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ABSTRACT

A methodology has been developed for the treatment of systematic
errors which arise in the processing of sparse sensor data. Ve
present a detailed application of this methodology to the
construction from wide-angle sonar sensor data of navigation maps

for use in autonomous robotic navigation. In the methodology we
introduce a four-valued labelling scheme and a simple logic for
label combination. The four labels, conflict, occupied, empty and

unknown, are used to mark the cells of the navigation maps; the
logic allows for the rapid updating of these maps as new information
is acquired. The systematic errors are treated by relabelling
conflicting pixel assignments. Most of the new labels are obtained
from analyses of the characteristic patterns of conflict which arise
during the information processing. The remaining - labels are
determined by imposing an elementary consistent-labelling condition.






1. INTRODUCTION

In this work we describe a methodology for the treatment of
systematic errors which arise in the processing of sparse sensor
data. We introduce the various components of the methodology while
presenting a detailed application to the processing of sonar range
information for use in navigation by the HERMIES-IIB mobile robot of
the Center for Engineering Systems Advanced Research (CESAR) at the

Oak Ridge National Laboratory (ORNL) . The function of the
methodology in this application is to enable the robot to build a
reliable internal spatial representation of the world, i.e., a

navigation map, for which there is otherwise no prior information.

1.1 Experimental Testbed

HERMIES-IIB is one of a series of research robots designed for
autonomous navigation in unknown and possibly hazardous terrain.
The robot is discussed in depth by Burks, de Saussure, Weisbin,
Jones and Hamel.[2] 1In brief, it is equipped with vision sensors,
an on-board 16-node NCUBE hypercube parallel computer, and an on-
board AT host computer. The HERMIES-IIB robot is also equipped with
24 ultrasonic range sensors. The sensors are grouped into a 6-
phased-arrays of 4 units each. The wunits contained Polaroid
industrial-grade transducers,and produced a chirp at a frequency of
50 KHz.

The sonar units function as both transmitter and receiver. 1In the
sensing process the time-of-flight for the returned signal is
measured. Given the velocity of sound, the range to the scattering
source is then determined. Intensity information is not recorded;
instead, the earliest return signal 1is processed. Thus, the
distance to the nearest object lying either wholly or partially
within the beam cone is determined, and the region lying inside the
beam cone at shorter distances than that of the scattering source is
established as being unoccupied.

In the experiments, range data were taken in 15-degree steps over
the full 360 degree field. The beam width and angular acceptance of
the sonar units are broad. In the phased configuration, the main
beam lobe is approximately 18 degrees wide (valley-to-valley). The
selection of a 15-degree angular stepsize 1s based on the
observation that, because of the broad beam width and angular
acceptance, data collected in smaller steps are highly redundant.
The stepsize chosen allows for a useful overlap between adjacent
data points as well as providing an efficient probe of the test
space.

1.2 Systematic Erroxs

The sonar range sensors, as used, give rise to a variety of
systematic errors (see, for example,[1l0]). By systematic errors we
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mean those errors which result from incorrect and inconsistent
interpretations of the data during processing. The sonar systematic
errors depend wupon the number, sizes, orientations and surface
characteristics of the constituents of the world to which the robot
is probing, as well as on the properties of the robot’s sensors. By
definition of the testbed, we do mnot have sufficient information
about the constituents of the robot’s world to be able to correct
for the systematic errors during the initial processing.

Instead, we observe that there are several possible interpretations

of the data from a given isolated scan. When combining data from
different scans erroneous initial interpretations will give rise to
recognizable patterns of conflict. Whenever this happens we can

replace the erroneous interpretations with those which are
consistent with the updated information. Not all systematic errors
can be so treated, and such a methodology is best suited to the case
where the data are sparse, and where the patterns of conflict are
simple and the corrections unambiguous.

1.3 Objectives and Methodology

There are distinct conflict identification and resolution stages in
our methodology. In the identification stage four labels are
introduced to delineate occupied, empty, unknown and conflict cells
of the robot’s map. A simple logic is then used to combine data
from different scans. In the resolution stage physical arguments
are Incorporated into pattern analyses and consistent labelling
conditions to modify initial interpretations of the data. 1In this
nonlocal approach we make explicit use of the correlated nature of
the data, and we ensure that the methodology is robust.

