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ABSTRACT

This paper presents an adaptive optimal control algorithm for uncertain
nonlinear systems. A variational technique based on Pontryagin's Maximum
Principle is used to track the system's unknown terms and to calculate
the optimal control. The reformulation of the variatiomal technique as
an Initial Value Problem allows this microprocessor~based algorithm to
perform on-line model-updating and control. To validate the algorithm a
system representing a two-link mechanical manipulator is simulated. In
the control model, the coupling and friction terms are unknown. The
robot's task is to follow a prescribed trajectory and to pick up an
unknown mass,

vii






I. INTRODUCTION

"Models of realistic systems are seldom completely known and if
known, they are seldom linear.” This statement, issued at the Santa

Clara Workshop1

on "Challenges to Control: A Collective View,” summarizes
the motivation for the efforts being made lately on the development of
contfol algorithms.fof uncertain nonlinear systems.

The newly available, fast, efficient and reliable microprocessors
have opeﬁed the possibility éf performing on-line numerical c#lculations
to process the information given by the plant sensors. The analysis of
these signals allows one to update the incomplete model of the plant and
t§ ;alculate the control that should be input to’the plant.

2 the needed tools to perform

Although optimal control theory provides
this analysis, the actual applicatibn of Pontriagin's Maximum Principle
(PMP) to control algorithms is hindered by the fact that drastic simpli-
fications must be made to obtain on-line solutioms. For Instance, the
Linear-Quadratic (LQ) algorithm, is based on linearized plant models and
assumes that the functional relation between the state and adjoint vectors
is always in steady-state. The LQ algorithm is able to give a fast feed-
back response, but the controls obtained are suboptimal, and 1LQ is not
able to use the information coming from the detectors to improve the
model assumed for the plant.

The ideal demand-following adaptive control algorithm should handle
directly the nonlinear model, and provide an on—-line solution for the

unknown part of the model and for the optimal control. These conditions

can be achieved by the implementation of the PMP to an approximated model



of the plant. Two slimultaneous optimizations must be performed: (a) the
uncertain terms are determined by the optimal matching of the system
signals to the control model, and (b) the optimal controls are obtained
by matching a set of prescribed demands to the updated model. However, a
major problem appears in regard with the numerical solution of the Two
Point Boundary Value (TPBV) problem which arises in the implementation
of the PMP methodology.
In this paper, a new approach to the PMP formulation is used,3’4
which allows to solve the TPBV as an initial value problem for the case
in which the plant is initially in equilibrium and both prescribed demands
and uncertaln terms are well behaved functions of time. The solution of
the plant model equations coupled with the algorithm equations in a
microprocessor, allows to update the model and control the plant on-line.
Sections II and III develop the basic control theory used. In
Section IV, an example of how this control algorithm can be easily imple-
mented is shown, by applying the control algorithm to a two-link mechanical
manipulator. Section V presents the results and conclusions. Finally,

some analytical detalls are given in Appendix A and B.



IT. UNCERTAINTY TRACKING AND CONTROL
-)
Given a dynamical system, described by the state vector, X(t), which

satisfies the nonlinear set of coupled equations

5

5 > + > )
X = F (X, U, a) (1)

+
where F is a nonlinear vector-valued function of the state vector, we con-

sider two classes of uncertain systems: (a) systems where there is a

> . . »
subset aj  of parameters which vary with time in a manner unknown to the
) . ‘ . > > > >
svstem's model, and (b) systems where a part, Fj(X,U,a), of the system
dynamics 1s unavailable to the model. The first class of uncertain

nonlinear systems was studied in detall in Ref. 3. 14 this work we shall

elaborate on the second class. We consider the following control scenario:

(a) The system is initially at equilibrium (% = 0) and i(O) and ﬁ(O) are
known. .

(b) The system must follow a prescribed trajectory, S(t), up to a given
position,

(¢) The plant model is iIncomplete in the sense that only a subset,
ﬁo(i,ﬁ,;), of the actual vector~valued function ﬁki;6;53'is
accounted for by the model.

(d) A set of plant signals, g(t), is available to the model.

Within the framework of the above scenario the control problem can
be solved by performing two simultaneous optimizations: In the first one,
the uncertain term is obtained by matching the signals from the plant to
the model; in the second, the optimal controls are calculated by matching

the updated model to the prescribed demands.



