithm was implemented in FORTRAN and tested on an 
Intel iPSC hypercube with 64 processors. Our numerical experiments demonstrate the ef- 
fect of the aspect ratio on the performance of the parallel algorithm and show that the 
execution time or storage requirement using the predicted aspect ratio is very close to the 
actual minimum for the test matrices 

Another feature of the algorithm proposed in this article is that redundant computations 
are incorporated in a communication scheme which takes full advantage of the hypercube 
topology. With the proposed communication scheme the data are always exchanged be- 
tween neighboring processors. Furthermore, because the exchanges at each step involve 
distinct pairs of processors and employ separate communication channels, they can occur 
simultaneously. The latter feature is important in reducing traffic congestion in the net- 
work. It is expected that in future generations of hypcrcubes special hardware support may 
achieve a situation where sending a message to a processor several hops away may not take 
significantly longer than sending the message to a neighbor. Ilowever, the problem of traffic 
congestion will still exist. The communication scheme we proposed in this paper provides 
a solution to this problem. 

The extensive experimental results presented in Section 7 also show that the proposed 
algorithm can be efficiently implemented and various enhancements can be easily incoryo- 
rated to further reduce the execution time and storagc requirement. 

8.2 Further Work 

Recall that when we applied Algorithm I1 to a dense square matrix, substantial saving in 
execution time and storage usage were obtained by embedding a two-dimensional grid in 
the hypercube network compared to employing the hypcrcube as a linear array. A natural 
question to ask is whether Algorithm 11 can be adapted to  parallelize other numerical 
algorithms efficiently. In this section we give such an example by applying the ideas of 
Algorithm I1 to parallelize Gaussian elimination with pairwise pivoting on a hypercube 
multiprocessor. We briefly review the pairwise pivoting scheme and sketch how to adapt 
Algorithm I1 for this task. 

The method of Gaussian elimiiiatiori using triangularization by elementary stabilizcd 
matrices constructed by pairwise pivoting is analyzed by Sorensen in [20]. It is shown that 
a variant of this scheme which is suitable for implementation on n parallel computer is 
numerically stable although the error bound is larger than the one for the standard partial 
pivoting algorithm. The serid algorithm and its analysis are given in detail in [20]. For 
our purpose, it is sufficient to  note that the variant we are considering can be understood 
as applying a 2 x 2 elementary matrix to each pair of rows in a fashion similar to applying 
Givens rotations. Recall that in the Givens scheme, we apply the rotation of the following 
form to a pair of rows to annihilate a leading nonzero element from one of the rows. 

s = (  -s c s ) .  

For Gaussian elimination with pairwise pivoting, this elementary 2 x 2 matrix will be of tbe 
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following form 

where P is a 2 x 2 permutation. Therefore, to  annihilate one element, only one row of data is 
modified. The serial arithmetic cost is therefore one half of the Givens scheme. If the work 
load is evenly distributed among the multiple processors, then the parallel arithmetic cost is 
also one half of the p a r d e l  Givens scheme. We can further improve the numerical stability 
without any cost by performing partial pivoting whenever parallelism can be maintained. 

Following our description of Algorithm I1 in Section 5, we shall have each processor 
perform Gaussian elimination with “partial pivoting” in the IAP phase at each reduction 
step. After that all of the processors can cooperate to  perform Gaussian elimination with 
”pairwise pivoting” in the CMP phase to eliminate the leading nonzeros in the local pivot 
rows. Note that with the wrap mapping a balanced work load distribution can be maintained 
throughout the entire elimination process as long as the kth row of A is reduced to  the kth 
row of the upper triangular factor [4]. Therefore, explicit permutations during the CAP at 
the kth reduction step are needed only when the pair of rows involvm row k and row k is not 
chosen as the pivot row. Whenever this happens, our communication scheme ensures that 
both rows are present in the two processors involved. The explicit permutation can thus 
be done at  no extra cost by carefully delaying the actual modification until the very last 
step. Another point worthy of noting is that there is no redundant computation involved 
simply because the row to be further exchanged is not modified. The analysis of the parallel 
scheme would be similar t o  the performance analysis of Algorithm 11. 
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