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ABSTRACT 

We propose a new algorithm for linear-programming and apply it to solve some 

transportation problems. We prove the convergence of the algorithm under 

reasonable sufficient conditions. The main motivation of this new linear- 

programming solver is its extreme simplicity and its parallel structure which allows 

for straightforward implementations on personal computers as well as on more 

sophisticated machines. We give in the Appendix a version of the algorithm 

programmed in C in less than 30 lines. We also comment in the Appendix the 

relationship of our algorithm with some models of neural networks. 

V 





1. INTRODUCTION 

Since Khachiyan [ 13 in 1978 and Karmarkar [2] in 1984 have revived the search for new 

linear-programming algorithms, many attempts have been made to surpass or at least equal 

the robust Simplex method introduced by Dantzig [3] in the late fourties. There are now so 

many competitors to the Simplex (Ref. [4] to 171 to cite a few) that one could wonder if it is 

necessary to add one more stone to an already solid edifice. Another reticence could be 

linked to the following remark: if the number of algorithms increases linearly, the number 

of versions on different machines and the number of numerical tests to compare them, 

increase almost exponentially and this amounts to a non negligible investment in terms of 

coding and testing for the linear-programming community. 

Despite these possible caveats, we do propose here a new linear-programming algorithm 

and show its virtues both by theoretical analysis and by applying it to the Transportation 

Problem. We do not clairn that the sigmoidic algorithm (the reason for this name will be 

clear in the next Section) is faster than any of the recent excellent algorithms that have been 

discovered in the late few years or that it can beat the Simplex in some instances. But we do 

claim and show that is is extremely simple to understand, analyze, and implement - three 

properties which are only rarely shared simultaneously by the above-mentioned algorithms. 

In addition, the method is easy to parallelize. Some very large-scale integration circuits 

could also be designed to mimic its parallel structure without many difficulties. The second 

part of the Appendix stresses this point in showing the connection of our algorithm with a 

neural network model. 

In the next Section, we briefly describe the linear-programming problem, the sigmoidic 

algorithm, and conduct the theoretical analysis. We apply it to the Transportation Problem 

in Section 3 and give some numerical results in Section 4. The Appendix contains the 

listing of a C program that executes the algorithm for a sample program. 

I 
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2. THE SIGMOIDIC LINEAR-PROGRAMMING ALGORITHM 

2.1 . The Linear-Programming Problem 

The standard linear programming problem can be stated as follows: 

Find 

Max z i  ~ i .  xi  (1) 

subject to the constraints 

xi 2 0, i = 1 , 2  ,..., N @-a) 

and 

(2-b) 
1 Xi a j  . xi  = bj, j = 1,2, ..., 111. 

Usually the vectors (xi) = x and (Ci) = c are referred to as the primal vector and the cost 

vector. We shall denote by A the matrix [am] and by b the constraint vector. In this notation, 

(1)-(2) can be written as the primal problem 

i 
J 

Find Max <c,x> subject to Ax = b (W. 

One can introduce the dual problem associated with (PP): 

Find Min cb,p> subject to A'p 2 c @PI. 

Here, A' denotes the transpose of A and p = (pj) is the dual vector associated with the 

constraints. The equivalence of (LP) and (DP) i s  summarized 131 by the following 

statements: 

- (LP) has a bounded solution x* if and only if @P) has a bounded solution p*. 

- The optimal couple (x*, p*) is such that 

(i) Ax*=b, 

(ii) A'p*2 c 

(iii) <c,x*> = <b,p*> 

In the following, we assume that (I)-@) has a bounded solution, denoted by x*, and that 

we know beforehand a bound for each Xi, denoted Xi. Typically, Xi should be greater 

than xi'. 
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2.2 The Algorithm. 

In order to present the sigmoidic algorithm, ;a few preliminary definitions are necessary. A 
one dimensional parameter-dependent mapping gr : R -> R defin 

g~ (y) = l/(l+ exp(-yiT)) is refemd here to as a sigmoidic function. 

The typical graph of gT (we will only consider T > 0) is given in Figure 1. 