Under the assumption that the system is at equilibrium at t=0, and
it matches the prescribed demand at an undetermined time, Ty, both opti-
mizations can be performed as a Free Terminal Time (FTT) problem.2

The adaptive optimal control can be formulated as follows:

Let
—; > o+ > >
M =G M,U,a) (2)

+
define the incomplete model of the plant, where the vector, M, is the
model prediction for the actual state vector, i, and the vector valued

> > >
function, G(M,U,a), is given by

+ >

G(M,0,a) = F,(8,0,3) + B () (3)

where g(t), the "uncertain” term, is the vector-valued function which
should be manipulated to mimick the unmodeled part of the actual plant,

Then, to construct a control algorithm capable of following a prescribed
demand while adjusting itself to match the plant signals coming from the
actual system, we set up the following cost functions.

T
e v, (,0), (4)

JC
o

(M, ) (5)

&
J. = dt V
5 P

with the constraint that the model equation (2) must be satisfied at all

times. By calling D(M) the subset of the state vector ﬁ-which must

_)
follow prescribed demands, and S(M), the subset of the state vector, M,



associated with signals from the plant, the quantities V., and V, are

P
given by
v = L (B80T, (B-B0n) + (8-05) R, (3-8 )} | 6)
v = (G800, (3-30h) + (-F) By (B-75)) o

where, Q.(E), R.(t), Sb(t) and E?(t) are weight matrices, and ﬁb and ﬁé

’ >
are respectively the equilibrium values of the control vector Ug and the

.)-
"uncertain” vector-valued function P(T). The minimization of Jp deter-
mines the uncertain terms, g(t), whereas that of J. provides the opti-
mal controls to match the demands, E(t). Following Pointryagin's

approach2’3 we construct the following Hamiltonian functions:

> > > > > > > > >
Ho(M,U,W) = V (M,0)+"G(M,U,P) (8)
Hp(H,2,8) = v, 0, B)+2TC(H, U, P) (9

where, a(t) and z(t), are the adjoint vectors (Lagrange multipliers) of
the control system. Note: (a) that both Hamiltonian functions vanish at
equilibrium, as is required in FIT problems,3 and (b) that in the control
Hamiltonian, H., the uncertain quantity, ?(t), is to be kept constant,
whereas in the uncertainty tracking Hamiltonian, Hp, the control, 3; is
kept constant. The usual PMP algorithmz’3 determines the control vector,

> B
U, and the uncertain quantity P(t) by means of the relations

= (; 5 = 0 (10)



and the adjoint vectors by the Hamilton equations

> ¢ 3 P

) | on

M=—C = —L2 (12)
> >
W 3z

with the conditions
Ho(Tp) = By (Tp) =0 . (13)

To solve the set of equations (11) and (12) for a Nth—order model one
needs 2N conditions. Since the state of the system is known at t=0, and
t=Tp, the 2N quantities, ﬁ(t=0) and ﬁ(t=TF) are already available. We
have therefore defined a two-polnt boundary value (TPBV) problem, whereby
the model equations are to be integrated forward in time and the adjoint
equation backwards, following an iterative procedure which will last

until the conditions, at both ends of the transient have been met.



III. PROBLEM REFORMULATION

As stated before, our goal is to develop an on-line algorithm which
must be able to update a model while calculating the optimal control.
Clearly, the iterative solution of the equations presented in Section II
will be time consuming. However, as shown in Ref. 3, whenever the system
is initially in equilibrium, and the demand is a well behaved function of
time, the TPBVP can be reformulated as an Initial Value Problem allowing
fast and efficient on-line solutfons.

Let us now assume that at some time Ty the system will follow the
demand. The feedback control obtained in Section II is a state variable
function; therefore, does not depend on Tp, but on the difference,

AT = Tg = tg,, where, tys 1s the initial time. It follows, then, that the
minimization of the cost function can be done backwards, assuming, Ty,
known, and, t,, unknown. Based on these ideas the FIT problem can be

reformulated (see Ref. 3) as:

. OH oH
> [
M-S (14)
oW 97
S %" . GH
e C >
W=-—"3 Z= *;R (15)
M M
with the conditions:
H(t=0) = Hy(t=0) =0 (16)
and the initial conditions
M(t=0) = My; W = Z =0 (17)

> >
whereas as before, the control vector, U, and the uncertain wvector, P,

are extracted from the relations in Eq. 10.






