
.

J. F. Jones
$3. c. Mwnn
E. M. Sin7pso.r

. . -~ . .- ____...

Prii-its:? in tkic Ui-~iizd States of America. A v ~ i l a b I e from
N at i o n a I I cc h 1-1 icd I I n f 0 rii'i ai i (7 i3 S e rv i cc

U.S. Ueparimei;t of Commerce
5%K5 Fcrt Hsyal Fizxl, Springfieid, Virgiliia 72161

NTlS price cndes----Frii~ited Copy: A@; Microfiche A01
... __ ._~_

-
I his report w s prepared as an account of work sponscred by an agency of the

1 lnited S-:ates Bove:nust-::t. Neither !he !J nii,od Statcsi;ovsrilirlent nor anv agency
th$recf, nor any of thm: employees, i i i a k ~ s m y \AJ2r iZf i iy , express or i i i~plrrd, or
~SSII~TIE aiiy legs! liability or iesponsibility for the accuiacy. completene;;. or
usefulness of any inforri'iaiicjf;, npparatus, piodbct, or process disclosed, or
r-pressnts that its usewaild not i n f r i n y privatc!y c?.rfiad rights. Rsfrrencs hc:ein
to anyspec!tic comn:~:c:dl pfOdiJCt pi(>< , nrscr:.ice by trade name, trademeik.
iimiufacturn:, or r;:h $2, does not nccess-:ily constitute or i l i~p ly Its
"ndorseinent, recclniiiieiidation, or favoring by the l lnited States Gove:n;iier:: or
any agency th I ne v i e w and opinions of authors ex
nccsssx!ly sta!c c: reflnct those n:Ihe!?nitedStatesGov::
tkzrec!.

-

ORNL/TM-10679
CESAR-88/04

-r

Research sponsored by the U.S. Army
Human Engineering Laboratory and the

U.S. Department of Energy

Engineering Physics and Mathematics Division

A COMPUTER VISION SYSTEM FOR A HYPERCUBE CONCURRENT ENSEMBLE

J.P. Jones, R.C. Mann,* and E.M. Simpson+ *

Advanced Computing and Integrated Sensor Systems Group
Center f o r Engineering Systems Advanced Research

+University of West Florida
Pensaeola, Florida

*

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U . S . DEPARTMENT OF ENERGY
Under Contract No. DE-AC05-840R21400

3 4 4 5 6 0280503 4

CONTENTS

Su.ary .. v
1 . Introduction .. 1

2 . Hypercubes .. 2

3 . A Programming Model 5
3.1 The 1/0 System 5
3.2 Concurrent Utilities 10
4 . Decomposition and Communications. 14

5 . Discussion .. 21
6 . Acknowledgements 2 3

7 . References .. 24

A . Appendix .. 26

A.1 Concurrent Utilities 26

A.l.l Requirements 26

A.1.3 1/0 Utilities 29
A.1.4 Very Low Level Utilities 32
A.1.5 Graphics .. 36
A.1.2 Initialkzations and Concurrent Data Structures 27

A.1.6 Low Level Utilities 38
A.1.7 Intermediate Level Utilities 43
A . 2 Host I / O Server and Utilities 4 6

A.2.1 The 1/0 sewer and its requirements 46
A.2.2 VME Subsystem 48
A.2.3 SBX Graphics Device 51

A . 2 . 5 Hypercube image I / O 53
A.2.6 Newport Rotation Stages 53
A.2.4 Disk Access 52

A.2.7 Console ... 56
A . 2 . 8 Miscellaneous 57

iii

Summaw

A system of image processing and analysis utilities f o r

a general-purpose hypercube topology concurrent

multiprocessor system is described. The purpose of the

system is to provide an efficient development and run-time

environment for theoretical and experimental inquiry into

computational vision for mobile and manupulative robots. An

additional objective is to provide an environment with rich

support for the development of concurrent computer vision

algorithms. A number of principles for programming

concurrent systems are embodied in the implementation of

this system. In particular, all significant computation is

performed by the hypercube proper, reserving the host

processor exclusively for input/output functions. One

consequence of this principle is that applications are

developed by viewing the concurrent multiprocessor as a

single computer with a special internal structure, rather

than as a number of independent machines, Applications

derive from a single source, rather than many, reducing

development time without sacrificing run-time efficiency.

This document serves as an introduction to the image

processing and analysis system, its principles of operation,

and as a reference manual for its use.

V

1. Introductioq

Due to large data sets, high throughput and low

turnaround time requirements, single processor computers are

insufficient for many applications in image processing and

computer vision. A variety of alternative computer

architectures have been proposed, some quite specialized

[12, 15, 18, 211. These systems are characterized by

parallel or concurrent distributed processors.

In the Advanced Computing and Integrated Sensor Systems

Group of the Center for Engineering Systems Advanced

Research, we have been exploring the application of a

specific general-purpose concurrent multiprocessor system

[16, 131 to a variety of problems in low and intermediate

level image processing and analysis, focussing specifically

on robotics applications [I, 9, 103. This exploration has

resulted in the implementation of a set of image processing

and analysis utilities which exploit the multiprocessor

ensemble with efficiency approaching 100%.

The objectives of this effort were threefold. First,

to develop and implement on a hypercube multiprocessor

network a multi-purpose high-performance system which is

easy to learn, easy to program, and flexible enough to

support a variety of computer vision applications. Second,

to provide a development environment for research in

computer vision problems relevant to mobile and manipulative

robots. Third, to provide a development environment with

1

2

rich support for research in image processing and analysis

algorithms for concurrent computers.

This document serves as an introduction to the image

processing and analysis facility and its principles of

operation, and as a reference manual for its use. Section 3

reviews certain features of current hypercube

multiprocessors. Section 4 describes the principles around

which the system is organized. Section 5 describes image

mapping onto the hypercube ensemble and some fundamental

communications algorithms. Section 6 presents conclusions.

An appendix describes the local. hardware configuration and

the detailed operation of each system component,

2. Hvpercubes

A D-dimensional hypercube network (see Fig. 1) is

composed of P=ZD processors, Each processor (node) is

assigned a D-bit number between 0 and 2’-1. Direct

connections are implemented between nodes whose numbers

differ in exactly one bit. A pair of such nodes are said to

be adjacent. Nodes which are not adjacent have a Hamming

distance of PI, where H is equal to the number of b i t s which

are different in the the node numbers. The maximum Hamming

distance in a D dimensional hypercube is therefore D.

The communication channels between nodes of the cube

are referred to as Pinks, The collection of all links

between nodes whose logical node numbers differ in a single

specific bit is called an ggaxisqg, since these channels are

3

C D

m-1

F i g u r e 1. (a) A hypercube network is composed of P==Z**D p r o c e s s o r s . Direct
c o n n e c t i o n s are implemented between p r o c e s s o r s whose numbers d i f f e r i n
e x a c t l y one b i t . (b) An a x i s of t h e hypercube i s t h e c o l l e c t i o n o f
a l l l i n k s between nodes whose numbers d i f fer i n a s i n g l e s p e c i f i c b i t .
(c) Hypercubes of l a r g e dimension a re r e c u r s i v e l y c o n s t r u c t e d from pairs
hype rcubes of s m a l l e r d imens ion .
mapping of i n t e g e r s o n t o t h e hypercube such t h a t successive i n t e g e r s are
mapped o n t o a d j a c e n t nodes.

(d) An embedded graycode r i n g i s a

4

parallel to a coordinate axis in D dimensional space. For

instance, all nodes whose numbers differ in the least

significant bit are said to communicate over the least

significant axis, or the 0th axis. In a B dimensional cube,

the axes are numbered from 0 to 13-1, A D + l dimensional

hypercube is recursively constructed from D dimensional

cubes by linking nodes whose numbers differ in bit M-1,

A mapping of node numbers onto the set of integers

R=(O, ..., P-1) such that successive elements of the map

designate adjacent nodes is a graycode ring or simply a

ring. The graycode computed by g=nAn/2 f o r n = the node

number, the exclusive or, and g an element of R is called

the standard graycode ring or the standard ring.

In the current generation of hypercubes, there is a

distinguished processor in the system, not part of any

hypercube, called the host. Aside from communications

between nodes in the hypercube proper, t h e host is

responsible f o r all af the 110 operations i n the system. For

instance, it is the only processor capable of reading a d i s c

file or printing a character on a terminal. In the present

system, the host processor runs a multi-user multi-tasking

operating system. The host communicates directly with only a

subset of the nodes in any hypercube.

Communication between two nodes, or between a node and

the host, is called message passing, and the infomation

communicated is called a message. Message passing typically

5

consumes CPU time on both sending and receiving processors.

It is a relatively time consuming operation, typically 1 to

2 orders of magnitude slower than floating point arithmetic

operations [2]. The exact time consumed depends upon the

intrinsic speed of the hardware, the length of the message,

the Hamming distance between communicating processors,

overhead on the sending and receiving nodes, and overhead in

any intermediate nodes. A simple approximation is a linear

model where the message passing time is given by a fixed

overhead plus the product of the message length, the Hamming

distance, and a proportionality constant. In opposition to

previous assumptians [11]# communication time is frequently

dominated by overhead. Optimal communications algorithms

jointly minimize the length of messages and the number of

messages, with preference presently given t c a minimizing the

number of messages. For more details concerning system

architecture, see [13].