The most important properties of sigmoidic functions are the following: 

Figure 1. A signaoidic function. 
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The sigmoidic fknction plays a crucial role in the design of the algorithm. The introduction 

of such "ad hoc" functions can be compared to the introduction of barrier functions like the 

"potential functions" of Karmarkar. As will be seen in Appendix A.l (which describes 

Figure 2), the sigmoidic functions have the interesting geometric property of transforming a 

linear program into a parametrized non-linear optimization problem, enabling us to use non- 

linear search algorithms. 

The sigmoidic algorithm represents a primal-dual approach similar to some non-linear 

saddle-point algorithms [SI. It consists in successive iterations on the primal and dual 

variables: 

T- 1 

T =  1/4 

T =  i f8 

T = 1/16 T = 1/32 

Figure 2. Non-linear interpretation (see Appendix A.1). 
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0 - initialize p. for j = 1,2, ..., rn. I J 

- for k 2 0, update X i  and pj according to: 
k i  

== xi. gT [ ci- cj g, . a .  ] k+l 
for i  = 1,2, *,., n, 

for j = 1,2, ..., m, 

xi 

i k+l 
= p .  +-E .[ E. a. .x i  

J 1 J  
- bj] 

(3) 

(43 

I - stop when an optimality criterion (to be defined) is satisfied 

Here E is a small positive parameter. Conditions on E and T will be given in the next 

Section. Notice that the sigmoidic algorithm is already written in a parallel form. 

2.3 Analysis of the Algorithm. 

In order to prove convergence and optimality, we have to assume a set of conditions that 

are not always met by every linear-programming problem. These conditions are, however, 

satisfied by the tmnsportation model (see Section 3). We also give in Section 4 a numerical 

example for which these conditions are not met but for which the algorithm works. 

Therefore, we think that our hypotheses are not the most general ones and weakening them 

would allow to include more general linear programming problems. 

Now we are able to state the following 

T hearem: 

Assume that: 

- all the components of b and the elements of A are non negative. 

- for all i 5 n, there exists at least one j for which a- ic 0, so that we can 
i 
J 

i i 
J J J  J 

define Xi = 2 Max. [ b- / a. I 
used in (3). 

- the rank of the matrix A is rn. 

a. # 0). Xi is 2 0 and i s  the bound on xi 
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Then it follows that: 

- for E small enough, the sequence pk converges to a finite vector fi and 

consequently, the sequence xk also converges to a limit denoted by %. 

- R. is a feasible solution of (1) - (2) and $I is a feasible solution of the 

dual problem corresponding to (1)-(2). 

- The duality-gap I <c,x> - <b,p> I is linearly bounded by T. 

Proof: 

Convergence. 

By eliminating e' between equations (3) and (4), we obtain a closed iteration formula 

for p = (a, ..., h): pk"' = H(pk)7 where H is applied componentwise to p, namely: 

Let us compute the Jacobian of H: 

we have ~ ~ ( j j )  = I- E { xi (412 xi g' [ ci-  

and for k+j, DH(i,k) = - & { Xi ajak Xi g' [ci- & ph . ah 1 ). 

According to property (s2), we have g'[ci- &, ph ab ] > 0. 

ph . ah 1 1 
i i  i 

x 
With thenotations gi = g ' [c i -  x h  p hah ] 

and Bj = aj gi, we have the simpler expressions: 

DH(i,j) = 1- & xi (B)2 and DHtj,k) = - E  Xi Bi Bi I J k  

Thus DH = 1 - E Gram(u1, ..., urn) with Uj= (Bj , ..., Bj 1. 

X i .I 
i i  

1 n 

i i 
J 1 Since rank(A) = m and every gi is positive, then B = fJ3.1 = [an gi] is an mxn matrix of 

rank m. Gram(B) is an mxm symmetric and positive definite matrix of rank m (See [I 21, 

p. 155). Its spectrum contains m (possibly degenerate) real and positive eigenvalues 
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lk, 1 5 k 5 m, which satisfy the following inequalities: IIGram(B)II = 11 2 ... 2 1, > 0, 

where 11 . 11 denotes the Euclidian nom. 

Therefore, we can fin E >Osueh that 1 - €11 < 1 and 1 - E  1m>-1. 
2 

Thus, with 0 < E 6 - 111 - E Cram(B)ll< 1 and the mapping H is a contraction, i.e. the 
11 ' 

sequence pk converges to a fix& point. 

Optimality. 

