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ABSTRACT

JOHNSON, A. R. and S. M. BARTELL. 1988. ODynamics of
aquatic ecosystems and models under toxicant stress:
state space analysis, covariance structure, and
ecological risk. ORNL/TM-10723. O0Oak Ridge National
Laboratory, Oak Ridge, Tennessee. 212 pp.

The state of an ecosystem at any time t may be characterized by
a multidimensional state veclor x(t). Changes in state are
represented by the trajectory traced out by x(t) over time. The
effects of toxicant stress are summarized by the displacement of a
perturbed state vector, xp(t), relative to an appropriate
control, xc(t). Within a multivariate statistical framework, the
response of an ecosystem to perturbation is conveniently quantified
by the distance separating xp(t) from xc(t) as measured by a
Mahalanobis metric. Use of the Mahalanobis metric requires that the
covariance matrix associated with the control state vector be
estimated.

State space displacement analysis was applied to data on the
response of aquatic microcosms and outdoor ponds to alkylphenols.
Dose -response relalionships were derived using calculated state space
separations as integrated measures of the ecological effects of
toxicant exposure. Inspection of the data also revealed that the
covariance structure varied both with time and with toxicant
exposure, suggesting that analysis of such changes might be a useful

taol for probing control mechanisms underlying ecosystem dynamics.

XV



State space displacemenl analysis was further investigated in
the context of an ecological simulation model. Replicate stale space
trajectories, incorporatling both natural variabilitly (random initial
conditions and stochastic forcings) and measuremenl error, were
produced using Monte Carlo technigques. It was demonsirated that
although quantitative estimates of stale space separation vary with
ihe estimaled covariance matrix, qualtitative features of the
dose -response relationships are relatively robust to variation in the
covariance estimates. Furthermore, ilhe state space methodology was
demonstratled 1o have high statislical power: effects at the lowesl
simulated dose could readily be detected with as few as one or two
Monte Carlo replicates per ireatment.

Finally, the problem of selecting a small set of diagnostic
variables which reflect ecosystem state was examined. The adequacy
of diagnostic variables as predictors of ecological risk is a
funcilion of the pronabilities of the associated type I and type II
statistical errors. A cost-benefit approach for choosing an optimal

balance betlween these error rates was developed.
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Chapter 1

INTRODUCY LON

This thesis is concerned with the development of a practical
methodology for applying the state space approach to the analysis of
ecotoxicological data. The objectives of the research are (1) to
distinguish the response to stress from other aspects of ecosystem
behavior, and (2) to develop a methodology for describing this
response, both qualitatively and guantitatively. The work presented
here represents a significant extension of many of the preliminary
applications of state space techniques which will be reviewed in
sections 1.1 and 1.3. Specifically, a methodology is developed which
fits neatly into the framework of modern multivariate statistical

analysis.

1.1 STATEL SPACE REPRESENTATION OF ECOLOGICAL 3YSTEMS

This study employs a “"state space" or "phase space"
representation of ecological systems. The stale space approach can
be given a simple geomelric interpretation, and thereby facilitates
mathematical analysis of system bhehavior. The state space approach
is a widely used mathematical tool, particularly in the study of the
dynamic behavior of systems of differential equations (see, for

example, Zadeh and Desoer 1963). As such i1t has found frequent



application in modeling real world systems, partlicularly in such
fields as physics and engineering, and increasingly in the biological
sciences, including ecology.

At any instant in time, an ecosystem can be defined to be in a
"state" described by a set of observable quantities called state
variables. It may be that the state variables are not themselves
directly measured, but rather a set of output variables which bear
some mathematical relationship to the state variables. This does not
affect our ability to apply the state space approach as long as the
functional relationships between the state variables and the output
variables are known.

A stale space is defined by constructing a coordinate system in
which a separate axis is taken to represent each state variable,

X The dimensicnality of ihe state space is therefore equal to

the number of state variables, n. Any set of values for the state
variables corresponds to a point, or equivalently a vector, in the
state space: x{(t) = (x1,x2,...,xn)‘. As changes in the state

of the ecosystem occur, the location of the corresponding vector in
the state space changes. The path traced out by the state vector is
referred to as a state trajectory. W4When the dimensionality is low
(two or three state variables) the state space representation leads
to a graphical display of the data. State space trajectories of

higher dimensionalily are not accessible to direct visual inspection,



but quantities related to distance or direction can be defined
algebraically, and interpreted by analogy to lower dimensional
systems.

The concepls of a state space and state trajectories are quite
general. They can be applied to either continuous or discrete state
variables. 1In the case of discrete state variables, such as numbers
of individuals (which is restricted to integer values), the state
vector is constrained to lie on a multidimensional grid. Similarly,
the state space representation is valid whether time is considered as
a continuous variable (as in models based on differential equations)
or a discrete variable (as in models based on difference equations).
State space analysis can be applied to systems that are linear or
nonlinear, deterministic or stochastic, stable or unstable, near or
far from equilibrium. 7o place the present study in perspective, a
brief overview is presented of some applications of the state space
represeniation drawn from the recent ecological literature, with an
emphasis on experimental studies.

Two dimensional state space diagrams have been used as a
graphical device for presenting data. Heath (1980) plotted
trajectories of nitrate conceniration versus phosphate concentration
for a series of small, flask-type aquatic microcosms. Marmorek
(1984) plotted trajectories of zooplankton biomass versus chlorophyll
for lake enclosures used in an acidification study. Woltering (1985)

plotted guppy biomass versus amphipod biomass trajectories to display



results obtained in his multispecies toxicity test system. Waide et
al. (1880) displayed regions of a pH-dissolved oxygen state space
occupied by their aquatic microcosms. 1In this last case, the choice
of state variables is given the theoretical justification thal they
serve as surrogates for hydrogen ion activity and electron actlivity,
two masier variables controlling biogeochemical systems.

Often higher dimensional data are presented as trajectories
projected into a two dimensional subspace defined by principal
components. Principal components analysis is a statistical technique
used to find lower dimensional representations which often explain
most of the variance in the original multivariate data set. This was
the approach taken by Gates (1983) in analyzing changes in the size
distribution for the protozoan Tetrahymena grown in batch culture.
Cell volume distribution, as quantified by a 100-channel electronic
particle counler, was seen to change as the cultures aged, and these
changes took the form of a simple circular trajectory in the space
defined by the first two principal components. Gates et al. (1983)
applied the same technique to analyze biomass distributions for
plankton samples collected from a series of lakes in Ontario,
Canada. The technique was found to be useful in summarizing both
seasonal and year-to-year changes in the plankton community, and
suggested several hypotheses about processes controlling plankton

dynamics in lake ecosystems.
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Bartell et al. (1978) explored the use of trajectories in
principal components space as a method of describing phytoplankton
periodicity in Lake Wingra. More recently, Allen et al. (1984)
analyzed patterns emerging from trajectories of phytoplankton data
submitted to various transformations prior to principal components
analysis. These techniques were able to uncover different aspects of
phytoplankton dynamics operating at different time scales. Allen and
Shugart (1983) analyzed by principal components the community
trajectories generated by a forest succession model. This analysis
revealed a decoupling of overstory versus understory dynamics which
had not been explicitly built into the model, but which could be
explained in hindsight. Allen et al. (1977) studied patterns of
phytoplankton succession in a state space based on "“first
differences® in species abundance. The first difference, which is
the difference in abundance between two successive observations,
gives an indication of the rate of change of species abundance. It
was shown that over the course of a year, the state vector migrates
in a cyclic fashion through a set of relatively stable configurations.

fcological observations can be expressed in state vector form to
facilitate mathematical calculations. Ollason (1977) studied the
population densities of algae, rotifers and protozeans in freshwater
microcosms, calculatng the speed at which the state vector moved
along its trajectory as a measure of the overall rate of community

change. Leffler (1980) adopted the same approach for analyzing the



)

nutrient input-output dynamics of flow-through microcosms. Using a
more elaborate mathematical approach, Morkoc et al. (1385) employed
the state space approach to statistically model spatial and temporal

variations in soil water content and temperature.

1.2 CONCEPTS OF ECOLOGICAL STABILITY

Central to the study of ecosystem dynamics, both in the
unperturbed state and in response to toxicant stress, are a number of
concepts related to stability. These concepts are relevant to this
study because they can be used to describe the range of dynamic
systems to which state space methodology is best applied. The state
space method used in this study reguires comparing the state
trajectory of a toxicant-perturbed system with some reference
trajectory representing the dynamics of an unperturbed system. The
meaningfulness of such a comparison is a function of the stability
characteristics of the system.

The use of varijous stability related terms in the recent
ecological literature is summarized in Table 1.1. Various authors
have obviously attached different meanings or shades of meaning to
these terms, but in many cases have failed to provide explicit
definitions, making reconstruction of their intent a difficult task.
The groupings shown in Table 1.1 are intended to represent

constellations of related ideas, but not necessarily strict synonymy.



Table 1.1. A summary of terminology relating to ecological stability

employed in the recent scientific literature.

Term(s)

Constancy

Variablity

Resistance
Interia
Resilience?

Resilience
Elasticity
Stability

Amplitude
Resiliency
Fragility

Persistence
Resilience?

References Approximate Definition
4,6 The degree to which an
ecosystem tends to remain
in a fixed state.
7,8 Inversely related to
constancy.
1,7,8 The capacity of an ecosystem to
2,4,5,6 resist changes in state in the
3 face of external disturbance.
1,7,8 The rate of (or time to)
2,4,5,6 recovery following a
3 perturbation.
2,4,6 The extent to which an ecosystem
5 can be perturbed and still be
9 capable of recovery.
4,6,7,8 The capacity for continued
3

survival of an ecosystem in the
face of disturbance, although
perhaps in an altered state.

O O~ O U BN

Webster, Waide and Patten (1975)
Westman (1978)

Holling (1973)

Orians (1975)

Cairns and Dickson (1977)
Sheehan (1984)

Pimm (1984)

Harrison (1979)

May (1975)
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In many respects the simplest, but also the most restrictive
definition of stability is that of constancy. An ecosystem which
displays little change over time is regarded, in some sense, as more
stable than a continually changing one. It is apparent that the
natural variability of an ecosystem is an inverse measure of its
constancy. Furthermore, the notions of constancy and variability may
be generalized (though none of the authors reviewed explicitly do
this) to apply not only in a static sense, but also in a relative
sense to systems undergoing periodic or other predictable changes of
state. 1In this case, a system which faithfully repeats a cyclical
pattern with only minor deviations is exhibiting a high degree of
constancy relative to that cycle, even if the changes in the state
variables over time is great (low constancy in an absolute sense).

The shortcoming of using constancy (or variability) alone as a
measure of ecosystem stability is that no distinction can be made
between systems that exhibit 1ittle change due to a lack of
disturbance as opposed to systems that are able to maintain a degree
of constancy despite disturbance. This necessitates the definition
of a third concept of stability, variously referred to as
resistance or inertia. Ideally the relative resistance (inertia)
of different scosystems could be quantified by measuring the
differing amounts of change in state variables given the same

disturbance.
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Frequently contrasted with resistance is the concept of
resilience, which is a measure of the rate of of recovery following
perturbation. The term elasticity is also used in an apparently
synonymous fashion by several authors. Resistance has been related
to the presence of large components with slow turnover, such as
detritus, whereas resilience is a function of rate regulation,
particularly by heterotrophs (0'Neill et al. 1975, O'Neill 1875).
Webster et al. (1975) proposed a generally inverse relationship
between resistance and resilience, but empirical tests of this
hypothesis are lacking.

The concept of amplitude has been introduced as a measure of
the maximum disturbance an ecosystem can withstand while retaining
the capacity for recovery to the original state. Similar concepts
are expressed as resiliency by Cairns and Dickson (1977}, and as
dynamic fragility by May (1975). Imposed disturbances can be
thought of as a direct perturbation of the state variables, or as
changes in parameters which control the dynamics of the state
variables. Orians (1975) defines amplitude with respect to
displacement in the state space, whereas May (1975) explicitly
relates fragility to changes in the parameters. Therefore, these may
be regarded as different concepts, but since the decision as to
whether a particular quantity is treated as a parameter or as a state
variable is frequently equivocal, these concepts have been grouped

together.
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Persistence is alternately defined as the capability of an
ecosystem to survive for an indefinite time span, or in terms of the
expected survival time for the the system (or its individuail
components). In either case, persistence is related to the ability
to survive in the face of disturbance, although not necessarily in
the same state.

The terminology employed by C. S. Holling deserves special
attention. In an important and influential review paper, Holling
(1973) uses the term stability to express the concept referred to
above as resilience. Unfortunately, he also uses the term
resilience, but with a very different connotation. According to
Holling, resilience "determines the persistence of relationships
within a system and is a measure of the ability of these systems to
absorb changes of state variables, and parameters, and still
persist". Orians (1975) and Westman (1978) equate Holling's concept
of resilience with their use of the term inertia. However, a careful
inspection of Holling's definition appears to show a greater affinity
with the concept of persistence. 1In actuality, Holling's precise
meaning is elusive, and his concept of resilience may not fif neatly
into any of the categories of Table 1.1.

Having introduced the subject of ecological stability, it is now
necessary to examine the implications for state space analysis.

Clearly, a state space analysis is not well suited to systems which



N

are unstable in the sense of lacking persistence. Systems which fail
to persist will be characterized by state variables going to zero or
to other trivial values. Such a system may reorganize, but in
general this will entail the appearance of new state variables
replacing the now irrelevant original state variables. Simple
comparison of perturbed and unperturbed trajectories in such a
situation becomes fruitless. Fortunately, an observer usually has
considerable latitude in the choice of state variables used to
describe an ecosystem. Frequently a judicious selection of state
variables will yield a description in which the system is persistent.

However, if persistence is the only form of stability displayed
by the system, the application of state space analysis may still be
problematical. Persistent systems may have the property that
trajectories differing only slightly in initial.conditions will
diverge greatly over time (even in the absence of toxicant stress).
In such cases, distinguishing between endogenous system dynamics and
true toxicant-induced displacement would be difficult at best. It is
possible that valid distinctions could be made in terms of the long
term statistical properties of the trajectories (i.e., the
distribution of states visited), but such methods are not employed in
this study.

State space displacement analysis is most readily applied in
cases where (1) the unperturbed system follows a well-defined

reference trajectory, and (2) a perturbed system tends to return
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toward the reference trajectory, at least for displacements over some
noninfinitesmal magnitude range. If the unperturbed reference
trajectory is in fact a static equilibrium point, such a system is
referred to as homeostatic. In the more general situation of a
dynamic reference trajectory, the system is sajd to be homeorhetic.
The stability concepts of resistance, resilience, and amplitude are
all applicable to homeorhetic systems, and can be quantified using
the state space methodology. The constancy (or variability) of the
system is important in determining the sampling protocol necessary to

adequately characterize the system dynamics.

1.3 QUANTIFYING ECOSYSTEM RESPONSE TO PERTURBATION

Within the state space representation, the response of an
ecosystem to perturbation is reflected by the displacement of the
state vector away from its original Jocation. It is thus convenient
to use some measursment of the distance the state vector is displaced
to quantify the response to perturbation. Several researchers have
in fact explicitly used this approach. Others have used measures
which are equivalent to a state space distance, although not defined
in those terms. Several approaches to quantifying ecosystem response
to perturbation, explicitly or implicitly based on state space
displacements, are discussed below.

Ulanowicz (1978) distinguished between ecological stress and

ecological strain using terminology borrowed from mechanical
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engineering. Stress was defined as an external force or pressure
exerted on the system, while strain is the response of the system to
the imposed stress. Then, following Innis (1975), Ulanowicz adopted
the the following index of ecological strain. Taking H* as the
value of some vector function describing an ecosystem in an
unstressed condition, and H as the corresponding value of the

function for a stressed ecosystem, ecological strain was quantified as
S = |H - H¥| (1.1)

which is an Euclidean distance measure.

Leffler (1978, 1980) defined several measures of the relative
stability of ecosystem dynamics in response to perturbation.
Constancy was defined in terms of the normal range of fluctuations of
a measured ecosystem parameter over time. A response to perturbation
was considered significant if the parameter moved outside this normal
operating range. Resistance was measured by the largest excursion
beyond the normal operating range, and resilience by the time
required to return to the normal operating range. Leffler applied
these stability measures to aquatic microcosms, concentrating
particularly on nutrient input/output ratios. More recently, Shannon
et al. (1986) employed Leffler's definitions in the analysis of other

aquatic microcosms. These applications were restricted to the
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univariate case, but the methodology developed in this study can be
regarded as an extension of the technique to a multivariate state
space.

0'Neill (1976) investigated the properties of a three
compartment (producer-heterotroph-detritus) simulation model using
different sets of parameter values to represent various types of
ecosystems. One aspect of this simulation involves perturbing the
system by removing 10% of the equilibrium producer biomass. In all
cases, the systems tended to return to the original equilibrium, and
the rate of recovery was summarized by calculating the "sum of the
squared deviations" for all three components over time. This measure
is equivalent to the squared Euclidean distance in the three
dimensional state space.

Finally, consideration is given to the method for quantifying
community recovery developed by Bloom (1980). Bloom addressed the
problem of analyzing of data consisting of repeated observations of
the abundance of various taxa over a time interval prior to and
subsequent to perturbation. The data (either raw or suitably
transformed) were analyzed by principal components to reduce the
dimensionality of the state space. Then, working in the space
defined by the first two or three principal components, a cluster of
state vectors corresponding to the "preperturbation" samples was

identified. A rejection envelope was defined such that any vector
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outside the envelope was considered to be significantly displaced
from the preperturbation cluster, i.e., to be in a stressed
condition. The envelope was defined by calculating the distance of
each vector from the cluster centroid on each axis, and then
calculating a confidence interval for each axis. Confidence
intervals were calculated either on a parametric basis (using a
Student's t statistic) and on a nonparametric basis (using a
Mann-Whitney U statistic). The recovery of a community following
perturbation was monitored by calculating the distance from the
postperturbation state vectors to the nearest face of the rejection
envelope.

Although Bloom's work is significant in terms of attempting to
employ multivariate techniques to study the trajectories of perturbed
communities, there are significant problems with his methodology.
Bloom specifies that the boundaries of the rejection envelope be
determined by independent confidence intervals on each of the axes,
but this method yields a true type 1 error rate that may be
substantially different than the o value chosen for the univariate
confidence intervals. This problem can be corrected by using
established techniques for simultaneous statistical inference, such
as a maximum modulus, a Bonferroni, or a Scheffé approximation
(Miller 1966, pp. 12-22). More imporfant]y, because of the
computational complexity of determining the distance from an

arbitrary point to the nearest face of a multidimensional rectangular
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salid, Bloom reports that the method is effectively limited to three
or fewer dimensions. This is his motivation for the initial
principal components analysis, to approximate a system of high
dimensionality by one of low dimensionality. Furthermore, by
defining the rejeclion envelope as a static region of the state space
based on preperturbation samples, Bloom's method is restricted to
systems displaying homeostatic behavior. The methodology developed
in the present study is applicable in more general situations, and

overcomes Bloom's computational limitations.

1.4 STATE SPACE ANALYSIS AS AN ECOTOXICOLOGICAL TOOL

The objective of this thesis is to present a state space
representation of ecosystem dynamics which is appropriate for
evaluating the response of such systems to inputs of toxic
materials. The preceding discussion has demonstrated that this
response can be conceptualized as a displacement of the state vector
away from its original trajectory. Thus, the response can be

described by displacement vector, u(t), defined as
u(t) = x(t) - xg(t) (1.2)

where x(1t) represents the state vector of the perturbed ecosystem,
and xo(t) represents the state vector which would have been

realized if the ecosystem had not been perturbed. 1In experimental
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situations x{(t) is directly observable, but xo(t) must be
inferred from observation of an appropriate reference system. In
this study comparisons are always made between replicate experimental
ecosystems (microcosms or ponds) randomly assigned to control
(untreated) or to perturbed (toxicant-treated) groups.

The displacement vector measures the magnitude and the direction
of perturbation to the state variables at a given time t. If u(t)
is plotted as a function of time in its own multidimensional space
(the displacement space), the resulting trajectory contains all the
information available in the original state variables about the
dynamics of the system's response to the toxicant. It captures all
the information necessary to evaluate the various aspects of
ecosystem stability, notably resistance, resilience, and amplitude.
Resistance can be related to the maximum magnitude of the
displacement vector following introduction of the toxicant.
Resilience can be quantified in terms of the rate at which the
displacement vector returns to the origin of the displacement space
once exposure to the toxicant ceases. The boundaries of the domain
of attraction associated with the unperturbed state, and therefore
the amplitude of the system, can be determined by identifying those
displacements which do not yield a return to the control state.

The maghitude of the displacement vector is of considerable

importance in establishing the stability properties of perturbed
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ecosystems. This quantity will be referred to by the term
separation. Separation is a scalar quantity which describes how far
an ecosystem has been displaced without regard to direction. This
does not mean that the directional information contained in the
displacement vector is superfluous, however. Only the displacement
vector reflects how the response of individual state variables varies
with time, from which the mechanisms of ecosystem response might be
elucidated.

Applying the state space approach to the analysis of ecological
data requires consideration of two factors frequently excluded from
purely mathematical discussions. First, although their underlying
dynamics may be effectively continuous, ecclogical variables are
usually sampled at discrete time intervals. Second, ecological state
variables cannot be quantified with absolute precision. Uncertainty
may arise due to measurement error or due to natural variability
caused either by endogenous dynamics or by external forcing of the
system. Application of the state space approach to the analysis of
discretely sampled state vectors in the presence of noise is a
multivariate statistical estimation problem.