3 . A Drogramminq model

3.1 The 1/0 system

The hypercube based image processing and analysis

facility is an integrated system which supports a number of

conventional 1/0 devices (terminals, discs), image-oriented

1/0 devices (cameras, monitors) and effector devices

(rotation stages, and f o r robots, motion controllers).

Figure 2A illustrates many of the components of the current

4

system, which forms a hierarchy of processors and I / O

devices.

It is potentially difficult to program such a system in

the absence of a well-defined assignment of function to each

level of the hierarchy, and a well-developed communications

interface between levels. To develop a system which is both

easy to learn and easy to program we adopt a more generic

model of the system, and abstract a number of operational

principles.

Figure 2B presents a somewhat abstracted view of this

hierarchy. The hypercube occupies the highest level, and the

1/0 devices the lowest level. The hypercube co

only with the host processorr which in turn communicates

with one or more device controllers, each of which in turn

communicates with one or more I/O devices. The device

controllers can be of heterogeneous functionality, spanning

the range from limited function special purpose devices

(such as SCC controllers) through general. purpose computers

(e .g . the M68020 in the present system), to additional

concurrent multiprocessors,

Illustrated in this way, it is apparent that the host

is a single resource, shared by potentially many devices,

and represents a potential bottleneck in the system.

Therefore, the host should be strictly reserved far I / O

operations.

7

A

NCUBE MOST --
Internal D M R Controllers

Intel 80286/7 CPU/FPU

I/O Controllers [SCC, Disk)

Host memory

D R 1 1 /W Communications t

O R 1 1 /W Communications -
Uideo and system memory

Uideo Digitizer/Display I

Motorola 68020

I/O Controllers (SCC, D i s k)

U M E Subsustem

___(Hypercube Multiprocessor 1
I 4

Terminals, Disks, etc.

495 Rotation stages (2)

Uideo Display

. Sierra CCD uideo camera

I 1 I
I 3

1-1 Sierra C C D uideo camera I
I Terminal, Disks I

B

Hypercubes Host

1
I

P
Contra II ers

t 0 m

Sensors 8
Edfe c t ors

* .
.)

Figure 2 . (a) The image processing and ana lys i s f a c i l i t y i s composed
of two coupled systems, a hypercube multiprocessor and a WE-based
system. (b) A n abstraction of t h i s system, which reveals a
bottleneck a t the level of the hypercube's host processor.

8

This principle has two i ediate consequences. First,

it demands that all significant computation (applications

programs) take place on the hypercube proper. Second, since

erations can come in arbitrary order, the host must

become a glslavell of the hypercube, executing I / O

instructions in the order applications program request.

Although these two conse ences may appear somewhat

restrictive, they give rise to a programing environment of

great power and simplicity. As long as the 1/0 devices

remain fixed in number and function, it is possible to

design a single host program of remarkably simple structure

which satisfies all I / O operations independent of

application. Once developed, this program need never change.

In the current system a single host program supports the

vast majority sf our applications. applications differ only

in the program(s) running on the hypercube proper.

Access from hypercube applications to I / O devices is

provided by function calls which issue I / O request messages

to the host processor and send and receive data. Thus, the

I / O system appears to the applications program as an

operating system interface, much in the spirit of UNIX. The

details of message passing between the host and the

hypercube is hidden within this interface.

I / O device controllers are similarly slaved to the hos t

processor. Therefore, the interface between the hypercube

and the host is isolated from the interface between the host

9

and its various slaves. Applications programs are therefore

protected from a potentially dynamic hardware environment.

The advantage of this model is that each resource other

than the hypercube proper has a well-defined function, its

operation follows a well-defined logical structure, and a

well-defined communications protocol can be developed.

General-purpose programs can be implemented serving the

entire spectrum of functions for each non-hypercube

processor in the system. If a loosely synchronous

programming model is adopted [4] , concurrent applkations

consist of a single source program: after the communications

and 1/0 control software has been developed once, it is

unnecessary to change it.

There are two main problems with this model,

particularly with respect to real-time operation. First, the

host processor is a single shared resource, and represents a

potential bottleneck during communications between the

hypercube and the I / O processors. We have observed the

limitations imposed by this bottleneck particularly in image

1/0 operations, where large quantities of data must be

communicated in a short time. Second, the host processor

currently runs a multi-user multi-tasking UNIX-like

operating system, which does not permit user interrupt

service routines. This makes it impossible to guarantee

response within a given time. These difficulties are

ameliorated to some extent by the 1/0 controllers, which can

10

execute real-time operations, but the majority of the

computational resources in the system are excluded from

real-time response,

These problems can be solved in principle through

elaborations on the abstract programming model illustrated

in Figure 2b. F i r s t , the host processor is replaced by a

butterfly communications network, or an g911/0 cube" which has

the ability to route data between any of N=2M hypercube

processors and N=2' 1/8 device controllers in M<=Pog (N)

steps. In this system the host processor acts as a device

for program development and loading. This architectural

modification also has the advantage that the 180perating

systemgt in the communications network can be specialized for

data-driven or real-time communications.

3.2 Concurrent Utilities

The 1/0 system outlined above effectively isolates 110

operations from computation, and places the burden of

computation an the hypercube proper, Current hypercube

computers contain as many as 31624 processors [319], and it is

expected that by 1990 systems will be available with 4096 or

more general purpose processors. It is unreasonable to

expect that each processor in such a system will be

individually programmed. Therefore, it i s desirable to

minimize the number of programs which must be written to

control the system for a given application.

11

Furthermore, it is desirable to support a class of

applications through the development of utilities generic to

that class. For example, in numerical linear algebra, a wide

variety of specific applications are supported by LINPAK.

This strategy places the burden of certain low-level

considerations, such as round-off errors, on the developer

of library functions. In a distributed-memory message-

passing multiprocessing environment, we identify the

messages, the communications topology, and the distributed

nature of the memory as a~low-levellg features. These features

should properly be hidden from applications.

These considerations lead us to adopt, in the present

system, an SPMD (single program, multiple data) loosely-

synchronous approach, in the spirit of the Crystalline

system 141, supported by a number functions generic to

computer vision applications. A single program runs on all

processors simultaneously, implicitly exploiting the

concurrency of the machine through function calls. Image

processing and analysis operations are implemented through

these function Calls. Distributed data structure management,

concurrency and its optimization, and message passing are

handled inside the functions. Thus, the machine is

programmed using a high level set of "instructions". To

applications programs, this causes the machine to appear as

an ordinary sequential computer, but very fast.

12

There are a number of advantages to this approach. Only

one program need be written to control an arbitrary number

of processors, and thus the software development time and

associated costs are reduced. Most applications of

significant size can be reduced to a sequence of relatively

high level functions, and thus the approach is fairly

general. Individual functions are small enough to be easily

understood, and performance can frequently be optimized

through the use of deterministic communications algorithms.

With a relatively well-developed 1/0 interface, error

diagnostics can be easily reported, and typically apply to

the program as a whole, rather than to individual nodes.

Naturally, this approach suffers from certain

limitations. In some cases, computational bottlenecks

develop due to the need for global communication in the

course of executing a given function. This effect is most

profound in hypercubes of large dimension. The burden upon

the host processor is exacerbated, since all nodes request

110 at roughly the same time. In addition, as the number of

processors in the largest systems increases some degree of

instruction parallelism will be inevitable. In such a system

we anticipate creating several concurrent virtual machines,

each balanced, each running in SPMD made. The scheduling

problem in such a system would be greatly simplified.

A simple example illustrates the points made in this

section. A copy of the following program runs on each node

of the hypercube. The program reads an image, finds the

edges in the image using the Sobel operator [17J, and

outputs the image.

main ()
{

IMAGE

src =
dst =

src, dst; I * 0 */
imalloc(256,256,1) / * 1 */
imalloc (256,256 , 1) /" 2 */

imagein(src) ;
sobel (src, dst) i
imageout {dst) ;

1

/* 3 "/
/* 4 */
/'* 5 */

IMAGES (see below) are concurrent data structures. They

are declared in line 0 and actively allocated in lines 1 and

2. Line 3 acquires an image, line 4 convolves the image with

a Sobel operator, placing the result in the destination

object, line 5 outputs the image.

The host processor is reserved for I/Q. T h e I / O

functions imagein and imageout pass messages to the host

processor instructing it to perform the requisite I / O .

Otherwise, the host processor is not involved in the

computation. 1/0 functions can occur in arbitrary order.

Naturally, each node on the hypercube must request 110 in

the same order as all other nodes.

The details of the architecture (message passing,

communications topology, distributed data) are hidden from

the applications program. No explicit reference is made to

these features, In particular, note that no explicit

reference is made to the dimension of the hypercube, and

14

that data parallelism (the distribution of IMAGE over the

cube) is implicit.