The extent to which we are successful in identifying and resolving
the resulting conflicts and uncertainties is determined by examining
the two-dimensional navigation maps constructed from the sonar data.
These maps should have accurately and clearly delineated open spaces
and obstacles. Another objective is to ensure that the methodology
allows for the extraction of progressively higher-level features
which may be integrated with the commensurate vision data.

The importance of computation maps as key building blocks in the
infrastructure of the 1low and intermediate 1level information
processing in the nervous system has been documented in studies by
Knudsen, du Lac and Easterly[18], Takahashi and Konishi[26] and
Sullivan and Konishi[25]. For example, computational maps of
interaural delay, interaural intensity difference and space all
contribute to the spatial analysis of sound. Although our maps are
not computational maps in the nervous system, they do serve an
analogous physiological function. These maps are, of course,
software constructs designed for a machine and its sensors. At
the present level of sensor integration the maps are the robot’'s



internal representation of the world. It is therefore important to
examine the roles played by higher-level inferencing in the
constructing of such maps from sparse and incomplete data.

The tools used in our methodology are presented in Section 2. Their
introduction is preceded by a discussion of the lowest level of
information processing and the existence therein of an underlying
world-view, Several types of spatial maps are created. We describe
these maps and examine the overall performance of the methodology in
Section 3. Other researchers in the field have developed local
strategies for building navigation maps. We compare our approach to

some of the alternative methods in Section 4 and summarize our work
in Section 5.






2. INFORMATION PROCESSING

2.1 Possible Interpretations of an Isolated Return

The principal systematic errors are those related to the broad beam
width and large angular acceptance of the. sensors. Displayed in
Fig. 1 are schematic representations of some of the possible
interpretations of the scan return from a single scan angle. The
arcs drawn in the figure denote the angular width of the beams,
which was taken as 18 degrees. These arcs are shown superimposed
upon a rectangular grid defining the bins (pixels) into which the
information will be stored. The situation depicted in (a)
corresponds to interpreting the scattering source as lying along the
centerline (beam axis) at the distance given by the rangefinder. A
single pixel, not lying along the beam axis, is viewed as being
occupied by the scattering source in (b) and in {(c¢); a pair of
pixels are occupied in (d), and all pixels intercepted by the arc
are interpreted as the scattering source in (e).
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Fig. 1. Plot of five possible interpretations of an isolated

return from a single scan. The arcs are not drawn to scale in this
and the following figures.



Processing our sparse data we initially adopt interpretation (e), in
which all possible occupied pixels are taken as such, to be the one
best representing the scattering source. Underlying this choice is
a world-view, specifically, that the robot’s universe consists of

extended objects (relative to the geometric size of a pixel). This
world-view may be contrasted to, say, one for a world containing
only well-separated point-objects. In such a point-object world,

possibilities (a) to (c¢) would be more appropriate.

The implementation for a single isolated return consists of
labelling those pixels lying along the arc as occupied and scoring
all pixels located inside the region bounded by the endpoint rays

and the arc as empty. All other pixels, for which there was no
information from the robot's sensors, were marked as unknown. In
the processing of the data all pixels were initially considered as
unknown. To identify the pixels located along the beam arcs,
additional returns, of identical range, were generated (by the
software) at intermediate angles. A stepsize of 3 degrees was
chosen as being adequate to cover the region of interest. The

unoccupied region was then swept out by finding all pixels
intercepted by the rays drawn at each intermediate angle from the
occupied domain to the origin.

2.2 Multiple Returns and Patterns of Conflict

In Fig. 2 we represent data from two scan returns covering a common
region of interest. In (a) and (b) we depict the returns from a
pair of adjacent scan angles from a single observation point. In
(¢) and (d) the robot is scanning overlapping regions of space from
two different viewing points. In each of the four examples, there
is some conflict in the results of applying interpretation (e) (of
¥ig. 1) to the scan pairs. The methodology at this point consists
of identifying the conflict generated among the pixel labels, and
then resolving this conflict to achieve a consistent interpretation
of the data.