Here, we refer to the properties of the optimal couple (x*,p*), given in Section 2. We 

prove that (i) and (ii) are satisfied by the limits of the xk and pk sequences. We then prove 

that (iii) can be satisfied as closely as desired, depending on the value of T. The derivation 

of the first optimality condition is conducted on a continuous version of the algorithm, Le. 

we consider the updating equation for p as an ordinary differential equation (0 e & <6 1). 

With dt = r , the evolution equations associated with (3)-(4) are 
1 

d 
-&p(t) = Ax-b 

where X 2 x* and gT i s  applied coniponentwise on its vector argument. 

Result fi) ; 

We show that Lini Ax(t) = b 

t --7 

1 To prove this, let us consider V(t) = 2 IIAx(t)-bl12 2 0. 
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If we take the derivative of (5), we get 

The last inequality comes from the fact that rank(A') = rank(A) = m and G is a positive 

invertible matrix. The equality sign corresponds to the equilibrium situation, 
d p = 0. 

Result (3): 

Let US introduce new variables yi := Ci - Cj ai Pj. 

We would like to grove that Lirnk,,- Alpk 2 c, which means that the variables yi are 

negative whenever xk and pk have converged. We have X i  = Xi . g~ (yi)- 

Thus yi = T Log[,i - x.]. In the limit, if xi 5 Xi /2 , then yi 5 0. 

On the other hand, if xi > Xi/2, this implies that yi > 0, but then we are able to prove that at 

least one constraint in Ax = b is not satisfied: suppose there exists an index io such that 

xi0 > Xd2,  then xi0 > Max- (b* / a -  , for a. ;e 0). 

This maximum is attained at j = jo. Thus Xi aj, . x i  > bj, and Pjo could not have 

converged. 

j 

Xi 

1 

i i 
J J J  J 

1 

W is the duality-gap. 
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Yi  U i  

T With Ui =-  - 9, we have Wi = h(Ui) = - T Xi 
+ exp(ui) 

Since Limui -, +, h(ui) = 0 and h(Q) = 0, h has a minimum. 

This minimum is attained at uo, solution of h'(uo) = 0, that is: 

1 + exp(u 0 0  ) - u exp(u0) = 0. 

One finds easily that 1 5 uo 5 2. Thus, for all i, we have 

which proves that 
n 02 W 2-1'cSup{Xi) 

The lower bound far W can be made as small as needed if T is chosen small enough. 

Although in some situations this bound can be actually attained, in general it gives a rather 

pessimistic estimate, as is shown in the numerical results Section. 



3. APPLICATION TO THE TRANSPORTATION PROBLEM 

The Transportation Problem can be formulated in the following way [3]: given N sources 

indexed by i with stocks Si, i =I, 2, ..., N, and M destinations indexed by j with demands 

D ., j =1, 2, ..., M, a transportation cost c - -  xij is associated with the shipment of the J 'J 

(positive) quantity Xij from the source Si to the destination Dj. One assumes there is no 

loss during the process, i.e. for every source i, xj xij = Si (a "house-keeping" constraint) 

and also that the demand is met for every destination, that is xi Xij = Dj (a "demand- 

satisfaction" constraint). Notice that these two assumptions lead to 

cixj xij = x. J J  D -  = xi s i *  

The problem of minimizing the cost of the transportation leads to the linear program: 

x.. = Si and Xi x.. = D j  
1J 1J 1J 'j 1~ 1J 

Min C c . .  x.. with x.. 2 0, 

We show here how to apply the algorithm to the above model which enters perfectly the 

theoretical scheme discussed in Section 2. The first step is to find natural boundaries for the 

primal variables. In our case, since the stocks Si and the demands Dj are known data, they 

both constitute natural boundaries on x - -  Thus 0 5 x.. I X . .  = Min{ S , D .}. The 
1J 1J 1J J 

existence of well-scaled boundaries is important for a good behavior of the algorithm. 

Now, we have to define a dual variable for each constraint. 

We denote by pi and by ¶j the dual variable associated to E. x = Si  and to Xi x - -  = J 1J 1J 

D ., respectively. The initialization of the algorithm consists in assigning preliminary 

values to the dual variables pi and qj. A good guess of these dual vaKiables - which have the 

J 

economic interpretation of prices associated to the constraints - speeds up the algorithm. 