4 . Decomposition and communications

There are two popular strategies far mapping 2

dimensional images onto the nodes of a hypercube. In the

first [a, 113, the image is decomposed into a set of square

or rectangular subimages. Each subimage is assigned to a

node in a graycode grid. In the second, the image is

decomposed into a set of strips, each strip composed of

several complete rasters. Each strip is assigned to a node

in a graycode ring. In both strategies elements which are

adjacent in the original image are mapped onto adjacent

nodes.

Grid mapping attempts to minimize communication time

during image processing, To justify grid mapping [ll], note

that it is the perimeter of the sub-image which must be

communicated. To minimize communication delays, decompose

the image into rectangular subimages of minimum perimeter.

Since a square has the minimum perimeter sf any rectangular

region of a given area, decompose the image into subimages

which are as square as possible.

This argument rests upon two incorrect assumptions.

First, it is assumed that the t i m e consumed by camunication

is dominated by message length. Benchmarks [2] indicate

that a fixed startup cost consumes most of the time in

passing a message. Therefore, it is more desirable to

15

minimize the number of messages which must be passed, rather

than their length. Second, it is assumed that the majority

of communications will be nearest-neighbor, as in

convolution. Many computer vision operations, such as

histogramming or component labeling, require global

communications, and many image oriented 1/0 devices

structure the data in a specific, fixed format which is

incompatible with grid mapping.

Therefore, we chose sing mapping. Ring mapping requires

only two messages to exchange data between adjacent sub-

images. Grid mapping requires four. Ring mapping requires no

rearrangement of data on image input or output to standard

raster scan digitizers or display devices. Direct memory

access devices can be exploited to acquire images from

cameras and display images on monitors. To support grid

mapped images, CPU time must be consumed somewhere to

arrange the data f o r I / O .

Regardless of the decomposition chosen, it is desirable

to endow a concurrent data structure with certain

properties. In the present system, the concurrent data

structure IMAGE has the following properties:

(1) The run-time maintenance in the distributed memory

environment is transparent. Loosely synchronous applications

allocate storage f o r image data based on the s i z e of the

whole image. The assignment of data to specific nodes in the

hypercube is transparent, as is communication between nodes

16

to resolve such internal conflicts in the data structure as

arise.

(2) Image buffers can be of arbitrary size. IMAGES are

actively allocated at run-time. Applications programs can

specify the number of pixels in the vertical and horizontal

directions.

(3) Pixels can have arbitrary storage class. The specific

storage classes supported are those found in rrCgl [71.
(4) Storage allocation supports conventional array indexing

into the distributed multidimensional array. Thus, row and

column addresses can be specified using expressions similar

ta pic[y][x], rather than pic[y*wide+x]. This feature

assists program development by making dynamic storage

allocation transparent. ~t also improves run time efficiency

by eliminating multiplication for pixel accesses.

(5) Routines exist f o r the low-level manipulation of image

buffers which are s i z e and storage-class indepenbent. Among

the most useful are buffer-to-buffer copy with implicit type

conversion, normalization, and allocation reproduction.

The present system is not yet developed well enough to

completely protect applications programmers from errors. For

instance, the image buffer-to-buffer copy routine casts

types in the same way as r8CBs casts scalar types across

assignments [7], so an unnormalized casting copy (e.g. from

float to unsigned character) may not give the desired

result. Nevertheless, endowing the distributed data

17

structure IMAGE with the above properties has permitted

enough flexibility for most applications, and has allowed

the construction of derived distributed data structures,

such as distributed resolution pyramids [18].

Two principal communications algorithms are employed in

the system, mostly in conjunction with IMAGES, although

additional communications algorithms are invoked where

necessary for expediency or efficiency. The first simply

exploits the ring mapping of the image onto the hypercube.

Data are exchanged between adjacent processors in the ring,

e.g. in the exchange of rasters prior to neighborhood

operations, or successively passed around the ring, e,g. in

the case where each node must perform relatively many

computations on every strip in the image.

The second algorithm, "butterfly accumulator", is

employed for global calculations and conflict resolution, as

in image histogramming, component labeling, and certain load

balancing contexts. In this algorithm each node computes

some (possibly vector valued) function of its local sub-

image. Nodes then communicate along successive axes of the

hypercube in D iterations, exchanging information with their

neighbor along those axes, and performing (redundant)

calculations to resolve the local conflict along that

dimension. The communications complexity is O(log a) .

In many cases it is easy to show that this algorithm

efficiently resolves global conflicts. In this algorithm,

18

each node can be thought of as a general purpose accumulator

for scalars, vectors, or other data structures, where the

process of accumulation implements an arbitrary functional

combination of the data arising from two nodes. This

represents a generalization of the pseudo-binary tree or

minimal spanning tree algorithm in the sense that all nodes

serve as root nodes of the accumulation tree simultaneously.

The canonical example [I43 of global conflict

resolution on hypercube multiprocessors is the calculation

of the sum of a list of P numbers (see Fig. 3) . In the

pseudo-binary tree algorithm communication takes place along

successive axes o f the hypercube (e . g . from most to least

significant), and the ~ ~ O C ~ S S Q P on the most significant side

o f the current hemicube sends a partial result to its

neighbor along that axis, Appropriate communications links

in each axis are dropped in successive iterations. In this

way a single node eventually computes the global sum (e . g .

node 0). In the butterfly accumulator algorithm

communication takes place in both directions, exploiting the

full duplex communications between nodes, and nodes on both

sides of the current axis compute partial sums.

The difference between the minimal spanning tree and

the butterfly accumulator is that in the former a single

node holds the final answer, whereas in the latter all nodes

hold the answer, This property is useful in a wide variety

of applications, since it eliminates the necessity of

19

A

B

F i g u r e 3 . Two a l t e r n a t i v e s f o r g l o b a l c o n f l i c t r e s o l u t i o n i n hypercube
t o p o l o g y m u l t i p r o c e s s o r ne tworks . (a) I n t h e pseudo-binary t ree o r
minimal s p a n n i n g tree a l g o r i t h m u n i d i r e c t i o n a l communication t a k e s
place between log (N) hemicubes of d e c r e a s i n g d imens ion s u c h t h a t a
s i n g l e r e s u l t is computed on one node (t o p r o w) . T h i s r e s u l t i s t h e n
broadcast t o the remainder of t h e nodes i n the hypercube, a g a i n i n
log(N) s teps , by f o l l o w i n g t h e same p a t h i n reverse. (b) I n t h e
b u t t e r f l y accumula tor , b i d i r e c t i o n a l communication t a k e s p l a c e : nodes
on e i t h e r side of t h e l i n k s forming a n a x i s exchange p a r t i a l r e s u l t s ,
a n d redundant c a l c u l a t i o n s are per formed on e a c h node t o compute t h e
n e x t p a r t i a l r e s u l t . I n (a) t h e r e is no o p p o r t u n i t y t o e x p l o i t f u l l -
duplex , b i d i r e c t i o n a l communication, whereas i n (b) communication
c h a n n e l s a r e u sed c o n c u r r e n t l y .

20

broadcasting the final result. In both algorithms

communications complexity is O(log a) .

To illustrate the utility of this algorithm, consider

the following routine for image histogramming,

#define GRAY - RES 256

main (
{

int hist[GRAU RES],temp[GRAY I RES],node,proc,host,dim;
int neighbor,&is,*s,*d;

unsigned char **pic;

/ * allocate image buffer and input image */
src = imalloc(256,256,0); pic=src->p;
imayein(src) ;

/* compute local histogram */
pic = src->p;
for(y=S; y<src->high; y++)
for(X=O; x<src->wide; x++)

hist[p[y][x] I++;

/* accumulate global histogram */
msglen = GRAY - RES*sizeof(int);
for(axis=0; axis<dim; axis++){

neighbor = nodeA (l<<axis) ;
nwrite(neigh$or,hist,msglen,type,flag);
mead (neighbor,temp,&msgl9n,&type,&typ@,~flay);
for(i=O;i<GRAY -. RES;i++) hist[i] f = temp[i];

1

In this example the Ivpossibly vector valued function9'

computed by each of the nodes is a local histogram, based on

only those pixels assigned to the node. The communication

occurs in the loop labeled "accumulate global histogram".

The loop iterates g a d i m u t t h e s , where aedim'' is the dimension

of the hypercube. The line following Irforr8 calculates the

21

neighbor along the current axis, and the following two lines

exchange partially accumulated histograms. These two

histograms are combined (redundantly) on each node simply by

point-by-point addition. Following this communication loop,

all nodes contain the same histogram.

It is interesting to note the equivalence of the

butterfly accumulator to communications networks for

computing generalized translation invariant representations.

The most familiar example of a such a representation is the

amplitude spectrum of a discrete Fourier transform with

periodic boundary conditions, which may be computed with the

aid of the fast Fourier transform algorithm. The pattern of

communications in the fast Fourier transform algorithm is

identical to that in the butterfly accumulator.

5. DiScUS5iQn

We have developed an integrated system f o r image

processing and analysis based on a hypercube architecture

concurrent multiprocessor system. The system is easily

programmable, provides rich support f o r applications

development, and an environment for research in concurrent

algorithms f o r computer vision. This system is based on

principles which permit the applications programmer to view

the machine as an SIMD machine with a very course grained

instruction set. Input/Output and concurrency are hidden

from applications programs in the the image processing and

analysis functions.