2.3 Labels and Their Logic

To process the information from two (or more) scans, we perform
pixel by pixel multiplication using the rule of combination

A B _ C
ER AR TS

In the above Lj; denotes the label for the ijth pixel, and the
superscripts A and B identify the pair of measurements leading to



ORNL-DWG 88M-7340

(a) (b)

Vs
o

Fig. 2. Plot of representative pixel patterns. Heavily shaded
cells denote occupied pixels. Cross-hatched cells have conflicting
label assignments.

the new result C. The conflict label differs from the occupied and
empty labels in that two returns are needed for its assigmment. 1In
set terminology, we may use the conflict element to represent the
simultaneous intersection of occupied and empty elements. If we
define the unknown element as the union of occupied and empty, we
can use the intersection operator as our rule of label combination,
as indicated in the above expression. The following figure (Fig. 3)
gives the results so derived:
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Fig. 3. Logic for label combination.

with C=0/MNE and U =0 UE.

An essential feature of this possibilistic, labelling scheme is its
binary character, that is, one and only one label per pixel. This
labelling representation allows for the pattern analyses discussed
in the next section. It may be noted that two of the labels, U and
C, are in a sense, placeholders for the physical labels, 0 and E.

The pixel by pixel multiplication was coded wusing the 1label
representation:

C=0,U=1, 0=2, and E = 3.

The sixteen possible binary products were then evaluated by
executing the statement

if 1A = 1B, then 1LC = 18; else 1C = 1A x 1P mod 6.

The first (if) part of this statement (written above in an obvious,
nontechnical notation) handles the four diagonal entries in the
table, while the twelve off-diagonal elements were handled by the
second (else) part, and L = C, U, O, or E. Returning to Fig. 2, we
find that conflict pixel labels are assigned in the overlap region
where the cells are marked empty in one case and occupied in the
other.

2.4 Pattern Analysis

In Fig. 4 we present the analyzed and corrected interpretations of
the patterns initially given in Fig. 2. We see in these diagrams
that all uncertain pixel assignments have been resolved with the
replacement of conflict with empty labels. The physical reason for
this replacement is that a real sonar beam cannot pass through a
real object in its path.
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Fig. 4. Corrected plot of representative pixel patterns. Shown
in this figure are pixel patterns (a) to (c) of Fig. 2 after the
pattern analysis.

For instance, the systematic error flagged by the conflict label in
(a) arises as a result of a slight disparity between the (curved)
locus of possible occupied cells and the actual surface of the
object. Specifically, the arcs tend to identify pixels which are
progressively too close to the beam origin as the surface normal
increasingly departs from orthogonality to the beam direction. The
correct interpretation is to take the longer of the two possible
returns at each viewing angle as being correct, since those returns
should lie closer to the actual surface.

In (b) we have an example where the two arcs have rather different
ranges. If the ranges are similar, we have situation (a), and we
assume that there is a single extended scattering source and apply
the correction just discussed. If the ranges are not similar, then



10

we may assume that there is more than one scattering source. If the
cells in question were occupied, then the longer of the two returns
would mnot have been received. Thus, the only consistent

interpretation is that the pixels with conflicting labels are empty.
The effect of this correction upon the nearby object is similar to
that of a shrinking (as opposed to a dilation) operation in vision
information processing.

The situation shown in (c) arises because the initial processing
using the maximal set (Fig. 1 [e]) tends to exaggerate the spatial

extent of surfaces. We correct for this as additional data are
collected by relabelling as empty those pixels which are flagged by
the ensuing conflicts. This can be done for any string-crossing
angle. The case shown as (c) is for a string-crossing angle of
approximately 90 degrees and thus resembles a corner. Situations
of near-zero string-crossing angle also occur. In those cases, the
viewing angles are nearly the same while the ranges differ. The
apparent size of any surface will be greater when seen at the longer
distance, and the two sets of data are made consistent by

relabelling as empty the flagged cells at the left and right ends.

No pattern has been presented in Fig. 4 for case (d). This pattern
is simple, but the corrections are not unambiguous. This pattern
occurs when there are reflections. The validity of the reflection
interpretation depends upon the relative viewing distances. This
case is discussed further in Section 3.
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3. MAPS AND ANALYSES

3.1 Laboratory Enviromment and Robot Navigation

Plotted in Fig. 5 is a portion of the CESAR laboratory which was set
up with three objects of different sizes and orientations. There is
a 2'x 2' box, a larger 2'x 4' box, and a small 1'x 1’ box. All
three boxes are tall enough to intercept the sonar viewing plane.
Shown 1in the plot is the location of the back wall of the
laboratory. This wall tends to reflect the sonar signals as does
the wall on the left-hand side of the room (which is off-scale).
Finally, there is a support pillar and an adjacent pair of narrow
vertical opipes ‘in the lower right-hand corner of the room.
Displayed along with these five "objects" are eight locations along
the path taken by the HERMIES-IIB robot. At each of these locations,
a 360-degree scan was taken in 24 15-degree steps (except the first
position where small angular steps were used).