However, pi = q- = 0, works well too. 0 0  
J 
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Once the initialization is done, the variables x - .  p i  and q -  are updated, for k 2 1, 

according to: 
1J ' J 

k k k  
xij = Xij Q (- cij - pi - qj ), 

k-tl k k 
pi 3 1J 

for every i and j. 

=pi  -+ E ( C. x.. - Si), for every i. 

k+l = 9. k -t E ( Xi xij k - D-), for eveny j. 
'3 3 J 

Intuitively, the updating of x., consists in allocating a portion of the total possible X.. that 

depends on the associated costs. The updating of p or q is intended to meet the "house- 

keeping" and the "demand-satisfaction" constraints with correct prices. The economics 

analog is a 'lone goods buyer (destination) or seller (source) market": prices are adjusted 

until the constraint is satisfied. 

U 1J 
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4. NUMERICAL RESULTS 

4.1 Example 1 

We first consider a very simple problem for which the assumptions of the theorem are 

fullfilled. This example is the sample problem that appears in the listing given in the 

Appendix. 

Max z = 2 ~ 1 + 4  X Z +  4 ~3 - 3  ~ 4 ,  Xi 2 0 

subjecttotheconstraints x i  + x2 + x3 = 4 

and x i  + 4  x2+ x4 = 8 

The optimal solution is given by x* = (0,2,2,0), p* = (4,O) and z* = 16. 

We have chosen T = 0.2, & = 0.02. The boundaries we have used are equal to 4 for every 

variable. In Figures 3 and 4 we give the trajectories of the primal, dual variables, primal 

cost <c,x> and dual cost <b,p>. The convergence takes about a hundred iterations. 

4.2 Example 2. 

Now, we consider another problem which does not satisfy the conditions of the theorem. 

However, the algorithm finds the right solution in approximately the same number of 

iterations. 

The problem is 

Max z = X I + ~ X ~  + 3 ~ 3 ,  X i  2 O 

subject totheconstraints: x i  +2x2+ x3 = 3 

and 2 x i  - x2 = 4  

The optimal solution is given by x* 5 (2,0,1), p* =: (3,-1) and z* = 5. 

We have chosen T = 1, E = 0.01. The boundaries are 3., 3. and 1.5 respectively (com- 

puted from the first equation). In Figure 5, we present the trajectories of the primal and 



14 

Example 1 ; primal variables. 

4 

3 -  

2 -  

0 100 200 

Itemat ions 

Example 1 ; primal variables. 

0 
0 100 200 

Iterations 

Figure 3. Trajectories of the priinal variables for example 1. 
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Example 1 ; dual variables. 

I t 
0 100 200 

iterations 

Example 1 ; primal and dual costs. 

I I 
0 I00 200 

primal cost 
dual cost 

Figure 4. Trajectories of the dual variables and of the costs €or example 1. 
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Example 2 ; primal varlables. 

0 
0 100 200 

Iterations 

Example 2 ; dual wariablles. 

1 
-c 1 I I 

0 1 oa 200 

x l  
Q x2 
re x 3  

pl 
* P2 

Figure 5. Trajectories oftbe primal dual variables for example 2. 
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dual variables. In order to illustrate that the duality gap is still linearly bounded by T, we 

have also run the algorithm with T = 0.2. Figure 6 shows clearly the consequent reduction 

of the duality-gap. 

4.3 Example 3: 8 Transportation Problem. 

We consider the following transportation problem (Figures 7 to 9): 

Min z = 464 xi 1 + 513 xi2 + 654 x i 3  + 867 x i 4  + 352 x21 + 416 ~ 2 2  + 690 x23 

+ 791 x24 + 995 x31+ 682 x32 + 388 x33 + 685 x34 

D j  subject tothe standardconstraints E. x'. = Si  and xi x.0 = 
3 13 13 

with Si = 75, 125, 100, respectively and D = 80, 65, 70, 85. j 

We have taken = 0.1 and T = 12. The optimum value is 152,535. 

