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ABSTRACT

The feasibility of refueling fusion reactors and devices such as the International
Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids
is investigated. For reactors with reasonable limits on recirculating power, it is
concluded that the concept is not economically feasible. For typical ITER designs,
the compact toroid fueling requires about 15 MW of electrical power, with about
5 MW of thermal power deposited in the plasma. At these power levels, ideal
ignition (@ = oo) is not possible, even for short-pulse burns. The pulsed power

requirements for this technology are substantial.
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It has recently been suggested that deep fueling of fusion-grade plasmas could
be achieved through injection of high-velocity (500- to 1500-km/s) compact toroids
(CTs) [1]. In a fusion reactor, the external power required by the fueling system
should be a small fraction of the thermal output power of the device. Parasitic or
recirculating power loads cause a direct increase in the cost of electricity, and generic
reactor studies limit such loads to about 10 to 15% of the output electrical power of a
fusion device (3 to 5% of the thermal power) |2,3]. Recirculating power requirements
include control systems, real-time fuel reprocessing, heat transfer systems, plasma
profile control, plasma current drive, and fueling. If the fueling system served no
other function, a reasonable upper limit on its electrical power requirements would
be 3% of the electrical output power or about 1% of the output thermal power.
Higher levels are not practical since about 10% of the electrical output would be
required for the current drive system for a tokamak-based reactor and 3 to 5% would

be required for control, heat transfer, fuel reprocessing, and heat loads. Thus,

Py /Ppr <v (v~ 0.01)

where P, is the plug power required by the compact toroid fueling and current

drive system and Pprt is the output thermal power,
Ppt = n*{ov)/4Q

with @ = 2.82 x 107!? J/fusion for the deuterium-tritium (DT) fusion reaction.

The CT plug (electrical) power is
Py = (1/)(0.5)mSv,

where 7 is the efficiency of the CT system, m is the mass per injected particle, §
is the fueling rate (in particles per second), and v is the final (highest) velocity of
the accelerated CT. The formation energy of the CT has been neglected since the
random kinetic energy of the toroid is of order 10-100 eV [1]. Thus,

(1/n)(0.5)mSv2, o
n?{ov)/4Q -

The fractional burnup is defined as

(1)




The fractional burnup is in the range of 5% for steady-state reactors; higher val-
ues result in unreasonable alpha particle densities, which could quench the fusion
reaction and limit background ion pressures.

Equations (1) and (2) can be rearranged to give

(1/1})(0.5)mvft

m2e (32)
or 12
o < (WSLFb) (3b)

With reasonable values of 7 == 0.3 and m = 2.5(m;), a constraint on v is obtained:
ver < (1.4 x 10°)(F,)%° m/s . (4)

For F}, = 0.05, a limit of v, < 3.2 x 10° m/s is found. A tritium particle traveling
at this speed has an energy over 1 keV.
To determine next an upper limit on the density of the CT, the formation process

is considered. In Fig. 1, a plot of T, vs n¢ is shown with a curve giving the § = 0.2
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limit for reasonable B,y = 1.3 T [1]. Also shown is the limit in T-n space given
by the Saha equation with the constraint of high (99%) ionization of a hydrogen
plasma. It can be seen from Fig. 1 that CT densities will probably be limited to
about 1 x 10?2 m™2 for Tgy in the range of 25-100 eV [1]. Lower values of 7, in
the range of 5-10 eV, have been inferred from past CT experiments [4], but this is
largely due to significant levels of impurities, usually carbon and oxygen. Measured
values of beta in plasma-gun-generated CT experiments are typically 0.1 [4], with
{n) of order (1-5) x 10'* cm™® [4-6]. Thus, the assumed values of 3 = 0.2 and
{n) ~ 10'® cm™® are optimistic, given the performance of CTs to date. As noted
in Ref. [4], not all of the fill gas used to form the CT plasma is used (i.e., the CT
plasma density depends only weakly on the gas-valve filling pressure); this situation
must be improved for fueling of DT devices in which tritium inventory is a concern.

Given these limits on n. and v, the magnetic field that a CT can penetrate

can be calculated from
0.5p0% > B*/(2u0) (5)

where pcy = m(n.). Equations (3a) and (5) can be rearranged to give

B < [poyn(n)QF]? (6)
The highest field that the CT could penetrate is about 2.3 T for F}, = 0.05. This

field level is too low to allow CT fueling of reactor devices. The situation could
be improved somewhat if the CTs could be formed at higher beta values or higher
internal fields, but it will be difficult to attain performance at a level that would
allow penetration of 5- to 6-T fields, as specified for on-axis fields in most fusion
reactor designs.

If the CT fueling system can also drive current at design values, then more recir-
culating power can be allocated to the fueling/current drive system. A reasonable
limit would be:

Pct/PDT =y < 0.04

This constraint would raise the limiting value of v,y and allow CT penetration to
fields of 4.6 T. Even at these fields, fueling in the central core of a reactor plasma is
still difficult to achieve. Finally, note that a 3600-MW(t) reactor operating at 5%
fractional burnup would require a particle refueling rate of 5.14 x 10?? s~ [from
Eq. (2)]. At an average CT density of 10?2 m™® and volume of 0.05 m®, this would
demand a CT injection rate of about 100 Hz. At average power levels of order 30—
40 MW, this repetition rate is not practical with existing pulsed power capacitor

technology (although other options are sketched in Ref. [1]).



Compact toroid refueling of devices on the scale of the International Thermonu-
clear Engineering Reactor (ITER) has a different set of constraints because ITER
produces no net electrical power. Penetration of 6-T magnetic fields at a CT density
of 1 x 1022 m™3 requires velocities of at least 8.3 x 10% m/s.

For the ITER device, F}, = 0.1 and the output fusion power is of order 500 MW.
With these values in Eq. (2), § = 3.6 x 10?! particles per second. For the minimum
velocity derived here and a 50-50 mix of DT fuel, the thermal power to the plasma
from the CTs is about 5.2 MW. The electrical power for the fueling system would
be at least 15 MW. A tritium particle accelerated to this speed would have an
energy of about 9 keV. Again, at an average CT density of 1022 m~? and volume
of 0.05 m?, this would require an injection rate of about 7 Hz with about 2.33 MJ
per pulse.

The 5 MW of thermal power into the ITER device is in a very localized region
with a volume on the order of the CT volume. The resulting power density is one

to two orders of magnitude larger than the fusion power density.
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