IV. APPLICATION TO THE CONTROL OF A MECHANICAL MANIPULATOR
The previously developed Initial Value formulation of the FTT

problem will be illustrated with an application to a two-link mechanical
manipulator. The control problem consigts of the determination of the optimal
set of torques, T; and T,, to be supplied to the arm, so that its end-
effector moves along a prescribed trajectory, while only an uncertain
(e.g.: incomplete) model of the arm dynamics is available. 1In the pre-
gsent illustration the "réal world"” mechanical manipulator (the plant) is
simulated by the numerical solution of the Euler-Lagrange equafions for a
two-link arm, as developed in Paul's textbook,5 with the addition of
friction forces and a timg—varying end-effector mass (see Appendix A).
The control algorithm, which is based on an uncertain model, supplies the
torques to the actual arm and updates itself to match the tachometer

signals, S3 and §,, which are supplied by the plant.

IV.a, DYNAMICS AND CONTROL
The uncertain model for the control algorithm is derived from the

following simplified Lagrangian functions (see Fig. 1 for symbol descrip-

tions)
Ly = 3 mb0ftmigby cos (8)) - 18)
Ly = 3 mpb303 + mog(b1+by) cos (8,+0y) (19)

written for each individual link, and where only inertial and gravita-
tional terms were accounted for in the energy balance.

The corresponding Euler-Lagrange equations are:
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Fifp — X

P trajectory

R R (X,Y)

Fig. 1. Configuration of the two-~link arm. The angular coordinates
are 0; and 0,. The trajectory coordinates are represented by (X,Y) and
the cartesian coordinates by (£,n). The arm configuration in broken
lines illustrates a singularity in the inverse coordinate transformation
needed to locate the arm's end—-effector on the prescribed trajectory.

Fip and Fyp are the friction forces added to the system.
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0y = Cyg Sin (0;+09) + CppTy : ‘ (a21)
with
- - 5, - -1
Clg | bl, ng bzz(b1+b2)g \ (22)

1 1 .
Civr =i 3 Cor = 55 (23)
1T ,mlblz ' 2T m2b22 .
By letting M; = 9; and M, = 8,, the uncertain model is constructed via
the conversion of Egqs. (20) and (21) into a set of first order differen~

tial equations, i.e.:

ﬁl = Gy; ﬁz = Gg; ﬂ3 = G3; ﬂé =7GA | ‘(245
with

Gy = M3; G, = M, ' | (25)

G3 = CSin(My) + Cjp Ty + Py(t) (26)

G4 = CpgSIn(M+My) + Cyp Ty + Py(t) (27)

where Pl(t) and Pz(t) are the uncertain terms of the model.
The control and signal tracking Hamiltonian functions, Eqs.(8) and

(9) respectively are now written as:

1 2 1 2 1 2 1 2
He = 5(D17M3)"Qcy + 5(DpMg) "Qup + (Ty~T1g) "Rey +,(Tp-Top) Rep

+
1

i o

) WiGi (28)
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and
1 1 1 1
- M2 M, )2 + = p;2 + = p,2
Hy = ) (83-M3q) Qp3 + 5(34 M, ) “Qpé 2 P Rp1 ) Py Rp2

4

+ 5,24 G (29)

where 1in writing Eq. (29), we did set to zero the equilibrium values for
the uncertain terms Pjg and Pog.

Note that in the above equations, the quantities, M3 and M, are the
angular velocities predicted by the uncertain model; the demands D; and
D, are the angular velocities that the arm should have to follow the
prescribed trajectory, whereas the signals Sj and S, are the actual arm
angular velocities. Clearly the sets of angular velocitiles, (ﬁ3, ﬁ4),
(Sys 52) and (Dl’ DZ) should attain the same numerical value under per-
fect control conditions. In writing the control Hamiltonian function
above, we have found convenient to define the equilibrium torques T)p and
Tog as those functions which at any given time would make ﬁ3 and ﬁ4 to
vanish. Consequently, one obtains by setting to zero Gj and G, in Egs.

(26) and (27).

