%%«Lfée‘a &y ‘

?ﬁﬁ%’{ﬁ% MARETIA {?ét%s 5‘53"’"?&‘%“’ ”?s%v
FOR THE gNRLD Q’”fim

DEPARTMENT O ENEREY

COBNL/T#-10829
(CESAR-28/52

v New Algorithim for Linear
Programming That Is Easy o
Implement: Application o the

Transportation Problem

J.-C. Culict
V. Protopopescy




Prinied in the United St
MNational Techi

of Cornmerce
¥ ‘ngli\,:;, Virgiria 22161
rice codes—Printed Copy: A0Y Micrafichs A0

This repoﬁ i 23 an Account of o
United States Covernwnent. Natthar the Unitad
tnereet, nor any ot their employees. makes any w

h\

assumas any legal

Aty, 2xpress or implied, or
=59ility or responsibility for tivs accuracy, CoiigiStanass, or
ussfulness of any informiation, appaiatus, prcduct, or process discl

ants i s uscwouldnotin sately owned nghts, B :

cial DrGQUTS, TOCESS, G 3arviCe oy trade nams, raldamidig,
does not necessarily constiiuie or wnipiy its
ndation, or favo”ng by the Linited States GUV reNEnt OF

(o Y]
[2]
0 ;
E‘
EJ
-

ho t‘m States Gn ar

ec s

Of\llEUnl




ORNL/TM-10929
CESAR-88/52

Engineering Physics and Mathematics Division

A NEW ALGORITHM FOR LINEAR PROGRAMMING
THAT IS EASY TO IMPLEMENT:
APPLICATION TO THE TRANSPORTATION PROBLEM

J.-C. Culioli and V. Protopopescu

Published: September 1988

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTAf ENERGY SYSTEMS, INC.
or the
U.S. DEPARTMENT OF ENERGY o
under contract DE-AC05-840R21400 l”“”“H“l !”H"”HI“

3 445 0242190 8






ORNL/TM-10929

CONTENTS

ABSTRACT . . . . . . o o i 0 e e e e e e e e e e e e e e e v
1. INTRODUCTION . . . . . . . o o v e e e e e e e e e e e 1
2. THE SIGMOIDIC LINEAR-PROGRAMMING ALGORITHM . . . . . 3
2.1. The Linear-Programming Problem . . . . . . . . . . . . . .. 3

2.2. The Algorithm . . . . . . . . . . . .« . . oo 4
2.3. Analysis of the Algorithm . . . . . . . . . . . . . . .. . .. 6

3. APPLICATION TO THE TRANSPORTATION PROBLEM . . . . . . 11
4. NUMERICAL RESULTS . . . . . . o .« o v v v v v v v oo 13
41. Example 1 . . . . . . . . oo oo e 13
42. Example 2 . . . . . . . .. oL o 13
43. Example 3 . . . . . . . . ..o oo 17

5. CONCLUSIONS . . . . . . o o o v v bbb e e e e 23
ACKNOWLEDGEMENTS . . . . . . . .« o o v v o v v e oo 25
REFERENCES . . . . . . . o o v i e e e e e e e e e 27
APPENDIX . . . . . . . oo e e e e e e e e e e 29






ABSTRACT

We propose a new algorithm for linear-programming and apply it to solve some
transportation problems. We prove the convergence of the algorithm under
reasonable sufficient conditions. The main motivation of this new linear-
programming solver is its extreme simplicity and its parallel structure which allows
for straightforward implementations on personal computers as well as on more
sophisticated machines. We give in the Appendix a version of the algorithm
programmed in C in less than 30 lines. We also comment in the Appendix the

relationship of our algorithm with some models of neural networks.






1. INTRODUCTION

Since Khachiyan [1] in 1978 and Karmarkar {2] in 1984 have revived the search for new
linear-programming algorithms, many attempts have been made to surpass or at least equal
the robust Simplex method introduced by Dantzig [3] in the late fourties. There are now so
many competitors to the Simplex (Ref. [4] to [7] to cite a few) that one could wonder if itis
necessary to add one more stone to an already solid edifice. Another reticence could be
linked to the following remark: if the number of algorithms increases linearly, the number
of versions on different machines and the number of numerical tests to compare them,
increase almost exponentially and this amounts to a non negligible investment in terms of

coding and testing for the linear-programming community.