ORNL-DWG B8M-7338
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:Fig. 5. Schematic diagram of the experimental configuration
used in the CESAR laboratory. The numbers show the eight scan
locations of the HERMIES-IIB robot; the open squares and the
rectangle represent the obstacles. Not shown in the plot is the
wall on the 1left which is located at -1 ft. Also missing is a

workstation plus some partitions placed along the right-hand side of
the 1ab in the second of two sets of experiments, and some low-level
clutter in the upper right-hand corner during the early experiments.
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In navigating about our test environment cumulative dead-reckoning
errors can occur. This class of errors has been discussed by
Chatila and Laumond[5] and by Drumheller[6]. In their studies a
number of solutions were investigated, and those introduced
previously in the literature were cited. Spatial uncertainties due
to dead-reckoning errors have also been examined by Smith and
Cheeseman[23] and by Smith, Self and Cheeseman[24]. In the present
work we avoided these errors by explicit placement of the robot at
the wvarious test locations. We did this in order to focus our
attention on the systematic errors outlined in the introduction.
Careful checks done after completion of the experiments showed that
cumulative dead-reckoning errors would have been negligible. More
generally, a hardware solution to possible dead-reckoning errors,
made by mobile robots which must navigate in unstructured terrain,
is to use a ring laser gyroscope.

3.2 Instantaneous Scan Maps and Strings

The results of processing the sparse information from a single 360
degree scan are presented in Fig. 6. Any conflicts represented by
the patterns shown in Figs. 2 and 4 (a) and (b) have been resolved.
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Fig. 6. Instantaneous scan maps. (a): map built from data
taken at position 5; (b): map constructed from data acquired at
position &. Maps are 64 x 64 pixels.
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At this level of processing conflicts of type (c¢) have not been
identified. Instead, they will be treated during the construction
of the cumulative scan map to be described shortly. The dimensions
of all maps were chosen as 64 x 64, and each pixel denotes a 6-inch
square region of space. The pixels of the instantaneous (single)
scan map carry one of three labels, namely, unknown (1), occupied
(2) or empty (3).

We cbserve in Fig. 6 that the measurement serves to partition the
space into a number of distinct regions. The most prominent of
these are the empty zones fanning out from the robot origin. These
zones are terminated by = strings, that 1is, by sequences of
neighboring occupied pixels denoting the possible locations of
object surfaces. The important strings in, for example, Fig. 6 (a)
are located at the ends of the three zones famning out in a downward
direction from the robot origin to the surfaces of the three boxes.
To exhibit these strings in a clear visual manner we have suppressed
the processing of all but a few long returns for which no echo was
received. '

The strings represent the extension of the sequences of occupied
pixels illustrated in Figs. 2 and 4 to instances where there are
more than two contiguous ranges. All discussions regarding the

patterns and conflicts are valid for the strings. As such, the
strings comprise the first order of feature extraction above the
pixel level. Their identification is in this sense comparable to

edge detection in the processing of visual images,

It should be observed that in our analysis extended objects are

perceived as having smoothly-joined surfaces. There are, for
example, no intersecting wedge-shaped objects, and deeply convoluted
surfaces will not be seen as such. This aspect is part of our

world-view, introduced in Section 2, and is consistent with the
physical limitations of the probe (sensor).

3.3 Cunmulative Navigation Maps

Displayed in Fig. 7 is a sequence of 8 cumulative navigation maps
corresponding to the eight scanning positions shown in Fig. 5. All

rays have been included in the scoring. For purposes of wvisual
display, unknown areas have been left blank, occupied regions are
marked with 1's and empty =zones are shown as 0's. We observe in

this progression of maps that regions which are initially occluded
or out of range of the sensor are gradually identified, and the
outlines of the boxes are built as their wvarious surfaces are
illuminated. By the eighth scan all three boxes are delineated.

To construct the cumulative navigation map, we performed a map by
map multiplication. That 1is, the label of {1j pixel in th
instantaneous (scan) map was multiplied by the label of the ij
pixel in the previously updated cumulative map, and the results were
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stored as the new label of the ijth pixel in the new cumulative map.
The label multiplication was done for all pixels using the logic
presented in Fig. 3. The pixels of the cumulative map, therefore
take on the values conflict (0), unknown (1), occupied (2), or empty

(3).

