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ABSTRACT

A ray-tracing and vacuum vessel modeling technique that allows one to generate
a view looking into a complex vacuum vessel port is described. The technique is
general enough so that details of the contained plasma can be seen as well as the

vacuum vessel walls.






1. INTRODUCTION

Viewing the interior of vacuum vessels is important in the experimental align-
ment and data analysis of complex fusion energy experiments, such as the Advanced
Toroidal Facility (ATF).! Vacuum vessels such as the one for ATF are complex in
design and have few ports that offer an unobstructed view of the plasma under study
at all angles of experimental interest. The ATF vacuum vessel is shown in Fig. 1.
The goal of this computational viewing is to “look” through a vessel port and de-
termine what a diagnostic sensor will “see” or what portion of the vacuum vessel a
probe or beam will intersect. Ideally, one should include not only the vacuum vessel
geometry but a plasma model as well so that the physics of the diagnostics can be
addressed. Ray tracing has been chosen as the preferred technique because it has
the ability to handle complex shapes and interfaces between one region (vacuum)
and another (plasma). Ray tracing also simulates the physical operation of many
devices of interest and can play a direct role in the analysis and modeling of an
experimental diagnostic. Previously, diagnostics were aligned by an examination

of the engineering drawings and simple geometric calculations. Though simple and
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Fig. 1. ATF vacuum vessel.



straightforward, such methods are often not successful on complex vacuum vessels
that do not contain a direction of symmetry, such as ATF. This report demon-
strates how a more powerful technique, ray tracing, can solve the general alignment

problem in complex situations.

2. VACUUM VESSEL MODEL

Inherent in the structure of the ray-tracing model are the details of the vac-
uum vessel. The method of representing the vacuum vessel under study is to use
a “sliced” model. The vessel coordinates are transformed to cylindrical coordi-
nates and the vacuum vessel is “sliced” at constant ¢ values to form a set of two-
dimensional cross sections (¢ is the toroidal angle). The number of cross sections
is chosen so that the change from one cross section to another is small, and the
number of points in each given cross section is selected so that all the necessary

details of the vacuum vessel can be represented. This is illustrated in Fig. 2. The
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Fig. 2. Sliced model of the ATF vacuum vessel.



ATF vacuum vessel studied in this report had a periodic structure so that only one
period needed to be modeled; typically, about 120 cross sections per period with 60
points each were required for good accuracy.

This model has the advantage that it is easy to modify a given cross section
to include such things as ports and divertors; it has the disadvantage that the
connectivity between cross sections is not preserved unless special care is taken.
Fortunately for the purposes of this report, the connections between different cross
sections can be approximated with good accuracy by choosing the nearest data

point on a neighboring cross section.

3. THE RAY-TRACING MODEL

The principle of the ray-tracing model is quite simple and general (see Fig. 3).
A view plane is established at the diagnostic location, and a grid is superimposed

over its viewing aperture. Behind the view plane is an origin point for the rays
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Fig. 3. Fundamental outline of the ray-tracing model.



which corresponds to the focal point or a pseudo focal point for the diagnostic. A
ray is started at the view plane at two predetermined angles, § and a. The two
angles are determined from the characteristics of the device under study and the
number of pixels desired in the view plane. The intersection point of the ray and
the vessel port plane is then determined. If the ray is not within the port opening,
that fact is recorded and a new ray started. Should the ray fall within the port
opening, a stepping process is begun. The ray is advanced a small step, and this
new position is examined to see if it is still within the vacuum vessel. This is done
by examining the path coordinates of the ray.

The R, Z, and ¢ coordinates of the ray are calculated, and the ¢ value is rounded
off to the nearest discrete value of the vacuum vessel cross-section set. Next, it 1s
determined if the ray location is within the cross section. If so, the stepping process
is continued. Should the point lie outside the cross section, a “hit” is recorded. The
hit point is approximated as the point halfway between the last point known to be
inside the vacuum vessel and the current “outside” point. The stepping increment
is adjusted to be of the same order as the distance between the vessel cross sections.
In general, a variable increment could be used to save time, but, because of the
complex testing required, a fixed increment was used in this work.

The angles § and « are varied in small steps over a range characteristic of the
view angles of the diagnostic under study so that the view plane is completely
scanned. Typically, a grid of 128 by 128 pixels is formed on the view plane, each
with its own intensity value as determined by tracing the appropriate ray. The
intensity variation of the pixels over the view plane is what forms the picture of the
view.

