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ABSTRACT 

The feasibility of refueling fusion reactors and devices such as the International 

Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids 

is investigated. For reactors with reasonable limits on recirculating power, it  is 

concluded that the concept is not economically feasible. For typical ITER designs, 

the compact toroid fueling requires about 15 MW of electrical power, with about 

5 MW of thermal power deposited in the plasma. At these power levels, ideal 

ignition (Q = m) is not possible, even for short-pulse burns. The pulsed power 

requirements for this technology are substantial. 
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It has recently been suggested that deep fueling of fusion-grade plasmas could 

be achieved through injection of high-velocity (500- to 1500-km/s) compact toroids 

(CTs) 111. In a fusion reactor, the external power required by the fueling system 

should be a small fraction of the thermal output power of the device. Parasitic or 

recirculating power loads cause a direct increase in the cost of electricity, and generic 

reactor studies limit such loads to about 10 to 15% of the output electrical power of a 

fusion device (3  to 5% of the thermal power) 1231. Recirculating power requirements 

include control systems, real-time fuel reprocessing, heat transfer systems, plasma 

profile control, plasma current drive, and fueling. If the fueling system served no 

other function, a reasonable upper limit on its electrical power requirements would 

be 3% of the electrical output power or about 1% of the output thermal power. 

Higher levels are not practical since about 10% of the electrical output would be 

required for the current drive system for a tokamak-based reactor and 3 to 5% would 

be required for control, heat transfer, fuel reprocessing, and heat loads. Thus, 

where PCt is the plug power required by the compact toroid fueling and current 

drive system and PDT is the output thermal power, 

with Q = 2.82 x IO-' '  J/€usion for the deuterium-tritium (DT) fusion reaction. 

The CT plug (electrical) power is 

where 7 is the efficiency of the CT system, rn is the mass per injected particle, S 

is the fueling rate [in particles per second), and v,t is the final (highest) velocity of 

the accelerated C'I'. The formation energy of the CT has been neglected since the 

random kinetic energy of the toroid is of order 10-100 eV [1]. Thiis, 

The fra.ctiona1 humup is defined as 
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The fractional burnup is in the range of 5% for steady-state reactors; higher val- 

ues result in unreasonable alpha particle densities, which could quench the fusion 

reaction and limit background ion pressures. 

Equations (1) and (2) can be rearranged to give 

or 

With reasonable values of 77 = 0.3 and m = 2.5(mp), a constraint on vct is obtained: 

vCt < (1.4 x 106)(Fb)0.5 m/s . (4) 

For F b  = 0.05, a limit of vCt < 3.2 x lo5  m/s is found. A tritium particle traveling 

at  this speed has an energy over 1 keV. 
To determine next an upper limit on the density of the CT, the formation process 

is considered. In Fig. 1, a plot of Tct vs nct is shown with a curve giving the ,8 = 0.2 
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Fig. 1. Tct vs nCt with ,8 -= 0.2. 
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limit for reasonable B,t = 1.3 T [l]. Also shown is the limit in T-n space given 

by the Saha equation with the constraint of high (99%) ionization of a hydrogen 

plasma. It can be seen from Fig. 1 that CT densities will probably be limited to 

about 1 x m-' for TcT in the range of 25-100 eV [I]. Lower values of Tc, in 

the range of 5-10 eV, have been inferred from past C T  experiments [4], but this is 

largely due to significant levels of impurities, usually carbon and oxygen. Measured 

values of beta in plasma-gun-generated CT experiments are typically 0.1 [4], with 

(n)  of order (1-5) x cm-' 14-61. Thus, the assumed values of ,C? -= 0.2 and 

(n)  2 10l6 cm-3 are optimistic, given the performance of CTs to date. As noted 

in Ref. [4], not all of the fill gas used to form the C T  plasma is used (i.e., the CT 

plasma density depends only weakly on the gas-valve filling pressure); this situation 

must be improved for fueling of DT devices in which tritium inventory is a concern. 

Given these limits on n,t and vet, the magnetic field that a CT can penetrate 

can be calculated from 

O.lipct.c", 2 B 2 / ( 2 P 0 )  7 ( 5 )  

where pc t  = m(n,t). Equations (3a) and (5) can be rearranged to give 

The highest field that the  C T  could penetrate is about 2.3 T for Fb = 0.05. This 

field level is too low to allow CT fueling of reactor devices. The situation could 

be improved somewhat if the CTs could be formed at  higher beta values or higher 

internal fields, but it will be difficult to attain performance at a level that would 

allow penetration of 5- to 6-T fields, as sptcified for on-axis fields in most fusion 

reactor designs. 

If the CT fueling system can also drive current at design values, then more recir- 

culating power can he allocated to the fueling/current drive system. A reasonable 

limit would be: 

Pct/PDT -- Y < 0.04 

This constraint would raise the limiting value of v,t and allow CT penetration to 

fields of 4.6 T. Even at these fields, fueling in the central core of a reactor plasma is 

still difficult to achieve. Finally, note that a 360O-MW(t) reactor operating at  5% 

fractional burnup would require a particle refueling rate of 5.14 x s-' [from 

Eq. (2)]. At  an average CT density of loz2  m - 3  and volume of 0.05 m3, this would 

demand a CT irijection rate of about 100 Hz. At average power levels of order 30- 

40 MW, this repetition rate is not practical with existing pulsed power capacitor 

technology (although other options are sketched in  Ref. [l]). 
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Compact toroid refueling of devices on the scale of the International Thermonu- 

clear Engineering Reactor (ITER) has a different set of constraints because ITER 

produces no net electrical power. Penetration of 6-T magnetic fields a t  a CT density 

of 1 x requires velocities of a t  least 8.3 x lo5 m/s. 

For the ITER device, Fb 7 0.1 and the output fusion power is of order 500 MW. 

With these values in Eq. (2), S = 3.6 x IOz1 particles per second. For the minimum 

velocity derived here and a 50-50 mix of 1)T fuel, the thermal power to the plasma 

from the CTs is about 5.2 MW. The electrical power for the fueling system would 

be at least 15 MW. A tritium particle accelerated to this speed would have an 

energy of about 9 keV. Again, at an  average CT density of rn-’ and volume 

of 0.05 m3, this would require an injection rate of about 7 I lz  with about 2.33 MJ 

per pulse. 

The 5 MW of thermal power into the ITER device is in  a very localized region 

with a volume on the order of the CT volume. The resulting power density is one 

to two orders of magnitude larger than the fusion power density. 
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