22

To demonstrate these concepts, the system has been

parted to the mobile robot WEF?MIES [l]. Using the I / O

facilities, morphological operators, adaptive thresholding,

connected components, component analysis, and the Hsugh

transform from this system, as well a5 robot motion

primitives, it was possible to construct a system which

executed known

geometry, and to read an analog meter. The strict

segregation of input/output and computation permitted

transportation of the software developed in the environment

illustrated in Figure 2 to an environment with radically

different I / O devices with minimal change to the I / O

interface, and no change to the concurrent environment.

The system we described is evolving. Further

development will of course include enhancements to the basic

set of tools, specific higher level developments, e.g.

model-based scene analysis and stereo vision, as well as

support for additional I / O devices and effectors, as need

and opportunity arise.

a docking maneuver to an object of a priori

The hypercube concurrent architecture has proved to be

both sufficiently flexible and powerful for applications in

image processing and analysis to consider its use as a basic

system to support R&D, and as a sensory processor in the

next generation of intelligent autonomous robots. However,

some of the very low-level, convolution class operations in

such a system should probably be executed by special purpose

23

hardware, since these operations currently consume, for a

period of time, the resources of a much more powerful

computer. Special architectures for these kinds of

operations are commercially available, and continue to

evolve.

Perhaps the greatest attractiveness of these machines

lies in their general purpose nature. These machines are not

specialized for image processing and analysis, and in fact

find use in a wide variety of applications in science and

engineering [3, 5, 61. Thus, as a tool f o r research and

development, and as a computational resource in a system

requiring great flexibility along with large computational

power, hypercube architecture concurrent multiprocessors are

indeed a reasonable choice.

6. Acknowledsernents

We would like to thank G. Bilbro and W. Snyder of North

Carolina State University for helpful discussions, S .

Killough of the Instrumentation and Controls Division1 (OWL)

for constructing the VME based peripheral image acquisition

system, and M e Ked1 of the University of Tennessee and A.

Gove of the University of Texas at Austin f o r enhancements

of the communications software.

24

7. References

1.

2.

3.

4 .

5.

6 .

7 .

8 .

9.

Burks, B.L., de Saussure, G . , Weisbin, C.R., Jones,
J.P., and Hamel, W.R. (1987) "Autonomous navigation,
exploration, and recognition using the Hermies-IIB
robot," IEEE Expert (2) 18-27.

Dunigan, T.H. (1987) "Performance of three hypercubes."
ORNL/TM-10460, May, 1987.

FOX, G . (1987) '#The caltech concurrent computation
In: HvPercube Multiprocessors 1987, M.T.

Heath, ed,, Society of Industrial and Applied
Mathematics, Philadelphia.

Fox, G . , Johnson, M., Lyzenga, G . , Otto, S . , Salmon, J.,
Walker, D. (1988) Solvins m-oblems on concurrent
processors. V.1 Prentice-Hall, Englewood Cliffs, N.J,

Hayes, J.P., J a h , R . , Martin, W.R., Mudge, T.N., Scott,
L . R . , Shin, K.G., Stout, Q.F. (1987) @!Hypercube computer
research at the University of Michigan." In: Hypercube
MultiDrocessors 1987, M.T. Heath, ed., Society of
Industrial and Applied Mathematics, Philadelphia.

Heath, M.T. (1987) ##Hypercube applications at Oak Ridge
National Laboratory." In: HtPPercube Nultirxocessors
1987, M.T. Heath, ed., Society of Industrial and Applied
Mathematics, Philadelphia,

Kernigan, B.W., Ritchie, D.M. (1978) The C Prosxamminq
- Lancluacle, Academic Press, New Y o r l c .

bee, S.-U., Aggamal, J.K. (1987) 83Explaitation of image
parallelism via t he hypercube." In: Hvwrcube
MultiDrocessors 1983, M.T. Heath, ed,, Society of
Industrial and Applied Mathematics, Philadelphia.

Jones, J.P. (1988) concurrent on-board vision system
f o r a mobile robot.I1 Proceedings of the Third Conference
on Hypercube Concurrent Computers and Applications, in
press.

10, Jones, J . P . , & Mann, W.C. (1988) llConcurrent algorithms
for a mobile robot vision Apnlications of
Artificial Intelligence IV, M.M. Trivedi, @de, Proc.
SPIE 937, 497-504,

11. Kushner, T . R . , Rosenfeld, A. (1983) "A model of
interprocessor communication f o r parallel image
processing." IEEE Trans. S y s . . Man, Cvbern. (SMC-13)
60O-618.

2 5

12, Nudd, G . R . (1984) #@Concurrent systems for image
analysis." In: VLSI for Pattern R ecogn ition a nd Imaae
processinq K , S . Fu, ed. Springer-Verlag, Berlin.

13, Palmer, J . F . (1986) "A VLSI parallel supercomputer." In:
Hmercube Multitxocessors I986 M.T. Heath, ed. SIAM,
Philadelphia.

14. Quinn, M . J . (1987) Desisnina efficient alsar ithms f o r
parallel commters. McGraw-Hill, New York.

15. Reeves, A.P. (1984) *'Survey: parallel computer
architectures for image processing.n Computer Vision,
Grarshics, an d Irnase Processing (25) 68-88.

16. Seitz, C.L. (1985) "The cosmic cube.'# Cornm, A CM (2 8) 22-
33.

17. Sobel, I. (1970) ''Camera models and machine perception.N
AIM-21, Stanford AI Lab.

18. Uhr, L. (1986) '#Parallel architectures for image
processing, computer vision, and pattern perception.*'
In: Handbook of Pa t t e rn Recosn ition and Imaae
Processing, T . Y , Young and K.-S. Fu, ed.s, Academic
Press, Orlando, 438-430.

19. Waldrop, MOM. (1988) I8Hypercube breaks a programing

2 0 . Wiley, P. (1987) "A parallel architecture comes of age

21. Yalamanchile, S., K.V, Palem, E.S. Davis, A . J . Welch,

barrier." $cience (240) 286.

at last." IEEE Srsectrum (24) 46-50.

J.K. Aggarwal (1985) "Image processing architecture: A
taxonomy and Survey.48 Prowess in Pattern Recosnition,
V. 11, P, 1-37, North Holland.

26

A. APPENDIX

A.l: CONCURRENT UTILITIES

A.l.l REQUIREMENTS

Image processing and analysis routines written in this

system have few required components. The program must

include the header file implib.b, and prior to any call to

the processing and analysis functions, the program must call

iminit(). This function sets up some internal variables and

receives initialization data from the invoking host program.

The minimal program eansists of four lines:

#include "/usr/image/c~e/implib, hs8 /* 1 "/
int ctrl[NCTRL]; / * 2 */
iminit (ctrl) ; /* 3 */
terminate () : /" 4 */

main () {

Line 1 includes the requisite header. Line 2 declares an

array for incoming initialization data. Line 3 acquires

these data and initializes some global variables. Line 4

sends a message to the host processor informing it that the

routine is finished.

The remainder of this section is subdivided into seven

sections covering initializations and concurrent data

structure allocation, e/o utilities, very law bevel

utilities f o r various image buffer manipulations, graphics,

and low level, intermediate level, and high level computer

vision utilities.

27

A.1.2 Initializations and concurrent data structures

ALLOCOPY --- replicate image buffer allocation
IMAGE allocopy(src)

allocopy replicates the allocation of the image buffer src
and returns a pointer to the new structure. Both the image
size and its storage class are replicated. This function is
principally used inside the system for the creation of
temporary image buffers.

IMINIT --- imitialize image processing environment
iminit (ctrl)

int ctrl[100];

iminit must be called prior to invoking any of the other
facilities in the library. iminit initializes internal
variables and reads a list of 100 integer and floating point
numbers form the host program. The first 50 numbers
(ctrl[O]-ctrl[49]) are integers, the second 50 (ctr1[50]-
ctr1[99]) are floating point. A popular mechanism for
accessing these number is by declaring the array ctrl as
struct { int i[50]; float f[50]; } ctrl; and referring to
the Kth element of each block as ctrl.i[K] and ctsl,f[K].
These numbers are useful for parameterizing individual runs
of a code. Although not as general as the argc, argv
mechanism in UNIX, it is much simpler, since there is no
need to parse arguments.

I r n U O C --- allocate unsigned character imaga buffer
IMAGE imal loc (nx , ny , nr 1

int nx,ny,nr;

imalloc reserves space f o r an unsigned character image
buffer. The arguments nx and ny specify the total width
(number of pixels in each raster) and height (number of
rasters) desired. These rasters are distributed over the
hypercube in the standard graycode ring. The argument nr
specifies the number of edge rasters to reserve on each side
of the image strip in each node. For details on the
distributed data structure IMAGE, see the discussion of
imallocc below.

