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ABSTRACT 

The linearized neoclassical magnetohydrodynamic equations, including 

perturbed neoclassical flows and ciirrents, have been solved for parameter regimes 

where the neoclassical pressure-gradient-driven instability becomes important. ‘This 

instability is driven by the fluctuating bootstrap ciirrent term in Ohm’s law. It 

begins to dominate the conventional resistive ballooning rrmode in the banana- 

plateau collisionality regime [pe /ve  -2 dc/(l + v + ~ )  > 21 and is characterized hy 

a larger radial mode width and higher growth rate. The Iiroclassical instability 

persists in the absence of the usual zriagnctic field curvature drive and is not 

significantly affected by compressibility. Scalings with respect to p,  n (toroidal 

mode number), and p (neoclassical viscosity) are examined using a large-aspeet- 

ratio, three-dimensional initial-value code that solves linearized equations fur the 

magnetic flux, fluid vorticity, density, and parallel ion flow velocity in axisyrnmetric 

toroidal geometry. 
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I. INTRODUCTION 

The fluid moment equation approach developed for neoclassical equilibrium 

processes1 has recently been extended to higher-frequency instability phenomena 

in axisymmetric toroidal plasmas.2-5 This is of importance for understanding exist- 

ing and future tokamak plasmas, which operate well into the long mean-free-path 

regime. These neoclassical magnetohydrodynamic (MHI)) equations take into ac- 

count modifications to plasma flows and currents that result when particles com- 

plete at least one toroidal transit before experiencing collisions, in contrast to the 

usual reduced resistive M HD equations, which are valid only in the Pfirsch-Schliiter 

regime (multiple collisions per toroidal transit). 

The primary features of the new neoclassical MHI) equations arise from inclu- 

sion of viscous relaxation effects within magnetic flux surfaces. These lead to such 

effects as ( I )  a fluctuating bootstrap current in Ohm's law, resulting from the par- 

allel electron viscous damping of the poloidal flow induced by the perturbed radial 

pressure gradient; (2) a rapid (E.;) damping of the poloidla1 ion flow SO that the 

residual flow is primarily toroidal; and (3) an enhanced (by B2 / B i )  pola,rization 

drift and a resulting enhancement of the perpendicular dielectric constant from par- 

allel flow inertia (this causes the equations t o  depend o d y  on the poloidal magnetic 

field Be). These effects can lead to both substantial modifications of the known re- 

sistive MHD instabilities and new instabilities made possible through the additional 

mechanisms for accessing the sources of free energy that aae introduced through the 

neoclassical terms. 

One new instability is the neoclassical pressurr-gradient-driven rn0rle,~1'9' which 

arises from the expansion free energy through the fluctuating bootstrap current 

term. This instability has been analyzed using both kinetic"' and fluid moment2 

approaches and has been predicted to have a growth rate comparable to that of 

the conventional resistive ballooning mode. 'Iiirbulent transport models based on 

medium-mode-number (n  5 10) resistive ballooning modes have been shown to cor- 

relate well with experimental data in the Impurity Study Experiment (EX-B)  as 

the auxiliary heating power (or plasma stored energy) is i n ~ r e a s e d . ~ 1 ~  The similari- 

ties of these instabilities to the new pressure-gradient-driven neoclassical instability 

thus make the latter a strong candidate for anomalous transport models in higher- 

temperature plasma regimes. 
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In this paper we extend the previous analytic treatments of the prcssure- 

gradient-driven neoclassical MIID instability by solviiig recently derived3 -5 neoclas- 

sical iiiornent equations for the time evolution of the magnetic ¶ux, fluid vorticity, 

density, and parallel ion flow velocity. A three-dimensional (%I)), large-aspect-ratio, 

initial-value code Lased on the FAR ctrdr has bet-n developed.'" This code solves 

the linearized moment equations starting from an axisymmetric toroidal equilib- 

rium state. This approach h a s  allowed the inclusion of a number of effects t h a t  

were either not included in the analytic calculations or not readily apparent in 

them. First, the compressibility coupling from the density to the ion parallel ¶ow 

equation is retained. This effect is of interest since it was found to be strongly sta- 

bilizing in  the case of the resistive k~allocnning modeg as higher-temperature regimes 

were considered. Also, we do not assume strong ion poloidal flow damping, as was 

the case in the simplest analytic models, but solve the ion parallel flow equation 

consistently with the dynamical evolution of the other variables. Next, we have 

included the radial and poloidal flows in  greater detail tliaii previously considcrcd, 

since these were necessary to obtain proper behavior of the solutions at  the origin. 

In the analytic calculations, this was not critical because a geometry local to the 

resonant flux surfaces was employed. The effects of classical viscosity and density 

diffusion arp also considered. 

The code has been iised to check scalings of the neoclassical instability with 

toroidal mode number, plasma beta, and neoclassical electron viscosity. By gradu- 

ally increasing the neoclassical electron viscosity, the transition from a resistive hal- 

looriing instability to the neoclassical instability can be followed in detail. Finally, 

by removing terms, the codr has bren used to check some of the predictions and 

assumptions of the analytic treatments, such as the validity of rapid ion poloidal 

¶ow damping, the cancellation of the lowest-order geodesic curvature efiects by 

Pfirsch-Schliiter currents, and the lack of explicit dependence of the growth rate on 

resistivity. 