Despite these possible caveats, we do propose here a new linear-programming algorithm
and show its virtues both by theoretical analysis and by applying it to the Transportation
Problem. We do not claim that the sigmoidic algorithm (the reason for this name will be
clear in the next Section) is faster than any of the recent excellent algorithms that have been
discovered in the late few years or that it can beat the Simplex in some instances. But we do
claim and show that is is extremely simple to understand, analyze, and implement - three
properties which are only rarely shared simultaneously by the above-mentioned algorithms.
In addition, the method is easy to parallelize. Some very large-scale integration circuits
could also be designed to mimic its parallel structure without many difficulties. The second
part of the Appendix stresses this point in showing the connection of our algorithm with a

neural network model.

In the next Section, we briefly describe the linear-programming problem, the sigmoidic
algorithm, and conduct the theoretical analysis. We apply it to the Transportation Problem
in Section 3 and give some numerical results in Section 4. The Appendix contains the
listing of a C program that executes the algorithm for a sample program.
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2. THE SIGMOIDIC LINEAR-PROGRAMMING ALGORITHM

2.1 . The Linear-Programming Problem

The standard linear programming problem can be stated as follows:

Find
subject to the constraints

X; 20 i=12.,N (2-a)
and )

S.al.x:=b; j=12..,m (2-b)

Usually the vectors (x;) = x and (cj) = c are referred to as the primal vector and the cost

vector. We shall denote by A the matrix (ajl-] and by b the constraint vector. In this notation,

(1)-(2) can be written as the primal problem

Find Max <c,x> subjectto Ax=b (PP).

One can introduce the dual problem associated with (PP):

Find Min <b,p> subjectto Ap=c (DP).

Here, A’ denotes the transpose of A and p = (p;) is the dual vector associated with the
constraints. The equivalence of (LP) and (DP) is summarized [3] by the following
statements: ‘

- (ILP) has a bounded solution x* if and only if (DP) has a bounded solution p*.

- The optimal couple (x*, p*) is such that |

(i) Ax*=b,

(i) A'p*zc

(iil) <c,x*> = <b,p*>

In the following, we assume that (1)-(2) has a bounded solution, denoted by x*, and that
we know beforehand a bound for each xj, denoted X;. Typically, X; should be greater

than xj*.



2.2 The Algorithm.

In order to present the sigmoidic algorithm, a few preliminary definitions are necessary. A

one dimensional parameter-dependent mapping g : R->R defined by
g7 (y) = 1/(1+ exp(-y/T)) is referred here to as a sigmoidic function.
The typical graph of g (we will only consider T > 0) is given in Figure 1.

The most important properties of sigmoidic functions are the following:

for every y in R and any T in Rj_, we have:

(S1) O<gr(n<lL

(82 gr'®) = mer M) gT (¥).

(83) 0<gr)< .

The inverse mapping of g is easily computed as

g1 1(2) = T Log[z/(1-2)] for z in (0,1).

1.2

0.8

0.6

04

0.2

Figure 1. A sigmoidic function.



The sigmoidic function plays a crucial role in the design of the algorithm. The introduction
of such “ad hoc" functions can be compared to the introduction of barrier functions like the
“potential functions" of Karmarkar. As will be seen in Appendix A.1 (which describes
Figure 2), the sigmoidic functions have the interesting geometric property of transforming a
linear program into a parametrized non-linear optimization problem, enabling us to use non-
linear search algorithms.

The sigmoidic algorithm represents a primal-dual approach similar to some non-linear

saddle-point algorithms [8]. It consists in successive iterations on the primal and dual

variables:

Constraint

LR "\ T=1/4
.‘"' E \J
S T=1/8

T=1/32 T=1/16

Figure 2. Non-linear interpretation (see Appendix A.1).



- initialize pjp for j=1,2, ..., m.