The statistical approach taken to state space analysis is
explained in detail in chapter 2 (see especially section 2.4).
Chapter 2 also contains methodological details on the experimental

systems and the simulation model to which state space analysis is
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applied. Chapter 3 is devoted to the analysis of experimental data
collected from freshwater ecosystems (microcosms and ponds) exposed
to phenolic toxicants, providing an opportunity to assess its
effectiveness and utility. 1In chapter 4 the method is applied in the
analysis of the output from a computer simulation of a lentic
ecosystem exposed to a toxicant. This allows an evaluation of the
performance of the methodology in cases where the true response of
the system (i.e., in absence of measurement error) is known, and
where the number of replicates can be varied arbitrarily, allowing an
investigation of the statistical power and other properties of the
method. This chapter also presents an application of the state space
approach to ecological risk analysis in the context of defining
diagnostic variables which can be used as predictors of ecological
risk. Finally, chapter 5 attempts to summarize the strengths and
weaknesses of the methodology as applied in the two preceding

chapters, and to suggest directions for future research.
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Chapter 2

MATERIALS AND METHODS

The focus of this research is the application of state space
displacement analysis to both experimental data and simulation
results. Sections 2.1 and 2.2 describe the experimental systems and
the methods used in their study. I conducted the experimental
studies using the flask microcosms as described in section 2.1,
whereas the studies with aquarium microcosms and ponds described in
section 2.2 were conducted by others (Franco et al. 1985, Giddings et
al. 1985) and I subsequentily performed the state space analysis of
their data. Section 2.3 describes the computer model used to produce
the simulation results. The model used in this study is based on the
Standard Water Column Model (SWACOM) developed by 0'Neill et al.
(1982). However, SWACOM as originally conceived represents a pelagic
ecosystem, and I introduced substantial modifications, described in
section 2.3, to produce a model more appropriate to littoral
ecosystems. Finally, section 2.4 provides a detailed description of
the state space analytical techniques developed and employed in this

study.

2.1 FLASK MICROCOSMS

2.1.17 Assembly

Twenty-four microcosms were established in 2-L Erlenmeyer flasks

as follows. €Each flask received 600 mi of freshly prepared, Taub T82
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nutrient medium (Taub and Read 1982), the composition of which is
described in Table 2.1. The microcosms were then inoculated with a
mixture of natural materials, described below, bringing the total
volume to approximately 800 mL. The microcosms were kept on a table
at room temperature, under a light bank providing approximately

200 uki m_2 s_] of photosynthetically active radiation on a

10h:14h light-dark schedule.

The sources for the inocula were two B0-L aquaria containing
water, detritus, and biota taken from a local fish pond and a
drainage ditch, respectively. These aquaria had been maintained
under laboratory conditions for nearly three months prior to the
beginning of the microcosm experiment. Etach microcosm received:

(1) 100 mL of a detritus suspension siphoned from the bottoms of both

aquaria, (2) approximately 0.5 g drained fresh weight of the aguatic

moss Amblysteqium, (3) approximately 1.5 g drained fresh weight of

filamentous algae dominated by Spirogyra, (4) 10 mL of zooplankton
suspension concentrated from the ditch aquarium, and (5) sufficient
water, equal parts from both aguaria, to bring to total microcosm

volume to 800 mL.

2.1.2 Species Composition
The microcosms contained a diverse assemblage of organisms
typical of a freshwater littoral ecosystem. Because the microcosms

were stocked with natural materials, the resuiting species



22

Table 2.1. Chemical composition of the Taub T82 medium used in the
flask microcosms.

Chemical Species Molar Concentration

major cations:

Na* 2.2 x 1073
Kt 4.0 x 1073
Ca’t 1.0 x 1073
Myg2t 1.0 x 1074
A3+ 1.0 x 1075

major anions:

NO3 5.0 x 1074
POZ~ 4.0 x 1075
S04~ 1.2 x 1074
S10§~ 1.0 x 1074
ci- 3.5 x 1073

trace elements:

B 7.5 x 1077
Co 2.5 x 1079
Cu 5.0 x 1072
Fe 7.5 x 1077
Mn 2.5 x 10~/
Zn 2.5 x 1078

chelating agent:

EDTA 1.4 x 10-%
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composition was neither precisely controlled nor completely known.
Since the focus in this experiment was on integrative measures of
ecosystem dynamics, the advantages of using a complex,
naturally-derived community were felt to outweigh the disadvantage of
an incompletely specified taxonomic composition. A general

characterization of the biotic composition is given in Table 2.2.

2.1.3 Measured State Variables

Dissolved oxygen, pH and conductivity were monitored routinely
at three day intervals throughout the course of the experiment.
Dissolved oxygen was measured in the morning immediately after the
lights came on using an oxygen electrode. Subsequently, the contents
of each microcosm were gently mixed, and 100 mL samples were removed
for pH and conductivity determinations. Following these
measurements, each water sample was returned to the microcosm from
which it was taken. Small volumes of distilled water were added to

the microcosms as needed to compensate for evaporation.

2.1.4 Ixperimental Design
The experiment lasted for a total of 38 days. Initially, 24
replicate microcosms were established and maintained under laboratory

conditions for 17 days. At this point, one microcosm which deviated
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Table 2.2. Biotic composition of flask microcosms.

Plants:
Amblystegium (aquatic moss)
Lemna minor (duckweed)

Filamentous Algae;
Spirogyra
Oedogonium
Oscillatoria
Anabaena

Diatoms:
Cocconeis
Navicula
Achanthes

Other Algae:
Scenedesinus
Pediastrum

Protozoa:
various cilates (including Colpoda)
various flagellates (including Euglena)
various peritrichs
occasional sarcodines

Invertebrates:
Cypridopsis vidua {ostracod)
Chydorus sphaericus {cladocean)
cyclopoid copepods
rotifers (including Philodina)
juvenile snails (probably Helisoma)
midges (probably Calopsectra)
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the most in terms of appearance and measured state space dynamics was
removed from the experiment. The remaining microcosms were randomly
assigned to control and treatment groups.

The toxicant used in this experiment was 2,4-dimethylphenol
(2,4-DMP). Each treated microcosm received 100 mL of an agueous
2,4-DMP solution calculated to produce specified nominal
concentrations in a geometric series spanning two orders of magnitude
(see Table 2.3). The control microcosms each received 100 mL of
distilled water. There were five replicate control microcosms, and

three microcosms at each of six treatment levels,

2.2 AQUARTIUM MICROCOSMS AND OUTDOOR PONDS

An abbreviated account of the materials and experimental methods
used in the aquarium microcosm and the pond studies is presented here
for the convenience of the reader. For details, the reports of the
original investigators should be consulted (Franco et al. 1984,

Giddings et al. 1984).

2.2.1 Assembly
Aquatic microcosms were assembled in 72-L glass aguaria, using
materials collected from a shallow, 0.04-ha pond. Each microcosm was

filled to a depth of about 10 ¢m with sediment and then received 55
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Treatment Level

Nominal Concentration of 2,4-DMP (mg/L)

controls

1

0.0
1.0
2.5
6.3
16
39

98
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liters of pond water and 100 ¢ (drained wet weight) of the submerged

aquatic macrophyte Elodea canadensis. The microcosms were maintained

in a growth chamber under combined fluorescent and incandescent
illumination (12 h light:12 h dark), with photosynthetically active
radiation ranging from 160 to 215 ufi m %57 at the water

surface. Air temperature was regqulated at 21°C during the light
perfod and at 15°C during the dark period.

In late April 1982, outdoor experimental ponds were assembled in
1-m-deep excavated depressions with sloping sides (5 x 5-m perimeter,
3.5 x 3.5-m bottom) lined with sheets of 0.036-in reinforced
potable-grade Hypolon (DuPont). Fine-grained sediment from a fish
pond was placed on the bottom of each experimental pond to a depth of
15 cm. Water from the fish pond was pumped into the ponds to a depth
of 80 to 90 cm (about 15 m3 per pond). One week later 8 L of

Elodea canadensis from a natural pond was added to each pond. On

June 8, 35 immature and 4 adult mosquitofish (Gambusia affinis) were

added to each pond.

2.2.2 Species Composition

Since both the microcosms and the ponds were stocked with
natural materials from the same source, the resulting species
assemblages were similar. The major difference was that the ponds

were stocked with Gambusia affinis, whereas fish were excluded from
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the microcasms. A general characterization of the biotic composition
of the aquarium microcosms and the ponds is presented in Table 2.4.
Note is made as to which taxa were reported in the microcosms, in the
ponds, or in both, but since efforts to describe the biota were not
extensive, the lack of a reported observation is not necessarily

evidence for the absence of a taxon.

2.2.3 Measured State Variables

The response of a wide variety of physical, chemical, and
biological variables was monitored throughout the experiments. For
the state space analysis, a subset of these variables was selected
based upon two criteria: (1) only those variables which were
routinely measured at weekly intervals during the dosing period were
included, and (2) variables with values frequently missing or below
detection limits were excluded. The few missing values in this
subset were replaced by values linearly interpolated from preceding
and subsequent observations. The response variables analyzed from
the pond experiment were pH, dissolved oxygen, conductivity,
alkalinity, ammenium concentration, chlorophyll a in phytoplankton
and in periphyton, and total abundance values of cladocerans,
copepods, and rotifers. In the microcosm experiment, the same
variables were analyzed, with the exception of alkalinity and

periphyton chlorophyll.
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Table 2.4. Biotic composition of the aquarium microcosms (M) and
outdoor ponds (P).

Plants:
Elodea canadensis M,P
Potamogeton M,P
Nitella M,P

Filamentous Algae:
Spirogyra M,P
Oscillatoria M
Gloeotrichia M

Diatoms:
Eunotia M
Gomphonema M
Navicula M

Other Algae:
Gonium M,P
Coleochasta M
Scenedesmus P

Flagellates:
fuglena M,P
Phacus M,P

Zooplankton:

¢ladocera-
Simocephalus vetulus M,P
Chydorus sphaericus M,P
Alona costata M,°P

copepoda-
Cyclops vernalis M,P
Cyclops varicans M,P
fucyclops agilis M,P
Macrocyclops albidus M,P
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Table 2.4. (Continued)

rotifera-
Platyias patulus P
Mytilina ¥
Euchlanis P
Lecane P
Brachionus quadridentata P

Insects:
diptera {primarily Chironomidae and Ceratopogonidae) P
ephemeroptera (Caenidae and Baetidae) P
trichoptera (Hydroptilidae and lLeptoceridae) P
odonata (Coenagrionidae) P

Other Invertebrates:
Physa (snails) M,F
oligochaetes M
leeches M

Fish:
Gambusia affinis P
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2.2.4 Experimental Design

The toxicant used in this experiment was an unrefined, coal-
derived middle distillate from an H~Coal process, identified in the
0ak Ridge National Laboratory repository as ACD No. 887. By weight,
12.4% of the 011 consisted of water-soluble compounds. Approximately
95% of this water-soluble fraction was composed of phenolic
compounds, particularily cre§o1s, dimethyiphenols, and other
alkylphenals.

Both microcosms and ponds were subjected to chronic oil
contamination over a 56-d exposure period, beqginning July 13, 1982.
Duplicate microcosms were randomly assigned to controls or to one of
seven treatment levels (M1-M7). Within each treatment level, one
microcosm was dosed weekly and one was dosed daily, although the
total amount of 01l added per week was the same. Ponds were randomly
assigned to controls or to one of five treatment levels (P1-P3), with
two replicates at at each level both dosed daily. 0iling rates in
the ponds ranged from 1 to 16 mL m3a7T, resulting in measured
total phenol concentrations ranging from approximately 0.05 to
8 mg/L, averaged over the 56-d exposure period (Table 2.5). O0Oiling
rates in the microcosms encompassed a range from 0.07 to

]

18 mL m 7", resulting in 56-d average total phenol

concentrations of 0.01 to 10 mg/L (Table 2.6).
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Table 2.5. Toxicant exposure regimes in aquarium microcosms.

Treatment 071 Input Rate Measured Peak Concentration
Wwﬁfffjmm, . {mL m3 d-1) i of Phenols (mg/L)
Controls 0.0 not detectable

M 0.067 not detectahle

M2 0.17 0.032

M3 0.43 0.052

M4 1.1 0.23

M5 2.1 0.92

M6 5.7 1.2

M7 11 18
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o Table 2.6. Toxicant exposure regimes in outdoor ponds.

Treatment 011 Input Rate Measured Peak Concentration
Llevel (mt m~3 ¢-Ty of Phenols (mg/L)
Controls 0.0 0.26
P1 1.0 0.46
: P2 2.0 0.90
P3 4.0 3.6
P4 8.0 4.5

P5 16 28
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2.3 COMPUTER SIMULATIONS

A computer simulation model was developed in order to
investigate certain aspects of the state space methodology in greater
detail than could practically be accomplished in the experimental
systems. It was hoped that explorations of the dynamics of the
simulation model would lead to the generation of hypotheses which
could be checked against the available experimental data or more
rigorously tested in future experiments. A model of a typical
freshwater, 1ittoral ecosystem was developed for this purpose.

The Standard Water Column Model (SWACOM) described by 0'Neill et
al. (1982) served as a point of departure for building the model.
SWACOM is a generalized freshwater ecosystem model designed to
represent a temperate, dimictic lake. The dynamics of a pelagic food
web are governed by phenomenslogical equations incorporating, as
appropriate, processes such as photosynthesis, respiration, prey
capture and assimilation, and excretion. These processes are
modified by light, temperature, and nutrient conditions, as well as
toxicant concentration, all of which are treated as external forcing
functions. Mathematically, the model consists of a set of linked
first order nonlinear difference equations implemented in a FORTRAN
code and iterated with a one day time step.

A number of modifications were made to the original version of

SWACOM to make it more suitable for comparison with the shallow,
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littoral ecosystems which are the focus of this study. The trophic
structure was altered to reflect the fewer trophic levels present in
the experimental ponds. Since dissolved oxygen appeared to be a
sensitive indicator of stress in the pond experiments, dissolved
oxygen was incorporated as a state variable in the model. Detritus
and the dynamics of its decomposition were also added to the model,
primarily because of the potential importance in affecting oxygen
balance. Finally, considerable effort was made to model macrophyte
dynamics in a simple but realistic fashion because of there
dominating influence in the systems under consideration, both in
terms of biomass and productivity. These modifications are described

in detail below.

2.3.7 Modifications to SWACOM

2.3.1.1 Trophic Structure

SWACOM contains a food web including 10 phytoplankton species,
5 zooplankton species, 3 species of forage fish, and 1 carnivorous
game fish. for the purposes of this study the structure of the food
web was altered by elimination of the top predator and by reducing
the number of forage fish species from three to one. This simpiified
trophic structure is representative of the experimental ponds, in

which the only fish species present was a planktivore,
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2.3.1.2 Dissolved Oxygen

Since the experimental data included measurements of dissolved
oxygen, which proved to be a sensitive indicator of ecosystem
response to the toxicant, it was decided to include dissolved oxygen
as a state variable in the model. The processes considered to affect
dissolved oxygen levels were (1) exchange with the atmosphere, (2)
net photosynthetic oxygen production, (3) oxygen consumption by
zooplankton and fish respiration, and (4) oxygen demand due to the
decomposition of detritus.

Atmospheric exchange was modeled using an algorithm developed by
Bloomfield (1975) in his model of microbial decomposition and carbon
cycling in Lake George, New York. Daily net oxygen flux is taken to
he the sum of XL’ oxygen evolution from supersaturated solution,

and of X., exchange due to turbulent diffusion. X, 1is a linear

D,
function of the degree of supersaturation, calculated with respect to

an empirical relationship for temperature-dependent oxygen

solubility:

[05]cat = (13.17 - 0.18 T)7 (2.2)

where [02] is {(epilimnetic) dissolved oxygen, [02}Sat is the

oxygen solubility, T is temperature in degrees Celsius, Z is the
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depth of the euphotic zone in meters, and R0 is a rate constant.

Turbulent diffusion is also governed by a set of empirical equations:

Xp = R1Q([0215at - [021]) (2.3)

1 + R ('r - 3.5 ) 3.5 < T <5.0
Q={1+Ry (6.5 i ) 5.0 <T <6.5
(2.4)
otherwise
where R] and R2 are constants.

Photosynthetic oxygen production was calculated as being
proportional to biomass production on the basis of stoichiometry. In
the case of the macrophytes, experimental data on oxygen production
and consumption was available (see section 2.3.1.4). Oxygen
consumption by zooplankton and fish was likewise calculated on the
basis of stoichiometric proportionality (1.42 g 02 consumed per g
respired biomass). Finally, oxygen demand in decomposition,
presumably due to microbial respiration, was calculated as being
proportional to the current rate of decomposition (see section

2.3.1.3).

2.3.1.3 Detritus and Decomposition
The major source of detritus in the ecosystems under
consideration is dead macrophytes, 1in this case primarily Elodea.

There have been numerous studies of the decomposition of plant
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materials in aquatic systems. Notably, Jewell (1971) investigated
weight loss, oxygen utilization, and nutrient regeneration in the
decomposition of a variety of aquatic plants, including Elodea. He
concluded that the kinetics of decomposition could be adequately
represented by an exponential disappearance of a labile fraction, and
no siagnificant decomposition of the remaining refractory material.
Subsequently, Godshalk and Wetzel (1978), after a thorough
investigation of the decomposition of five aquatic angiosperms (not

including Elodea), argued for a kinetic equation of the form:

aW _ . o-bt
at = ae W (2.5)

where W s the weight of detritus remaining, and a and b are
constants. At any time t, this is equivalent to a first-order
kinetic equation, but the apparent rate "constant" itself
exponentially decays with time.

Carpenter (1982) examined the decomposition of leaf litter in
laboratory microcosms, and evaluated the adequacy several possible
Kinetic equations, including those discussed above. He concluded
that the most satisfactory was a composite exponential decay,
conceptually dividing the detritus into a rapidly decaying labile
fraction and a slowly decaying refractory fraction. This approach

was incorporated into the model by the equations

DL

1

kp H(T) D (2.6)

§

ADg = kp H(T) Dy (2.7)
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where A DL and A D, are the losses due to decomposition for

R

the labile and refractory fractions, D, and DR are the current

L
amounts of labile and refractory detritus, and k, and k. are the

L R
associated decay rate constants. H(T) is a generalized temperature
response function that modifies the decomposition rate as a function
of temperature, T, with a maximum rate at 25°C. For a description of

the temperature function see Shugart et al. (1974). Parameter values

were chosen primarily on the basis of the data in Jewell (1971).

2.3.1.4 Macrophytes

Shallow littoral ecosystems are frequently dominated by
macrophyte beds which can exert considerable control over the
physical and chemical characteristics of the water column. Because
of this, inclusion of macrophytes in the model seemed desirable.
Unfortunately, most previous attempts at modeling macrophytes have
focused on physiological aspects of plant growth and on the
distribution of biomass with depth, details which are difficult to
incorporate within the context of the ecosystem model. On the other
hand, it was not initially apparent how a simpler macrophyte model
might be formulated or parameterized. Therefore, the strategy
adopted was to first build a separate, detailed macrophyte model, and
then to empirically arrive at a simplified model which could mimic
the behavior of the detailed model (at least under the conditions of
interest), and to incorporate this empirical formulation within the

ecosystem model.
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The detailed model was developed following the approach used by

A similar model was also developed for Ceratophyllum by Best (1981).

The model partitions the water column into 10-cm depth intervals, and
keeps track of both leaf biomass and stem biomass in each depth
interval. Additionally, the model includes a root biomass
compartment and a labile carbohydrate pool. The model incorporates
the processes of photosynthesis, respiration, growth, leaf sloughing,
and excretion of dissolved organic material.

Within each each depth interval, net photosynthesis was

calculated as

(2.8)

p - Pmax Bi Breaf.i\F(7) - R B
3 KE + Ei 1 leaf,ji

where B, . is leaf biomass, £, is the incident light, P . and

KE are maximum photosynthetic rate and Tight half-saturation
constants, F(T) is a function which modifies photosynthesis by

temperature, and R, is a respiration rate coefficient. Field and

1
laboratory data from which parameter estimates could be derived are
presented by Pokorny et al. (1984), Ondok et al. (1984), and Simpson
and Faton (1986). Light attenuation due to water and to macrophytes
was modeled as a composite exponential reduction with depth using the

parameters derived by Ikusima (1970) in a field study of the light

regime in a bhed of Elodea nuttallii.
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The direct result of photosynthesis was an augmentation of the
available carbohydrate pool. Growth was then modeled by the

following equations for leaves, stems, and roots, respectively.

AB =6 {1 7 Biear,; P c
Teaf, i W\ F B p K+ C (2.9)
opt “max max ¢
AB -6 (1 ° Bstem,i Ps C
stem, i S F B P K+ C (2.10)
opt “max max C
AB =6 (17 Broot c
root r B K+ C (2.11)
rmax c

In equation 2.9, G1 represents the maximum rate of production for
leafy biomass under optimal conditions. This is modified by a
Michaelis-Menten function representing limitations in available
carbohydrates (C), a term expressing the ratic of the current
photosynthetic rate to the maximal rate (Pilpmax)’ and a term
expressing density dependent limitation. This last term is derived
by assuming a maximum total leaf biomass of Bmax’ and assuming that
the optimal vertical distribution is a concentration of
photosynthetic biomass at the surface, declining exponentially with
opt” the calculated fraction of total

biomass optimally allocated to the ith depth interval. Equation 2.10

depth; which leads to F

is a completely analogous expression for the growth of stem biomass
(B

function of current root biomass and available carbohydrates.

stem ﬁ), and equation 2.11 expresses root biomass growth as a
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The vertical distribution of shoot biomass is determined by the
combined pracesses of growth and sloughing. In addition to growth
within a given depth interval, governed hy the equations described
above, vacant depth intervals receive a pulse of shoot biomass
whenever the biomass in the next deeper interval exceeds a set
threshold. Sloughing occurs at a constant rate whenever the shoot
biomass exceeds the current optimum for that depth interval.

Finally, dissolved organic material is excreted a rate proportional
to the size of the carbohydrate pool.

Few guantitative data are available from which estimates of the
parameters in the growth, sloughing, and excretion equations can be
estimated. The values used in the simulations represent informed
guesses chosen to produce a pattern of growth consistent with those
reported in field studies of tlodea beds (Pokorny et al. 1984, Kunii
1984, Bowmer et al. 1984).