28

IMALLQCC --- allocate image buffer, arbitrary storage class
IMAGE imallocc(nx,ny,nr,string)

in% nx,ny,nr;
char *string;

imallocc reserves space for an image buffer with pixels of
arbitrary storage class. The arguments nx and ny specify the
total width (number of pixels in each raster) and height
(number of rasters) desired. These rasters are distributed
over the hypercube in the standard graycode ring. The
argument nr specifies the number of edge rasters to reserve
on each side of the image strip in each node. String
specifies the storage class of pixels, and is one of the
following: Vmsignedl charP1, *tunsigned short8' , 'Uxsigned
int" , B"unsigned long", I1 int81 l9short1*, g'long9@,
"f loate', or s8double18. In detail , the structure IMAGE
contains the following:

StKuCt IMAGE {
char **p; /* pointer to raster pointers */
int high, / * number of rasters in image "/

wide , /* number of pixels per raster */
nrows I /* number of rasters per node */
psize, /* number of bytes per pixel */
class; /* storage class code */

rast I /* number of edge rasters per node */

1

The image is allocated as black of memory of size

* nx * sizeof(storage class 1 dimension + 21snr
(ny/2

bytes, The image pointer p points to the nr'th element of an
array of pcaimters to this block of memory. The m e m o r y
locatian specified in successive array elements is the
address af the first pixel an successive. rasters. Thus,
p [O] [O] is the upper leftmost pixel of the subimage for
which a node is responsible, and p[-l][OJ is the pixel
immediately above it. This indirect method of allocating
memory promotes programming efficiency by permitting
constructions such as

IMAGE src; char **pic=src->p;
val = pic[5] [15];

This allows conventional addressing of the two-dimensional
image buffer, avoiding explicit calculation of the address
for each pixel. The method is independent of storage class.

29

IMFREE --- free image buffer
imfree (image)

IMAGE image;

imfree deallocates an image buffer previously allocated by
imalloc, irnallocc, or allocopy.

A.1.3 110 Utilities

GIMAGEOUT --- general image output
gimageout (src)

IMAGE src;

girnageout scales the image src into the range 0-255 and
sends it to the output device(s). The image src can be of
arbitrary storage class. Contents of the original buffer are
preserved.

INPUT I Q --- input host queued image
input-q(dst)

IMAGE dst;

input q instructs t h e host to distribute the image in its
input-buffer over the hypercube. T h i s function is used after
calls to image - q.
IMAGEIN --- input image
irnagein(dst)

IMAGE d s t ;

imagein instructs the host to acquire an image from the
currently active input device and distribute it over the
hypercube. For time cr i t ical dynamic input sequences, these
two operations can be overlayed in time using image - q and
input-q.

IMAGEOUT --- output image
imageout (src)

INAGE src;

imageout send the contents of the image buffer src to the
host, which in turn forwards it to the currently active
output device (s) .
IMAGEIN16 --- input 128x128 image from W E system

imagein16 (dst)

IMAGE dst;

instructs the host to acquire a 16 Kbyte (128x128) image
from the W E system and distribute it over the hypercube.
This function is principally used in time critical
applications, such as time-varying image processing, where
high resolution can be exchanged f o r speed.

IMAGEOUT16 --- output 128x128 image to W E system

imageoutlS(src)

IMAGE src;

imageout instructs the host to send the 16 Kbyte (128x128)
image to the VME system f o r display. This function is used
primarily to minimize communication time,

IRSMOVR --- camera position relative move
irsmovr (stage I rel)

int stage,rel;

irsmovr instructs the Newport rotation stage controller to
move the rotation stage numbered t1stage88 to relative
position loc, where loc is given in integer millidegrees.

IRSMOVA --- camera position absolute move
irsmava (stage lo~)

int stage, lac;

irsmsva instructs the Newport rotation stage controller to
move the rotation stage numbered ivstage81 to absolute
position lac, where loc is given in integer millidegrees.

31

IMAGE-Q --- queue image for susequent input

image-¶ (

image-q instructs the host program to acquire an image from
the currently active input device, without sending the image
to the hypercube. This capability is principally used in
dynamic image processing.

LEFT-CAMERA --- select left camera in stereo imaging system
left-camera ()

left camera instructs the host to issue a command to the W E
subsystem to take further image input from the left camera.

NPRINTF --- send text to cube monitor and/or disk file
nprint f(string,[argl, arg2 argN 3)

char *string;
[arbitrary argl,...argN]

nprintf is similar to the UNIX printf function, The string
is a format control string having the same syntax as printf,
and the arguments are arbitrary in number and kind. The
output string is formatted in memory and sent to the host
1/0 program, where it is forwarded to the terminal, a disk
file, or both.

RIGHT - CAMERA --- select right camera in stereo system
right-camera (1

right camera instructs the host to issue a command to the
VME subsystem to take further image input from the right
camera.

TERMINATE --- graceful exit
terminate () ;

terminate sends a messgage to the host program instructing
it to close all files and communications channels and exit.
The cube in which the calling node resides is deallocated,
so the only appropriate positions for a call to terminate is
immediately prior to program termination or following a
fatal error.

32

TTYIN --- get a keystroke from the console
char ttyin () ;

ttyin returns an ASCII character from the console input
device, (Keystrokes are broadcast by the host to all nodes
simultaneously.) Processing is suspended until a character
is received.

TTYFLY --- get a keystroke on the fly
char ttyfly () ;

ttyfly returns an ASCII character from the console input
device if one is available, otherwise it returns 0.
(Keystrokes are broadcast by the host to all nodes
simultaneously.) This facility is useful for asynchronous
keyboard interaction with a running program.

A.1.4 Very low level utilities

Unless otherwise noted, these utilities operate only on
IMAGES of storage class unsigned character.

CAST - COPY --- copy one image to another.
cast-copy(src,dst)

IMAGE src 8 d s t ;

cast copy copies the contents of one image buffer to another
with-type conversion. Any storage class image allocated by
imalloc or imallocc can serve as either the source (src) or
the destination (dst) image. Type conversion is performed on
pixels according to the established conventions.

CUBE - SYNC --- synchronize hypercube
cube - sync ()

cube sync perforans an approximate synchronization of all
nodes in the hypercube, using blocking reads along ordered
cube axes. It is used primarily for benchmarking, where it
is called immediately before the routine being benchmarked.

3 3

DELAY --- delay for a time
delay (ms)

int ms;

delay waits for ms milliseconds before returning. It is
principally used for debugging.

EXCHANGE --- ring raster exchange
exchange(src,nex)

IMAGE src;
int nex;

exchange performs an explicit exchange of %ext1 edge rasters
in the image "srctl between neighboring nodes in the standard
graycode ring. This function is principally used in the
prelude of neighborhood operations, e.g. the morphological
operations, and is usually invisible to the user. exchange
works only on image buffers of type unsigned character or
character, and supports only nearest neighbor
communications.

GENEX --- a more general ring raster exchange
genex (src, nex)

IMAGE src;
int nex;

genex performs an explicit exchange af ttnext8 edge rasters in
the image Itsrcsv between nodes in the standard graycode ring.
This function is principally used in the same contexts as
exchange. The function of this routine is identical to
11exchange18, with two exceptions. First, arbitrary storage
class image buffers are accepted as the argument, and
communications between remote (non-nearest-neighbor) nodes
is executed if neccessary.

IADD --- add constant to image
iadd(src,konst)

IMAGE sarc;
int konst ;

iadd adds a constant to each pixel in the specified buffer.

34

ICOPY --- buffer to buffer image copy
icopy (src, dst)

IMAGE src,dst;

icopy copies the contents of one image buffer (src) to
another (dst) .
IKONST --- fill image buffer with a constant

ikonst(src,konst)

IMAGE src;
i n t konst;

ikonst fills each pixel in the specified image buffer with a
constant e

IMUL --- multiply all p i x e l s by a constant

imul (src, konst)

IMAGE src;
int konst;

imul multiplies each pix4

INVERT --- invert image
invert (src)

IMAGE src;

1 in the image src b! a constant.

invert replaces each pixel P in the image src w i t h the
quantity 255-P.

IZERO --- zero image buffer
izero (src)

IMAGE src;

izero fills the specified image buffer with zeros.

35

NGRAY --- standard graycode
int ngray (arg)

int arg;

ngray returns the graycode i.d. of its argument. For
example, the nth strip of the image is mapped onto the node
ngray(n)

NORMALIZE --- normalize image buffer to a specified range.
normalize(src,lo,hi)

IMAGE src;
int lo,hi;

normalize computes the global maximum and minimum in the
image src, and rescales the image such that t h e minimum
value becomes lo, and the maximum, hi. The image buffer src
can be of arbitrary storage class. This function is
principally used for scaling floating point images into an
8-bit range prior to display.

NPHYS --- inverse of standard graycode
int nphys (gray)

int gray;

nphys returns the inverse graycode of its argument. For
example, the strip of the image mapped onto node n is
nphys(n) -
NRING --- embedded ring mapping
nring (node, ndim, nuP I ndown)

int node,ndirn,*nup,*ndown;

nring returns the numbers of the nodes immediately "upwardstt
and '*downwards" of the calling node ("node") in the standard
graycode ring.

36

TABLE --- initialize trig lookup table
table(trig - table)

int trig_table[320];

table sets up an integer sine/cosine lookup table (LUT) for
use in later integer trigonometric LUT operations. Values in
the table are computed as 256 times the value of the sine
function, uniformly sampled in 320 places over the interval
0 to 5*pi/2. Thus, the sine LUT begins at entry 0, and the
cosine LUT at entry 6 4 ,

ZCOL --- zero range of columns
zcol(lo,hi,src)

int lo,hi;
IMAGE src:

zrow replaces the data in the column& of the image src with
zero in the specified ramp, lo to hi inclusive.