- for k 2 0, update x; and pj according to:

. k+1 k i
fori=1,2,..n, X3 = Xi' grl ;- Zj Pj . aj] 3

. k+1 1 k+1
forj=1.2,..,m, 5 pj +€ I 2 aj.Xp - bj] 4)

- stop when an optimality criterion (to be defined) is satisfied.

Here € is a small positive parameter. Conditions on € and T will be given in the next

Section. Notice that the sigmoidic algorithm is already written in a parallel form.

2.3 Analysis of the Algorithm.

In order to prove convergence and optimality, we have to assume a set of conditions that
are not always met by every linear-programming problem. These conditions are, however,
satisfied by the transportation model (see Section 3). We also give in Section 4 a numerical
example for which these conditions are not met but for which the algorithm works.
Therefore, we think that our hypotheses are not the most general ones and weakening them
would allow to include more general linear programming problems.

Now we are able to state the following

Theorem:

Assume that:

- all the components of b and the elements of A are non negative.

- for all 1 <n, there exists at least one j for which a} # 0, so that we can
define Xj =2 Max; {bj / ajl- | a} # 0}. Xj is 2 0 and is the bound on x;
used in (3).

- the rank of the matrix A is m.



Then it follows that:
- for € small enough, the sequence pK converges to a finite vector p and .
consequently, the sequence xK also converges to a limit denoted by %.
- &is a feasible solution of (1) - (2) and p is a feasible solution of the

dual problem corresponding to (1)-(2).

- The duality-gap | <c,x>- <b,p>1| is linearly bounded by T.

Proof:

Convergence.
By eliminating xl}('*”1 between equations (3) and (4), we obtain a closed iteration formula

for p=(p, -» By pk+1 = H(pX), where H is applied componentwise to p, namely:
Hpp =pj+€ (I & X;erlc; T pp-ap 1 -bj)

Let us compute the Jacobian of H:

We have DHG) = 1-€ { %; )2 X; g [¢j- % Pp - ap1)
and for k#j, DH(G.K) =- € { 2; a} ai( X, g lc- X pyy - alh] ).

According to property (S2), we have g'lc;- 3, py, a;l 1 >0.

With the notations gj =\/g'[ci- 2y phalh I Xy

i i . .
and B =38 8 We have the simpler expressions:

DH(.j) = 1- € I, (33)2 and DHGK) = -£ 3, B} Bl

Thus DH=1-¢& Gram(ug, ..., uyp) with uj= (le, B;l).
Since rank(A) = m and every g;j is positive, then B = [B;] = [ali gi] is an mxn matrix of
rank m. Gram(B) is an mxm symmetric and positive definite matrix of rank m (See [11],

p. 155). Its spectrum contains m (possibly degenerate) real and positive eigenvalues



Iy, 1 < k < m, which satisfy the following inequalities: iGramB)ll =11 2...2 1, >0,

where Il . Il denotes the Euclidian norm.
Therefore, we can find € >0suchthat1-£€lj<land 1-€ly,>-1.

Thus, with0 <€ < T?“-l-, 11 -& Gram(B)!l <1 and the mapping H is a contraction, i.e. the

sequence pk converges to a fixed point.

Optimality.

Here, we refer to the properties of the optimal couple (x*,p*), given in Section 2. We
prove that (i) and (ii) are satisfied by the limits of the xK and pk sequences. We then prove
that (iii) can be satisfied as closely as desired, depending on the value of T. The derivation
of the first optimality condition is conducted on a continuous version of the algorithm, i.e.
we consider the updating equation for p as an ordinary differential equation (0 < € << 1).

1
With dt =-7, the evolution equations associated with (3)-(4) are

£
x()= X . g(c-A'p(t) - 5)
gfp(t) = Ax-b (6)

where X 2 x* and g is applied componentwise on its vector argument.

Result (1) ;
We show that Lim Ax(t)=b

t--> o0

To prove this, let us consider V(t) = %: Ile(t)J:alI2 > 0.

d d d d .
We have a?V =<A T % Ax-b>=<A x5 TP (with (6)).