Simuiations were run with this model under a variety of constant
temperature and light conditions covering the range likely to be
encountered in a shallow pond during the growing season (Pokorn§ et
al. 1984, Dale and Gillespie 1977). Typical results from such
simulations are shown in Fig. 2.1. It was discovered that, under any
given set of constant light and temperature conditions, the growth of
total macrophyte biomass could be closely approximated by a logistic
model. The parameters of the logistic model, however, varied as a
function of light and temperature. On the basis of these
simulations, the following modified logistic model was derived for

total macrophyte growth:
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gt = T B (1 - B/K) (2.12)
ro=min [0.122, -0.142 + 2 x 1075 + 1.05 x 10727] (2.13)
K = 690 + 0.3 Eg (2.14)

where dB/dt is the growth rate of macrophytes, B is their current
biomass, r is the intrinsic rate of increase, K is the carrying
capacity, EO is the photosynthetically active radiation incident at
the water surface (in ufi m s-]), and T is the water

temperature in degrees Celsius. It should be noted that although the
expression for r has a negative intercept, under the range of
conditions occuring in any of the simulations in this study (where
the temperature exceeds 15°C), this guantity is always positive.

As a partial test of the above simplified model, both the
detailed and the simplified models were run under time-varying light
and temperature conditions typical of those to be used in the
ecosystem model. These time-varying conditions included an excursion
outside the range of constant conditions explored in parameterizing
the simplified model. Despite this, the overall agreement between
the predictions of the simplified model and the detailed model was
good (Fig. 2.2). A discrete-time version of the simplified model was

therefore incorporated into the ecosystem model.
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2.3.2 Modeling Toxic Effects

The ecological effects of toxicant exposure were modeled through
changes in the parameters of the model. Specifically, each parameter
of the model was multiplied by a toxic effects factor. If this
factor equals 1.0, the parameter value remains unchanged, indicating
no toxicity. Inhibitory effecls, such as a reduction in
photosynthetic rate, are indicated by factors less than 1.0, and
stimulatory effects, such as increased respiration, are indicated by
factors exceeding 1.0. Within the model, the parameters are stored
within a two dimensional array (the parameter matrix), so the effects
can also be summarized in a corresponding array (the effects
matrix). For each run including toxicant effects, the model is
reparameterized by multiplying each parameter by the corresponding
element of the effects matrix.

The entries in the effects matrix must be estimated as a
function of toxicant concentration using available toxicity data. 1In
most cases this involves an extrapolation from single species,
laboratory biocassay data. A general protocol for making such an
extrapolation is outlined by 0'Neill et al. (1982, 1983). 1In the
absence of more detailed information regarding a toxicant's mode of
action, changes in the effects factors are assumed to be predictable
on the bhasis of a general stress syndrome. For autotrophic
organisms, the general stress syndrome predicts a lowering of maximum

photosynthetic rate, increased respiration, lower light saturation
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point, and increased Michaelis-Menten constant as a result of
exposure to the toxicant. For heterotrophs, a decrease in grazing
rate, increased respiration, lowered temperature optimum, and
increased mortality and susceptibility to predation are assumed.
Laboratory bioassays were simulated by mimicking laboratory
conditions (i.e., constant optimal 1ight and temperature, ample food
and no grazing or predation losses), and then varying the remaining
parameters in accordance with the general stress syndrome until the
model predictions matched the experimental results (e.g., a 50%
reduction in biomass on day 4 to correspond to a 96-h LC50). Cffects
factors which could not be estimated on the basis of available
experimental data, such as susceptibility to predation, were assumed
to be of the same magnitude as the factors calculated for the other
processes.

In this study, the laboratory toxicity data used to estimate the
sensitivities of the pelagic species consisted of the results of a
series of biocassays with the water-soluble fraction of the oil added
to the ponds (Giddings et al. 1985). Acute bioassays were conducted

with the cladoceran Daphnia magna, the fathead minnow Pimephales

promelas, the mosquitofish Gambusia affinis, the midge Chironomus

tentans, and the green alga Selenastrum capricornutum. A chronic

bioassay was also conducted with Daphnia magna. Details of these

tests are presented in Giddings et al. (1985). The effect of the
toxicant on macrophytes was extrapolated from laboratory bioassays

which examined the changes in photosynthesis and respiration of
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Elodea canadensis shoot tips exposed to an equimolar mixture of

2,4-dimethylphenol, 2-isopropylphencl, and 2-sec~-butylphenol (Moore,

1985).

2.3.3 Modeling of Uncertainty and Variability

Experimentally, it is impossible for ecosystem state variables
to be known with complete accuracy and precision. In order to more
realistically evaluate the potential applicability of state space
analysis to experimental data, it was necessary to incorporate
statistical errors into the model output similar to those that would
be inherent in an actual observation set. It was assumed that such
errors could be partitioned into two categories depending upon the
source of the error: (1) errors due to the natural variability of
ecclogical systems, and (2) errors introduced in the measurement
process. Natural variability was incorporated into the model by
choosing random initial values for the state variables, and by
running the model with stochastic forcing functions. Measurement
errors were added to the output after the model was run.

In terms of the experimental ponds the model was designed to
simulate, randomized initial conditions can be interpreted as
reflecting the lack of homogeneity between individual ponds arising
from differences in construction and from non-uniform stocking and
colonization. For each model run, a vector of initial values for the

state variables was selected from a multivariate normal distribution
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by latin hypercube sampling using a FORTRAN computer code called
PRISM (Gardner et al. 1983). Latin hypercube sampling is a
stratified random sampling scheme which allows statistical
distributions to be reliably approximated with substantially fewer
Monte Carlo replicates than would be required by simple random
sampling (McKay et al. 1979, Iman and Conover 1982). The initial
values were chosen as independently distributed normal random
variables with means equal to their deterministic values and 10%
coefficients of variation.

Stochastic forcing functions were used to model the
spatiotemporal variability inp environmental conditions experienced by
individual ponds. 1In the model, both light and temperature were
modeled as stochastic functions consisting of a random walk
superimposed on a deterministic seasonal trend (Fig. 2.3). Although
air temperature and incident light at the surface of a set of
experimental ponds may not vary greatly from pond to pond, it is
frequently observed that there is considerable variability in the
color and turbidity of individual ponds, resulting in greater
variability in the light and temperature regimes within the ponds.
The stochastic forcing functions were generated such that random
deviates with small variance were added daily, and deviates with
progessively larger variance were added every 3, 9, and 27 days.
This produced a pattern of autocorrelations which favored runs of
days with similar conditions, as is frequently encountered in actual

meteorological data. The ensemble of stochastic forcing functions
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averaged over all 200 Monte Carlo replicates did not exhibit any
systematic deviation from the deterministic mean.

Other sources of natural variability could, of course, be
imagined. Variations in other forcing functions, such as nutrient
inputs to the system, could be considered. In the case of the
experimental ponds, it seems likely that nutrient inputs from
external sources, although they do occur, play a subordinate role
relative to nutrient regeneration within the pond. Also, previous
modeling studies using SWACOM have demonstrated a greater sensitivity
to changes in light and temperature than to nutrient inputs, further
supporting the emphasis on light and temperature as sources of
natural variability. Other types of natural variability, such as
differences in species composition, genetic variability, differences
in microbial activity, local extinctions and invasion by new species,
undoubtedly occur in the real world but are not explicitly
incorporated in the model. It is arqued that at the level of
resolution of the current modeling effort, which is primarily
exploratory in nature, such phenomena may be neglected.

Measurement errors were introduced as independent, normally
distributed random numbers added to the values of the state
variables. The biomasses and detritus variables were transformed by
taking the natural logarithm prior to the addition of measurement
errors and then transformed back to the original scale; all other

variables received measurement errors directly (i.e., without prior
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transformation). The variances of the errors were chosen to
approximate a level of precision technically attainable in the
absence of any variability other than measurement errors. Standard
deviations of the measurement errors were as follows: 0.20 for the
log-phytoplankton and the log-zooplankton biomasses, 0.30 for the
log-fish biomass, log-elodea biomass and log-detrital masses, 0.10
for phytopliankton productivity, 0.50 for macrophyte productivity,
0.10 for dissolved oxygen, and 0.30 for nutrient concentration. This
resulted in coefficients of variation generally within the range of
20-30% for all except the physicochemical variables (dissolved oxygen
and nutrient concentration) which had coefficients of variation of

2-4%.

2.4 STATE SPACE ANALYSIS

As discussed in Chapter 1, the response of an ecosystem to
toxicant stress can be quantified by the displacement of the state
vector away from some reference state (see section 1.4). In the
situations considered in this study, the reference states are
measured states in replicate control ecosystems (i.e., those to which
no toxicant is added). Changes induced by the toxicant can be
described by calculating a displacement vector, u(t), defined as
the vector difference between the perturbed and control state

vectors:
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u(t) = xp(t) = xc () (2.15)

as illustrated in Fig. 2.4. This equation is precisely equivaient to
equation 1.4, except that the subscripts now explicitly reflect the
comparison between perturbed and control ecosystems. The word
“displacement", as used here, refers to a vector quantity, possessing
bo?h magnitude and direction. The word "separation" is used to
denote the associated scalar quantity, defined as the distance
between perturbed and control state vectors or, equivalently, as the

magnitude of the displacement vector.

2.4.1 Statistical tstimation of Displacement and Separation

In experimental situations, the true state space trajectories
and displacement vectors are not known, but must be estimated from
discrete samples in the presence of natural variability, measurement
error, and other uncertainties. At any sampling time, t, the
displacement vector u(t) must be estimated based on observations of
m replicate control ecosystems and n replicate perturbed ecosystems.
The situation can be visualized as two clusters, of m and n points
respectively, distributed in state space. In the absence of
systematic bias these points will tend to be centered around the true
population centroids, uc(t) and up(t). The statistical
problem is one of finding an appropriate estimator of the distance

between the centroids of the two (statistical) populations.
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One such estimator is the distance between the two sample
centroids, uc(t) and up(t). This is an unbiased
estimator of the desired population quantity. The major disadvantage
of this estimator is that it is difficult to assess its statistical
accuracy (i.e., to compute its standard error or to construct a
confidence interval). An alternative estimator is the average of the
distances calculated from all pairwise comparisons between clusters.
This is not an unbiased estimator of the true distance between
population centroids, as can be seen by considering the case where
uc(t) = up(t), such that the true distance between
centroids is zero, but the estimator yields a positive value related
to the variance of the measured states about their centroids. 1In
practice however, two considerations favor the use of this biased
estimator: (1) the bias becomes Tess important as the distance
between uc(t) and up(t) becomes large relative to the
within group variance {i.e., as the ecosystem responds to the
toxicant), and (2) the variability among the pairwise estimates gives
an indication of the degree of uncertainty in the estimate of
centroid separation. Furthermore, calculating the average distance
between replicate control states provides a measure of the degree of
bias in the estimator.

In cases where the number of replicates is small, it is feasible
to calculate the distances between all possible pairs. When
comparing controls with perturbed states, there are mn such pairs,

whereas m{m~-1) comparisons can be made between nonidentical



56

controls. If these numbers are large, it is possible to compute the
estimator on the basis of a smaller number of randomly matched
pairs. Once a distribution of calculated pairwise distances is
obtained, a confidence interval can be estimated. 1If the original
state vectors follow a multivariate normal distribution with an
identity covariance matrix, then under the null hypothesis that
uc(t) = up(t), the squared distances will follow a

chi-squared distribution with p degrees of freedom, where p is the
dimensionality of the state space. A transformation which will
convert an arbitrary multivariate normal distribution into one with
an identity covariance matrix will be discussed in the next section.
Confidence limits can then be caiculated from the appropriate
percentage points in the chi-squared distribution. If such
parametric assumptions are not warranted, a confidence interval could
be derived by means of nonparametric resampling methods, such as the

bootstrap procedure (Efron and Tibshirani 1986).

2.4.2 Distance Metrics and Data Transformation

In the previous section emphasis was placed on estimation of the
distance between state vectors or between the centroids of groups of
state vectors. Explicit consideration will now be given to how
distances may be measured in the state space. The issue at hand is
the selection of an appropriate metric, or mathematical yardstick,

for making such distance measurements.
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The most straightforward mathematical analog of the intuitive
notion of distance is that employed in Euclidean geometry. The
Euclidean distance metric is based on a generalization of the
Pythagorean Theorem. Given two veciors in n-dimensional space,

P L] - ] 1
vV = (v].vz,...,vn) and w = (w],w ..,wn) , the Euclidean

2
distance between them is

N 1/2
dg (v,w) =) ¥ (vi - w;)?
io= ] (2.16)
or, in vector notation,
1/
dg (viow) = [(v-w)'(v-w)] "2 (2.17)

A problem that frequently arises in using Fuclidean distance to
measure state space separations is that the various axes of the state
space are often scaled in incommensurate units. For instance, in the
flask microcosm experiment to be discussed in Chapter 3, both pH and
conductivity were included as measured state variables. In the
controls, pH was typically observed to vary over a range of
approximately 1 pH unit, whereas conductivity, measured in different
units, typically spanned about 50 units. Clearly a dispTacement of 5
units along the pH axis would be seen as a major perturbation while a
5 unit change in conductivity would be insignificant, but both are
equivalent in terms of Luclidean distance! One obvious solution
would be to rescale the axes in some way to make the units
commensurable. That option will be discussed later, but first an

alternative distance metric will be considered.
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A distance metric commonly employed in multivariate statistics
is the Mahalanobis distance (Mahalanobis 1936, Mardia 1977). Given
two random vectors, v and w, the Mahalanobis distance hetween

them is

dy (v, w) = [(vw)'Z7T (v-w)] 2 (2.18)

where 2'1 is the inverse of the covariance matrix for the distribution
from which the vectors were drawn1. The interpretation of this distance
measure can be seen by considering a cloud of data points distributed with
centroid u and covariance matrix L as shown in Fig. 2.5a. If the
underlying distribution is multivariate normal, an elliptical joint
confidence region can be defined (Fig. 2.5b). The Mahalanobis distance
from the centroid to any point on the ellipse is a constant. Thus,
equally probable deviations from the centroid are equally distant when
measured by the Mahalanobis metric.

An alternative to the use of the Mahalanobis distance metric is to
transform the state space. The appropriate transformation involves the
Cholesky decomposition (sometimes called the symmetric square root) of

£-1. Given an arbitrary matrixZ M, its Cholesky decomposition

TThe quantity Mahalanobis actually considered in his original
paper was the square of that given in equation 2.18, and the term
Mahalanobis distance has been ambiguously used to refer to both
quantities ever since. The usage adopted here parallels the
traditional definition of Euclidean distance, and is equivalent to
the standard distance proposed by Flury and Riedwyl (19856).

25trictly speaking, the Cholesky decomposition is only definad
for positive definite matrices. This requirement is satisfied by any
nonsingular covariance matrix. In practice, singular covariance
matrices are seldom encountered except for situations where fewer
degrees of freedom are available than the number of state variables.
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(often written as w/z

) is a matrix A such that

A'A = M. Tt is useful to transform the data such that a vector
x in the original state space is mapped into a vector y in the
transformed space, where

y = Ax (2.19)

and

T»
i

(£-Nr/2 = (£1/2)-1 = g-1/2 (2.20)

It can be easily demonstrated that the Euclidean distance beiween two
vectors in the transformed space is equal to the Mahalanobis distance
between the corresponding vectors in the original space.Furthermore,
the covariance matrix of the transformed data is an identity matrix.
In essence the transformation can be seen as simultaneously
standardizing the data and removing the effects of any correlations.
This results in a transformed state space in which the axes are
orthogonal and have been appropriately rescaled in commensurable
units. This is illustrated graphically in Fig 2.5c and d. Fig. 2.5¢
shows a concentration ellipse in the original state space. Points A
and B are equally distant from the data centroid, as measured by the
Euclidean metric, but point B clearly represents a larger deviation
from the normal range of variability. In the transformed space,
shown in Fig. 2.5d, the concentration ellipse becomes a circle, and

the Euclidean distances of A' and B' from the centroid reflect the
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Figure 2.5 An illustration of the Mahalanobis transformation.
(a) A sample of bivariate observations. (b) The corresponding
concentration ellipse. (c) Two points, A and B, equidistant from the

centroid in the original data space.

(d) The locations of the two

points in the transformed data space (A' and B').
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Mahalanobis distances for the corresponding points in the original
space.

In this study, the sample covariance matrix for the control
(unperturbed) systems was calculated from experimental data or Monte
Carlo simulations. This was used to perform the data transformation
described above. Euclidean distances were calculated in the
transformed space between control and perturbed state vectors, and
between replicate control state vectors. The separations thus
calculated can equivalently be regarded as Mahalanobis distances
between the original state vector standardized to the variability of

the controls.

2.4.3 Summary Measures

The techniques outlined in the preceding sections will provide
an estimate of the displacement vector, and of the corresponding
state space separation, between control and perturbed ecosystem at
each poipt in time. It is often desirable to summarize this detailed
information by some set of integrated measures that typify ecosystem
response over a specified time interval. The following integrated
measures are proposed which, when taken together, effectively
summarize much of the information contained in the full set of
displacement vectors.

1. Maximum Displacement or Separation

The maximum displacement vector is simply the largest

displacement vector, u(t), encountered over the specified time
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interval. The maximum separation is defined as the magnitude of
the maximum displacement vector.

2. Mean Separation

Over a time interval beginning at t1 and ending at t2, the

imean separation is defined as

L 1
T =] ﬁ? fu(t)| dt (2.21)

where {u(t)| represents the magnitude of the displacement
vector u(t).
3. Mean Displacement

The mean displacement vector is defined as

1 t

5 TE] _{tz u(t) dt (2.22)

Note that in general the magnitude of the mean displacement

vector will not equal the mean separation because a partial

cancellation occurs as the vector u(t) changes direction.

The integral formulae for mean separation and mean displacement
were approximated by summations calculated from the discretely
sampled data or simulation results. Comparisons among these measures
may reflect aspects of the behavior of the displacement vector over
time. For example, if the response of the system remains fairly
constant over a given time interval, the mean displacement will
approach the maximum displacement. Similarly, a comparison of the
magnitude of the mean displacement with the mean separation measures
the degree to which u(t) wanders over time, since these quantities

will be equal only if the direction of u(t) is constant. Changes
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o in direction will decrease the value of the mean displacement
magnitude. This might be expected, for example, in systems which
show a biphasic response to a toxicant, such as an initial decline in
primary productivity due to direct phytotoxic effects, followed by
indirect effects at higher trophic levels. The details of such a

response can be reconstructed from an analysis of the displacement

trajectory.

2.4.4 Computation of State Space Statistics

A1l analyses of both experimental data and simulation results
were performed using the Statistical Analysis System (SAS). The
calculation of displacement vectors and state space separations was
accomplished by an algorithm written using PROC MATRIX (SAS 1985a).
The summary indices were subsequently computed using PROU MEANS or
PROC SUMMARY (SAS 1985b). Other SAS procedures were used in the
course of the study, notably for regression analysis {(PROC REG), for
principal components analysis (PROC PRINCOMP and PROC FACTOR), and
for discriminant analysis (PROC DISCRIM, PRUOC CANDISC and PROC
STEPDISC) (SAS 1985¢).

The methods of data analysis developed in this chapter are
applied to experimental microcosm and pond data in chapter 3.
Chapter 4 presents the results of similar analyses of the output of
an ecosystem model. Because of the large number of Monte Carlo

’ replicates produced by the model, certain statistical properties of

the method can be addressed using the simulated data set.
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Subsampling of the the simulated data allows the robustness of the
method to the smaller, experimentally feasible sample sizes to be

assessed.
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. Chapter 3

EXPERIMENTAL RESULTS

This chapter presents the results of applying the state space
methodology developed in chapter 2 to experimental data. The data
were collected in a series of studies of the response of freshwater
ecosystems to the introduction of alkylphenols. The flask microcosm
experiment investigated the effects of an acute dose of a single
phenolic compound, 2,4-dimethylphenol. The aquarium microcosms and
outdoor ponds were used to investigate the effects of chronic
exposure to a coal-derived complex mixture. These systems, and the
experimental methods used to gather the data, are discussed in

greater detail in chapter 2 (sections 2.1 and 2.2)}.

3.1 FLASK MICROCOSMS

3.1.17 Dynamics of Individual State Variables

After inoculation, the microcosms underwent a period of growth
and development. This transient phase was characterized by an
initial rapid rise followed by decline in pH (from 8.01 to 9.24 to
8.24) and dissolved oxygen (from 7.9 to 9.0 to 6.8 ppm), and by a
steady decline in conductivity (from 447 to 391 wumho cm”1).
After approximately three weeks, coinciding with the time at which
the toxicant was introduced, the untreated microcosms appeared to

enter a quasi-steady state, in which the three state variables
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fluctuated arcund a relatively constant value for the rest of the
experiment. Within the quasi-steady state there seemed to be greater
variability between replicates than during the transient phase,
especially for pH and conductivity.

The nominal concentration of 2,4-dimethylphenol at each of the
treatment levels is summarized in Table 2.3. The dynamics of the
toxicant-perturbed microcosms was compared to that of the controis on
the basis of least significant differences with a comparisonwise type

I error rate of 0.05, computed by the formula

|ye-ypl zta,\,(L + 1__)5 (3.1)
n n
c p

where Ye and yp are the control and the perturbed means, n. and

np are the numbers of control and perturbed replicates, s is the
root mean square error, and ta=0 is the Student's t value with

a = .05 and v degrees of freedom. The interval not significantly
different from the controls was taken to represent the normal
operating range for each variable. No significant differences were
found for any of the state variables at the three lowest doses. The
results for the higher treatment levels are summarized in Figs. 3.1,
3.2 and 3.3. The mean pH at the two highest doses drops slightly
below the normal operating range immediately after the perturbation,
but quickly recovers. Dissolved oxygen is depressed well below the
normal range, but again recovers rapidly. Conductivity, by
comparison, shows a delayed but sustained response, significantly

increasing in all three of the higher treatment levels.
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Figure 3.1 Dynamics of pH in flask microcosms. Shaded region
indicates least significant difference interval (a=.05). Treatment
levels 1-3 (not shown) did not significantly differ from controls.
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Figure 3.2 Dynamics of dissolved oxygen in flask microcosms. Shaded
region indicates least significant difference interval (a=.05).