Tyg(t) = - (Py(e) + €1y) stn (M(E) ). (30)

CiT
1
Tog(t) = - T (Pe) + Cgy Sin (1 +Mp) ). (31)
Insertion of the above equations in Eq. (28) for the control Hamiltonian,
H, ylelds
= E—( -M,) 2., + 1-( -M, )2q,., + i{T + ~1~{ + CyeSin(M;) ])2
He =3 \P17M3)%Qe1 * 7 D274 /7Qez * 51N+ GrrIPL + C163intH ) U Rey

4
1 1
+ 5 (Tq+ ro [p2+C2gSin(M1+M2) 1)2 gy + f Wy 6y (32)

2T i=1
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Optimal estimates of torques and uncertain terms are obtained from the

conditions 9H./9T; = 3Hp/3Pi = 0, (i=1,4), i.e.:

C
1 1T
Ty = - —— (Cy,8in(M;) + P, ) = —=— W (33)
1 Cit ( 1g 1 1 Roy 3 ‘
c
- L - 2T
T, Cor (q2g31n (M; + M) + Py) R, ' (34)
23 Z4
Py = - 22~ ; Py om - o (35)
1 Rpl 2 sz
> >

The equations for the adjoint'véctors, W and Z are obtained from the
relations (15) in Section IiI, using the Hamiltonians (29) and (32). In-
sertion of Eqs; (33) up to (35) for the optimal torques and uncertain térms
into the model Eq. (24) and into the adjoint equations obtained in the pre-

vious step, ylelds:

My = Mg; My = ff, (36)
My = - gifz Wy (37)
Wy = - ;:iz Wy | (38)
Wy =Wy =0 ' (39)
Wy =W - (D - M)y (40)
W, = Wy = (Dy = Mp)a.; (41)

Zy = Clg cos (Ml) Z3 + ng cos (Ml + M2] 2y (42)
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By = Zy = (84 - M) o (45)

>
The initial conditions for the state vector, M, are (on account that

the system 1s Initially at equilibrium):

[

Mg(0) = 0 (1 = 1,4). (46)

The initial condition for the adjoints are obtained as previously
stated in Section III, by the condition that the adjoint vectors are ini-
tially at equilibrium. Then setting the time derivatives equal to zero
and taking in account that at t=0, Di=Si=Mi (1=1,4) vanish, one obtains
from Eqs. (40), (41), (44) and (45),

W(0) = Wy(0) = Z;(0) = Zy(0) = O (47)
and from Egs. (42) and (43)

25(0) = 2,(0) = 0. (48)

Finally from Eqs. (37) and (38) at equilibrium one obtains

W3(0) = W,(0) = 0O (49)

IV.b. TRAJECTORY PRESCRIPTION AND KINEMATICS
We must now address the problems of trajectory prescription and of
the determination of the arm angular velocities, D; and D, which locate
the end effector on the trajectory.
Let the Cartesian coordinates, X, Y, of the prescribed trajectory be

parameterized in the form
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X(1) = Fi(1); Y(r) = Fo(D) (50)

where the parameter, T, (0<1€1), is given as a function of time by the

relation

t =2 (1 - cos (%i)); 0<T<Ty | (51)

then the Cartesian components of the velocity along the trajectory are
given by

3F | dTt . 3F2 dt

X = T R T T

37 dt (32

which satisfy the required conditions of zero velocity at the beginning

and end of the trajectory, since in view of (51) %1-= 0 and %g =0,
t =0 t=Tp
For the present illustration the prescribed trajectory has been
defined by the following, Fj(t) and Fyciy  functions:
Fq = Sin (2wt) + Sin (6mt); F, = - cos (2nt) ~ cos (61t) (53)

The kinematics problem of finding the angular velocities, D; and D,
which will place the arm end—effector on the prescribed trajectory, is

treated as an optimization problem with the cost function

Ty
JT = f dt VT (ﬁ,n,Dl,Dz) : (54)
0
with
vpl.n,01,0p) = %'{(X*E)Zer + (=m) 20,7 + RygD) 2 + Ryp?,? (55)

and the constraints:
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8y = Dy3 by = 1y (56)

and where the dimensionless Cartesian coordinates of the trajectory, £

and n, are given by the relations (see Fig. 1).

b
E = sin(8;) + Bf~Sin (8, + 8,) (57)

b
n = - cos (91) - g%-cos (92 + elJ (58)

The Hamiltonian function, Hyp, is given in view of the cost function

(54) and the counstraints (56) by

2
HT(E,W,DI,DZ,AlsAz) = VT(E,",Dl,Dz) + ) ADg (59)
i=1
where, A; and A2 are the components of the adjoint vector for the arm
kinematics. The optimal controls, D; and D, are obtained from the rela-

tions aHT/aDl = aHT/aDZ = 0 i.e.