ZROW --- zero range of image rows
zrow(lo,hi,src)

int lophi;
IMAGE src;

zrow replaces the data in the r o w s (rasters) of the image
src with zero in the specified range, lo to hi inclusive.

A.1.5 Graphics

The system supports an extremely primitive set of functions
useful f o r creating graphic overlays on images. Graphics are
drawn using an implied cursor which can be moved to an
absolute position in the image, or relative to its current
position.

GBUFFERON --- select active graphics buffer
gbufferon(dst1

IMAGE dst;

gbufferon causes the results of all subsequent graphics
calls to be drawn in the (unsigned character) image src.

37

GBUFFEROFF --- inactivate graphics buffer
gbufferoff(dst)

IMAGE dst;

gbufferoff inactivates the image src as a graphics buffer.

INTENSITY --- select drawing intensity
intensity (Val)

int Val;

intensity causes all subsequent graphics instructions to be
written using pixels of brightness Val. Val must be i.n the
range -lto 255. if val is -1, pixels are complemeted rather
than set to an absolute brightness.

AMOVE --- absolute move
amove (x , y)

int x,y;

amove moves the implicit cursor to absolute position x,y in
the graphics buffer.

RMOVE --- relative move
move (dx, dy)

int dx,dy;

move moves the cursor dx,dy units relative to its current
position. If the requested move is outside the limits of the
current graphics buffer, it is clipped to the nearest point
on the edge of the buffer.

ALINE --- absolute line
a1 ine (x, y)

int x,y;

aline draws a line using the current intensity value from
the current position of the implied cursor to the ahsolute
coordinates x,y in the graphics buffer.

38

RLINE --- relative line
rline (dx , dy)

int dx, dy :

rline draws a line using the current intensity value from
the current position of the implied cursor to the relative
coordinates dx,dy in the graphics buffer.

A . 1 . 6 Low level Utilities

ABSDIFF - absolute difference of two images
int absdiff(src1, src2, dst)

IMAGE srci , src2 , dst:
absdiff subtracts src2 from srcE pixel by pixel and returns
the absolute value of the difference in dst.

BINIMAGE --- grayscale to binary conversion
binimage(src,dst,thres~~

IMAGE src, dst;
int thresh;

binimage performs an absolute threshold. src is a grayscale
8-bit (0-255) image, dst is returned as a binary (0,255)
image, according to whether each pixel in src is greater
than or less than or equal to the integer threshold.

C O W 3 --- specialized integer 3x3 convolution

IMAGE src,dst;
int i l I i 2 , i 3 , i 4 , i 5 , i 6 , i 7 , i 8 , i 9 ;

conv3 performs an integer 3x3 convolution on the image src
to produce the image dst, It is frequently used for quick
implementation of small, fixed structure convolution masks.
Arguments ilt...,i9 are the convolution mask elements
ordered from upper left to lower right.

39

DILATE --- binary morphological dilation
dilate(src , dst)

IMAGE src, dstr

dilate performs a binary morphological dilation of the
binary image src to produce the binary image dst.
Specifically, if each clear pixel has any set pixel its 8-
neighborhood, it is also set.

D I U T E 4 --- binary morphological dilation
dilate4(src I d s t)

IMAGE src, dst:

dilate performs a binary morphological dilation of the
binary image src to produce the binary image dst.
Specifically, if each clear pixel has any set pixel its 4-
neighborhood, it is also set.

EQUAL --- histogram equalization
equal(src)

equal performs an in place histogram equalization based on
the global image histogram.

ERODE --- binary erosion
erode(src,dst)

IMAGE src, dst :

erode performs a binary morphological erosion of the binary
image src t o produce the binary image dst. Specifically, if
each set pixel has any clear pixel its 8-neighborhoad, it is
also cleared.

ERODE4 --- binary erosion
erode (src I d s t)

IMAGE src, dst r

erode performs a binary morphological erosion of the binary
image src to produce the binary image dst. Specifically, if
each set pixel has any clear pixel its 4-neighborhood, it is
also cleared.

4 0

GCLQSE --- grayscale morphological image closing
gclose(src,dst,nsize)

IMAGE src,dst;
int nsize;

gopen performs a grayscale morphological image closing on
the image B1src8t to produce the image gPdstle. The structuring
element is a square region of diameter 8 1 n s h e f g .

GLOBAL-AVG --- global image statistics
avg = global I avg(src,min,max)

IMAGE src;
int avg, *min, *max;

global-avg computes simple global statistics on the image
lvsrcR$. The average value of all pixels in the image is
returned in avg, and the maximum and minimum values in the
arguments *max and *min respectively.

GLOBAL - COM --- global center of mass
global - com(srcrcx,cy)

IMAGE src ;
ink +cx, *cy;

global cam computes the global center of mass of all the set
pixels-in the binary image llsrc'*. The image coordinates of
the center of mass are returned in the arguments *cx and
*cy. This routine is used only in very simple applications,
where there is only one object.

GMAX --- replace with local maximum
gmax(src,dst,nsize)

IMAGE src,dst;
int i s i z e ;

gmax performs replaces each pixel in the image Btsrcvv with
the maximum of the pixels taken over the square neighborhood
of diameter 'Pisize's, forming the output image ttdstmv.

41

GMIN --- grayscale replacement with local minimum
gmin(src,dst, isize)

IMAGE src,dst;
int isize;

w i n performs replaces each pixel in the image 1vsrcg8 with
the minimum of the pixels taken over the square neighborhood
of diameter I1isizeR1, forming the output image ladstlt.

GOPEN --- grayscale morphological image opening
gopen(src,dst,nsize)

IMAGE src., dst ;
int nsize;

gopen performs a grayscale morphological image opening on
the image I'src" to produce the image vRdst". The structuring
element is a square region of diameter

HISTO --- global histogram
histo (src, hist)

IMAGE src;
int hist12561 ;

histo computes the global histogram of an image. The
histogram is returned in the integer array hist, which must
have 256 elements. The values returned in each element are
the number of pixels in the image src having a gray value
corresponding to the array index to hist.

LNDIFF --- difference of logarithms
lndiff(srcl,src2,dst)

IMAGE srcl,src2,dst;

lndiff subtracts the pixel-by-pixel natural logarithm of the
image src2 from the pixel-by-pixel natural logarithm of the
image srcl, and exponentiating the result to produce the
output image dst.

4 2

LOCMAX --- find local maxima
locmax(src,dst,nsizeb

IMAGE src,dst;
int nsize;

locmax inspects the grayscale image src, producing the
binary image dst. Pixels in dst are set if they are local
maxima over a neighborhood of nsize by nsize, otherwide they
are cleared,

MCMIN --- find local minima
locmin(src,dst,nsize)

IMAGE src,dst;
int nsize;

locmin inspects the grayscale image src, producing the
binary image dst. Pixels in dst are set if they are local
minima over a neighborhood of nsize by nsize, otherwide they
are cleared.

LTHRESH --- local thresholding
lthresh(src, Iti)

IMAGE src,lti;

lthresh performs a pixel-by-pixel threshold of the source
image src according to the image of thresholds in the local
threshold image lti. This routine is useful, for example,
after determining the lti via grayscale morphology.

NAVG --- neighborhood avgerages
navg(src,dst,select)

IMAGE sre , d s t p'

int select;

navg perform selected averaging operations over the 4- or 8 -
neighborhood, according to the operation specified by
I* selectt1.

select operation
4 average over 4 neighborhood
8 average over 8 neighborhood
0 digital 3x3 LaPlacian

4 3

SHOWL --- illustrate a single labeled region
showl(src,dst,label,fore,back)

IMAGE src, dst t
int label,fore,back;

show1 extracts the pixels in the label image src (produced
by connect) which are marked with the label "label", to
produce the output image dst. fore and back specify the
graylevel to use for marking label pixels and for marking
non-label pixels in the destination image. This utility is
primarily useful for inspecting the output of analysis of
the labeled image, perhaps by fNshowling" an identified
region.

SOBEL --- sobel gradient magnitude estimator

sobel (src, dst)

IMAGE src, dst ;

sobel computes the classic sobel gradient magnitude
estimation of the input image src, producing the output
image dst.

THRESH --- hard threshold
thresh (src, thr)

IMAGE src;
int thr;

thresh performs, in place, a hard threshold on the image
src. Each pixel in the grayscale input image is tested
against the constant thr. If the pixel is greater than thr,
a 255 is returned in place, otherwise a zero is returned.

A.1.7 Intermediate level Utilities

CONNECT --- connected component labelling
int connect(src, dst)

IMAGE src, dst;

connects performs connected components on the binary image
src, returning the label image dst. Conflicting labels which
arise from image distribution are resolved. Set pixels are
connected with four-connectivity, reset pixels with eight-
connectivity. Labels 1 through 127 are assigned to reset

44

regions, labels 129 through 255 to set regions. Labels 0 and
128 are unused. connect returns the number af set regions in
the high 8 bits, and the number of reset regions in the low
8 bits.