Treatment levels 1-3 (not shown) did not significantly differ from
controls,
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3.1.2 State Space Analysis

The separation between treatment group centroids, as defined in
sections 2.4.1 and 2.4.2, is shown as a function of time in Fig. 3.4.
The separation was estimated by the mean separation of all
nonidentical pairwise comparisons of state vectors. The rapid
response at treatment levels 5 and 6 is clearly shown. At treatment
Tevel 4 a smaller, delayed response is detectable. As was the case
when examining the state variables individually, no discernable
response is observed at any of the lower toxicant expasures as
compared to the controls. It is also apparent that the separation
between replicate controls was not constant over time. Some of this
variability is probably due to random sampling error, but there is a
pattern of consistently higher control variability in the second half
of the experiment.

As an aid to interpretation, the correlations between state
space separations and changes in each of the individual state
variable were examined. These correlations change over time, as
shown in Fig. 3.5. Immediately following the introduction of the
toxicant, there is a strong negative correlation between state space
separation and changes in dissolved oxygen. Subsequently, the
magnitude of this correlation decreases, while the correlation with
changes in conductivity increases. The patterns revealed by these
correlations are in accordance with the temporal patterns of response
observed in the original data (Figs. 3.1 - 3.3), lending support to

the use of such corrzlations for interpreting the results of state
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space analysis. At the same time, it may be noted that since the
correlations are not strong (|r] seldom > 0.7), the multivariate
response contains information not captured by individual variables,
providing support for the use of state space analysis.

The response of the microcosms during the post-treatment peried,
as characterized by the summary indices described in section 2.4.3
{(maximum separation, mean separation, and mean displacement
magnitude), is shown in Fig. 3.6. All three curves increased
significantly at the two highest toxicant concentrations, but showed
1ittle or no response at lower doses. The wide divergence of mean
separation and mean displacement magnitude values at the low doses is
compatible with a relatively random, non-directional differences
between microcosms, as would be expected if the dynamics of these
systems is dominated by inherent natural variability or by stochastic
factors affecting each microcosm differently. As response to the
toxicant becomes the dominant influence on ecosystem dynamics, these
indices converge toward the same value, indicating a more directed
displacement.

Ninety-five percent confidence intervals for maximum separation
were calculated on the basis of an assumed normal distribution.
These intervals are shown as bars in Fig. 3.6. The normality
assumption was tested using the Shapiro-Wilk statistic {Shapiro and
Wilk 1965), and was rejected only for the controls. Further
inspection of the control distribution indicated that it was lighter

in the tajls than a normal distribution, so that a confidence
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interval based on a normal approximation is likely to be larger than
required. Confidence intervals are not shown for mean separation or
mean displacement magnitude. For these indices the assumption of a
normal distribution was frequently violated, but inspection of the
empirical frequency distributions indicated that appropriate
confidence intervals would be somewhat asymmetric and of a size

comparable to those for maximum separation.

3.1.3 Changes in Covariance Structure

Since the state space analysis is based on a data transformation
which is a function of the sample covariance matrix, it is of
interest to cbserve changes in the covariance structure that occur
over time. The covariance structure was investigated in two ways:
(1) the generalized variance, defined as the determinant of the
covariance matrix, was calculated for each sample over the course of
the experiment, and (2) the correlations between state variables were
also calculated for each sample.

The square root of the generalized variance, which can be
regarded as a generalized standard deviation, is plotted for the
control microcosms in Fig. 3.7. There is a substantial increase in
the variability of the controls coinciding with the beginning of the
treatment period. The reasons for this are not entirely clear, but
it should be remembered that the controls did receive an addition 100
mL of distilled water, corresponding the addition of 100 mL of

toxicant solution in the perturbed systems. It is possible that the
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dilution caused by adding distilled water was itself not an
inconsequential perturbation to the system.

It is important to evaluate the extent to which the temporal
variations in calculated correlations represent true changes in the
underlying correlation structure as opposed to random sample
variation. This is examined in Fig. 3.8, where, correlations batween
state variables in the microcosms are plotted as a function of time.
After addition of the toxicant to the treated microcosms, the
correlation structure must be calculated on the basis of the five
remaining control microcosms. Prior to treatment with the toxicant,
however, all 24 microcosms are effectively controls. The correlation
structure based on all 24 microcosms was calculated for each sampling
date in the pretreatment period. These correlations can be compared
with those calculated on the basis of the five controls. The
correlation between pH and dissolved oxygen is generaliy strong
(ir] > 0.6), and the estimates based on the five controls agree
well with those based on all 24 microcosms. The pH-conductivity and
dissolved oxygen-conductivity correlations, however, are generally
weaker and the concordance between the n = 5 and n = 24 estimates is
poor, so that little can be inferred about the actual temporal
dynamics of these correlations.

In addition to temporal changes in the covariance structure of
unperturbed microcosms, the covariance structure might be expected to
change in response to toxicant exposure. The accuracy in estimation

of a correlation matrix is improved as more degrees of freedom are
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available relative to the rank of the matrix, so correlations among
state variables were calculated at each treatment level from data
pooled over two time periods: before and after addition of the
toxicant. The results are shown in Fig. 3.9. The pH-dissolved
oxygen correlations were moderately strong (> 0.4) and positive
during the pre-treatment phase, and became generally stronger (> 0.5)
in the post-treatment phase, but no dose-related response was
observed. The pH-conductivity correlations were weak (mostly
irl < 0.3) and negative in the pre-treatment phase, becoming
positive in the post-treatment phase (r = 0.8 at the highest dose).
In this case, a clear dose-related patten is discernible, with
markedly stronger correlations at the higher doses. A dose-related
response is also evident in the dissolved oxygen-conductivity
correlations. Before treatment, these correlations were moderately
positive, taking on near zero values following treatment, except at
the two highest doses, where the correlations were strongly positive

(> 0.7).

3.2 AQUARIUM MICROCOSMS AND OUTDOOR PONDS

The responses of both ponds and microcosms to the synthetic oil
are summarized in Fig. 3.10. More detailed accounts of the response
of individual state variables have been published by Franco et al.
{1985) and Giddings et al. (1985). This section focuses on the

results of an analysis of their data using the state space approach.
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PONDS

PONDS BECOME NEARLY ANAEROSBIC;
MACROPHYTE BEDS DESTROYED,
INCREASED BACTERIAL COUNTS;
ROTIFERS NEARLY ELIMINATED

FISH ELIMINATED (PS)

LITTLE MACROPHYTE GROWTH;
INCREASED PERIPHYTON; CLADOCERANS
AND COPEPODS ELIMINATED;

FISH NEARLY ELIMINATED (P4)

CLADOCERAN DENSITY GREATLY REDUCED;
COPEPODS AND ROTIFERS INCREASE;
SUBSTANTIAL EFFECTS ON pH AND
OISSOLVED OXYGEN,

NO FISH REPRODUCTION (P3)

BRIEF REDUCTION iN CLADOCERAN
DENSITY; FI5H REPRODUCTION
REDUCED (P2)

SHIFT N CLADOCERAN
COMMUNITY COMPOSITION;
TRANSIENT CHANGES IN pH
AND DISSOLVED OXYGEN (P 1)

Summary of responses
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MICROCOSMS

MACROPHYTES, ZOOPLANKTON, AND
DIATOMS ARE ELIMINATED; ECOSYSTEMS
BECOME ANAEROBIC; OPEN WATER
AMMONIUM INCREASES (M7)

MACROPHYTES ARE DAMAGED; ROTIFER
DENSITY DECREASES; INSECTS AND
CLADOCERANS ARE ELIMINATED;
BACTERIA AND INTERSTITIAL AMMONIUM
INCREASE (M6)

ECOSYSTEMS BECOME HETEROTROPHIC,
CONDUCTIVITY AND ALKALINITY

INCREASE; COPEPOD DENSITY DECREASES;
PERIPHYTON COMMUNITY IS ALTERED (MS)

TOTAL ZOOPLANKTON DENSITY DECREASES
(M4)

P/R AND pH ARE REDUCED; CLADOCERAN
DENSITY DECREASES (M3)

RESPIRATION INCREASES (M 1)

observed in aquarium microcosm and
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3.2.1 Dose-Response Relationships

Separation was plotted as a function of oil input rate and
length of exposure for both ponds (Fig. 3.11a) and microcosms (Fig.
3.11b). For this analysis, daily- and weekly-dosed microcosms at
each treatment level were treated as replicates, as justified by
previous statistical analysis (Franco et al. 1984, p.451).
Additionally, the transformations of both pond and microcosm data
before state space trajectory analysis were based on sample
covariance matrices for control data pooled over the entire exposure
period. This procedure is valid as long as the covariance structure
of the state variables was reasonably constant over the 56-d
interval. The assumptions made in the analysis are necessitated by
the low degree of replication provided by this experimental design,
but could be relaxed for studies with greater replication.

The relationship betwsen separation, 0il input rate, and length
of exposure were qualitatively similar for both ponds and microcosms.
Specifically, (1) there is a generally monotonic increase in response
with increasing dose or time of exposure; (2) exposure conditions
exist below which response is negligible; and (3) there is a
suggestion of a response plateau at higher doses or with prolonged
exposure. The major apparent difference is the smoother texture of
the microcosm response surface. In part this apparent difference may
be partly a consequence of the longer time interval between
observations in the microcosm data. If observations are deleted from

the pond data to produce the same sampling frequency, the resulting
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surface also appears substantially smoother. However, the greater
roughness of the pond response surface is not completely artifactual,
and may reflect the greater environmental variability to which the
outdoor ponds were exposed in contrast to the controlled laboratory
environment of the microcosms.

Dose-response curves calculated over the 56-d exposure period
for each of the three summary state space indices are shown in Figs.
3.12 and 3.13. As expected, the summary indices jncrease with
increasing dose. The error bars on the maximum separation curve
represent the range of values over all pairwise comparisons. Error
bars for the other curves are of comparable size. The error bars
associated with the pond data were substantially larger than for the
microcosm data, reflecting the greater variability of the ponds.
Since the degree of replication at each treatment was identical in
both pond and microcosm experiments (n = 2}, this is not an effect of
sample size. It seems likely to be primarily a reflection of the
greater environmental variability to which the ponds were subjected,
although it is also possible that larger aquatic ecosystems differ
organizationally form their smaller counterparts in ways which affect
their dynamic variability.

A comparison of maximum separation with mean separation
indicates that the magnitude of the displacement vector changed
substantially over the exposure period, as can be seen in the

response surfaces. This is simply a reflection of the divergence of
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initially similar systems in response to different levels of toxicant
exposure. In contrast, a comparison of mean separation and mean
displacement magnitude indicates that the direction of the
displacement vectors was relatively uniform, especially at the higher
doses. This indicates that there was relatively little change over
time in the contribution of each of the state variables to the total
response. It is possible that changes in direction, due to delayed
responses and differential recovery rates, would have been observed
if the analysis had extended beyond the dosing period.

The description of ecosystem response provided by state space
analysis is consistent with that provided by previous analyses based
on univariate statistical methods (franco et al. 1985, Giddings et
al. 1985). Moreover, while those authors provided only a verbal and
qualitative description of the overall multivariate response, state
space analysis provides a statistically valid quantitative
description. It is frequently possible for a statistically
significant effect in a multivariate quantity to not be observable as
a statistically significant effect in any of its univariate
components. Therefore, the lack of an appreciable response at low
doses as quantified by the state space analysis provides important
additional support for conclusions previously predicated on

univariate analyses alone.
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3.2.2 Correlation with Original State Variables

The relationship of the calculated state space separation to the
original variables was assessed by calculating correlation
coefficients from the data pooled over the 56 day treatment period.
In the ponds, separation was most highly correlated with
conductivity, alkalinity, and cladoceran abundance (r = 0.84, 0.82,
and -0.74, respectively). Phytoplankton chlorophyll a, rotifer
abundance, and ammonium concentration were least correlated with
separation (|r| < 0.2). All other variables were moderately
correlated {0.5 < |r]| < 0.7). Correlations were generally higher
for the microcosms than for the ponds. A1) variables except for
phytoplankton chlorophyll a had |r| values > 0.7. The highest
correlations were found for conductivity (r = 0.99}, pH (r = -0.93),
ammonium concentration (r = 0.88), and cladoceran abundance
(r = -0.84). For most variables, the relationship to separation
appeared similar in both ponds and microcosms, with the exceptions of
ammonium concentration and rotifer abundance. Because a correlation
coefficient is a measure of the linear association between variables,
values of r can be misleading 1f the true relationship is
significantly nonlinear. This may be the case for rotifer abundance,

which increased at moderate doses but decreased at higher doses.

3.2.3 (Changes in Covariance Structure
A large number of state variables were measured in a2 small

number of replicate systems. Therefore, it was not possible to
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"""" obtain reliable estimates of the covariance matrix without pooling
the data over time. <C(onsequently, the variations in covariance
structure over time were not analyzed, but changes in the correlation
of state variables induced by toxicant exposure can be evaluated from
the pooled data.

The state variables showed stronger overall correlations in
those ponds subjected to toxicant stress. This is clearly
demonstrated in Fig. 3.14, where the percentage of correlations
greater than 0.7 in absolute value is seen to increase steadily as a
function of treatment level. Although somewhat arbitrary, the value
of 0.7 was chosen because a correlation coefficient of 0.7 implies
that the given variable explains approximately half of the measured
variance in its correlate. The trend exhibited in Fig. 3.14 would
seem to indicate a situation in which most of the state variables
were relatively independent of one another in the controls, but which
came to covary under toxicant exposure, either due to direct
interaction between state variables, or due to their separate but
simultaneous reactions to a common stress.

The toxicant-induced changes in the covariance structure of the
ponds is further elucidated by the use of principal components
ana]ys%s. Geometrically, principal components correspond to the
principal axes of a concentration ellipse {or higher dimensional
analog) of a cloud of multivariate data {(Fig. 3.15). Principal
components are numbered such that the first principal component

explains the greatest amount of the total variance. 1If no
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correlations are present in the data, then (except for sampling
error) all principal components should explain an egual fraction of
the total variance. As the strength of the correlations increases,
fewer principal combonents are required to explain most of the
variance, and the proportional variance explained by the first
principal component increases. Also, as the nature of the
correlations change, the orientation of the multivariate data cloud
shifts, and the first principal component is rotated in space.
Changes in the variance explained and in the orientation of the first
principal component resulting from toxicant exposure are shown in
Fig. 3.16. The explained variance increases, especially at the three
higher doses, confirming the overall increasing degree of
correlation. Also, the nature of the correlations changes, as
indicated by the large angle of rotation of the major axis of the

concentration ellipsoid relative to the controls.
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Chapter 4

SIMULATION RESULTS

This chapter presents results of the analysis of output from an
ecosystem simulation model. The model used is intended to simulate a
small littoral ecosystem analogous to the experimental ponds.

Results of deterministic runs of this model, both with and without
the effects of the toxicant, are presented in section 4.1, along with
comparisons to observations from the experimental studies whenever
possible. 1In section 4.2, the influence of natural variability and
measurement error on the model output is described. Section 4.3
summarizes the results of applying state space displacement analysis
to the model output. Furthermore, by varying the number of
simulations used in the state space analysis, the sample size
requirements of the method are investigated. Section 4.4 explores
changes in the covariance structure of the simulated state space
trajectories, both over time and in response to the toxicant.
Finally, section 4.5 considers the problem of monitoring the state of
an ecosystem within a decision-oriented, management context, and

introduces the concept of diagnostic variables.
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4.1 RESULTS OF DETERMINISTIC SIMULATIONS

4.1.1 Model Dynamics in the Absence of Toxicant

In the absence of toxicant exposure, the phytoplankton exhibit a
bloom peaking at approximately the midpoint of the 56 day simulation
period. This bloom is dominated by phytoplankton species 9, with
species 8 as an important subdominant. This accords with previous
experience with SWACOM, where species 8 and 9 are typically
Tate-summer species with temperature optima near 25 OC, high light
saturation constants, and low Michaelis~Menten nutrient uptake
half-saturation constants. Accompanying the phytoplankton bloom,
there is a sigmoidal increase in zooplankton biomass, leveling off
near the end of the simulation peried. lagging several days behind
the zooplankton is a nearly exponential rise in fish biomass. The
dynamics of the three trophic levels of the pelagic food web are
summarized in Fig 4.1a.

Macrophyte biomass increases rapidly to a maximum of nearly

1200 g dry wt m 2

on day 8 of the simulation, followed by a period
of slow, but steady, decrease (fFig 4.2). The mass of detritus
decreases continually throughout the 56 day interval, although the
rate of loss is more rapid at first. The change in the rate of
decomposition is primarily a reflection of changes in detrital
composition, which initially is 60% labile, but which is only

approximately 10% labile at the end of the simulation period

(Fig. 4.3). Primary production in the system is dominated by the
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contribution of macrophytes. Macrophyte net photosynthesis shows an
initial increase corresponding to the initial growth of the
macrophyte bed, followed by a slight depression as summer
temperatures exceed the plant's physiological optimum, and finally an
increase as environmental conditions once again become more favorable
(Fig. 4.4). The phytoplankton exhibit a somewhat different temporal
pattern of productivity, and are always at least an order of
magnitude less important than macrophytes in terms of total
photosynthetic production (Fig. 4.5).

Dissolved oxygen displays a temporal pattern qualitatively
similar to the macrophyte productivity curve (fig. 4.6). The
dissolved oxygen concentrations predicted by the model were
consistently above saturation (oxygen solubility is 7.64 ppm at 29°C,
the approximate average temperature). Such oxygen supersaturation
was frequently observed in the experimental ponds, including
concentrations as high as 14.00 ppm. The other physicochemical
parameter in the model, dissolved nutrient concentration, generally
decreased over the period of the simulation, with the greatest rate

of decrease occuring during the phytoplankton bloom {Fig. 4.7).

4.1.2 Model Dynamics with Toxicant Effects

At low concentrations, the introduction of the toxicant has an
apparently stimulatory effect at all trophic levels. For instance,
at a simulated phenol concentration of 0.3125 mg/L, the initial direct

toxic effects on the consumer populations allow for a substantially



100

ORML-DWG 87-17365

4 [ I T i T

MACROPHYTE NET PHTOSYNTHESIS (g m™2 a™h

O o e e e e e et = e e e = e . e . o
~ | ! 1 | I
0 10 20 30 40 50 50
TIME {d)
o .. 0.3125 L. ... 0.625
e 1,25 e e 2.5 SEN—
oo == 10 — e 20

Figure 4.4 Dynamics of macrophyte net photosynthesis in.
deterministic simulations at various toxicant concentrations.



101

ORNL-DWG 87-17366

f | I [ I

PHYTOPLANKTON NET PHOTOSYNTHESIS (g m~2 g~
o e Nl © ok
Y @ s wn o

o
-

0 o
60
TIME (d)
—— O il 0.3125 e 0.625
——— 1.25 —_—— 25 NS
—_ 10 e e 20

Figure 4.5 Dynamics of phytoplankton net photosynthesis in
deterministic simulations at various toxicant concentrations.



102

ORNL-DWG 87-17367

DISSOLVED OXYGEN {ppm)

, | I ! ! 1
0 10 20 30 40 50 60
TIME (d)
0 s 0.3125 0.625
o 1.25 o 25 5
—— 10 20

Figure 4.6 Dissolved oxygen dynamics in deterministic simulations at
various toxicant concentrations.



103

ORNL-DWG 87-17368

NUTRIENT CONCENTRATION (mg/L)}

2 I l l | I
0 10 20 30 40 50 60
TIME (d)
_0 0.3125 ... 0.625
——— 125 e e 2.5 e e §
e = 10 —_— 20

Figure 4.7 Nutrient dynamics in deterministic simulations at various
toxicant concentrations.



104

larger phytoplankton bloom. In response to increased food
availability, all zooplankton except for species 5 eventually attain
a higher biomass than in the absence of toxicant (Fig. 4.1b).
Similarly, fish biomass, although initially depressed, is eventually
increased above control levels due to greater availability of prey.

The phenomenon of stimulatory effects arising from exposure to
low toxicant concentrations is called hormesis. It has been
repeatedly observed at the organismal level and may be a general
feature of physiological response to inhibitors (Stebbing 1982). 1In
attempting to provide a theoretical basis for understanding hormesis,
Stebbing (1982) hypothesizes that hormetic effects can be explained
as "a consequence of the adaptive behavior of rate sensitive control
mechanisms". Stebbing's explanation of hormetic effects at the
organismal level is based upon the properties of biosynthetic
networks with feedback control. The same properties are apparent in
ecological systems, so it seems appropriate to extend the concept of
hormesis to include ecosystem-level phenomena. In these terms, it
can be said that the model predicts a hormetic effect on plankton and
fish populations in response to phenolics. This prediction is
partially confirmed by the the pond, and more dramatically, by the
aquarium microcosm studies, where increases in water column
chlorophyll a were observed at low to moderate treatment levels.
Also in the microcosms, there is a clear increase in cladoceran
biomass concurrent with the increase in chlorophyll a. Copepod

biomass and rotifer biomass did not show a clear increase, but these
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groups contain many carnivorous or bacteriovorous species which are
not represented by the model structure.

If the toxicant concentration is doubled to 0.625 mg/L, the
phytoplankton bloom becomes even larger. Total zooplankton biomass
is also increased, but now both species 4 and 5 show lower standing
crops than in the controls. Fish biomass is also reduced below
control levels (Fig. 4.1¢c). At 1.25 mg/L the phytoplankton bloom is
longer in duration, total zooplankton biomass attains higher levels
than in the control, but not as high as at 0.625 mg/L, and the
production of fish biomass is very slight (Fig. 4.14d).