At this point the data were examined for conflict patterns of the
type shown as Fig. 2 (c). The pattern analysis was done using
auxiliary string maps and ancillary buffers. Stored in the string
maps were indices identifying each string. The corresponding x and
y coordinates, and the Ilengths (number of pixel elements), were
contained in the buffers. This information was used to rapidly
check for string crossings-places where a pair of strings cross
through one another. In those instances where this occurred, any
conflict labels lying along either of the strings were replaced with
empty labels. This snipping operation leads to Fig. 4 (c), and
excessive lengths of strings are selectively shortened.

In the next stage of the preparation of the navigation map we make a
limited attempt to treat conflict patterns of type (d). Our
objective was to minimize the destruction of legitimate occupied
labels by the marking of empty pixels during the processing of false

echoes (reflections). False echoes most often give rise to long
returns, and their incorrect interpretation can give rise to the
apparently unphysical pattern shown as (d). If conflicting

assignments were encountered between elements of a string seen at
short range and empty zones swept out by distant returns, the
conflict was resolved by selection of the occupied label. The
examination of the pattern was facilitated by the use of a range map
into which the original distance or range information for each
string was maintained.

3.4 Consistent-Labelling

The final information processing stage consists of converting any
residual conflict labels to occupied or empty labels. We carry out
this operation by imposing a consistent-labelling requirement,
namely, that the selection of the label must be consistent with
those of its neighbors. This condition has the effect of cleaning-
up (removing) isolated conflict pixel labels. This step is done, as
illustrated in Fig. 8, by adding the values of the 4 immediate
surrounding pixels. If their sum (threshold value) is 9 or above
(i. e., if at least three neighboring pixels are identified as being
empty) the conflict label is replaced by an empty label; otherwise
the pixel is scored as occupied.

The threshold value is skewed towards retaining occupied labels.
The reason for this can be made clear by examining the scoring of
the returns from the pillar and pipes located in the lower right-
hand cormer of the laboratory. The data from the different scan
positions were not sufficient for the direct identification of a
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Fig. 8. Diagram of the pixels used for consistent labelling.

well-localized object. Instead, a scattering of conflicting
occupied and empty assignments were obtained in the appropriate
region of space. The application of the above requirement to this

cluster of conflict labels results in the marking of a portion of
this region as being occupied, thereby preventing the robot from
colliding with these or siwmilar obstacles while navigating.

The optimal threshold value for the consistent label sum depends in
part upon the angular stepsize (Section 2.1) used to generate the
intermediate rays. The above-mentioned wvalue of 9 is appropriate
for a 3 degree stepsize. This angular stepsize, although adequate
for short and intermediate distance returns, may miss some of the 6"
x 6" pixels at large distances as can be seen in Fig. 6. For such
returns, an angular stepsize of 2 degrees will lead to an improved
sweep of the cells lying within the beam-cones. As a result of the
denser covering generated by the 2-degree stepsize, a lower, less
skewed, consistent labelling threshold value of 6 is optimal.

It is still possible for the rays to miss pixels, leaving interior
blanks in the maps. This apparent problem can be remedied by an
application of a similar consistent labelling algorithm to embedded
blank 1labels. Both types of residual uncertainties (conflict and
unknown) are removed by the consistent labelling operations only
during the reduction to a binary mnavigation map. That is,
consistent label changes are not retained but instead the algorithms
are rveapplied each time sensor data are received. This is done to
maintain consistency of interpretation among the various data sets.

3.5 Discussion of Results

Poorly-seen objects, such as the support pillars and narrow pipes,
are susceptible to elimination from the maps by the scoring of empty
spaces from adjacent long returns. Some attention to this type of
processing error was given in the resolution of conflict patterns of
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Fig. 2 (b) and (d). An example of this sensitivity can be found in
Fig. 9, showing a pair of navigation maps. (Two series of
experiments were carried out. Map 9 (a) was generated during the
first series of experiments; Map 9 (b) was built during the second
series. The main difference between the two series of measurements
was that Texas Instruments sonar ranging modules SN28827 were used
in the first series and Polaroid assemblies 735710 were employed in
the second series.) In this figure we tried to highlight the
occupied cells. To do this we changed the occupied pixel label to
an ‘x’ and left empty spaces blank. We observe in Fig. 9 (a) that
there is no indication of any objects in the lower right-hand corner
of the maps, and there is only a slight indication for the objects
in Fig. 9 (b). The methodology used in the generation of these maps
differed in the treatment of patterns (b) and (d) in what might seem
to be a minor way from that finally chosen.