HQUGH --- hough transform
hough(src,dst,trig I table)

IMAGE src,dst;
int *trig - table

hough perfoms a hough transform an the binary image s!src88
to produce the grayscale image "dst8'. Precomputed values
fram an integer trigonometric lookup table are used in this
calculation, so the routine I8tablel8 must be called first.

MAXSTATE --- find largest region

struct blob *maxstate(n,seglist)

int n;
struct blob seglist[];

maxstate searches the list of region features seglist for
the most massive region, and returns the address of its
structure.

MAKE - BLOB-LIST --- region analysis
make - blob I list(%rc,o_list,nblobs)

IMAGE src;
struct blob o-list[];
int nblobs;

make blob list performs a primitive region analysis of the
labeiled regions computed by connect. o list is an array of
struct blob, which should be malloced prior to calling- this
routine. The particular quantities returned €or each region
are mass, center of mass, and limits of the bounding box.
o list is indexed by the labels assigned by the routine
connect.

45

WHOUGH --- windowed haugh transform
whough(src,dst,trig-table,min,ymin,xmax,ymax)

IMAGE src dst ;
int *trig - table, Din, xmax, ymin,ymax;

whough performs a hough transform on the image src,
producing the image dst, using only those pixels in the
window specified by the arguments =in, ynain, xmax, p a x .
whough is useful primarily for determining the pose of
features in a segmented object, and secondarily for speeding
up the global hough transform, since in general a smaller
number of points w i l l be transformed. This routine is
globally balanced.

4 6

A.2: Host 1/0 server and utilities

A . 2 - 1 : The 1/0 server and its requirements

Almost all image processing and analysis applications employ
a single program on the host. This program essentially acts
as while forever switch statement, awaiting 110 commands
issued from the hypercube, executing the requested 1/0 and
awaiting new commands Execution of the current
implementation is outlined in the following flowchart.

Read driver
file

I
V

Open requested
devices

I
V

Load program
onto cube

V
I

I ----- > Receive instruction
I from hypercube

I
V

1s it
t eminate?

/ \
I no /
I /

Execute 110 /
request

\ Yes

Close all devices
I
V
Exit

\

Flowchart of Standard I/Q Process

4 7

The text driver file has the following format:

I string I
'in1
' out '
'u1'
'u2 1

'U3 '
'u4 I
'U5'
4
0
0
0
0
0
0
0
u5
u6
u7
138
nint
il
i2

nflt
fl
f2

...

...

name of node program
base input file name
base output file name

ul through u5 are unused string fields

maximum cube dimension
output display switch
output disk write switch
active input device
active graphics device
pause switch
debug switch
rotation stage switch

u5 through u8 are unused integer fields

number of integer parameters following

number of floating point parameters following

The name of node program is a string up to 20
characters in length. Only the current directory is searched
for this program. The input file name specifies a single
file which can optionally be used as image data. This file
is only read if the disc is the currently active input
device. No provisions are made in the present system f o r
disk based image sequence input. The base output file name
specifies the filename portion of any images output to disc.
Successive images are indexed by the extension part of the
file name, beginning with IO1. Several string fields are
reserved for future use. The first integer field specifies
the maximum cube dimension which the program will allocate.
If a cube of the maximum dimension is not available, cubes
of successively smaller dimension will be requested. If no
cube is available, the program terminates. The output
display switch determines whether output images will be
displayed (1) or not displayed (0) . The output disk write
switch determines whether output images will be written to
disc (1) or not written to disc (0). The active graphics
device switch specifies the the graphics device on which

4 8

output images will be graphed (0-NEC multisync, 1 = W E
subsystem). The pause switch determines whether the program
will pause (1) or not pause (0) after each output image. The
debug switch specifies whether the debug duaghter process
will be spawned (1) or not spawned (0) . The rotation stage
switch specifies whether communication to the Newport
rotation stages is desired (1) or not desired (0) . Several
integer fields are reserved for future use.

The number of integer and floating point parameters to
be passed to the hypercube on program initiation is
specified using two integer entries in the driver file.
Following each entry exactly the number of parameters
specified must appear. Integer parameters are received by
the node program in the first 5 0 variables of the array
"crtl" (see iminit above); floating point parameters are
recieved in the second 50 variables of the same array. This
array can conveniently be accessed with a structure or
union. No more than 50 parameters of each type are
supported.

A small set of utilities have been implemented for each
I / O device currently integrated into the system. In each
case, the implementations support basic 1/0 functions, with
occasional elaborations, Access to each device could
arguably be greatly improved. The standard host process
described in this section currently supports only some of
the available utilities.

A.2.2 W E subsystem

IDROPEN --- open communications channel to VME subsystem

ichan = idropeno

integer*4 khan

idropen opens a communications chamnel to the VME subsystem
(/dev/drllw). The I / O channel number is returned.

IDRCLOSE --- close communications channel to W E subsystem

null = idrclose()

idrclose closes the communications channel to the W E
subsystem.

4 9

PGET64 --- digitize image
null = pget64(pic)

integer*l pic(65536)

pget64 instructs the VME subsystem to digitize a 64 kilobyte
image and transmit the image to the NCUBE host processor,
storing the image in the buffer "pic". The image is stored
in a standard raster scan format, with the first byte
corresponding to the pixel at the extreme upper left of the
image, the last byte corresponding to the pixel at the
extreme lower right. The image format is 256 rasters, 256
pixels per raster, 8 bits per pixel.

and

PPUT64 --- display image
nul1 = pput64(pic)

integer*l pic(65536)

pput64 transmits a 64 kilobyte image from the buffer ''pic"
to the VME subsystem, and displays the image on the VME's
monitor.

Comments: f o r simplicity, only 2 5 6 x 2 5 6 ~ 8 bit images are
currently used. It is reasonably straightforward to
generalize these routines, and the corresponding VME
subsystem routines, to support arbitrarily dimensioned
images, within certain limits established by the digitizer.
An ideal mechanism would permit the definition and
transmission of run-time defined image formats.

FLTPUT --- specify analog filter prior to digitization
null = fltput (nfilt)

integer*4 nfilt

fltput specifies analog prefiltering of the video signal.
The digitizer supports four options for analog preprocessing
of the video signal prior to digitization. These filters are
principally useful f o r eliminating high frequency noise.
Legal values for filter selection are 0 to 3: 0=3 MHz
lowpass; 1=2 MHz lowpass; 2=4.5 MHz lowpass; and 3 = no
filter. The default setting is no filter.

50

NUXPUT --- select video source
null = muxput(nmux)

integer*4 nmux

muxput selects the video source for image digitization. The
digitizer supports up to 8 possible video sources. Currently
there are two CCD cameras connected to multiplex channels 1
and 2. By convention, mux channel 1 corresponds to the left
camera, and mux channel 2 to the right camera. Calls to
pget64 digitize images using the most recently selected
video source. The default selection is left camera (nmux =
1)

GANGET --- read current input gain setting
gain = ganget()

integer*4 gain

ganget returns the current setting of the analog
preamplifier.

GZLNPUT --- set digitizer input gain
null = ganput(gain)

integer*4 gain

ganput sets the preamplifier. The digitizer features a
programmable analog preamplifier which precedes
digitization. Legal values for gain are 0-7, with 0
specifying l o w gain and 7 high gain. This facility is
principally used far preconditioning the signal to make
optimal use of the 8 bit dynamic range.

DCOPWT --- set digitizer D.C. offset

null = dcoput(dc)

integer*4 dc

The digitizer features a programmable analog D.C. offset
which precedes digitization. Legal values for "dcta are 0-
255, with 0 corresponding to blacker images, and 255
corresponding to whiter images. This feature is used
principally for preconditioning the signal to make optimal
use of the 8 bit dynamic range.

51

SEQUENCE --- regular sampling
sequence (snap - interval)

integer*4 snap I interval

sequence supports the automatic digitization of images at
regular sampling intervals. Images are digitized at a
sampling rate which is some integer multiple of 0.01
seconds, specified by the argument snap interval. Images are
internally circularly buffered in the-- subsystem to a
depth of 16 images.

A.2.3 SBX graphics device

IGOPEN --- open communications channel to display device
khan = igopen()

integer*4 ichan

igopen opens /dev/matrox and returns the channel number.
igopen also initializes the Hitachi ACRTC chip for 640x480
resolution.

IGCLOSE --- close communications channel to display device

null = iglcose()

igclose closes /dev/matrox

IDUMP --- display 64 Kbyte image on CRT
call idump(image,xpos,ypos)

integer*l image(65536)
integer*4 xpos,ypos

idump uses the DESA facilities of the Hitachi ACRTC to
transfer a 64 kilobyte image from host memory to the display
memory, with the upper left hand corner of the image located
at position xpos, ypos.

52

JDUMIP --- display variable size image on CRT

jdump uses the capability of the Hitachi ACRTC to
transfer an image from host memory to display m e m o r y . The
image is placed with its upper left hand corner at abosolute
position xpos, ypos. The image is assumed to conform to a
raster scan format with ixwin bytes per raster and iywin
rasters. No more than 6 4 Kbytes of data can be in the image
buffer.