Another doubling of toxicant concentration to 2.5 mg/L causes
the virtual elimination of both fish and zooplankton (Fig. 4.1e). As
concentrations increase to 5 and to 10 mg/L, the magnitude of the
phytoplankton bloom progressively decreases due to direct toxic
effects (Fig. 4.1f and g). A minor shift in community composition is
also observed, with phytoplankton species 8 becoming relatively more
important until it is a codominant with species 9. Finally, at a
concentration of 20 mg/L, all phytoplankton species are negatively
affected by the toxicant, and phytoplankton biomass remains
essentially constant except for a small increase in species 5
occuring near the end of the simulation {Fig. 4.1h).

Macrophyte biomass is relatively unaffected at phenol
concentrations up to 10 mg/L. However, a concentration of 20 mg/L is
directly toxic to Elodea, and the predicted biomass of the macrophyte

bed decreases exponentially with time (Fig. 4.2). Similarly, the
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dynamics of the detritus pool is relatively unperturbed except at the
highest toxicant concentration, where a large influx of dying
macrophytes occurs (Fig. 4.3). Macrophytes were observed to be
relatively resistant in the pond and aquarium systems, although not
guite as resistant as predicted by the model. A substantial
reduction in growth was observed at a toxicant concentration of
approximately 1 mg/L, and at 10 mg/L the macrophyte bed was nearly
destroyed.

The model predicts a decline in net photosynthesis with
increasing toxicant exposure for both phytoplankton and macrophytes
(Fig. 4.4 and 4.5). In the experimental ponds, phytoplankton
photosynthesis, as measured by ]4C~1ncorporat10n, tended to be
lower in levels P3 through P5 (where average phenol concentration
ranged from 0.5 to 8 mg/L) immediately following the oiling period,
while ponds exposed to lower doses of synthetic oil had elevated
photosynthesis corresponding to a phytoplankton bloom. However, due
to the very high variability in the photosynthesis data, these
differences were not found to be statistically significant using
Dunnett's two-sided test (a = 0.05). Total ecosystem net
production, as computed from diurnal changes in dissolved oxygen, was
significantly reduced in the highest exposure (P5) ponds.

Dissolved oxygen concentrations predicted by the model decline
with increasing toxicant exposure, falling to approximately 7.6 ppm
{near saturation) at the highest dose (Fig. 4.€¢). In the

experimental systems, effects on dissolved oxygen were in the same
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direction, but of greater magnitude. The high dose microcosms became
essentially anaerobic for the last 5 weeks of the oiling period, and
in the outdoor ponds, dissolved oxygen dropped to below 2.0 ppm.
There a several possible explanations for this discrepancy. One
factor may be that microbial respiration is inadequately accounted
for within the model., Currently, the model includes a microbial
respiration term proportional to the pools of detrital material, but
no account is taken of respiration associated with biodegradation of
the phenols themselves or of catabolism of dissolved organic
substances which may be secreted by the macrophytes under conditions
of sublethal stress.

Additionally, oxygen exchange with the atmosphere may not be
accurately predicted by the model. The rate of oxygen exchange
between the agueous and gaseous phases depends upon the extent of
mixing. The model currently assumes an effective mixing depth of
1.0 m, the depth of the entire water column. However, the available
dissolved oxygen profile data suggests that although the ponds were
usually well mixed in the mornings, they could become stratified
later in the day. Unfortunately, such profile data were obtained too
sporadically to provide a clear picture of the diurnal changes in
mixing regime. If, somewhat arbitrarily, a time-weighted effective
mixing depth of 0.5 m is assumed, the model predicts dissolved oxygen
concentrations ranging from 6.1 to 9.8 ppm in the controls, and from

4.3 to 3.8 ppm at the highest toxicant dose.
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The general trend in simulated nutrient dynamics is toward
increased dissolved nutrient concentrations in response to toxicant
exposure (Fig 4.7). This trend is supported by measurements of
increased water column ammonium concentrations in the highest dose

ponds and microcosms.

4.2 RESULTS OF STOCHASTIC SIMULATIONS

4.2.1 Natural Variability

Natural variability encompasses various factors that preclude
the possibility of attaining exactly uniform behavior in complex
experimental systems. Individual ponds or microcosms differ in their
ecological dynamics due to dissimilarities in composition and
differences in environmental influences. Differences in composition
were simulated by selecting random initial conditions for replicate
model runs. Variability in environmental driving variables was
introduced by using stochastic functions for ambient light and
temperature. The effects of including these these sources of natural
variability on the behavior of the model, both separately and in

concert, are discussed below.

4.2.1.1 Random initial conditions
Initial values of state variables were chosen from a
multivariate normal distribution with centroid equal to the

deterministic initial state and a coefficient of variation of 10% in
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each dimension (as described in section 2.3.3). The resulting
dynamics are illustrated for six representative state variables in

Fig. 4.8.

4.2.1.2 Stochastic forcing functions

Light and temperature forcing functions were modeled as one
dimensional random walks superimposed on a deterministic, sinusoidal
trend (see section 2.3.3). Typical realizations of this stochastic
process are i1llustrated in Fig. 2.3. It should be noted that the
variability among Monte Carlo replicates in temperature and light
conditions increased with time during over the simulation period.
The resulting variability in the dynamic behavior of six state

variables is illustrated in Fig. 4.9.

4.2.2 Measurement Error

Measurement errors were added to the simulation results as
independent normal deviates as described in section 2.3.3. Examples
of simulation output from ten typical runs with measurement error as

the sole source of variability are shown in Fig. 4.10.

4.2.3 Combined Sources of Variation
The effects of random initial conditions, stochastic forcing
functions, and superimposed measurement error on the output of the

model have been illustrated. In most, if not all, experimental
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situations, all of these sources of variation must be taken into
account. The simulation results shown in Fig. 4.11 were obtained by

simultaneously including all these sources of variation.

4.3 STATE SPACE ANALYSIS

4.3.1 Summary of State Space Dose-Response Relationships

Simulation results were summarized by a state vector in a space
defined by the following dimensions: log-transformed biomasses of
each of the biotic components of the model, log-transformed masses of
labile and refractory detritus, dissolved oxygen, nutrient
concentration, and net photosynthesis rates for phytoplankton and
macrophytes. The results is a 23~dimensional state vector. State
space displacements were computed every five days, beginning on day
1, resulting in twelve comparisons during the 56 day simulation
period. The stochastic simulations were run to provide 200
replicates at each of the treatment levels. Ffor each treatment level
on each sampling day, 4000 different pairwise comparisons between
control and perturbed state vectors are possible. The state space
analysis presented here is based on comparisons from 100 randomly

matched pairs of trajectories.

4.3.1.1 Calculations based on natural variability
Figure 4.12 shows the response surface for state space

separation calculated as a function of time and dose from 100
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stochastic simulations with natural variability incorporated but
without measurement error. The resulting surface displays a
menotonic increase in separation with increasing dose or length of
exposuré, The increase is not always smooth, however. There appears
to be a sharp jump in response between the ireatment concentrations
of 2.5 and 5.0 mg/L, especially during the middle of the simulation
period.

Dose-response curves based on the three state space summary
measures defined in section 2.4.3 are shown in Fig. 4.13. Maximum
separation increases rapidly at the two lowest treatment levels, and
steadily but more slowly thereafter. Both mean separation and mean
displacement magnitude increase rapidly at first, then exhibit a
plateau followed by the sharp jump at 5.0 mg/L, and further steady
increase. The closeness of the numerical values for these two
quantities implies a relatively constant directional orientation for

the displacement vector over the simulation pericd.

4.3.1.2 Calculations based on measurement error

The surface in Fig. 4.14 shows the response as a function of
time and toxicant concentration in simulations where measurement
error is the sole source of variability. State space separation
generally increases with increasing dose or length of exposure, but
with the peak response actually occuring under intermediate
conditions. More dramatic than the changes in the pattern of

response, however, is the change in numerical scaling of the
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separation values as compared to Fig. 4.12. As will be argued in
subsequent sections, this is a typical consequence of the use of a
Mahalanobis distance metric. Mahalanobis distances can be relatively
sensitive to changes in the covariance matrix used in the
calculations. Since, in this case, the measurement errors were
uncorrelated, whereas the simulations under natural variability had a
correlation structure imposed by the system dynamics, the distances
calculated for these two scenarios cannot be directly compared. They
are, in effect, measured in different units.

The dose-response curves for the three summary indices are shown
in Fig. 4.15. Again, the close similarity of the mean separation and
the mean displacement magnitude cufves suggests a nearly

unidirectional displacement over time.

4,3.1.3 Calculations based on combined sources of variation.

The response surface of state space separations calculated from
simulations which included both natural variability and measurement
error is shown in Fig. 4.16. Again, the numerical scaling of the
vertical axis reflects the different covariance matrix used in
calculating the Mahalanobis distances. The general pattern of
response, as reflected in the qualitative features of the surface,
appears intermediate between that observed in Figs. 4.12 and 4.14.

The same is true for the dose-response curves, shown in Fig. 4.17.
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4.3.2 Statistical Power and Sample Size Requirements

The simulation results presented thus far have been based upon
sample sizes of 100 Monte Carlo replicates at each treatment level.
In experimental situations such large sample sizes are seldom
attainable. The experimental studies described in the preceeding
chapter included only two or three replicates at each level of
toxicant exposure, and this degree of replication is representative
of ecotoxicological studies. It is important, therefore, to
investigate the effect of sample size on the results derived from a
state space displacement analysis. Specifically, two questions need
to be addressed: (1) How does the statistical accuracy of the method
vary with sample size; and (2) Is the method powerful enough to
detect ecologically significant effects on the basis of reasonable
sample sizes?

To investigate the effects of sample size on statistical
accuracy, attention was directed toward the estimation of mean
separation. The sampling distribution for the mean separation
estimator was approximated, for each sample size, by repeatedly
resampling from a universe of 200 trajectories produced by the Monte
Carlo runs at a given treatment level. In other words, for each
treatment level and each sample size N, a sample of N trajectories
was drawn from the 200 trajectories previocusly generated by the
model, and the mean separation was estimated on the basis of that
sample. Then a new sample of N trajectories was drawn, again from

the entire set of 200 possible trajectories, and a new calculation of
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the mean separation was made. This process continued until 20
samples of size N had been drawn at each treatment level for values
of N=1, 2, 4, 8, 16, 32, and 54.

The results of this resampling exercise are shown in Fig. 4.18.
The sampling error clearly decreases monotonically with increasing
sample size. Yet, even for small sample sizes, the sampling error is
not large enough to obscure the basic dose-response pattern observed
from large sample calculations. This is shown in Fig. 4.19, where
the range between the 5th and 95th percentiles of the sampling
distribution for a sample size of one is plotted as a function of
toxicant concentration. Another convenient descriptor of the
statistical accuracy of an estimator is its standard error, which is
the standard deviation of the sampling distribution. Estimated
standard errors for mean separation, as a function of exposure
concentration and of sample size, are given in Table 4.1. A decrease
in the standard error with sample size is observed at all toxicant
concentrations. Changes in standard error as a function of
concentration for a fixed sample size are not as consistent, but
often the largest standard errors occur at intermediate toxicant
exposures. This suggests that the model dynamics are more tightly
constrained at very high or very low toxicant concentrations, and
that the greatesi potential for dynamic variability exists at
intermediate levels of toxicant stress.

On the basis of the information on the statistical accuracy of

the mean separation estimator, it is possible to assess the ability
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Table 4.1. Standard error of the mean separation as calculated from
the empirical sampling distribution.

Concentration Sample Size
(mg/L) i 2 4 8 16 32 64
0.0 0.59 0.49 0.27 0.16 0.12 0.06 0.04
0.3125 0.64 0.44 0.34 0.24 0.15 0.10 0.06
0.625 0.6 0.50 0.34 0.15 0.13 0.09 0.05
1.25 1.40 0.68 0.48 0.36 0.29 0.15 0.1
2.5 1.49 0.91 0.58 0.54 0.41 0.26 0.17
5.0 0.80 0.7 0.40 0.43 0.30 0.13 0.06
10.0 1.11 0.94 0.43 0.27 0.19 0.12 0.06
20.0 1.1 0.97 0.74 0.46 0.30 0.17 0.08
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of the method to detect ecologically significant perturbations from
simall samples. This is best described in terms of statistical
hypothesis testing. Take as a null hypothesis (Ho) that there is
no effect. This implies that u, = "p’ or equivalentiy,
that dM(ucg up);o. This can be contrasted to the
one~-sided alternative hypothesis (H1) that dM(uc, up)>00
The mean separation will be used as an estimator of the Mahalanobis
distance between population centroids. The null hypothesis will be
rejected if and only if the the mean separation calculated for the
"perturbed" trajectories is significantly greater than for the
contro} trajectories. Statistical significance can he established on
the basis of what is known about the sampling distribution of the
estimator. Examination of the empirical sampling distributions
showed that they tended to be at ieast approximately normal. 1In
particular, all four of the empirical sampliing distributions for
N =1,2 and toxicant concentrations of 0.0 and 0.3125 mg/L could not
be distinguished from normality using a Shapiro-Wilk test with
a = 0.05 (Shapiro and Wilk 1965). Therefore, for low toxicant
exposures (<0.3125 mg/L), it was assumed that the sampling
distribution was normal, with a variance equal to the pooled variance
of the control and 0.3125 mg/L distributions.

Given these assumptions, the power of the statistical test can
be derived. Statistical power is defined as the probability that an
effect, in this case a difference between population centroids, will

be detected when such an effect truly exists. The power of a test
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depends upon three factors: (1) the actual magnitude of the effect,
(2) the significance level of the test, and (3) sample size. The
significance level, denoted by «, is the probability of rejecting
the null hypothesis when in fact the null hypothesis is true. Such
an incorrect inference is referred to as a type I error. 1In
contrast, a type II error is the acceptance of a null hypothesis
which is false, and the probability of a type II error is represented
as B. It follows from the above definitions that the statistical
power of a test is 1-B.

Fig. 4.20 shows plots of the probability of accepting the null
hypothesis as a function of the true separation between population
centroids in Mahalanobis distance units. Such plots are
traditionally referred to as operating characteristic curves (see,
for example, Hines and Montgomery 1980, p.270ff). Operating
characteristic curves can be thought of as inverted plots of
statistical power. Two graphs are shown, one for a sample size of 1,
and one for a sample size of 2. Each graph contains several curves,
corresponding to different significance levels (a = 0.10, 0.05,

0.01, 0.005, 0.001). It can be seen that even with a sample size of
1 and a significance level of 0.001, a true separation of 5
Mahalanobis distance units is almost certain to be detected. This is
approximately the magnitude of effect observed at the lowest toxicant
concentration used in the simulation, These operating characteristic
curves illustrate the power of the state space analysis to detect

changes in trajectories under realistic conditions of natural
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variability, measurement error, and small sample sizes. It would
appear, on the basis of this analysis, that the state space
methodology developed in this study is quite sensitive, and that, if
properly applied, ecologically significant effects should rarely go

undetected.

4.4 CHANGES IN COVARIANCE STRUCTURE

4.4.17 Changes in Covariance Structure with Time

Since initial values for the state variables were chosen
independently by latin hypercube sampling, the initial correlations
between state variables were negligible. This rapidly changed,
however. Within five days, the model dynamics had imposed a definite
correlation structure upon the simulation results. This s clearly
observable in Fig. 4.21, which summarizes the results of a principal
components analysis of the control trajectories. The increasing
degree of state variable intercorrelation is demonstrated by the
monotonic increase in the variance explained by the first principal
component (Fig 4.27a). The rotation angle of the first principal
component relative to its orientation on day 1 was calculated as

-1

€os (e]'ed), where e, and ey are standardized

]
eigenvectors oriented in the directions of the first principal
component on day 1 and day d, respectively. These rotation angles
are shown in Fig. 2.41b. Inspection of the rotation angles confirms

that there is a rapid convergence toward a relatively constant
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orientation (after day 11 all rotation angles are within 20° of each
other). Subsequent evolution of the correlation structure may be
taking place, but at a slower rate that in the initial transient
phase.

The nature of the correlation structure that arises from the
dynamics of the model is best characterized by inspection of some of
the individual correlations between state variables. Specifically,
the two strongest correlations present in later part of the
simulation period are the negative correlation between phytoplankton
species 7 and 9, and the positive correlation between dissolved
oxygen and the net photosynthetic rate of the macrophytes. The
strength of these two correlations as a function of time is shown in
Fig. 4.22. A number of other variables consistently exhibited
moderate to strong correlations (}jr}| > 0.8). For example,
zooplankton species 3 became negatively correlated with phytoplankton

species 7 and positively correlated with phytoplankton species 9.

4.4.2 Toxicant-Induced Changes in Covariance Structure

The alterations in model dynamics resulting from toxicant
exposure were reflected in altered correlations between state
variables. Again, this is conveniently summarized in terms of the
behavior of the first principal component, as illustrated in
Fig. 4.23 for an analysis of the simulation results pooled over the
entire 56-day exposure period. The overall strength of correlations

increases at Tow to moderate toxicant exposures, but declines



134

ORNL-DWG 87-17239

PHYTOPLANKTON 7~ PHYTOPLANKTON 9

os e | 0 I l
0.4 |— o
ﬂ.,\
0 \U“*u
T~
-0.4 |— < ]
0 .
. "ﬁ\ﬂ
0. ‘ l l - ‘{]-—H]..... "G"-—»!»ﬂﬂ""c'
0 10 20 30 49 50 80
TIME (o}

DISSOLVED OXYGEN-MACROPHYTE
NET PHOTOSYNTHESIS

0.3 P—-— (b) lﬂmm“ﬂﬂalﬂw—-u{]w"['an“& ulﬂumﬂ%'}"‘m’”"'ﬁ
/’Df(
0.4 1O ]
0
~0.4 — ]
-0.8 — B
| | | 1 l
0 10 20 30 40 50 60
TIME (&)

Figure 4.22 Changes in selected state variable correlations

time in the simulation model. over



135
dramatically at the highest concentration (Fig. 4.23a). The
orientation of the first principal component changes progressively
for toxicant exposures up to 1.25 mg/L, then remains relatively
constant for exposures ranging from 2.5 to 10 mg/L, and shifts once
again at the highest dose of 20 mg/L (Fig. 4.23b). A progressive
change in the nature of the correlations is also evident, as
illustrated by the change in orientation of the first principal
component.,

A more detailed inspection of the correlations between state
variables reveals some interesting patterns. When the data are
.pooied over time, the strongest correlations evident in the control
simulations are those between the consumer biomasses. As a matter of
fact, given five zooplankton species and one fish species, there are
15 nonidentical consumer correlations, and these turn out to be the
15 strongest correlations in the entire correlation matrix, all
having positive values exceeding 0.90.

The introduction of the toxicant causes changes in this
pattern. At an exposure concentration of 0.625 mg/L, zooplankton
species 5 becomes strongly negatively, rather than positively,
correlated with the other consumer populations. This is a result of
the negative impact of the toxicant on the success of zooplankton
species 5, which is the most sensitive of the consumers to direct
effects of the toxicant. At a concentration of 1.25 mg/L, the
correlations among consumer biomasses are similar, and strong

positive correlations among phytoplankton species 7 through 10 become
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apparent. These phytoplankters also generaliy exhibit strong
negative correlations with phytoplankton net photosynthetic rate.
Similar correlations are observable at concentrations of 2.5 and 5.0
mg/L, with additional positive correlations of phytoplankters 7
through 10 with zooplankton species 5, and accompanying negative
correlations with all other consumers. Ffinally, at the two highest
toxicant exposures, zooplankton species 3 and 4 are also impacted by
the toxicant, exhibiting a negative correlation with phytoplankton

species 7 through 10.

4.5 DIAGNOSTIC VARIABLES

The number of variables required to provide a comprehensive
description of ecosystem state is usually large. This introduces
difficulties from the standpoint of ecosystem protection or
management. Routine monitoring of such a large suite of ecological
state variables can be a formidable task. Practical constraints on
the expenditure of time, effort, or monetary resources may dictate a
sampling scheme which allows routine monitoring of only a portion of
the relevant variables. Perturbations, once detected in this subset
of routinely monitored variables, can then be further characterized
by measurement of ancillary state variables, and remedial actions
taken as appropriate.

Routinely monitored variables which can be used as indicators of

ecosystem state will be referred to as diagnostic variables,
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following the terminology of Patten (1984). Ideally, a small set of
easily measured diagnostic variables which accurately predict actual
ecosystem state is sought. In the context of ecosystem management,
it is uswally desired that the ecosystem remain within some bounded
region of the state space. Let this set of acceptable ecosystem
states be denoted by X. The objective is then to find a set Q of
states in the space of diagnostic variables corresponding to the set
X in the state space. This correspondence is achieved if two
conditions are met: (1) a measured vector of diagnostic variables,
w, which is contained within Q insures that the state vector
X is within X (sufficiency), and (2) the state vector x is found
within X only if w is within Q (necessity).

In the real world, insistence on absolute sufficiency and
necessity is too stringent of a requirement. The problem is more
fruitfully addressed within the framework of statistical hypothesis
testing. Take as a null hypothesis that the state vector x is
within the acceptable domain X. This hypothesis is tested using the
measured diagnostic vector o. If o is within Q, the null
hypothesis 1is accepted; if not, it is rejected. As with any
statistical test of a hypothesis, two types of incorrect inference
are possible. If w falls outside of (2 when in fact x is
within X, the null hypothesis will be mistakenly rejected when it is
true, and a type I statistical error is made. Alternatively, a
type II error occurs if the diagnostic vector remains within Q when

in fact the state vector is outside of X.
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Type 1 errors can be thought of as false positives. Actions
taken in response to such a false positive will in fact be
unnecessary, leading to an unacceptable waste of time, effort, and
money if they occur too frequently. On the other hand, type II
errors can be thought of as false negatives, the occurrence of which
can lead to unacceptable environmental damage that might have been
avoided if mitigating steps had been taken. Clearly, it is desirable
to minimize the océurrence of both types of error. ODiagnostic
criteria may be designed so as to yield an appropriate balance
between the rates of type I and type II errors. Determining
acceptable error rates and the balance between types of error must be
done on a case by case basis, and may entail consideration of
numerous social, political, economic, aesthetic, or ethical factors.