After one hundred and fifty iterations (Figure 9), z stabilizes at 153,075, which is at 0.3 

5% of the optimum. Reducing T would - according to the above theorem - decrease this lack 

of optimality. 
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Example 2 ; primal and dual costs ; T = 1 .O 

- primal cost - dualcost 

I 1 

~ x ~ ~ ~ ~ e  2 ; pri I and dual costs ; T = 0.2 

- prirnalcost - dualcost 

0 100 2 0 0  

Figure 6. Primal and dual costs for example 2. 
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40 - 

30 - 

20 - 

10 - 

Example 3 ; primal variables. 

i x3 

.-. : !  7 x4 '. : . .  . .  . .  :. .. .. 
l" 
: '\ ''7. . x2 -- . 

0 

80 

40 6ol 

100 200 

Iterations 

Example 3 ; primal variables. 

.-. 

. .  
x6 

. .  2oi . - x8 
1 .: I 

0 ! - /  
1 

I I 

0 100 200 

lteratlons 

x7 

Figure 7. Trajectories of the primal variables for example 3. 
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Example 3 ; primal variables. 

-. - .  
x l 1  -:-. . 7 

20 

0 x9. x10 

0 100 200 

lterat io n s 

e 3 ; primal and dual costs. 

primal cost 
- dualcost 

-200000 -/ I I 1 
0 100 zoo  300 

Figure 8. Trajectories of the primal variables and of the costs  (example 3). 
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Example 3 ; dual variables. 

-200- 

-300 - 

-400 - 

.- -. .. :<-- p3 

P2 

Iterations 

Example 3 ; dual variables. 

-500 I 1 
0 100 200 

rterations 

Figure 9. Trajectories of the dual variables (example 3). 
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5. CONCLUSIONS 

In this preliminary theoretical and numerical study of the new sigmoidic linear- 

programming algorithm, we have shown that it is extremely simple to understand and to 

implement. It does not rely on any large numerical package nor does it use any complex 

algebraic transformation. It is fully parallel and can be implemented on very high speed 

parallel computers. We have shown its connection with some neural networks models. 

We are currently in the process of testing the sigmoidic algorithm on some large-scale 

transportation models, of weakening the conditions in the theorem, and of extending the 

class of sigmoidic algorithms to non-linear optimization [13]. 

These algorithms have very interesting non-linear properties that, according to us, could be 

used in order to speed-up many optimization algorithms [14]. 
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APPENDIX 

A. 1 Non-Linear Interpretation. 

In order to make the notations easier, we consider the simple problem 

and x1 and x2 subject to the constraints x1 + x2 = 1, and xi 2 0, 

the solution of which is x* = (l,O), p* = c 1. 

We assume a parametrization of xi as a function of p and a-ansfonn this problem into 

Max Z(P) = c 1  x 1(P) 4- 6 2  X2(P) (a) 

subject to the constraint xl(p) + x2(p) = 1, and xi (p) 2 0. 

The associated Lagrangian is (with q the dual variable associated with the constraint in p) 

L(p,q)= c1  Xl(P) + "2 X2(P) - 4 E q ( P )  + X2(P) - 11 

and the optimality conditions are, if we assume that xi (p) is differentiable: 

= xl(p) + x2(p) - 1 =o. aL 
%- 
These two conditions give p as a solution of (C02) and, with a parametrization xi (p) 

I I 

Now, if xi  (p) = 2 gT( ci - p), which the choice of the sigmoidic algorithm, after a 

few algebraic manipulations, we obtain 
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In Figure 2, we have rcpmsenaed (with c = 2 and c2 = 1 ) the left handside of (CQ2) 

for several values of T. As T decreases, the values of p(T) tend rapidly to the optimal value 

p * =  e1 -2.. 

Thus we infer that LimT-,o p(T) = cl ,  as could be easily derived from (C02). This 

also implies that LimT_>O q(T) = c1 = p*'. In conclusion, we have shown that the 

primal and dual solutions of the linear problem (I) can be approximated as closely as 

needed by the solutions of the parametrized problem (11). This is exactly what the 

sigmoidic algorithm does. 

of the Sigmoidic Algorithm. 