GREYSCALE --- set up grayscale LUT
call greyscale

greyscale sets the bits in the color LUT of the ACRTC to
contain a mapping from the integers 0-255 into a grayscale
image. 0 corresponds to black, and 255 to white.

PCOLOR --- set up pseudocolor LUT
call pcolor

pcolor sets the bits in the color LUT of the ACRTC to
contain a simple pseudocolor mapping of the integers 0-255
into an RGB image. 0 corresponds to black, low integers to
blue, and high integers to red.

A.2 .4 D i s k Access

IMREAD --- read image from disc
call imread(name,buffes)

character*40 name
integerftl buffer (6 5 5 3 6)

imread reads the 6 4 kilobyte image from disc file lgname's
into a 6 4 Kbyte area of memory beginning at address
"buff erg@.

IMWRITE --- write image to disc file
call irnwrite(name,buffer)

character*40 name
integer*l buffer (6 5 5 3 6)

imwrite writes the 64Kbyte image found at address "buffert8
to the d i s c file "naxIle~$.

. 53

A.2.5 Hypercube image 1/0

I m A D C --- read an image from a hypercube

call imreadc(ncube,ndim,buffer)

integer*4 ncube,ndim
integer*l buffer(65536)

imreadc interacts with D'imageout" to collect a 6 4 Kbyte
image from the hypercube {'ncube" having dimension 9andimg* to
a contiguous area of m e m o r y in the host address space,
beginning with the address *'buff erg'.

PMWRITEC --- write an image to a hypercube
call imwritec(ncube,ndim,buffer)

integer*4 ncube,ndim
integer*l buffer(65536)

imwritec interacts with 'aimagein" or '1input-qj8 to distribute
a 64 Kbyte image from a contiguous area of the host address
space onto the hypercube "nncube** having dimension
The image address is specified in '{buffer".

A.2 .6 Newport rotation stages

IRSOPEN --- open serial communication channel to controller
ichan = irsopen()

integers4 ichan

irsopen opens a serial communications channel to the Newport
rotation stage controller. The channel number is returned.

IRSCLOSE --- close communications channel
null = irsclose()

irsclose closes the serial communications channel to the
Newport ratation stage controller.

5 4

IRSVEL --- set stage velocity
i = irsvel (stage, vel 1

integer*4 stage,vel

irsvel sets the stage velocity of the rotation stage *@stagegq
to velocity B1vellB. Legal values for 8*stage'a in this and all
other calls to rotation stage routines are 1,2,3, and 4 .
Legal values for "velw are in the range 8-8000. The physical
units are millidegrees per second.

IRSORG --- set stage origin
i = irsorg(stage)

integeri4 stage

irsorg resets the coordinate system of stage "stage*'. The
current position of the stage when irsorg is called is
thereafter the origin of the coordinate system.

IRSLIM --- set soft limits
i = irslim(stage,limup,limdown)

integer*4 stage,lash

irslim sets the limits of motion for stage P8stage*". The
limits are expressed in millidegrees relative to the current
origin. lirnup and limdown specify the limits in the
clockwise and counterclockwise directions respectively as
the stage is viewed from above. Legal values for both limits
are in the range +/-999999.

IRSLASH --- set stage backlash
i = irslash(stage, lash)

integer*4 stage,lash

irsilash sets the backlash parameter on stage Bwstage88. This
parameter controls overshoot on rotations in the
counterclockwise direction so that the terminal position on
all motions is approached from the clockwise direction. This
feature minimizes hysteresis.

55

IRSVELQ --- interrogate current velocity
vel = irsvelq(stage)

integer*l stage,vel

irsvelq returns the current rotation velocity setting on
stage flstageol.

IRSLOCQ --- interrogate current position
lac = irslocq(stage)

integer*4 loc,stage

irslocq returns the current position of stage qlstaget*

IRSLIMQ --- interrogate current limit settings
null = irslimq(stage,up,down)

integer*4 stage,up,down

irslimq returns the current soft limit settings of stage
"stagef1 in the variables up and down.

IRSLASHQ --- interrogate current backlash
lash = irslashq(stage)

integer*4 stage,lash

irslashq returns the current backlash setting of stage
"stage".

IRSHOME --- move to origin
null = irshome(stage)

integer*4 stage

irshome moves stage t8stageit to its current origin.

IRSMOVA --- absolute move
null = irsmova(stage,loc)

integer*4 stage,lsPc

irsmova perfoms an absolute rotation of stage g8stages8 to
location 1810c8g, where loc is given in millidegrees relative
to the current origin. Legal values are in the range +/-
999999.

IRSMOVR --- relative move
null = irsmovr(stage,rel)

integer*4 stage,rel

irsmovr performs a relative rotation of stage llstagev". The
stage is rotated by the number of millidegrees given in
lrrel" .
A.2.7 Console

ITTYFLY --- get a keystroke on the fly
i = ittyfly(char)

integer*4 i
character*l char

ittyfly inspects the character ready bit on the standard
input serial communications channel, returning 0 in both i
and char if no character is presently available, and
returning the character code if a character is available.

ITTYIN --- get a single keystroke
i = ittyin(char)

integer*4 i
character*l char

ittyin returns the next available character in both i and
char.

57

CURSOR --- cursor on/of f
call cursor(switch)

integer*4 switch

cursor emits the ANSI standard escape sequences for making
the terminal cursor visible or invisible, according to the
argument switch (1 or 0 respectively).

CLRHOM --- clear screen and home cursor
call clrhom

clrhom emits the ANSI stsandard escape sequenses necessary
for clearing the terminal screen and positioning the cursor
at row 1 and column 1.

CURPOS --- absolute cursor positioning
curpos(row,col)

intger*4 row,col

curpos emits the ANSI standard escape sequences neccessary
for positioning the cursor at absolute position row and col.

A . 2 . 8 Miscellaneous

NGRAY --- compute standard graycode
gray = ngray(arg)

integer*4 gray, arg

ngray returns the graycode of its argument.

NPHYS --- invert standard graycode
phys = nphys(arg)

integer*4 phys, arg

nphys returns the inverse graycode of its argument.

58

NRING --- standard graycode ring
call nring(node,up,down)

integer*4 node,up,down

nring computes the physical node numbers of the upwards and
downwards nearset neighbors of the node whose number is
%odefg in the standard graycode ring.

SEQNAME --- compute a name string in sequence
call seqname(base - name,target - name,index)

character*20 base name, target - name
integer*4 index

seqname computes a character string in a sequence of
character strings. The index is converted into a t w o
character digit string in the range 0 to 99 and appended to
the base-name to form the target - name. For example, the
sequence of names a.O, a.1, a.2, ... can the formed. This is
principally used f o r performing disc 1/0 to store the
results of successive image processing steps.

59

ORNL/TM-10679
CESAR-88/04

INTERNAL DISTRIBUTION

1. S . M. Babcock
2. D. L. Barnett
3. M. Beckerman
4 . B. Burks
5 . K. M. Clinard
6 . G . de Saussure
7 . J. J. Dorning (Consultant)
8. J. R. Einstein
9 . C . W. Glover
10. E. C. Halbert
11. W. R. Hamel
12. J. Han
13. R. M. Haralick (Consultant)
1 4 . J. E. Jones Jr.

15-19. J. P. Jones

2 0 .
2 1 - 2 5 .
2 6 - 3 0 .

31.
32.
33.
3 4 .
35.
36.
3 7 .
38.
39.
40.
41.

42 -46.

S . M. Killough
F. C . Maienschein
R. C . Mann
E. M. Oblow
L. E. Parker
F. G. Pin
D. B. Reister
C. R. Weisbin
B. A . Worley
A . Zucker
Central Res. Library
Y-12 Doc. Ref. Section
Lab. Records, O$.NL/KC
OWL Patent Office
EPMD Reports Office

EXTERNAL DISTRIBUTION

4 7 . Office of Assistant Manager for Energy Research and
Development, D O E - O R O , P. 0 . Box 2001, Oak Ridge, TN 37831-8600.

4 8 . H. Alter, Advanced Technology Development, Office of
Technology Support Programs, DOE, Washington, DC 20545.

4 9 . 0. P. Manley, Division of Engineering and Geosciences,
Office of Basic Energy Sciences, ER-15, DOE, Washington, DC 2 0 5 4 5 .

50. R. J . Neuhold, Advanced Technology Development, Office of
Technology Support Programs, DOE, Washington, DC 2 0 5 4 5 .

5 1 . B. J. Rock, Director, Office of Technology Support Programs,
DOE, Washington, DC 2 0 5 4 5 .

52. Major Frank Holly, U. S . Army Laboratory Command, Human
Engineering Laboratory, Aberdeen Proving Grounds, MD 21005-5001.

60

ORNL/TM-10679
CESAR-S8/04

53. E. M. Simpson, University of West Florida, Pensacola, FL.

54 . J. F. Palmer, NCUBE Corporation, 915 E . LaVieve Lane, Tempe,
AZ 85284.

55. M. C. G. Hall, 6559 Bison Court, San Jose, CA 95119

56-65. Office of Scientific and Technical Information, P.O. Box 62,
Oak Ridge, TN 37830.