The scientific task is to devise procedures for identifying
possible diagnostic variables and for estimating the error rates
associated with specific diagnostic criteria so that their
acceptablity can be evaluated. The simulation results presented here
provide a context for examining various procedures which may prove
useful.

To illustrate the selection and use of diagnostic variables,
variables were sought which would be good predictors of ecosystem
state on day 21 of the simulation. Furthermore, it was decided that
any state space separation of 15 or less Mahalanobis distance units
would be considered acceptable. Day 21 was chosen as being late

enough for responses to be evident, but early enough to exclude an
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undue influence of state variables with very slow response time.
Definition of an acceptable state space domain as a hypersphere with
Mahalanobis radius=15 allows for a statistically significant, but not
severe, deviation from the control trajectory (see Fig. 4.16 and
4.17). This is probably representative of most ecosystem management
situations, where maintenance of completely pristine conditions is
impractical, but limits are set at some low level of allowable
impact.

There are many possible diagnostic variables. £tach of the state
variables is a candidate, as are aggregate variables such as the sum
of phytoplankton biomasses, or other functions of state variables,
such as the ratio of consumer biomass to producer biomass. Several
procedures were used to identify promising diagnostic variables from
the pool of candidates. First, simple correlations of the state
space separation with the candidate variables was considered.
Second, various linear regressions of state space separation against
candidate variables were examined. This included a set of stepwise
multiple regressions performed using the maximum R2 improvement
method in the STEPWISE procedure available in SAS (SAS 1985¢c).
Finally, the observations in the data set of simulation results were
partitioned into two groups based on whether or not the state space
separation exceeded 15 Mahalanobis distance units, and a stepwise
discriminant analysis was performed on the classified data using the

STEPDISC procedure (SAS 1985¢).
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As a result of these analyses, the best single diagnostic
variable identified was the total zooplankton biomass. Linear

regression yielded the relationship
S = 25.8784 + 3.2608 1n Z (4.1)

where S is the predicted separation, and Z is the sum of the
biomasses of the five zooplankton species. This regression had an
adjusted R2 value of 0.731. The result is a one dimensional
diagnostic space defined by a single aggregate variable. It remains
to define the set @ in this diagnostic space which will best
corresponds to the set X in the state space. Since X is taken to be
the set of all states such that S$<15, where S is the separation
caiculated in the full state space, an obvious choice of diagnestic
criterion would be 5<15, which is equivalent to In Z <= -3.3361. The
statistical error rates associated with this diagnostic criterion can
be estimated on the basis of the simulation results. Out of 800
Monte Carlo simulations, spanning the range of toxicant
concentrations from 0.0 to 20 mg/L, the rate of occurrence of type I
and type 11 errors is 3.13% and 15.6%, respectively.

The frequency of type II errors is higher than one might like.
Since a type II error implies that actual environmental degradation
occurs but is undetected, this is a potentially serious flaw. One
alternative is to retain the same diagnostic space, but to define the

set {3 differently. A more conservative diagnostic criterion would
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pe S<Q where (<15. Such a strategy will reduce the probability of
type II errvors, but at the cost of an increased frequency of type I
errors. Fig. 4.24 illustrates the trade-off between type I and type
I1 error probabilities for values of Q between 12 and 15. Although
it is possible to achieve a low rate of type II errors {say less than
5%}, the result is a much higher rate of type I errors (greater than
20%). Since money and effort may be unnecessarily expended in
responding to such false alarms, a high type I error probability may
also be unacceptable.

If the error rates associated with the use of total zooplankton
biomass as a diagnostic variable are deemed unacceptable, another
diagnostic space must be sought. Several other one dimensional
diagnostic spaces were examined, but none were found to be superior
to total zooplankton in overall predictive power. Therefore,
consideration is now given to possible two dimensional state spaces.

One method of searching for possible two dimensional diagnostic
spaces is with stepwise multiple regression analysis. Using the
STEPWISE procedure in SAS with a maximum R2 criterion for variable

selection, the hest two variable model found was
S =31.8689 + 2.1648 In 7 - 11.2891 1n Py (4.2)

where the new variable, P is the biomass of the fourth

4’
phytoplankton species. This regression has an adjusted R2 of

0.822. Using this regression with a diagnostic criterion of 5<15
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yields type I and type II error rates of 5.88% and 14.13%,
respectively. Compared to the regression with Z alone, use of this
relationship only slightly improves the type Il errvor rate, and in
fact leads to a higher total (type I + type II) error rate.
Inspection of a scatterplot of ecosystem states projected into the
two dimensional Z~P4 space, and coded to indicate whether or not
S<15, indicated that it was unlikely that any other diagnostic
criterion within this space would be substantially betfter than one
based on 7 alone.

Alternatively, stepwise discriminant analysis can be use to
search for sets of diagnostic variables. Using the STEPDISC
procedure in SAS, with groups classified according to whether or not
$<15, the best two variable discrimination achieved was in a space

defined by 7 and P , where P is the sum of the

blugrn biugrn

biomasses of phytoplankton species 8 through 10, which occupy an
ecological niche within the model similar to typical blue-green algal

species. Having identified 7 and P as a candidate pair of

blugrn
diagnostic variables, it remains to specify a numerical diagnostic
criterion within this two dimensional space. This is easily
accomplished using the DISCRIM procedure within SAS. For each
observation in the data set, the DISCRIM procedure calculates a
probability of membership in X, the set of acceptable states, based
upon the values of the diagnostic variables. The set Q is then

defined as the collection of states such that the calculated

probability of membership in X exceeds some specified threshold
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referred to as a prior probability. 1In the absence of relevant
information on which to base selection of a prior probability, a
value of 0.5 is usually chosen. On the basis of this criterion, the
estimated type I and type II error rates are 3.25% and 15.88%,
respectively. Unfortunately, this set of diagnostic variables also
fails to provide a substantial improvement over the previously
considered candidates.

The failure of stepwise regression and stepwise discriminant
analysis to find an adequate two dimensional diagnostic criterion
does not prove its nonexistence. A suitable criterion may have been
missed for two reasons: (1) stepwise procedures which do not
consider all possible models may fail find the best model due to a
convergence of the optimization criterion to a local, rather than a
global, extremum; and (2) both stepwise procedures seek linear
relationships between ecosystem state and sets of diagnostic
variables, although nonlinear relationships may exist and prove to be
more useful. With this in mind, several candidate two dimensicnal
diagnostic spaces were examined which had been suggested primarily on
the basis of intuitive appeal.

One such diagnostic space is that defined by the variables

and P where P is the sum of the biomasses

p f s .
blugrn spring spring

of phytoplankton species 3 through 5, the dominant species of the
spring bloom. If a diagnostic criterion is derived in this space on
the basis of linear regression with S<15, the resulting error rates

are 9.50% and 6.25% for type 1 and type II errors, respectively.
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This can be improved by using discriminant analysis to arrive at the
numerical criterion. Assuming a prior probability of membership in
set X of 0.5, error rates of 4.38% (type I) and 6.38% (type II)
result. This is a clear improvement over the diagnostic criteria
considered so far, but an even better criterion can be derived within
this diagnostic space. This becomes evident upon inspection of the
data as plotted in Fig. 4.25. It is apparent that a nonlinear
criterion, such as curve C, provides a better prediction of ecosystem
state than either of the criteria based on regression analysis (line
A) or discriminant analysis (line B). 1In fact, the calculated type I
and type II error rates associated with such a nonlinear diagnostic
criterion are 7.63% and 0.00%, respectively,

Finally, a note must be made about the interpretation of the
probabilities of type I and type II errors as presented in this
section. These probabilities are not equivalent to « and B error
rates as traditionally defined for statistical hypothesis testing.
Although a (B) is sometimes loosely referred to as the probability
of making a type I (type II) error, in fact, a (B) is the
conditional probability of a type I (type II) error given that the
null hypothesis is true (false). The occurrence rates discussed
above, on the other hand, are estimates of the probability of a type
I or type II error without regard to the truth or falsity of the null
hypothesis. The relationship between the two quantities can be seen

by applying the definition of conditional probability:
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A lucid discussion of the logic of statistical inference, with
relevant remarks on error probabilities, is contained in Oakes (1986,
see especially Chapter 1).

The numerators in equations 4.3 and 4.4 are joint probabilities,
expressing the rates of simultaneous occurrence of twoe events, one in
the dijagnostic space and one in the full state space. It is these
joint probabilities which have been reported in the discussion of
possible diagnostic variables. The choice between reporting
conditional probabilities or joint probabilities is partially a
matter of personal taste, but in this application, the latter seem
more readily interpretable. For instance, if the conditions of
toxicant exposure are such that it is improbable that the state
vector will in fact be within the acceptable domain (i.e., P(xCX)
is near zero), then even if the conditional probability of a type I
error is high, the expected frequency of type I errors will be low.
The joint probability, on the other hand, is always proportional to
the expected error frequency.

It should be noted that both the conditional and the joint error
probabilities depend upon the exposure conditions. Strictly speaking
therefore, the error rates presented are only valid for the
particular exposure scenario used in the simulation. The

relationship between error probabilities and exposure conditions is
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examined in greater detail in section 5.4, where the use of

diagnostic variables is linked to the theory of risk analysis.
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Chapter 5

DISCUSSTON AND CONCLUSTIONS

5.1 SUMMARY AND EVALUATION OF RESULTS

The method of using state space displacements to summarize
ecosystem response to a toxicant has been appliied in three relatively
independent situations: (1) to investigate the response of flask
microcosms to 2, 4-dimethylphenol, (2) to investigate the response of
aquarium microcosms and of experimental ponds to a coal-derived
synthetic oil, and (3) to investigate the dynamics aof an aquatic
ecosystem model under simulated conditions of exposure to a mixture
of phenols. The results of these investigations have been presented
in preceding chapters. Now, attention will be directed toward
summarizing the important features of these results, and toward
evaluating the strengths and weaknesses of the state space
displacement methodology employed in this study.

In all three applications of the method, the primary product of
the analysis was a description of the dose-response characteristics
of the system to the toxicant under consideration. Dose-response
relationships were derived using state space displacements, or scalar
quantities derived from displacements, as indicators of ecosystem
response. Inevitablely, reducing ecosystem response to one or a few
quantities involves the suppression of certain detailed aspects of
the original multivariate data. However, the complexity of a large

multivariate data set can obscure general trends or patterns which
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can be clearly shown by the use of appropriate summary statistics.
The most successful strategy is to develop statistical measures which
effectively capture the trends or patterns of interest, but which can
be readily related to the original variables to aid in the
interpretation of the results.

The state space measures used in this study have demonstrated
their heuristic value. Calculation of a state space displacement
vector recasts the original data in a different mathematical
framework, discarding information on the absolute values of state
variables, but preserving information on the differences between
control and perturbed systems. The contribution of individual state
variables can be reconstructed from the directionality of the
displacement vector. The displacement vector will be c¢lose to (at a
small angle from) the axes corresponding to the state variables
contributing most heavily to the response. Thus state space
displacements are readily interpretable in terms of the original
variables.

Summarizing response in terms of the magnitude of the
displacement vector means suppressing the directional information,
but provides a measure of the distance between control and perturbed
ecosystem states. It has proved conhvenient to use a Mahalanobis
metric to measure this distance, since Mahalanobis distances can be
regarded as an inverse measure of the probability of such a
displacement being realized in the absence of toxicant stress. The

response surfaces shown in Figs. 3.4, 3.11, 4.12, 4.14, and 4.16 are
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plots of the Mahalanobis distances separating control and perturbed
trajectories as a function time and toxicant input.

Occasionally it is useful to further summarize the data by
suppressing the temporal dynamics of ecosystem response. Three
measures were proposed for this purpose: maximum separation, mean
separation, and mean displacement magnitude. Maximum separation is
primarily of interest as a possible index of ecosystem resistance
(see discussion in sections 1.3 and 1.4). Mean separation and mean
displacement magnitude are hoth measures of response averaged over a
time period. In the case of mean separation, the distances are
averaged, whereas mean displacement magnitude, as the name implies,
is based on an averaging of displacement vectors. The distinction
was discussed more fully in section 2.4.4. It was suggested that a
comparison of the mean separation with the mean displacement
magnitude could be used to assess the extent of changes in the
directional nature of the displacements over the time period. Such
comparisons, however, were not especially informative with respect to
the data analyzed in this study. Perhaps information on
directionality would be better conveyed by direct calculation of
angular rotation between successive displacement vectors, as was done
to indicate changes in the orientation of the first principal
component (see Figs. 3.16, 4.21 and 4.23).

As a multivariate statistical technique, state space analysis
can frequently provide greater statistical power than univariate

analysis of individual state variables. This results simply from the
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geometric fact that the length of a displacement vector {(separation)
cannot be less than the length of its projection onto any axis. This
is true whether an Euclidean or a Mahalanobis metric is used,
although, to be consistent, the projection must, in the latter case,
be defined to be orthogonal in terms of Mahalanobis angles (Mardia
1877). The power of a linear function of state variables to detect
changes in state is a function of both the length of the displacement
vector projected onto that axis and of the covariance structure of
the data. In practical applications the length considerations
frequently dominate, meaning that separation is usually nearly the
most powerful statistic. (The strictly most powerful statistic is
that provided by discriminant analysis, see section 5.2.2).

The statistical power obtained by the use of state space
separation can be compared to that obtained with individual state
variables using the simulation results. The type II error rates,
based on the use of separation or of several of the individual state
variables, are shown in Table 5.1. 1In most cases these were
calculated from the number of simulations at the lowest treatment
lTevel (0.3125 mg/L) that fell within the the interval defined by the
st and the 99th percentiles of the contreol simulations (all on day
21). This analysis estimates the probability of a type Il error
under a two-sided test of the hypothesis of no effect with a
significance probability a = 0.02. In those cases where the type
II error rate was low, it was estimated by assuming that the

statistic followed a normal sampling distribution. In the case of
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Table 5.1 Type II error rates associated with the use of separation
and of individual state variables to test the hypothesis
of no effect on day 21 of the ecosystiem simulation.

Test Statistic Type 11 Error Rate (B8)
separation 0.0060
phytoplankton 4 biomass 0.0014
phytoplankton 8 biomass 0.20
phytoplankton 9 biomass 0.0075
Zzooplankton 1 biomass 0.36
zooplankton 2 biomass 0.24
zooplankton 3 biomass 0.21
zooplankton 4 biomass 0.76
zooplankton 5 biomass 0.76
fish biomass 0.80
macrophyte biomass 0.98
refractory detritus mass 0.99
phytoplankton net photosynthesis 0.025
macrophyte net photosynthesis 0.99
nutrient concentration 0.94

dissolved oxygen 0.98
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separation this proved to be a good approximation. The phytoplankton
biomasses, however, deviated significantly from a normal distribution
{as determined by a Kolmogorov-Smirnov test, a = 0.0%5), but the
approximation was probably good enough for an order-of-magnitude
estimate of the error rate. The null hypothesis {no effect) was in
fact false; therefore, these error rates are estimates of § as
traditionally defined. The statistical power associated with each
statistic is 1-B. Note that the state space separation is typically
an order of magnitude more powerful than individual state variabhles.
The only state variables of comparable power were the biomasses of
phytoplankton species 4 and 9, which are representatives of the two
phytoplankton groups identified as diagnostic variables in section
4.5.

In applications of state space displacement analysis, especially
if few replicates are available, consideration must be given to the
sensitivity of Mahalanobis distances to errors in the estimated
tovariance matrix. Although gqualitative patterns of response appear
relatively robust to variations in the estimated covariance
structure, the numerical values of calculated separations can depend
quite strongly on the covariance matrix. This implies that for
quantitative studies in which emphasis s placed on the absolute, and
not just the relative, magnitude of response, the covariance
structure must be well characterized. Extensive sampling may be
required to reliably estimate even a stationary covariance matrix,

and if the covariance structure changes with time, the sampling
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reguirements are likely to be formidable. Fortunately, many
ecotoxicological guestions can be answered on the basis of relative,
rather than absolute, separations. Nevertheless, derivation of
methods that reduce the sensitivity to covariance structure would be
a major improvement to the method. Two possible improvements, based
on robust estimation of the covariance matrix and on an alternative
distance metric, are outlined in section 5.3.

The emphasis on estimating the covariance structure of
ecological variables necessitated by the methods employed in this
study has had a positive aspect also. On the basis of the
experimental data and simulations results presented here, it can be
seen that the covariance structure of ecological state variables may
change significantly over time, either due to internal system
dynamics or in response to a toxicant. If the state variables are
selected appropriately, changes in covariance structure should
provide valuable information on the underlying changes in ecosystem
function. Exploring the use of measures based on covariance
stricture to monitor ecosystem dynamics along both perturbed and
unperturbed trajectories appears to one of the more fruitful avenues
of research suggested by this study. Analysis of covariance
structure may provide a useful means for comparing the dynamics of
systems, whether the comparison is between different experimental
ecosystems, simulation models, or both.

The state space methodology presented in this study also

provides a convenient framework for practical application of Patten's
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(1984) concept of diagnostic variables. This concept has broad
applicability to a range of problems encountered in the management of
ecological systems. The statistical framework developed in section
4.5, allowing the estimation of the error rates associated with the
use of any particular diagnostic criterion, seems particularly
relevant as a guide to rational decision making. The usefulness of
this approach is enhanced by its compatibility with established
theory in risk analysis. A first step in linking the concept of
diagnostic variables with the theory of risk analysis is taken in

section 5.4.

5.2 RELATIONSHIP WITH OTHER MULTIVARIATE TECHNIQUES

The state space methodology developed in this study can be
regarded as primarily a multivariate statistical technique. Further
insight can be gained, therefore, by comparing it with other well
established multivariate techniques, both to point out the
similarities in the underlying theoretical basis, and the differences
that influence the choice of an appropriate method for a particular
problem. State space displacement analysis will be compared:with two
commonly used multivariate techniques: principal components analysis

and discriminant analysis.
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5.2.1 Principal Components Analysis

One technique frequently applied to the analysis of state space
trajectories is the projection of the data into a lower dimensional
space defined by principal components. This technigue has been used
to elucidate gualitative features of the trajectories (e.g., Allen et
al. 1977, Bartell et al. 1978, Allen and Shugart 1983, Allen et al.
1984}, and in quantitative assessments of perturbation-induced
displacements (Bioom 1980). It is worth considering the relative
merits of this approach.

Fig. 5.1 shows the results of an analysis of hypothetical data
designad to illustrate the potential shortcomings of an analysis in
principal component space. The hypothetical data consist of repeated
observations of two bivariate normal populations. Both populations
have a constant, and identical, covariance structure, with a positive
correlation of 0.78 between the two state variables. The distance
between the two popuiation centroids, however, varies with time. The
largest displacement occurs on day 4, with an increase in one state
variable and a concomitant decrease in the other, followed by a
period of recovery. The true Mahalanchis distance between population
centroids is shown in Fig. 5.1a. The state space separation
estimated by the methods develeped in this study is shown in
Fig. 5.1b for a particular random sample of 14 replicate
trajectories. Some of the details of the population response are
obscured by random ervror, but the existence of the peak at day 4 is

clearly indicated.
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Figure 5.1 Results of analysis of hypothetical data set. (a) True
state space separation between population centroids. (b) State space
separation estimated from sample. (c) Separation estimated in
reduced space defined by first principal component. (d) Separation
estimated in reduced space defined by second principal component.
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In practice, principal components analysis would rarely be
applied to a two dimensional data set. However, this hypothetical
data set serves to illustrate a phenomenon which can also easily
arise in data sets of higher dimensionality. It is found that 82% of
the variance in the data is explained by the first principal
component, so one might suppose that this one dimensional principal
component space would adegquately reflect behaviors in the full state
space. Such is not the case, as can be seer from Fig. 5.7c which
shows the separation calculated in the first principal component
space. The separation of trajectories projected into the first
principal component space shows no hint of the actual perturbation on
day 4, and misleadingly suggests a perturbation on day §.
Surprisingly, most of the displacement information is contained in
the second principal component, which, though it only explains 18% of
the total variance (Fig. 5.1d), shows the perturbation on day 4 as
clearly as the full state space separation.

The data analyzed in this example are admittedly contrived to
illustrate a point. The displacements were deliberately chosen to be
in a direction nearly perpendicular to the reduced principal
component space, insuring the inadequacy of the principal component
representation. In general, however, the direction of displacement
is not known a priori, so trajectories in spaces of reduced
dimensionality must be interpreted cautiously. Such spaces may be

useful for graphical presentation of the data, or to explore certain
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qualitative features of the trajectories, but for quantitative
analysis, calculations based on the full state space are preferable.

Although the methodology developed in this study does not rely
on a principal components analysis to reduce the dimensionality of
the state space, the method is closely related to principal
components analysis in another sense. This connection arises in the
use of the Cholesky decomposition of the inverted covariance matrix
to transform the data prior to analysis. Under this transformation,
a random vector x from a population with covariance matrix L is
transformed into a vector y (= AX, where A = 2”1/2)
with an identity covariance matrix. Under principal components
analysis, if all the principal components are retained, a random
vector x with covariance matrix £ is transformed into a vector
Z (= Bx) with a diagonal covariance matrix A (Tatsuoka 1971,
pp. 127-130). The elements of A are the eigenvaiues of the
original covariance matrix &, and can be interpreted as the
amount of variance explained by each of the principal components.
Standardizing the principal component scores results in a
transformation to a vector with an identity covariance matrix, and
the resulting vectors are identical to those resulting from the
transformation used in calculating the state space measures.
Effectively, the transformation is equivalent to that which results
from plotting the data in a space of standardized principal

components calculated from the covariance matrix of the control
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gcosystems. The relationship is summarized in the equality A =

NGRS

5.2.2 Discriminant Analysis

Discriminant analysis is a multivariate statistical technique
designed to identify a2 subspace of reduced dimensionality which
maximizes the distinction between groups selected prior to the
analysis. The technique has been used to quantify the response of
microbial communities to toxicant exposure (Sayler et al. 1982,
1983). State space displacement analysis is also aimed at the
quantification of differences between control and perturbed state
trajectories. Hence, it is worth investigating the relationship
between the two techniques. A description based on the geometric
interpretation of a discriminant function is presented here; a more
rigorous treatment of discriminant analysis is available in standard
texts (e.g., Tatsuoka 1971, pp. 157-177).