If we take the derivative of (5), we get

d . d
Fx=-GA zp O

with G =[Xj.glc;- 5 Py, 2p) &ijl= [ & djj]

d ., d_d _ p d vd
Thus a-I-V=-<AGA P a-t-p>——<G A dtp’Adtp> <0

The last inequality comes from the fact that rank(A") = rank(A) =mand G is a positive
invertible matrix. The equality sign corresponds to the equilibrium situation, g{p ={.

Result (ii); ]
Let us introduce new variables yj :=c¢; - Zj aJi pj-
We would like to prove that Limy_., A'pK 2 c, which means that the variables y; are

negative whenever xK and pk have converged. We have x; = Xj . g (yp-
1 T

x.
Thus y; = T Logly- : 7). Inthe limit, if x; £X;/2, then y; <0,

On the other hand, if xj > X;/2, this implies that y; > 0, but then we are able to prove that at

least one constraint in Ax = b is not satisfied: suppose there exists an index ig such that

Xig > Xijo/2, then xio > Maxj (bj/ aj , for a; # 0).

This maximum is attained at j = jg. Thus Zi a} 0 %i” b io and Pis could not have

converged.

Result Gii):
Consider the quantity W =23; Wj=2; xjyj= Zjxj(cj-2j ajipj )
= <C,X> - Zj (2 x4 d‘]l )pj =<cx>-<bp>

W is the duality-gap.
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Yi 2
We have Wi =X yi g1 = T Xi F Trezpmrmy

. Yi Ui
Wlthul—-- -rI'r >0, we have Wl:h(ul)"Txlm
Since Limui > 400 N(uj) =0 and h(0) =0, h has a minimum.

This minimum is attained at uo, solution of h'(uO) = (), that is:
1+ cxp(uo) -0 exp(uo) =0.
One finds easily that 1< <2, Thus, for all i, we have

a0
0z W; 2-TXj;

X
= -TX.exp(ug) 2 -T—
1 + expuY) i *PCu0) ¢

which proves that

02 W 2- T-e‘lSup(xi}
The lower bound for W can be made as small as needed if T is chosen small encugh.
Although in some situations this bound can be actually attained, in general it gives a rather

pessimistic estimate, as is shown in the numerical results Section.
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3. APPLICATION TO THE TRANSPORTATION PROBLEM

The Transportation Problem can be formulated in the following way [3]: given N sources
indexed by 1 with stocks Si’ i=1,2,..., N, and M destinations indexed by j with demands

D i j =1, 2,..., M, a transportation cost Cij xij is associated with the shipment of the

(positive) quantity Xjj from the source S; to the destination Dj. One assumes there is no

loss during the process, i.e. for every source i, Ej xjj = S; (a "house-keeping” constraint)
and also that the demand is met for every destination, that is X; xjj=Dj (a "demand-

satisfaction" constraint). Notice that these two assumptions lead to

The problem of minimizing the cost of the transportation leads to the linear program:
Min ZCIJ xl] with xl_) 2 0, EJ xl] = Sl and zl XU = D_]

We show here how to apply the algorithm to the above model which enters perfectly the

theoretical scheme discussed in Section 2. The first step is to find natural boundaries for the
primal variables. In our case, since the stocks S; and the demands Dj are known data, they

both constitute natural boundaries on Xij- Thus 0 < X1 < Xij = Min{Si , D j}' The

existence of well-scaled boundaries is important for a good behavior of the algorithm.

Now, we have to define a dual variable for each constraint.

We denote by p; and by qj the dual variable associated to Zj X3 =8; andto 2, x;; =

ij j

D, respectively. The initialization of the algorithm consists in assigning preliminary

js
values to the dual variables p; and qj- A good guess of these dual variables - which have the

economic interpretation of prices associated to the constraints - speeds up the algorithm.

However, p? = qJQ =0, works well too.
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Once the initialization is done, the variables x.

ij» Pi and q; are updated, for k 2 1,

according to:

k k k o
Xij = Xij gr ¢j-Pi -G ), foreveryiandj.

k+1 k k .
p; =p; +E( Zj Xj5 - S;), foreveryi.

k+1  k k .
q =g +€( 2 X;j - D), forevery].