A second observation in Fig. 9 may be made by comparing the two maps
to each other. The electronic circuitry of the sensors was improved
in the second series of measurements. 1In Fig. 9 we see that the
maps of the second series are not superior to those generated in the
first series. In fact, the two larger boxes are more clearly
defined in the first map. The reason for this {s that the
systematic errors increase when the gensitivity is improved.

In Fig. 9 we see that the small, 1’ x 1’ box appears somewhat
larger than its actual size. The systematic size exaggeration has
been reduced considerably by the pattern analysis (c¢) and by the
consistent labelling operation. The extent of the reduction can be
seen by comparing representation of the box in the instantaneous
scan (Fig. 6) maps to that appearing in the cumulative navigation
(Figs. 7 and 9) maps. The dependence of the apparent size of
objects upon the distance of observation can be observed also, by
comparing the lengths of the strings denoting the presence of the
box in Figs 6 (a) and (b).

In Fig. 9 (and 8) we see that the back wall of the laboratory does
not appear to be well-defined. This wall extends from the left to
right side of the room as indicated in Fig. 5. In place of a
clearly defined wall we find a few occupied pixels at the correct
position plus several strings situated beyond the wall (i.e., in a
physically impossible location). These strings, clearly visible in
Fig. 6, were produced by our processing of false echoes from the
reflecting back wall. In addition to the back wall, the left face
of the 2' x 2’ box tended to reflect the sonar signals, and as a
result, was not as well delineated as the other faces.

Turning to the literature, we note that the strings of pixels lying
behind the back wall cannot be removed using the test of Drumheller
(6], since we do not assume prior knowledge of the existence of
walls, and the back wall is not identifiable. Additional sharpening
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Fig. 9. Cumulative mnavigation maps at the end of data
collection (at scan position 8). (a): first series of experiments;

(b): second series.

of object surfaces can be accomplished by performing fits to
straight-line segments and to polygons. The usefulness of these
object-localization techniques has been demonstrated by Drumheller
[6], and by Chatila and Laumond[5], Gaston and Lozano-Perez[12],
Grimson and Lozano-Perez[13] and Grimson[l4]. In incorporating
these techniques one should ensure that the higher-level features so
extracted remain consistent with the world-view of the lower-level
data processing stage. Finally, we note that effects of errors on
the construction of two-dimensional visual maps has been
investigated by Brooks[1].

There are a number of possible strategies for reducing uncertainties
in object location due to reflections. On a hardware level, we note
that bats use a broad range of ultrasonic frequencies for echo
location (see, for example, the paper by Fenton and Fullard[9]), and
we might try to eliminate sonar reflections by using an adaptive

sensor. Sonar reflections from smooth walls have been studied and
modelled by Kuc and Siegel[1l9, 20], and the mathematical problem of
finding surface normals has been investigated by Brown[3, 4)}. The

identification and elimination of false echoes 1is being addressed
further by wus in an extension of the present methodology to
multisensor fusion. Those results will be reported elsewhere.
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4. DISCUSSION OF SOME ALTERNATIVE APPROACHES

Methodologies for the storage of information from sonar range
sensors in the form of Cartesian maps have been presented by Elfes
[7, 81, Moravec and Elfes[21] and Moravec[22] at Carnegie-Mellon
University (CMU), and by Fryxell[ll] at ORNL. The CMU methodology
makes use of probability distributions, and Fryxell uses a voting
procedure to represent initial information on occupied and empty
regions of space. In both approaches cumulative information, stored
in separate "occupied" and "empty" maps, is used to generate a
binary navigation map.

The probability distributions used to interpret the data in the CMU
work were functions of the radial distance from the beam origin and
the angular distance from the central beam axis. The radial term of
the occupied-space distribution was sharply peaked at unity at the
distance given by the sensor; the corresponding term in the empty-
space distribution was peaked at negative unity at the origin and
increased slowly to zero at the point where the occupied-space value
went to zero. The angular terms of both distributions were peaked
at unity along the central axis and decreased to zero at the edge of
the beam cone.