Imagine two clusters of points in a muitidimensional space
corresponding to the two groups (e.g., control and perturbed system
states). Consistent with the focus of this study, these clusters can
represent measured states along control and perturbed state
trajectories. Discriminant analysis techniques construct a
discriminant funsction which is a linear combinagion of state
variables, or eguivalently an axis in the state space, such that the

overiap between groups is minimized when the data are projected onto



163
that axis. The axis which satisfies this requirement is determined
by a compromise between maximizing the distance between the projected
centroids and minimizing the projected within-group variance.

This compromise is illustrated for the case of a two dimensional
state space in Fig, 5.2. 1In Fig. 5.2, centroids and concentration
ellipses are shown for two groups of data. In Fig. 5.2a, the results
of projecting the data onto an axis which maximizes the (tuclidean)
distance between centroids is shown. The difference between the
means of the fesu]ting distributions is large, but so is the
within-group variance, so there is a noticeable overlap in the
tails. Fig. 5.2b shows the data projected onto an axis which
minimizes the within-group variance. Although the spread of the
distributions is much smaller than in Fig. 5.2a, the distance between
the means is also much reduced, and a noticeable overlap still
exists. Finally, Fig. 5.2c shows the data projected onto the axis
which serves as the best discriminant function. This axis is
oriented in a direction between the other two axes considered. With
this compromise it is possible to separate the two groups such that
there is no significant overlap between the projected distributions.

Unlike discriminant analysis, state space displacement analysis
is not aimed solely at maximizing the ability to distinguish between
groups, but rather attempts to provide an objective quantification of
the differences in control and perturbed systems relative to normal
variation. For this purpose, it is the displacement between group

centroids which conveys the most useful information. Thus, the
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Figure 5.2 Illustration of geometric interpretation of discriminant
analysis. (a) Axis maximizing the distance between centroids.

(b) Axis minimizing the within-group variance. (c) Compromise axis
yielding best discrimination.
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........ expected orientation of the displacement vector is parallel to the
axis in Fig. 5.2a. As this is one ingredient in determining the
discriminant function, there is relationship between the two, but
they are not equivalent, the degree of difference being determined by
the variance-covariance structure of the data. The Mahalanobis
transformation used in this study is designed to convert the control
data to a spherically symmetrical distribution, in which case it is
only the covariance structure of the perturbed state vectors which
influences the discriminant function. 1In the special case of a
perturbation which does not affect the covariance structure, the

discriminant function and the displacement vector are equivalent when

both are described in the transformed space.

5.3 DIRECTIONS FOR FUTURE RESEARCH

5.3.1 Use of Alternative Distance Metrics

The applications of state space analysis explored in the course
of this study have all relied upon the use a Mahalanobis metric to
measure distances. This metric was used in preference to the
traditional Euclidean metric to compensate for the differences in
scaling of the various measured state variables, and for their
intercorrelations. for the cases examined in this study the
Mahalanobis metric appears to have served its intended purpose, but
it is not the only non-tuclidean metric available, and others may be

of use in some situations. The choice of a metric will largely
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depend upon the nature of the problem to which state space analysis
is being applied.

One distance metric which, because it does not reguire
estimation of the entire covariance matrix, may be useful is the
Karl Pearson distance (originally called the coefficient of racial
1ikeness, Pearson 1926; for a recent treatment see Mardia 1977).
Given two random vectors, v and w, drawn from a population with

covariance matrix L, the Karl Pearson distance between them is
dg(v-w) = [(v-w)'diag (L) *(v-w)]*/2 (5.1

where diag(L) represents a matrix which contains the diagonal
elements of the covariance matrix (i.e., the variances) and zeroes
elsewhere. It can be demonstrated that the Xarl Pearson distance is
equivalent to the Euclidean distance between vectors with
standardized state variables. Unlike the Mahalanobis metric, the
Karl Pearson metric does not account for correlations between the
state variahles. However, empirical studies have shown that Karl
Pearson distances are highly correlated with Mahalanobis distances,
and the former can be used as a substitute for the latter in many
cases (Penrose 1954). The relationship between the two breaks down
as the intercorrelations among state variables becomes strong.

Within the context of the state space analyses conducted in this
study, the primary advantage to using the Karl Pearson distance is
the elimination of the need to estimate the entire covariance

structure for the control ecosystems. In an n-dimensional state
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space, only the n variances are needed to calculate Karl Pearson
distances, as opposed to the n(n-1)/2 variance-covariance elements
needed to calculate Mahalanobis distances. Estimates of this smaller
number of statistics should be more reliable, which is an important
consideration in the case of small sample sizes frequently
encountered in ecotoxicological data. In particular, time-varying
estimates of the variances may show less sampling variation than
time~varying estimates of the entire covariance structure.

Another important family of distance metrics are the Minkowski
p-metrics {Gatrell 1983, pp. 27-33). The Minkowski distance between
two vectors, v = (v],vz,...,vn)‘ and w = (w},wz,...,w ¥,

n

is calculated as

dp(v,w) = [ E;vi - wilp] 1/p (5.2)
i=1

where p can be any real number from 1 to infinity. If p = 2, this
formula reduces to the Euclidean metric. The metric obtained by
setting p = 1 is referred to as the taxicab or city-block metric,
since it can be viewed as a measure of distance in a space where
travel i3 restricted to a rectangular grid, such as city streets. At
the other extreme, as p approaches infinity, the Minkowski metric

possesses a well defined 1imit which can be written as

Tim dp(v,w) = dp{v,w) = max tvy - wyl {(5.3)
pow 1

and is simply the largest difference between pairs of vector

components. Thus, it is referred to as a dominance metric.
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The geometric interpretation of Minkowski metrics can be
illustrated by considering sets of points which are equidistant from
some center as measured by a Minkowski metric. A set of such
Minkowski "circles" is shown in Fig. 5.3. At p = 2, the result is,
of course, the traditional Euclidean circie. At p =1, the result is
a diamond inscribed within the traditional Euclidean circle, whereas
at p = o, the result is a square c¢ircumscribing the Euclidean
circle.

The dominance metric (p = «) may be applicable in some cases
where state space analysis is used in a regulatory framework. Within
this context, an acceptable state space domain is freguently defined
in terms of acceptable ranges for each of the state variables. This
describes a rectangular region in state space which can be made
square by an appropriate scaling of the axes, and which therefore is
a circle as measured by the dominance metric. This reduces the
problem of determining whether an ecosystem is within the acceptable
domain to that of determining if its distance from the centroid, as
measured by the dominance metric, is less than the radius of the
Minkowski circle. Application of the dominance metric would probably
have facilitated Bloom's (1980) analysis of the recovery of perturbed
communities, which was based on distance from a rectangular
"rejection envelope" (see discussion in section 1.3).

The Minkowski p-metrics are independent of the covariance
structure of the data. It is possible to devise a metric which

combines the geometric properties of the Minkowski metrics and the
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Figure 5.3 Minkowski circles for p = 1,2, and c.
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covariance correction of the Mahalanobis metric. The following is

such a hybrid metric:
dy(v,w) = [((v-w)P/2) g1 (v-w)P/2] (5.4)

If p = 2, this is equivalent to the Mahalanobis metric, and the set
of points equidistant from a centroid describe an ellipse. For other
values of p, the shape of the set of equidistant points changes in
the same fashion as for a Minkowski metric. For example, if p = »
the metric results in a set of equidistant points which form a

rectangle circumscribing the p = 2 ellipse.

5.3.2. Robust Estimation of the Covariance Matrix

In many cases, the number of degrees of freedom available to
estimate a covariance matrix from experimental data is not much
greater than the number of state variables. In such cases, the
estimated covariance matrix can be strongly influenced by one or two
anomalous observations, or outliers. Recently, considerable effort
has been directed toward the development of robust statistical
methods which are relatively insensitive to the presence of small
numbers of outliers. One class of robust statistics encompasses the
M-estimators, where the influence of an observation on the statistic
varies gradually with its distance from the sample centroid. To make
the estimator robust, the influence function is bounded such that the

effect of an outliier is limited.



17
Robust M-setimators for the covariance matrix have been

discussed by Huber (1977) and by Hampel et al. (1986). Unfortuntely,
the equations for such an estimate of the covariance matrix have no
analytical solution, and must be solved by iterative methods. This
can be computationally expensive, requires that an initial estimate
of the covariance matrix be derived by non-rcobust means, and is not
quaranteed to converge to the optiomal robust estimate. In general
these problems become more acute in higher dimensions. Research into
better and more efficient computational schemes is underway. 1t can
be concluded that robust esitmators of covariance matrices are not
vet practical for routine application, but that further research into
their potential usefulness in state space displacement amalysis s

warranted.

5.4. DIAGNOSTIC VARIABLES AND RISK ANALYSIS

Risk can be defined as the probability of occurrence of a
specified undesirable event. This definition can be appiied to the
scenario presented in section 4.5. There it was assumed that on day
21 of the simulation a set of acceptable ecosystem states could be
defined as those less than 15 Mahalanobis distance units from a
matched control trajectory. This set was denoted by X. Lower
dimensional diagnostic spaces were sought which could be used to
predict the acceptability or unacceptability of an ecosystem state on

the basis of restricted monitoring data. This goal is achieved if a
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set of states, Q, can be found in the diagnostic space such that
knowing whether or not the vector of diagnostic variables, o, is
in {2 can be used to predict (with sufficient accuracy) whether the
state vector, x, is in X.

for the situation outlined above, risk can be defined as the
probability that an ecosystem state vector will be found outside of
the acceptable domain (i.e., greater than 15 Mahalanobis distance
units from the control centroid). This probability will, of course,
depend upon the toxicant exposure regime imposed on thé'ecosystem, as
well as other factors. Assuming that for a specified system all
other factors are either constant or are predictable {at least in a
statistical sense), then risk can be examined as a function of
toxicant concentration. Taking the ecological simulation medel as
the system to be considered, risk can be estimated by the fraction of
Monte Carlo results which fall outside the acceptable domain at a
given toxicant concentration. As the number of Monte Carlo
iterations becomes larges, this estimate converges toward a constant
value which, within the context of this modeling exercise, is
regarded as the true risk. Whether or not this is an accurate
estimate of the true risk for any particular real-world ecosystem
depends upon the adequacy of the model as a representation of that
ecosystem. For a discussion of that aspect of risk evaluation, see
Suter et al. (1987).

Since the acceptable domain is defined in terms of the ful)

(23-dimensional) state space, estimates of the actual risk must be
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made in the full state space to avoid bias. However, in practice,
risk estimates are often required on the basis of incomplete
knowledge of some of the state variables. Diagnostic variables,
which were introduced in section 4.5 as predictors of ecosystem
state, can now be used to predict ecological risk. Within the
modeling context, the risk predicted by various sets of possible
diagnostic variables can be estimated and compared with the estimates
of actual risk calculated in the full state space.

The relationship between the accuracy of risk predictions and
the rates of type I and type 11 errors can be derived as follows.
There are four distinct events which can occur with the use of

diagnostic variables.

El: XC X and @« C @ (correct inference of no damage)
E2: x CXand o ¢ Q (type I error)

E3: x¢d X and @ € Q (type II error)

E4: x¢ X and o ¢ Q (correct inference of damage)

Denoting the risk at a specified toxicant concentration C as RC’ we

have
Re = P(x ¢ XI|C) (5.5)

Since.events £, and E4 mutually exhaust the possibilities for x

3
to fall outside of X, this becomes
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Re = P(E3 U E41C) (5.6}

Furthermore, since E. and E4 are mutually exclusive, the

3
probability of their union is simply the sum of their separate

probabilities:
Re = P(E3lC) + P{E4iC) (5.7)

The risk predicted on the basis of the diagnostic variables, denoted

RC' is

Re = Plo ¢ QIC) (5.8)
By reasoning analogous to that used above, we find

Re = P(Ep U E4|C) = P(Ep|C) + P(EqlC) (5.9)
Combining 5.7 and 5.9 yields

Re ~ P(E3iC) = (Rp - P(Ep|C) (5.10)
or, by rearranging terms,

Rg = Rg + P(E2|C) - P{E3]C) (5.11)

The last two terms in equation 5.11 are analogous to the joint
probabilities of type I and type Il error reported in section 4.5.
The only difference is that these probabilities are conditional upon
a specified toxicant concentration, whereas the probabilities
reported in section 4.5 were calculated from the entire set of

toxicant concentrations used in the simulations. It is
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straightforward to obtain the error rates conditional upon toxicant
concentration by performing the same analysis as in section 4.5 for
each simulated toxicant concentration.

The results of such an analysis using total zooplankton biomass
(Z) is shown in Fig. 5.4. A shortcoming of this diagnostic variable
is readily apparent from inspection of Fig. 5.4a: the risk function
is seriously underestimated for a range of intermediate toxicant
concentrations. This is due to a high probability of making a type
I1 error at these concentrations (Fig. 5.16b). Although the joint
probability of a type II error averaged over the range of exposure
conditions is 15.6% (as reported in section 4.5), at the intermediate
concentration of 1.25 mg/L the type II error rate is 68%. In
contrast, the type I error rate is always relatively Tow (less than
10%), although type I errors are likely over a wider range of
exposure conditions than type II errors.

Risk functions and toxicant-specific error rates for diagnostic

criteria defined on the variables PSp , and { summed

ring Ph?ugrn
biomasses of phytoplankton species 3-5 and 8-10, respectively) are
shown in Figs. 5.5, 5.6 and 5.7. These three functions differ in the
way the boundaries of the Q region are defined (see Fig. 4.25).
The first function (Fig. 5.5) uses predicted values from a multipie
Tinear regression to define the Q region. The resulting predicted
risk function approximates the true risk function fairily well, but

the error rates are in fact moderately high. At a toxicant

concentration of 0.625 mg/L, the predicted risk equals the true risk,
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but this is simply because the type I and type II error rates, being
equal, cancel each other out. In fact, there is only a 56% chance of
any particular prediction of the ecosystem state acceptability being
correct at this concentration. If the Q region is defined on the
pasis of discriminant analysis, the predicted risk function more
closely approximates the true risk, but again the error rates are
substantial at intermediate exposures (Fig. 5.6). Finally, results
based on a region with an ad-hoc nonlinear boundary are shown in
Fig. 5.7. This diagnostic criterion is conservative in the sense
that the predicted risk is always greater than or equal to the actual
risk. Accordingly, the type II error rate is zero over the entire
range of concentrations. The type I error rate, however, reaches a
maximum of 36% at a toxicant concentration of 0.625 mg/lL.

In section 4.5, selection of a diagnostic criterion was seen to
involve making a compromise between type I and type II error rates.
Although these error rates were quantified, choosing an appropriate
trade-of f was left as a matter of subjective judgment. It is
possible, however, to arrive at more objective means of determining
an optimal balance in the rates of occurrence of type I and type II
errars. In particular, if costs can be associated with each of the
various possible outcomes of management decisions, it is possible to
select a diagnostic criterion to minimize the overall expected cost.
Such a cost-minimizing strategy will now be considered, following the

approach outlined by Page and Ricci (1985).
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Reconsider the four mutually exciusive events which may occur
with the use of diagnostic criteria in ecosystem management. We can

associate costs with these events as follows:

E.: no damage, cost=0

unnecessary management activity, cost=E
E.: wundetected damage, cost=$

E,: management activity (cost=£) resulting in

W *
lessened damage (cost=5§ , where 0<= § <=§)

In the long run, the expected total cost will be determined by the
costs of these individual events, and by their relative likelihood.

Specifically, the expected cost, E(cost), is:
E(cost) = OeP(Ey) + EP(Ep) + 8P(Eg) + (& + 86*)P(E4) {(5.12)

In general, these probabilities, and perhaps also the costs, are
conditional upon the toxicant concentration, but this dependence is
not explicitly shown for the sake of notaticnal simplicity. fquation

5.12 can be simplified to yield
E(cost) = E[P(Ep) + P(Eq)] + 86P(E3) + &*P(Ey) (5.13)

and then, substituting on the basis of 5.9,
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E(cost) = ER + 8P{E3) + 8*P(Eq) (5.14)

If, following Page and Ricci (1985), we assume that mitigatory

strategies are possible which prevent significant damage to the
w

ecosystem (& near zerpo), the last term can be dropped. Then,

substituting on the basis of eguation 5.11,

E(cost) = E[R + P(Ep) - P(E3)] + 8P(E3)

= R + EP(Ey) + (&-8)P(E3) (5.15)

The first term in equation 5.15, the actuwal risk, will not vary with
the choice of diagnostic criterja. Therefore, the task simplifies to
mintmizing the sum of the last two terms, which is solely a function
of the probabilities of occurrence of type I and type II errors.

Once the costs associated with the four basic events are
determined, the expected cost associated with any particular
diagnostic criterion is seen to a function of quantities previously
determined. Greater flexibility in the model mav be achieved by
assuming that management and damage costs, rather than being described
by constants, are themselves a function of ecosystem state. Again,
the state space approach elahorated in this study, coupled with Monte
Carlo simulation modeling, are useful tools which wonld be well-suited

for such analysis.
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5.5. CONCLUSION

This study has focused on the problem of quantitative and
qualitative description of the dynamic response of ecosystems to
toxicant stress. Due to the muitifaceted aspects of ecosystem
behavior required to characterize such response, it was argued that a
multidimensional state space description is most appropriate.
Specifically, the response can be characterized by the trajectory of a
displacement vector, which is calculated as the vector difference
between a perturbed system state trajectory and an unperturbed
(control) trajectory.

State space analysis is readily applied to deterministic models
of ecosystem dynamics, but extrapolation to the case of systems
sampled discretely in the presence of noise is not trivial.
Traditional multivariate techniques, such as principal components or
discriminant analysis, are useful for elucidating certain aspects of
ecosystem dynamics, but do not necessarily yield information on the
displacement of perturbed trajectories. Therefore, I opted for direct
estimation of the state space displacements as measured by a
Mahalanobis distance metric. Since Mahalanobis distances are a
function of the covariance structure of the data, it became important
to consider changes in the covariance structure of ecological
variables as a function of time and of toxicant exposure.

State space displacement analysis was applied to study the

responses of aquatic ecosystems to phenolic toxicants. Data from
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experimental systems encompassing 1.2 L flask microcosms, 72 L
aguarium microcosms, and 15 m3 outdoor ponds, were analyzed. Also
analyzed were Monte Carlo computer simulations produced by a littoral
ecosystem model incorporating the effects of natural variability and
measurement error. The results of these analyses demonstrated the
feasibility and utility of using state space measures as indicators of
ecosystem response. The Monte Carlo simulation results were also used
to demonstrate the high degree of statistical power provided by state
space displacement analysis even with realistically noisy data. The
ability of analysis to detect simulated effects of low toxicant
concentrations even with 1ittle or no replication strongly supports
its application to experimental data. It is likely that the state
space approach will uncover effects not detected by conventional
univairiate approaches.

Additionally, analyses of both experimental data and simulation
output reveals that the covariance structure of ecological systems is
not constant. Rather, the covariance structure displays both temporal
dynamics and changes in response to toxcant exposure. This emphasizes
the importance of careful and adequate characterization of the
covariance matrix used in the calculation of Mahalanobis distances.

In situations where accurate estimation of the covariance matrix is a
problem, the use of robust estimation techniques, or of Karl Pearson
distances, may be desireable.

Although the best descriptions of ecosystem dynamics may reguire

a state space of high dimensionality, practical considerations often
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preclude the routine monitoring of large numbers of ecological
variables. In this situation, a space of reduced dimensionality is
desired which can be used to predict the position of the state vector
in its higher dimensional space. The variables defiring the lower
dimensional space are referred to as diagnostic variables. Using the
simulation output, it was possibie to explore several possible sets of
diagnostic variables, and to estimate their associated type I and type
II statistical error rates.

The emphasis of this research has been on the description of
ecosystem dynamics in response to toxicant stress. Such a description
may not translate directly into an understanding of the underiying
mechanisms or causal relationships generating the dynamics. However,
any experiments aimed at elucidating mechanisms will require adequate
measures of response, such as provided by state space analysis.
Moreover, the covariance structure can be used as a tool to
investigate underlying mechanisms. While it is true that the
existence of a correlation does not logically imply a causal
relationship, certain causal relationships do have logical
implications regarding the correlation structure. Thus, the existence
of an incompatible correlation structure may be used to rule out
otherwise plausible mechanisms. It is hoped that the use of the
methods developed in this study will lead to an increased
understanding of ecosystem dynamics, and to more effective protection

and management of ecosystems subject to toxicant stress.



186
REFERENCES

Allen, T.F.H., S.M. Bartell, and J.F. Koonce. (1977) Multiple stable
configurations of phytoplankton community change rates. Ecology
58:1076-1084.

Allen, T.F.H., D.A. Sadowsky, and the late N. Woodhead. (1984) Data
transformation as a scaling operation in ordination of plankton.
Vegetatio 556:147-160.

Alen, T.F.H., and H.H. Shugart. (1983) Ordination of simuiated
complex forest succession: a new test of ordination methods.
Vegetatio 51:141-155,

Bartell, S.M., T.F.H. Allen, and J.F. Koonce. (1978) An assessment
of principal components analysis for description of phytoplankton
periodicity im Lake Wingra. Phycologia 17:1-11.

Best, E.P.H. (1981) A preliminary model for growth of Ceratophyllum
demersum L. Verh. Internat. Verein. Limnol. 21:1484-14973,

Bloom, S.A. (1980) Multivariate guantification of community
recovery. In J. Cairns, Jr. (ed.), The Recovery Process in
Damaged Ecosystems. Ann Arbor Science Publishers, Ann Arbeor,
pp. 141-151.