The intensity of the reflection from the hit point is

=" (1)

where 7 is the unit vector in the ray direction, n i1s the unit vector perpendicular
to the vessel surface, R is the distance from the view plane to the hit point, and
m and n are exponents used to enhance the details of the wall.?> The unit vector
perpendicular to the wall is determined by forming the cross product between a
vector that lies on a cross section and a vector that connects two cross sections.
The first vector is formed by finding the two-cross section points (on the nearest

discrete cross section) that straddle the hit point. The second vector is formed by



finding the nearest points to the hit point on both the nearest cross section and a
nearby cross section (see Fig. 4). In general, the best method would be to preserve
the connectivity between cross sections and use it to form the second vector, but
the method used in this work gives good results with simpler data sets.

The view picture is formed by plotting the logarithm of the intensity because
this models the intensity profiles as processed by the eye. Each intensity point
on the view plane is treated as a pixel, with a gray scale from 0 to 13, 13 being
black. An expanded gray scale would be useful, but currently this work is limited
to a gray scale of approximately 13 by the available output devices. The m and n
values are chosen to enhance the desired characteristics of the picture. The theory
of homomorphic signal processing allows us to identify the numerator of Eq. (1) as a
function that changes rapidly and can be associated with edges. The denominator
can be observed to change more slowly and can be identified as an illumination
function. Changing the n and m values allows us to accent or reduce the qualities
of the picture.® A small n value provides dynamic range compression, and a large
m number provides edge definition. In practice, m = 6 and n = 1 are useful. See

Fig. 5 for the layout of the optics and Fig. 6 for a composite picture.
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Fig. 4. Determination of the vector perpendicular to the vacuum vessel wall.
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Fig. 5. Midplane view of the diagnostic geometry.

Figure 5 is the layout of the diagnostic geometry. The dark, solid lines show
the vacuum vessel at its midplane. The cone-shaped object is the view plane and
its focal point; the view angle is looking into the vacuum vessel through a large side
port. Figure 6 is the view as seen by the diagnostic as located in Fig. 5. Notice
the corkscrew appearance of the picture, along with the fact that the coil troughs
(“corkscrews”) hinder complete access to the plasma. The quality of the picture
may be improved by using more grid points and a greater number of intensity levels

at the expense of greater computational effort.

4. CONCLUSIONS

Ray tracing, along with the sliced vacuum vessel model, provides useful tools

for the interior viewing of complex vacuum vessels. Variations on this theme are
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Fig. 6. Picture of the vacuum vessel interior as generated by the algorithm of

the report.

possible. For example, one can place a view screen within the vacuum vessel and
step the ray to the view screen, rather than to the far wall, to examine interior
plasma details. This would allow one to examine the portion of a plasma profile
that could be seen by a diagnostic looking in.* Another possibility is to model the
injection of a beam into the plasma with the wall hits serving to model beam-wall
interactions.® In all these cases, the ray tracing is able to deal with the complex
geometry and is limited only by the details of the physics models.

This method is easily applied to the plasma as well as to the vacuum vessel
interior. Figure 7 is a view of the plasma as seen from the position shown in Fig. 5.
The method used is the same as for the vacuum vessel except that a hit is recorded
when the ray is inside the plasma. Figure 8 shows how 1f energy is deposited within
the plasma. The rf energy is assumed to be evenly distributed throughout the
plasma and to be absorbed by the plasma when it encounters a critical value of the
magnetic field. In this case, the ray tracing proceeds by following the ray through
the vacuum vessel and plasma until it encounters a region where the /magnetic field
has the critical value. A pixel intensity is generated by dividing the normalized
plasma density at that point by the distance from the view plane. Of course, the

usual wall interference is also included in the process.
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Fig. 7. Picture of the plasma exterior.
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Fig. 8. Picture of the rf power deposition.



Finally, it is also possible to use this technique to examine the view of a cross
section of the plasma. Figures 9 and 10 show how a cross section of the plasma
appears to the Thomson scattering light collector on ATF.* Figure 9 is the geometry
of the detector layout (the same as Fig. 5), with the horizontal, dark, solid line in
the vacuum vessel forming the view plane. The crosses in Fig. 10 are points that can
be seen with no interference from the wall. The large outer ellipse is the boundary
of the plasma, and the boxlike outline is the vacuum vessel cross section. In this
case, one draws a ray from a point on the desired cross section to the view point
and steps a ray along it as before.

As can be seen, this ray-tracing technique is quite general and can be applied

to a large number of possible configurations.

ORNL-DWG 88-2914 FED

3.5

Fig. 9. Midplane view of the Thomson scattering light collector.
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Fig. 10. Cross-sectional view of a plasma plane in ATF. The “x’s” are points

that can be seen with no wall interference.
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