D S = -1

Insertion of the result (60) into (56), and use of the relations,
A = aHT/ael, Ay = dHp/30,, ylelds the following set of equations for the

solution of the arm kinematics problem

. 1 1

B, = - Ay; 6, = - A 61
1 Ryp ! Royp 2 (61)

Ry = n (X-8) Qpp - & (Y¥-1) Qpy (62)

Ry = = by cos (8] + 8,) (X-£) Qup — by Sin (8 + 8,) (T-1) Qpy (63)
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with the initial conditions

Aj(0) = Ay(0) =0 (65)
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V. RESULTS AND DISCUSSION

To validate the present methodology for uncertain nonlinear models
we have used the computer simulation shown in the block diagram of
Fig. 2. The PLANT (full model of the two-link arm) was simulated by con-
verting the Euler-Lagrange equations, (see Eqs. (A.2) and (A.3) in
Appendix A) into four coupled first order differential equations, which
are solved with zero initiasl conditions for angle, angular velocities and
torques. The PLANT algorithm sends the tachometer signals Sg and S, and
receives the;torques T and T, from the CONTROL algorithm. The TASK
algorithm constructs the trajectory (Eq. 53) and locates an object with a
given mass on a predetermined point along the trajectory. The parametric
representation, X(1), Y(T1), of the trajectory is transferred to the
KINEMATICS algorithm which solves Eqs. (B.9) and (B.10), of Appendix B
and provides the demands D and Dj.

Signals and demands are fed into the MODEL UPDATE algorithm which
solves the set of differential equations (B.l) up to (B.8) of Appendix B.
The adjoint wvariables W3, Wys ZI’ 29, Z3 and 24 are supplied to the
CONTROL  algorithm which calculates torques and uncertain terms, using
equations (33) up to (35). The result of this simulation is shown in
Fig. 3, which pictures the motion of the two-link arm along the
prescribed trajectory. Note that the uncertain terms, Pj(t) and P,(t)
updated the highly simplified model used for the robot dynamics, hence
compensating for friction forces and for the nonlinear terms which were
not accounted for in the model. WNote though that from a strict theore-
tical viewpoint, the uncertain terms should be made functions of the
state variables. Neglection of this functional dependence infringes

upon the optimality of the control motion, but in no way affects the



PLANT

SIGNALS
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® Follow trajectory

e Pick up unknown mass

TASK

KINEMATICS

]

(S3, S4)

MODEL
UPDATE

(D1, D)

(X(2)), Y(2))

TORQUES (T4, Ty)

CONTROL

Fig. 2. Block diagram of the microprocessor-based simulation.




Fig. 3. Motion of the robotic arm along the prescribed trajectory.
The arm task is to follow the trajectory, stop at the point labeled, M,
in the figure, and then pick up a mass of 6 kg, which is time-varying up
to a value of 2 kg at the end of the trajectory. The uncertain model
does not have any information either on the time~varying mass, mp, OT on
the added friction forces. ‘ '
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demand-following capabilities of the control algorithm. As is always

the case in optimal control, one has to supply values for the various Q4
and Ry weight factors introduced in the cost functions. We have adopted
the policy to set all the R-welghts to.unity and then “"tune” the algorithm
by assigning trial values for the Q-weights. The search for those weight
factors, proceeds swiftly after a few trials. Table 1 gives the values

of the arm parameters and weights, Qq, used in the present simulation.

Table 1. Parameters and Weight Factors for the Computer Simulation

Transient Duration = 10 seconds

(2)1n the plant, mp has an initial value of 2(kgm) up to the point
labeled, M; In Fig. 3, where my = 6 kgm. Thereafter, my, decreases up
to 2 kgm at the trajectory end.

We have developed novel approaches for the analytical representation
of prescribed trajectories and for the kinematics prgblem of transforming
from trajectory coordinates to arm coordinates. In our approach the
prescribed trajectory is represented by twice-differentiable parametric
representations of the cartesian coordinates, in terms of a parameter, T,
which is related to the time variable by Eq. (51). This approach provides
a simple method to construct trajectories satisfying both smoothness and
the required conditions at the beginning and end of the robotic arm

motion.
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The treatment of the kinematics problem as an optimal control problem
significantly reduces the number of singularities appearing in the usual
methodology. This feature of the algorithm arises from the fact that to
ensure the stationarity of the cost function, the algorithm must minimize
the change of the arm coordinates. This property is confirmed by the
results shown in Fig. 3, whose arm configurations involving larger
changes of the arm coordinates (see Fig. 1) are not observed. There is
however, one singularity which appears in the present approach when the
system is prescribed to move along the Y-axis. In this instance there
are two symmetric arm configurations which can be reached by the same
change In the arm coordinates. WNevertheless, our new approach to robot
kinematics has proven to be robust against the singularities which appear
in the transformation from trajectory to arm coordinates. The
microprocessor-based control algorithm operated faster than real time for
task duratious longer than a few seconds,

The results of the computer simulation validate the uncertain model
formalism developed in this work. We consider this conclusion of great
relevance for the control of “"real-world" dynamic systems which

complexity cannot be fully modeled.