Intuitively, the updating of Xjj consists in allocating a portion of the total possible Xij that

depends on the associated costs. The updating of p or q is intended to meet the "house-
keeping" and the "demand-satisfaction” constraints with correct prices. The economics
analog is a "one goods buyer (destination) or seller (source) market": prices are adjusted

until the constraint is satisfied.
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4. NUMERICAL RESULTS

4.1 Example 1
We first consider a very simple problem for which the assumptions of the theorem are
fullfilled. This example is the sample problem that appears in the listing given in the

Appendix.

Max z = 2 x1+4 x2+4x3-3x4, x{ 20

subject to the constraints x1 + x3 + x3 = 4

it
oL

and x1] +4 x2+ x4

The optimal solution is given by x* =(0,2,2,0), p*=(4,0) and z* = 16.
We have chosen T =0.2, € =0.02. The boundaries we have used are equal to 4 for every
variable. In Figures 3 and 4 we give the trajectories of the primal, dual variables, primal

cost <¢,x> and dual cost <b,p>. The convergence takes about a hundred iterations.

4.2 Example 2.
Now, we consider another problem which does not satisfy the conditions of the theorem.

However, the algorithm finds the right solution in approximately the same number of

iterations.
The problem is
Max z=x1+5x%xp +3x3, x; 20
subject to the constraints: X1 +2x)+ x3 =3
and 2 x1 - xp =4

The optimal solution is given by x* =(2,0,1), p*=(3,-1) and z*=35.
We have chosen T = 1, € =0.01. The boundaries are 3., 3. and 1.5 respectively (com-

puted from the first equation). In Figure 5, we present the trajectories of the primal and
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Example 1 ; primal variables.

K C

a
o]
3-1m
@
e
a
o4 B g x1
a ®  x2
11 f8u
8
5
Te ‘5’;"—
100 200
iterations
Example 1 ; primal variables.
5 my
g x3
¢ x4
1 -

e

0 100 200

Iterations

Figure 3. Trajectories of the primal variables for example 1.
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Example 1 ; dual variables.

a pil
* p2
-1 g T ¥ ¥
0 100 200
lterations
Example 1 ; primal and dual costs.
40 -
30
20 — primal cost
— dual cost
10
0 r , . —_
0 100 200

Figure 4. Trajectories of the dual variables and of the costs for example 1.
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Example 2 ; primal variables.

m xt
® x2
2 x3
100 200
Iterations
Example 2 ; dual variables,
4 -
O pt
] p2

1
0 100 200

Rerations

Figure 5. Trajectories of the primal dual variables for example 2.
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dual variables. In order to illustrate that the duality gap is still linearly bounded by T, we
have also run the algorithm with T = 0.2. Figure 6 shows clearly the consequent reduction

of the duality-gap.

4.3 Example 3: a Transportation Problem.

We consider the following transportation problem (Figures 7 to 9):

Min z= 464 xj1+513x12+654x13 +867 x14 +352x31 +416 x93 + 690 x23
+791 xp4 + 995 x31 + 682 x32 + 388 x33 + 685 x34

subject to the standard constraints Zj x;; =8; and X Xij = D.

ij i

with Si =75, 125, 100, respectively and Dj = 80, 65, 70, 85.

We have taken €= 0.1 and T = 12. The optimum value is 152, 535.
After one hundred and fifty iterations (Figure 9), z stabilizes at 153, 075, which is at 0.3
% of the optimum. Reducing T would - according to the above theorem - decrease this lack

of optimality.
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Example 2 ; primal and dual costs ; T= 1.0

40 ~
30 ~
20 — primal cost
- dual cost
10
0 /- y T T |
0 100 200

Herations

Example 2 ; primal and dual costs ; T = 0.2

40 A
30 -
20 A -~ nrimal cost
— dual cost
10
0 v I . .
0 100 200

fterations

Figure 6. Primal and dual costs for example 2.
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Example 3 ; primal variables.

40 7 SIS
.’-_.-‘\5
30 - i:
- * .‘1
td ™, \" x2
20 - ‘ Y
) \\"‘ x1
10 A :
: ,:. x3
0 e T T
0 100 200
jterations
Example 3 ; primal variables.
120
1004
go4 -
e x5
60 - ~
40 - B X6
1
20 . /.. x8
0 '/' T T x7
] 100 200
lterations

Figure 7. Trajectories

of the primal variables for example 3.
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Example 3 ; primal variables.