Values (0,1] for the cells (pixels) of the occupied space map were
defined as the maximum of the occupied probability distribution over
the spatial dimensions of the given pixel. Similarly, values [-1,0)
for the cells of the empty space map were set as the minimum of the
empty probability distribution. The navigation map was generated by
combining the pixel wvalues from the two maps. For a single,
isolated return the two distributions are non-overlapping, and their
map 1is identical to ours as given by interpretation (e) of Fig. 1
(except for some smearing of the occupied pixels in the radial
direction).

The combination of data from several scans to form an updated
navigation map was done in several steps. The empty space map was
updated by forming the probabilistic sum of the old and new cell
values. The occupied space map was updated by adjusting for non-
zero empty space values, vrenormalizing, and then forming the
probabilistic sum. The final step consisted of carrying out a
thresholding operation. The thresholding step proved quite useful
in "cleaning-up" the navigation map.

In the voting procedure of Fryxell the occupled map pixel located on
the beam axis at the distance given by the sensor is incremented by
a unit. Then each empty map pixel intercepted by the rays drawn to
the robot origin from the occupied coordinate was incremented by a
unit. This scoring was done for each scan angle at each robot
position. The navigation map was built by first independently
normalizing the cumulative occupied and empty sums and then taking



20

the difference between normalized occupied and empty values for each
pixel. If the result was above a certain threshold the navigation
map pixel was labelled as occupied; otherwise, it was marked as
empty.

In marking empty cells using the voting procedure, a high score will
be given to empty pixels near the robot since the rays converge at

the origin. Thus, the radial distribution of empty cell scores
determined by Fryxell will resemble that obtained by Elfes and
Moravec wusing their probability distribution. The information

processing used by Fryxell is that represented in our Fig. 1 (a).
Small angular steps of three degrees were taken in order to sweep
out the 360-degree region of interest at each scan position. The
occupied pixel scoring for a given scan can vary, due to systematic
errors, from those of either Elfes and Moravec or the present work.

The probabilistic approaches described above are local in character.
That is, the reduction of the wvarious probabilities or votes to one
of two labels is done for any given pixel only using information
pertaining to that pixel. This type of methodology may be
contrasted with our mnon-local approach, which makes wuse of
information about neighboring cells, as well, and is consistent with
the underlying physical processes.

It is, therefore, to be expected that we can build more sharply
delineated maps wusing our method than can be obtained in the
alternative, probabilistic approaches. This point was checked in
detail by comparing our navigation maps to those constructed by the
voting procedure. This was a meaningful comparison, since the same
laboratory environment was probed by the identical sensors in both
studies. Our finding is that even though five times as much data
were collected in the voting experiments, the objects appearing in
the maps generated in the present experiments were more clearly
delineated. This proved to be the case even when we decreased our
cell resolution to match that used by Fryxell.
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5. SUMMARY AND CONCLUDING REMARKS

We have presented a methodology for the treatment of systematic
errors as they arise in the processing of range information acquired
by the HERMIES-IIB mobile robot using its wide angle sonar sensors.

Several types of maps, comprising the  robot's internal
representation of the world, were constructed during the
information processing. The navigation maps contained clearly

delineated occupied and empty regions; the string and range maps
provided information about object surfaces and some sensing
conditions.

Four labels were introduced for the purpose of delineating the open,
occupied, unknown and conflict cells of the maps. The conflict
label denoted those pixels whose identity was uncertain due to
conflicts between initial interpretations of the data from different
scans. The updating of the navigation maps, i.e., the rule of
combination, was done using a simple logic for the four labels. The
systematic errors, arising from incorrect interpretations of the
data during the processing, manifest themselves as conflict and were
flagged by this 1label as mnew information was gathered. The
essentially binary character of our approach enabled us to do a
pattern analysis and impose a simple consistent-labelling condition
to remove the conflict. These and the other processing operations we
have described are well-established in the field (see, for example,
articles by Haralick and Shapiro{1l5, 16] and Hummel and Zucker
[17]), and have been used extensively for different purposes in
information processing.

Last, we have taken the first steps to extract progressively higher-
lever features from the data. This aspect, and the compatibility of
our information processing with that of wvision, should provide a
useful framework for multisensor (sonar + vision) integration.
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