25

REFERENCES

“Challenges to Control: A Collective View,” IEEE Transactions on
Automatic Control, Vol. AC-32, No. 4 (1987).

D. G. Luenberger, "Introduction to Dynamic Systems,” John Wiley and
Sons, Inc., New York (1979).

C. March-Leuba, R. B. Perez, "Optimal Control Theory of
Load~Following and Parameter Tracking of Nonlinear Systems: An
Application of Pontryagin Maximum Principle to Reactor Dynamics
ORNL/TM~-10662 (December 1987).

C. March-Leuba, R. B. Perez, "Optimal Parameter Tracking and Control
of Nonlinear Systems with Time~Varying Parameters,” IEEE
International Conference on Acoustics, Speech, and Signal
Processing, April 11-14, 1988, New York City, USA.

R. P. Paul, "Robot Manipulators: Mathematics, Programming and
Control,” The MIT Press, Cambridge, USA (1982).






A-1

APPENDIX A. SIMULATION OF THE IWO—LINKS ARM
The simulationbof the mechanical manfipulator 1s based on the
Euler-Lagrange equations derived from the Lagrangian in Paul's textbook,
with the additional features of including friction forces and a time-
varying mass, mp, in the second link.

From the Lagrangian, L, below:

L = -]2'~ (ml + mz)bfef + *-12- mzb%( 9% + 29192 + 9%) + m2b1b2 cos(ez)(ef + 6162)

(A.1)
+ (my + mylgb; cos(8;) + mygboy cos(6) + 0,)
we obtain
o2 5 ) 6,6 62 + -
Ty = Fip = Mg g™ + D11 1 + Do O3 + Dy 8 = Dy + Dy (A.2)
dma 6 6 02
Ty = Fop = Mpp 3= + D22% + Dyp®% + D1 %1 + Dyg (A.3)

where the friction forces, Fip and Fop are given by

Fig = k18
Fop = k9
and
Myp = bZ8; + b3(8) + 0,) + byb,s(26; + 8,)cos 6,
2 £ d » L]
Mgs = b5(8; + 85) + bjby0; cos(6,)



Dygp = — mydjd, sin(8y)

Dj, = mbyg sin(8;)

g
ng = (ml + mz)gbl sin(el) + ngbz sin(el + 62)

2
Doy = mpbj

D211 = mzblbz Sin(ez)
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APPENDIX B. SUMMARY OF THE CONTROL ALGORITHM
Wé summarize here the set of coupled nonlinear equations which
describe the control algorithm:
(a) Control and Uncertain Terms

My = M3 ; My =M, (B.1)
My = - gi?z Wy M = - gizz W, (8.2)
Wy = - (D, - MD1a, (3.3)
Wy = - (Dy MO, (B.4)
il = Clg cos(Ml)Z3 + ng cos(Ml + M) (B.5)
éz = ng cos(Ml + My)Z, (B.6)
23 = 7] = (S3 - M3)Qp3 (B.7)
Zy = 2y = (S4 - M0 (B.8)

with zero initial conditions for the state and adjoint vectors. Note

that the differential equations for the adjoints, W; and W,, are omitted
in view that from Eqs. (39) and for initial conditions, Wi{(0) = W,(0) = 0Oy
these two adjoints are always zero.

The torque T;, T, and the uncertain terms, P; and P, are given by
Eqs. (33) to (35)

(b) Kinematics

. 1 .' o l
91 n”mAl b 82— “‘““"‘Az (B.g)

Al = n(X - E)QTI - E;(Y - T\)QTZ (B-].O)
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Ay = = by cos(8;8,)(X = E)Qp — by sin( 9 + 8,)(Y - MQg, (B.11)

Zero initial conditions are for state and adjoint vectors. The demand, Dj

and Dy, 1s given by Eq. (60).
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