100 ~
go4{ - -
4 . x11
- -: y /”_
60 Vi
A Pl
N
[~ b <
» A
40+ . kY
e X12
20
:
0 N ; ' T x9, x10
0 100 200
iterations

Example 3 ; primal and dual costs.

100000 ~
0 ——
- .!, .'. - primal cost
e dual cost
i
-100000+ 3
-200000 v T v T Al 1
0 100 200 300

Figure 8. Trajectories of the primal variables and of the costs (example 3).
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Example 3 ; dual variables.
0 ~
-100 -
3
-200 P
-300 p2
\\_ ,
-400 -
-500 v T 1
0 100 200
iterations

Example 3 ; dual variables.
0 o~

Al

H

-~

-~

3

I

1004 %
=
-
- -..’.

2004 G

pS
p6
-300 ~
-400 Y
\ .
-500 . Y v
0 100

200
erations

Figure 9. Trajectories of the dual variables (example 3).
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5. CONCLUSIONS

In this preliminary theoretical and numerical study of the new sigmoidic linear-
programming algorithm, we have shown that it is extremely simple to understand and to
implement. It does not rely on any large numerical package nor does it use any complex
algebraic transformation. It is fully parallel and can be implemented on very high speed

parallel computers. We have shown its connection with some neural networks models.

We are currently in the process of testing the sigmoidic algorithm on some large-scale
transportation models, of weakening the conditions in the theorem, and of extending the
class of sigmoidic algorithms to non-linear optimization [13].

These algorithms have very interesting non-linear properties that, according to us, could be

used in order to speed-up many optimization algorithms [14].
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APPENDIX

A.1 Non-Linear Interpretation.

In order to make the notations easier, we consider the simple problem

Max z=cy x1 +Cp Xp Wwith ¢y > Cp, §))]

and Xy and Xy subject to the constraints X1 + Xp =1, and x; 20,

i
the solution of which is x* = (1,0), p* = ¢ .

We assume a parametrization of x; as a function of p and transform this problem into

Max z(p) = c¢1 x1(P) + <y x9(P) (In

subject to the constraint x4(p) + Xo(p) =1, and x; (p) 2 0.

The associated Lagrangian is (with g the dual variable associated with the constraint in p)
Lp.d= cq x1(p) +¢y X0 - qlx1(@) + x5(p) - 1]

and the optimality conditions are, if we assume that x; (p) is differentiable:

= o @ +oy xp®-alx® + uE1 =0 (O

% =x1(p) + X,5(p) -1=0. (CO2)

These two conditions give p as a solution of (CO2) and, with a parametrization x; (p)
¢y x1(p) +cp x(p)

such that x; (p) # O forevery p, we get q= ; :
x 1(p) + x,(p)

Now, if x; (p) =2 g( c; - p), which the choice of the sigmoidic algorithm, after a

few algebraic manipulations, we obtain
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cosh{-R%-Eg—]

with r (T) = e

coshEP-—;I—,E—l— .

In Figure 2, we have represented (with cq = 2 and Cy = 1) the left handside of (CO2)

q= ¢q +(c -c)—-——-'-l—-———
1 2 1 1+{r(T)}2

for several values of T. As T decreases, the values of p(T) tend rapidly to the optimal value
p* = 1 fossd

Thus we infer that Limp_,q p(T) = ¢y, as could be easily derived from (CO2). This

also implies that Limp_,q q(T) = ¢; = p*. In conclusion, we have shown that the

primal and dual solutions of the linear problem (I) can be approximated as closely as
needed by the solutions of the parametrized problem (II). This is exactly what the

sigmoidic algorithm does.

A.2 Listing of the Sigmeidic Algorithm.