This paper is organized as follows. First, the time evolution equations appropri- 

ate for reduced neoclassical MHD are discsissed. Next, the numerical initial-valuc 

code is described. We then present results demonstrating the transition from a 

resistive ballooning mode to a neoclassical pressure-gradient-driven mode as the 

collisional mean free path is increased. Next, the scaling of  the neoclassical mode 

with rpspect to various quantities is examined. Finally, the effects of removing and 

adding compressibility, resistivity, curvature ( b .  Bp x K )  drive, and classical viscosity 

are examitled. 

* +  
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11. TIME-EVOLUTION EQUATIONS AND 

NUMERICAL METHODS 

The calculations discussed here are based on the neoclassical moment equations 

for n, All, #, and I$;. These eqiiz~tions,~-~ which result from using the electron 

density continuity equation, Ohm's law coupled with Faraday's induction law,  and 

the perpendicular and parallel ion momentum equations (in mks units), arc 

where ne is the electron density, $J is the poloidal magnetic flux, 

ion flow velocity, # is the electric potential, 

is the parallel 

Here we have made a number of minor approximations and simplifications of the 

complete  equation^.^'^ In the electron continuity equation, we have neglected the 

clectron polarization drift, the classical and neoclassical diffusion terms, and the 

motion of the flux surfaces (8$/8t # 0).  All of these effects are second order 

in a gyroradius expansion and much smaller than the terms retained in Eq. (1) 
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for k i p ,  << 1. In Eqs. (3) and (4), we have neglected the electron viscous stress 

effects because they are of order ( m e / m t ) 1 / 2  << 1 compared to  the ion viscoiis stress 

effects that are retained. Finally, we have approximated the toroidal current Jc by 

the parallel cirrrent J I I ,  which is correct to  second order in the small-aspect-ratio 

expansion t z r /Ro << 1. 

driven pressure anisotropy, given by the Chew-Goldberger-Low form (i I & / A )  

The viscous stress terms in Eqs. (1)-(4) may be related to the neoclassically 

where pll - p l  may be expressed4 for species s in teriris of t h t  viscous damping 

frequency y,, the magnetic field H, the mass density n,m,, and the  flow velocity 
--t 

with 

a.nd 

t) 

The divergence of is then 

From this the parallel viscous stress is 

<--t 

The x ? 1111 viscous stress term of Eq. (3) is then 

If we assume [see Eq. (S)]  that  

may be approximated as 

/?I - p ( p / Z )  << 1, then the cross-viscoiis stress 
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t-+ 

We then evaluate the divergence of (6 x e - IIl@12) assuming low /3 a n d  retaining 

terms only to first order in the inverse aspect ratio ( E  z T / &  < 1): 

where Jij = $r .e38 x e( is the Jacobian of the transformation to r ,  0, ( coordinates 

with T being a flux variable. 

Equations (8) and (9) for the viscous stresses complete the closure of the moment 

equations (1) -(4). We express each of the dynamical quantities in  Eqs. (1)-(4) as 

an equilibrium component, f a ,  plus a perturbation, j 7  and linearize about f o .  The 

equilibrium is obtained using the axisyxnmetric noncircixlar toroidal code RSTEQ 

(ref. ll),  which solves the Grad-Shafranov equation with D - T/llleq = $ e q  - 0. 

me evolution cquations fur .JI (L - R A ~ , > ,  I/ (z GA a [ p o + 1 4 ] ) ,  p,  and yiz are then 

given in  nonditnensional form as 

with x = one of the dynamical variables, 
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with +.,, = 4 - w,,lnp and q5*% = 4 t wi- i lnp (we take wl, = O here), 

The D, term in Eq. (15) is an artificial diffusion term inserted to assist numerical 

convergence. It can represent classical diffusion if D, - p and neoclassical diffusion 

if D,  - ~ ( p , / v , ) q ~ / ~ ~ ~ & ~ ~ .  

The electron and iun neoclassical viscosities'' are given by 

2.3 JEV, _ -  
p e  = - 

(1 t 1.07~: !~  f 1.02~, , ) (1  + 1 . 0 7 ~ , , ~ ~ / ~ )  ' 

0.65 d> v, 
pa LZ - 

(1 t 1 . 0 3 ~ ~ ~ ~  + 8.31v,,)( 1 + 0 . 6 6 ~ , , t 3 / ~ )  ' 
where Y ,  V E  3/2Roq/vth arid t L r / &  is the local aspect ratio. 