Bloomfield, J.A. (1975) WModeling the dynamics of microbial
decomposition and carbon cycling in the pelagic zone of Lake
George, New York. Ph.D. dissertation, Rensselaer Polytechnic
Institute.

Bowmer, K.H., D.S. Mitchell, and D.L. Short. (1984} Biology of
Elodea canadensis Mich. and dits management in Australian
irrigation systems. Aquat. Bot. 18:231-238.

Cairns, J. Jdr., and K.L. Dickson. (1977) Recovery of streams end
spills of hazardous materials. In Cairns, J. Jr., K.L. Dickson,
and E.E. Herricks (eds.), Recovery and Restoration of Damaged
Ecosystems, Univ. Virginia Press, Charlotteville, pp. 24-44,

Carpenter, S.R. (1982) Comparison of equations for decay of leaf
litter in tree-hole ecosystems. Dikos 39:17-22.

Dale, H.¥., and T.J. Gillespie. (1977) The influence of submersed
aquatic plants on temperature gradients in shallow water bodies.
Can. J. Bot. 55:2216-2225.

Efron, B., and R. Tibshirani. (1986) Bootstrap methods for standard
errors, confidence intervals, and other measures of statistical
accuracy. Statistical Science 1:54-77.



187

Allen, T.F.H., S.M. Bartell, and J.F. Koonce. (1977) Multiple stable
configurations of phytoplankton community change rates. Ecology
58:1076-1084.

Allen, T.F.H., D.A. Sadowsky, and the late N. Woodhead. (1984) Data
transformation as a scaling operation in ordination of plankton.
Vegetatio 56:147-160.

Allen, T.F.H., and H.H. Shugart. (1983) Ordination of simulated
complex forest succession: a new test of ordination methods.
Vegetatio 51:741-155.

Bartell, S.M., T.F.H. Allen, and J.F. Koonce. (1978) An assessment
of principal components analysis for description of
phytoplankton periodicity in Lake Wingra. Phycologia 17:1-11.

Best, E.P.H. (1981) A preliminary model for growth of Ceratophyllum
demersum L. Verh. Internat. Verein. Limnol. 21:1484-1491,

Bloom, S.A. (1980) Multivariate quantification of community
recovery. In J. Cairns, Jr. (ed.), The Recovery Process in
Damaged Ecosystems. Ann Arbor Science Publishers, Ann Arbor,
pp. 141-151.

Bloomfield, J.A. (1975) Modeling the dvnamics of microbial
decomposition and carbon cycling in the pelagic zone of Lake
George, New York. Ph.D. dissertation, Rensselaer Polytechnic
Institute.

Bowmer, K.H., D.S. Mitchell, and D.L. Short. (1984) Biology of
Elodea canadensis Mich. and its management in Australian
irrigation systems. Aquat. Bot. 18:231-238.

Cairns, J. Jr., and K.L. Dickson. {1977) Recovery of streams and
spills of hazardous materials. In Cairns, J. Jr., K.L. Dickson,
and E.E. Herricks {(eds.), Recovery and Restoration of Damaged
Ecosystems, Univ, Virginia Press, Charlottevilie, pp. 24~44,

Carpenter, S.R. (1982) Comparison of equations for decay of leaf
litter in tree-hole ecosystems. Oikos 39:17-22.

Dale, H.M., and T.J. Gillespie. (1977) The influence of submersed
aquatic plants on temperature gradients in shallow water
bodies. Can. J. Bot. 55:2216-2225.

tfron, B., and R. Tibshirani. (1986) Bootstrap methods for standard
errors, confidence intervals, and other measures of statistical
accuracy. Statistical Science 1:54-77.



188

Flury, B8.K., and H. Riedwyl. (1986) Standard distance in univariate
and multivariate analysis. Amer. Statis. 40:249-251.

Franco, P.J., J.M. Giddings, S.t. Herbes, L.A. Hook, J.D. Newbold,
W.XK. Roy, G.R. Southworth, and A.J. Stewart. (1984) Effects of
chronic exposure to coal-derived oil on freshwater ecosystems:
1. Micrcosms. Environ. Toxicol. Chem. 3:447-463.

Gardner, R.H., B. Rojder, and U. Bergstrom. (1983) PRISM: A
Systematic Method for Determining the Effect of Parameter
Uncertainties on Model Predictions. STUDSVIK/NW-83/555,
Studsvik Energiteknik AB, Nykoping, Sweden.

Gates, M.A. (1983) Trajectories of cell volume distribution during
the growth cycle of Tetrahymena. J. Gen. Microb. 129:895-300.

Gates, M.A., A.P. Zimmerman, W.G. Sprules, and R. Knoechel. (1983)
Planktonic biomass trajectories in lake ecosystems. Can. J.
Fish. Aguat. Sci. 40:1752-1760.

Gatrell, A.C. (1983) Distance and Space: A Geographical
Perspective. Clarendon Press, Oxford.

Giddings, J.M., P.J. Franco, R.M. Cushman, L.A. Hook, G.R. Southworth,
and A.J. Stewart. (1984) Effects of chronic exposure to
coal-derived o011 on freshwater ecosystems: II. Experimental
ponds. Environ. Toxicol. Chem. 3:465-488.

Giddings, J.M., P.J. Franco, S.M. Bartell, R.M. Cushman, S.t. Herbes,
L.A. Hook, J.D. Newbold, G.R.Southworth, and A.J. Stewart.
(1985) tffects of Contaminants on Aquatic Ecosystems:
Experiments with Microcosms and Outdoor Ponds. ORNL/TM-9536,
Dak Ridge National Laboratory, 0ak Ridge, Tennessee.

Godshalk, G.L. and R.G. Wetzel. (1978) Decomposition of aguatic
angjosperms. II. Particulate components. Aguat. Bot.
5:301-327.

Hampel, F.R., E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel. 1986.
Robust Statistics: The Approach Based on Infiuence Functions.
John Wiley and Sons, New York.

Havrrison, G.W. (1979) Stability under environmental stress:
resistance, resilience, persistance and variability. Am. Nat.
113:652-659.

Heath, R.T. (1980) Are microcosms useful for ecosystem analysis?
In J.P. Giesy (ed.), Microcosms in Ecological Research, DOE
Symposium Series 52, pp. 333-347.



189

Hines, W.W., and D.C. Montgomery. (7980) Probability and Statistics
in Engineering and Management Science, 2nd edition. John Wiley
and Sons, New York.

Holling, €.S. {1973) Resilience and stability of ecological
systems. Ann. Rev. Ecol. Syst. 4:1-23.

Huber, P.J. 1977 Robust Statistical Procedures. Society for
Industrial and Applied Mathematics, Philadelphia.

Ikusima, I. (1970) Ecological studies on the productivity of
aquatic plant communities. IV. Light condition and community
photosynthetic production., Bot. Mag. Tokyo 83:330-341.

Iman, R.L., and W.J. Conover. (1982) A distribution-free approath
to inducing rank correlation among input variables. Commun.
Statis.-Simula. Computa. 11:311-334.

Innis, G. (1975) Stability, sensitivity, resilience, persistence.
What is of interest? 1In S.A. levin {(ed.) Ecosystems: Analysis
and Prediction. SIAM-SIMS Research Application Conference on
Ecosystems. Society for Industrial and Applied Mathematics,
Philadelphia. pp. 131-139.

Jewell, W.J. (1971} Aquatic weed decay: dissolved oxygen utiliztion
and nitrogen and phosphorus regeneration. J. Wat. Poll. Control
Fed. 43:1457-1467.

Kunii, H. (1984) Seasonal growth and profile structure of Elodea
nuttallii (Planch.) St. John in Pond Ojaga-lke, Japan. Aquat.
Bot. 18:239-247.

Leffler, J.W. (1978) Ecosystem responses to stress in aquatic
microcosms. In J.H. Thorp and J.W. Gibbons (eds.), Energy and
Environmental Stress in Aquatic Systems, DOE Symp. Ser.,
pp. 102-119.

Leffler, J.W. (1980) Microcosmology: theoretical applications of
biological models. In J.P. Giesy (ed.), Microcosms in Ecological
Research, DOE Symposium Series 52, pp. 14-29.

Mahalanobis, P.C. (1936) On the generalized distance in
statistics. Proc. Nat. Inst. Sci. India 2:48-55.

Mardia, XK.v. (1977) Mahalanobis distances and angles. In
P.R. Krishnaiah (ed.), Multivariate Analysis IV. North-Holland
Publishing Co., pp. 495-511.



190

Marmorek, D.R. (1984) Changes in the temporal behavior and size
structure of plankton systems in acid lakes. 1In G.R. Hendrey
(ed.), Early Biotic Responses to Advancing lLake Acidification,
Butterworth Publishers, Boston, pp. 23-41.

Miller, Jr., R.G. (1966) Stimultaneous Statistical Inference.
McGraw-Hill, New York.

May, R.M. (1975) Stability in ecosystems: some comments. 1In
W.H. van Dobben, and R.H. Lowe-McConnell (eds.), Unifying
Concepts in Ecology, First International Congress of Ecology, Di
W. Junk B. V. Publishers, The Hague, pp. 161-168.

McKay, M.D., Conover, ¥W.J., and R.J. Beckman. (1979) A comparison
of three methods for selecting values of input variables in the
analysis of output from a computier code. Technometrics
21:239-245,

Moore, M.T. (1985) The Effect of Phenolics on Photosynthesis and
Respiration by Elodea canadensis. M.S. thesis, Environmental
8iclogy Program, Ohio State University.

Morkoc, F., J.W. Biggar, D.R. Neilsen, and D.E. Rolston. (1985)
Analysis of soil water content and temperature using state-space
approach. Soil. Sci. Soc. Am. J. 49:798-803.

Oakes, M. (1986) Statistical Inference: A Commentary for the Social
and Behavioral Sciences. John Wiley and Sons, New York,

Ondok, J.P., J. Porkorny, and J. Kvét. (1984) Model of diurnal
changes in oxygen, carbon dioxide and bicarbonate concentrations
in a stand of Elodea canadensis Michx. Aguat. Bot. 19:293-305.

01lason, J.G. (1977) Freshwater microcosms in fluctuating
environments. Oikos 28:262-269.

0'Neill, R.V. (1976). Ecosystem persistence and heterotrophic
regulation. Ecology 57:1244-1253.

0'Neill, R.V., S.M. Bartell, and R.H. Gardner. (1983} Patterns of
toxicological effects in ecosystems: a modeling study. Environ.
Toxicol. Chem. 2:451-461.

0'Neill, R.V., R.H. Gardner, L.W. Barnthouse, G.W. Suter,
S.6. Hildebrand, and C.W. Gehrs. (1982) Ecosystem risk
assessment: a new methodology. Environ. Toxicol. Chem. 1:167-177.



191

0'Neill, R.V., W.F. Harris, B.S. Ausmus, and D.E. Reichle. (1975} A
theoretical basis for ecosystem analysis with particular
reference to element cycling. In F.G. Howell, J.B. Gentry and
M.H. Smith (eds.), Mineral Cycling in Southeastern Ecosystoms
ERDA Symposium Series, CONF-740513, pp. 28-40.

Orians, G.H. (1975) Diversity, satbility and maturity in natural
ecoystems. In W.H. van Dobben and R.H. Lowe-McConnell (eds.),
Unifying Concepts in Ecology, First International Congress of
Ecology. Dr. W. Junk 8. V. Publishers, The Hague, pp. 139-150.

Page, T., and P.F. Ricci. (1985) A cost-benefit perspective for risk
assessment. Chapter 2 in Ricci, P.F. {ed.), Principles of
Health Risk Assessment. Prentice-Hall, Englewood Cliffs, New
Jersey. pp. 37-b65.

Patten, B.C. (1984) System theory formulation of site-specific water
quality standards and protocols. Ecol. Modelling 23:313-340.

Pearson, K. (1926) On the coefficient of racial likeness. Biometrika
18:105-117.

Penrose, L.S. (1954) Distance, size and shape. Ann. Eugen.
18:337-343.

Pimm, S.L. {1984) The complexity and stability of ecosystems.
Nature 307:3271-326.

Pokorny, J., J. Kvét, J.P. Ondok, Z. Toul, and I. Ostry. (1984)
Production - Ecological analysis of a plant community dominated
by Elodea canadensis Michx. Aquat. Bot. 19:263-292.

SAS Institute, Inc. (1985a) The MATRIX Procedure: Language and
Applications, Technical Report P-135, SAS Institute, Inc., Cary,
North Carolina.

SAS Institute, Inc. (1985b) SAS User's Guide: Basics, Version &
Edition, S5AS Institute, Inc., Cary, North Carolina.

SAS Institute, Inc. (1985¢) SAS User's Guide: Statistics, Version §
Edition, SAS Institute, Inc., Cary, North Carolina.

Sayler, G.S5., T.W. Sherrill, R.E. Perkins, L.M. Mallory, M.P. Shiaris,
and D. Pedersen. (1982) Impact of coal-coking effluent on
sediment microbial communities: a multivariate approach. Appl.
Environ. Microb. 44:1118-1129.



192

Sayler, G.S., R.E. Perkins, T.W. Sherrill, B.K. Perkins, M.S. Shields,
H.L. Kong, and J.W. Davis. {1983) Microcosm and experimental
pond evaluation of microbial community response to synthetic oil
contamination in freshwater sediments. Appl. Environ. Microb.
46:211-219.

Shapnon, L.J., M.C. Harrass, D.J. Yount and C.T. Walbridge. (1988)
A comparison of mixed flask culture and standardized laboratory
model ecosystems for toxicity testing. 1In J. Cairns, Jr. (ed.),
Community Toxicity Testing. ASTM STP 920, American Society for
Testing and Materials, Philadelphia, pp. 135-157.

Shapiro, S.S., and M.B. Wilk. (1965) An analysis of variance test
for normality (complete samples). Biometrika 52:591-611.

Sheehan, P.J. (1984) Effects on community and ecosystem structure
and dynamics. In Sheehan, P.J., D.R. Miller, G.C. Butler and P.
Bourdeau (eds.), Effects of Pollutants at the Ecosystem Level,
SCOPE 22. John Wiley and Sons, Chichester, pp. 51-99.

Shugart, H.H., R.A. Goldstein, and R.V. O'Neill. (1974) TEEM: A
terrestrial ecosystem energy model for forests. 0Oecol. Plant.
25:251-204.

Simpson, P.S., and J.W. Eaton. (1986) Comparative studies of the
photosynthesis of the submerged macrophyte Elodea canadensis and
the filamentous algae Cladophora glomerata and Spirogyra sp.
Aquat. Bot. 24:1-12.

Stebbing, A.R.D. (1982) Hormesis - the stimulation of growth by low
levels of inhibitors. The Science of the Total Environment
22:213-234.

Suter II, G.W., L.W. Barnthouse, and R.V. 0'Neill. (1987) Treatment
of risk in environmental impact assessment. Environ. Manag.
11:295-303.

Tatsuoka, M.M. (1971) Multivariate Apalysis: Technigues for
Educational and Psychological Research. John Wiley and Sons, New
York.

Taub, F.B., and P.L. Read. (1982) Standardized Aquatic Microcosm
Protocol, Vol. II. Final Report: Model ecosystems, design,
development, construction and testing. Contract 223-80-2352.
Food and Drug Administration, Washington, D.C.

Titus, 3., R.A. Goldstein, M.S. Adams, J.B. Mankin, R.V. 0'Neill,
P.R. Weiler, Jr., H.H. Shugart, and R.S. Booth. (1975) A
production model for Myriophyllum spicatum L. Ecology
56:1129-1138.




193

R Ulanowicz, R.E. (1978) Modeling environmental stress. In
J.H. Thorp, and J.W. Gibbons (eds.), Enerqgy and Environmental
Stress in Aquatic Systems. DOE Symposium Series, pp. 1-18.

Waide, J.B,, J.E. Schindler, M.C. Waldron, J.J. Hains,
S.P. Schreiner, M.L. Freedman, S.L. Benz, D.R. Pettigrew, L.A.
Schissel, and P.J. Clark. (1980) A Microcosm approach to the
study of biogeochemical systems. 2. Responses of aquatic
laboratory microcosms to physical, chemical, and biological
perturbations. In J.P Giesy (ed.), Microcosms in Ecological
Research, DOE Symposium Series 52, pp. 204-223.

Webster, J.R., J.B. Waide, and B.C. Patten. (397%) WNutrient
recycling and the stability of ecosystems. In F.G. Howell, J.B.
Gentry and M.H. Smith {(eds.), Mineral Cycling in Southeastern
Ecosystems. ERDA Symposium Series, CONF-740513, pp. 1-27.

Westman, W.E. (1978) Measuring the inertia and resilience of
ecosystems. BioScience 28:705-710.

Woltering, D.M. (1985) Population responses to chemical exposure in
aquatic multispecies systems. 1In J. Cairns, Jr. (ed.),
Multispecies Toxicity Testing. Pergamon Press, New York,
pp. 61-75.

Zadeh, L.A., and C.A. Desoer. {1963) Linear System Theory: The
State Space Approach. McGraw-Hill, New York.






20-24.

56.
57.
58.
59.
60.

61.

62.

63.

64.
65.

66.

195

ORNL/TM-10723

INTERNAL DISTRIBUTION

S. 1. Auderbach 25. A. W. King

L. W. Barnthouse 26. R. V. O0'Neill

S. M. Bartell 27. W. M. Post

J. J. Beauchamp 28. M. L. Poutsma

H. L. Boston 29. D. E. Reichle

J. A. Cunningham 30. K. A. Rose

D. L. DeAngelis 31. G. W. Suter II

W. R. Emanuel 32. S. S. Talmage

€. J. Ford 33. R. S. Turner

R. H. Gardner 34. W. Van Winkle

C. W. Gehrs 35. Central Research Library

B. Harvey 36-50. ESD Library

S. 6. Hildebrand 51-52. Laboratory Records Deparitment

W. Hill 53. Laboratory Records, RC

M. Horn 54. ORNL Patent Office

A. R. Johnson 55. ORNL Y-12 Technical Library
EXTERNAL DISTRIBUTION

R. P. Berube, Deputy Assistant Secretary for Environment,

EH-20, U. S. Department of Energy, Washington, DL 20585

C. M. Borgstrom, Director, 0ffice of NEPA Proiect Assistance,
EH-25, U.S. Department of Energy, Washington, D.C.: 20585

D. L. Bunting, The University of Tennessee, Knoxville,

TN 37916-1610

J. Burris, £. C. Jordan Co., Corporate Place 128, 107 Audubon
Road, Building 11, Suite 3071, Wakefield, MA 01880

J. Thomas Callahan, Associate Director, Ecosystems Studies
Program, Room 336, 1800 G Street, NW, National Science
Foundation, Washington, DC 20550

R. R. Colwell, Director of Maryland Biotechnology Institute,
University of Maryland, Rm. 2A, Elkins Building, College Park,
MD 20742

W. E. Cooper, Department of Zoology, College of Natural
Sciences, Michigan State University, East Lansing, MI 48824
G. J. Foley, Office of Environmental Process and Effects
Research, U.S. Environmental Protection Agency,

407 ¥ Street, SW, RD-6B82, Washington, DC 20450

J. M. Giddings, Springborn Bionomics, Inc., 790 Main St.,
Wareham, MA 02571

Harvey Holme, U.S. Environmental Protection Agency,
Environmental Research Laboratory, Athens, GA 30613

L. Hook, Science Applications International Corp.,

800 0Oak Ridge Turnpike, Oak Ridge, TN 37830



o7.

69.

70.

1.

12.

13.

14.

15.

76.

11.

18.

19.

80.

81.

82-91.

196

J. W. Huckabee, Manager, Ecological Studies Program, Electric
Power Research Institute, 3412 Hillview Avenue,

P.0. Box 10412, Palo Alto, CA 94303

George Y. Jordy, Director, Office of Program Analysis, Office
of tnerqgy Research, ER-30, 6-226, U.S. Department of Energy,
Washington, DC 20545

Raymond lLassiter, U.S. Environmental Protection Agency,
Environmental Research Laboratory, Athens, G6A 30613

Simon A. Levin, Department of Ecology and Systematics,
Biological Sciences Bldg., £-347, Cornell University,

Ithaca, NY 14853

G. E. Likens, Director, The New York Botanical Garden,
Institute of Ecosystem Studies, The Mary Flagler Cary
Arboretum, Box AB, Millbrook, NY 12545 ;

C. J.. Markin, Director, Oklahoma Geologica) Survey, The
University of Oklahema, 830 Van Vleet Oval, Room 163, Norman,
0K 730138

Helen McCammon, Director, Ecological Research Division, Office
of Health and Environmental Research, Office of Energy
Research, MS-£201, ER-75, Room E-233, U.S. Department of
Energy, Washington, BC 20545

G. P. Patil, Statistics Department, 318 Pond Laboratory,
Pennsylvania State University, University Park, P& 16802
Donald J. Reodier, Environmental Protection Agency, T75-796,
401 ¥ Street, SW, Washington, DC 20460

Michael Slimak, Officz of Pesticide Programs (75-796),

U.S. Envircenmental Protection Agency, 401 M Street SW,
Washington, DC 20460

F. Stay, U.S. Environmental Protection Agency, Environmental
Research iLaborgtory, 6201 Congdon Blvd., Duluth, MN 55804
Frank J. Wohher, Division of Ecological Research, Office of
Health and Environmental Research, Office of Energy Research,
MS-E201, U.S. Department of Energy, Washington, DC 20545

M. Gordon Welman, The Johns Hopkins University, Department of
Gecgraphy and Environmental Engineering, Baltimore, MD 21218
J. D. Yount, U.S. Environmental Protection Agency,
Environmental Research Laboratory, 6201 Congdon Blvd., Duluth,
MN 55804

Office of Assistant Manager for Energy Research and
Development, Oak Ridge Operations, P. 0. Box 2007, U.S.
Department of Energy, Oak Ridge, TN 37831

0ffice of Scientific and Technical Information, P.0. Box 62,
Qak Ridge, TN 37831

= U.S. GOVERNMENT PRINTING OFFICE: 1 2 8 2-9 4w 2+l . 8/8 00 7 2