#include <stdio,h> 

#include<math.h> 

main(> 

{ double x[4] ,xbar[4] ,p[2] ,constraint[Z] ,y[4] ,criprirn,cridual; 

double e [ 41 ,a[4] [ 21 ,b [ 21 ,eps, temp; 

int nmax,nvar,ncont,i,j,k; 

FXLE "outdata ; 

outdata = fopen("sigmo-..LI'","w+"); 

/* Data far the linear program */ 

c[O] = 2.00 ; ~ [ l ]  = 4.00; ~ [ 2 ]  = 4.00 ; ~ [ 3 ]  -3.00; 

a[0][0] = 1.00 ; a[1][0] =1.00; a[2][0] = 1.00 ; a131[01 = 0.00 ; 
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a[O][1] = 1.00 ; a[l][l] = 4.00 ; a[2][1] = 0.00 ; a[3][1] = 1.00 ; 

b[O] = 4.00 ; bll] = 8.00, 

/* Data for the algorithm */ 

nmax =199; nvar = 3; ncont = 1; 

p[O] = 0.00 ; p[ 11 = 0.00 ; eps = .02 ; temp =.2 ; 

xbar[O] = 4.00 ; xbar[l J = 4.00 ; xbar[2] = 4.00 ; xbar[3] = 4.00; 

/* The algorithm */ 

for (i = l;ic=nmax;i = i+l)( 

/* iteration on primal variables */ 

for (i=O;j<=nvar;j=j+l) ( 

xIjl=xbarfil/( 1 .O+exp(-(c~l-p[OJ *aljllOl- p [ l l * a ~ l  [I]) /temp>); 1 

/* computation of the constraints */ 

constraintCO] = - b[O]; constraint[l] = - b[l]; 

for (j=O;j<=nvar;j =j+ 1) { 

constraint[O] = constraint[O] + alj][O]*xfjJ ; 

constraint[ 11 = constraint[ 11 + au][ l]*x[j] ; } 

/* iteration on dual variables */ 

p[O] = p[O] -t- eps*constraint[O] ; 

p[l] = p[1] + eps*constraint[l] ; 

/* primal and dual criterions */ 

criprim = c [O] *x[O] +c [ 11 *x[ 11 +c [2] *x[ 2 J +c[3] *x [31; 

cridual= b[O]*p[O]+b[l]*p[ 11; 

fprintf(outdata,"%f%fk%fk%fk%&%fb%&%fb", 

xlOl,x[ 11 ,~~~1,~~3l,p~~l,p~11,~~prim,cridual~ ; 1 
fclose(outdata); } 
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A.3 Connection with Neural ~~t~~~~~~ 

The sigmoidic algorithm described in this paper has some common features with neural 

network models [10,11]. However, the “computation energy“ of our algorithm is not 

quadratic, but linear, which greatly simplifies the model. 

To model a linear program with a neural network, we introduce two sets of neurons: 

“pl-imal” and “dual”. The primal neurons correspond to the Xi. Their states take values in 

the interval [O,Xi], where Xi has been defined above. By analogy, we simply denote the 

state. of the primal neuron i by xi. We also define dual neurons. The dual neuron j models 

the cost associated to the satisfaction of the constraint j. Its state, denoted pj, can take any 

value between -P and P, with P a given positive constant. 

Our computation energy is, by analogy with noli-linear optimization, the Lagrangian 

The updating rules for the primal and the dual neurons are given by the sigmaidic 

algorithm, They conduct the network to local extrema of the Lagrangian function. 

One notices that the sigmoidic algorithm is expressed in a parallel distributed processing 

way [la]. The separation of the neurons in two classes allows the dual neurons to provide 

information about the constraints to the primal neurons. Each dual neuron acts as a 

coordinator that announces to all the primal neurons what is the price associated to the 

constraint. A representation of the model is given in Figure 10. The updating of the primal 

neurons is similar to the discrete updating of many neural network models. The sigmoid 

function g on which the algorithm is based is reminiscent of the neuron f i n g  function with 

its “best efficiency“ and “saturation” regions. The variables ci and bj are respectively 

the “threshold” associated to neuron X i  and pj, and the matrix coefficients a. are the i 
J 
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“connection strengths” between primal and dual neurons. Since the connection matrix is 

given by the optimization problem, it is not - in general - symmetric. Yet, when m = N, one 

can establish an analogy with Hopfield‘s quadratic energy. In that case, the connection 

matrix must be symmetric, all the neurons must be primal, and there is no coilective 

information conveyed by any dual variable. In that case, one can only minimize quadratic 

functions without constraints. 

Primal neurons 

Cl ci cn 

bl 

bm 

Figure 10. Architecture of a neural network based on the sigrnoidic 
algorithm. 
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