#include <stdio.h>
#include<math.h>
main{)
{ double x[4],xbar[4],p[2],constraint{2],y{4],criprim,cridual;
double c[4],a[4][2],b[2].eps.temp;
int nmax,nvar,ncont,i,j,k;

FILE *outdata ;
outdata = fopen("sigmo_LP","w+");
/*  Data for the linear program ¥/

c[0] =2.00; c[1] = 4.00; c[2] = 4.00; c[3] = -3.00;
a[0][0] = 1.00 ; a[1]]0] =1.00; a[2][0] = 1.00; a[3][0]= 0.00 ;
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a[0][1} = 1.00; a[1][1] = 4.00; a[2][1] =0.00; a[3][1] = 1.00 ;
bf0] = 4.00 ; b{1] = 8.00;

/* Data for the algorithm */
nmax =199; nvar = 3; ncont = 1;
p{0]1=0.00; p[1]1=0.00; eps=.02 ; temp =.2 ;
xbar[0] = 4.00 ; xbar[1] = 4.00 ; xbar[2] = 4.00 ; xbar[3] = 4.00;
/* The algorithm */
for (i = l;i<=nmax;i = i+1){
/* iteration on primal variables */
for (j=0;j<=nvar;j=j+1){
x[j]=xbar(j}/(1.0+exp(-(c[j]-p[01*afjl[0] - p[1]*aljI[1]) fterap));}
/* computation of the constraints */
constraint{0] = - b[0]; constraint[1] = - b{1];
for (j=0;j<=nvar;j=j+1){
constraint[0] = constraint{O] + a[j]I[01*x[j] ;
constraint{1] = constraint{1] + a[j]{1]*x{j]; }
/¥ iteration on dual variables ¥/ |
pl0] = p[0] + eps*constraint[0] ;
pl1] = p[1] + eps*constraint[1] ;
/* primal and dual criterions */
criprim = c[0]*x[0]+c[1]*x[1]+c[2]*x[2]+c[3]*x[3];
cridual = b[0]*p[0]+b[1}*p[1];
fprintf(outdata," %N %N %N BN BN %N %N Tof\n",
x{O],x[l},x[2],x[3},p[0],p[1],criprim,cridua1) )

fclose(outdata); )
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A.3 Connection with Neural Networks.

The sigmoidic algorithm described in this paper has some common features with neural
network models [10,11]. However, the ““computation energy" of our algorithm is not
quadratic, but linear, which greatly simplifies the model.

To model a linear program with a neural network, we introduce two sets of neurons:

“primal" and ““dual”. The primal neurons correspond to the xi. Their states take values in
the interval [0,Xj], where X; has been defined above. By analogy, we simply denote the
state of the primal neuron i by x;. We also define dual neurons. The dual neuron j models

the cost associated to the satisfaction of the constraint j. Its state, denoted pj, can take any

value between -P and P, with P a given positive constant.
Our computation energy is, by analogy with non-linear optimization, the Lagrangian
function L:

L(x,p) =Zici.x- + Zj pj.[Eia§ ‘xi'bj]‘

The updating rules for the primal and the dual neurons are given by the sigmoidic

algorithm. They conduct the network to local extrema of the Lagrangian function.

One notices that the sigmoidic algorithm is expressed in a parallel distributed processing
way [12]. The separation of the neurons in two classes allows the dual neurons to provide
information about the constraints to the primal neurons. Each dual neuron acts as a
coordinator that announces to all the primal neurons what is the price associated to the
constraint. A representation of the model is given in Figure 10. The updating of the primal
neurons is similar to the discrete updating of many neural network models. The sigmoid

function g on which the algorithm is based is reminiscent of the neuron firing function with
its ~“best efficiency” and “saturation” regions. The variables ¢; and bj are respectively

the ““threshold” associated to neuron xj and pj, and the matrix coefficients a; are the
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““connection strengths" between primal and dual neurons. Since the connection matrix is
given by the optimization problem, it is not - in general - symmetric. Yet, when m =N, one
can establish an analogy with Hopfield's quadratic energy. In that case, the connection
matrix must be symmetric, all the neurons must be primal, and there is no collective
information conveyed by any dual variable. In that case, one can only minimize quadratic

functions without constraints.

Primal neurons

cl Ci cn
b1 al
[72]
o
o
p |
)]
sl
§ bj aij
bm aitm

Figure 10. Architecture of a neural network based on the sigmoidic
algorithm.
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