Here all times are norrnalizcd to the resistive diffusioii time TR = pon2/r lo ,  a is 

a gerieralized minor radius, 1-1 is the major radius divided by Ro (the major radius 

of the magnetic axis), and VI ,  is normalized by Ro, V I  is normalized by a ,  the 

resistivity is normalized to 70 (its valiie at the magnetic axis), the magnetic fields 

to B C O  (the vacuum field at R O ) ,  V7 to ~ / T R ,  911 to NCo/poIio, 4 to a 2 ~ < o / m ,  $ 
to U ~ B C ~ ,  and the curvature IC' normalized to Ro. Thcse equations are solved on 

a generalized nonorthogonal coordinate system ( T ,  9 ,  C )  (rcf. 13) determined hy the 

equilibrium code, The generalized radial ua riable i- is an equilibrium Aux surfaw 

label, 0 < r < 1, 6 is a generalized poloidal angle variable, and ( is the usual 

geometric toroidal angle. 

111. N-UMERICAL RESULTS 

The goals in solving Egs. (13) (16) nurncrically were (a) to examine the tran- 

sition from a resistive ballooning mode to a rneoclassical pressure-gradient-driven 

instability by gradually increasing the neoclassical viscosity, ( b )  to check the scal- 

ing of the neoclassical instability with respect to the relevant physical parameters 

and compare it with analytic predictions, and ( c )  to test the effects of the presence 
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and absence of various terms, such as the soiind wave coupling (parallel compress- 

ibility), parallel ion flow evolution, resistivity, and classical viscosity. 

The code used in solving Eqs. (13)-(16) is an extension of the FAR code." 

This code employs a finite difference representation in the radial coordinate T and a 

Fourier series expansion in the poloidal and toroidal angles B and [. The resulting 

matrix equations are then evolved in time using a fully implicit technique. Per- 

turbed quantities are represented in the following form, which allows for general 

symmetries: 

This form is necessary because the neoclassical terms included in Eqs. (13)- (16) do 

not conserve the normal symmetries present in the reduced resistive MHD equations 

[;.e., (f, and T / l a  would normally involve only sin(m8 t n[ )  components, while 4 and 

p would involve only cos(mB + n()  components]. This fact also implies that the 

eigenvalue will have a real. frequency as well as a growth rate. Normally, 11 poloidal 

modes at a fixed toroidal mode number are included in each summation with the 

spectrum centered on m = 6-9, depending on the parameter regime being studied. 

The numerical results presented here are based upon a slightly simplified version 

of Eqs. (13)--[16). First, the V11R,,i terms in Eqs. (13) and (16) have been neglected. 

The remaining neoclassical term in Eq. (13) has then been flux surface averaged. 

Preliminary calculations carried out without invoking these approximations indicate 

no significant qualitative changes from the results presented here. Also, we do 

not retain the w,, terms here, except as they enter into q5xe, and, as mentioned 

previously, w , ~  is neglected. 

Parameters that remain fixed through most of the following results are S - lo5 ,  

wcYz = 3 x lo6,  t = 0.25, central plasma beta PQ = 0.087 (except where P o  scaling is 

examined), and toroidal mode number TI, r 6 (except where n scaling is examined). 

This value of n i s  expected to be large enough for the parameters considered here 

to reasonably allow comparison with the asymptotic (n + GO) ballooning mode 

analytic theory of neoclassical MHD pressure-gradient-driven in~tabili t ies.~j*7~ ,7 

We first study the transition from a resistive ballooning instability to a neo- 

classical MHD instability. In Fig. 1 the growth rate is plottxd as a function of the 

neoclassical electron viscosity parameter pe/ i ie .  Here we have left out the VII(RI/II~) 

term in the density evolution equation (15). This term introduces parallel com- 

pressibility and would strongly stabilize the resistive ballooning mtde  (the effect 
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of this is discussed later). As indicated, the expected breakpoint between the re- 

sistive Pfirsch-Schliiter and neoclassical plateau regimes occurs around p , / ~ / ,  = c 2 .  

The growth rate in the resistive regime ( p e / w e  < e 2 )  drops slightly with increasing 

p,/v, but remains close to its pure resistive ( p e / v e  7 0) value. In the vicinity of 

pJv, -- c2 the growth rate begins to  take on a different scaling with resp'ct to  

p, /v, ,  the slope of which approaches that of the analytic pred i~ t ion ,~!~1 '1~  

where& - Bnp/B;, T;' = r )d lnp /d r ) ,  So - T R / T A I ) ,  - ( 4 ~ p , ) ~ / ~ R o q / B e .  ?'he 

dotted line of Fig. 1 shows Eq. (20) evdliiated locally in radius near the peaking of the 

mnde structure of the niamerical results. The two results are about a factor of two 

different in magnitude, but the slopes are very similar. This difference in magnitiicie 

can largely be accounted for by the fact, that the analytic theory does not incliidc 

the & . V p x  ,4 term in the vorticity equation ( ~ 4 )  that drives the conventioiial resistive 

ballooning instability. In the numcrical results, we retained this term bvcaiisr WP 

wanted to  carefully follow the transition from resistive ballooning to the neoclassical 

pressura-gradient driven instability, a n d  the term was needed for the existence of 

the resistive mode. 

+ 

Figure 2 indicates that closer agremient in magnitude is obtained with tlic. 

analytic prediction when thc pressiirr gradient curvature term in Eq. (14) is abseiit 

(dashrd line). 'The small remaining cliscrcpancy between the dashed and dotted h i p s  

(analytic prediction) can be attnibuted to several differences between thc analytic 

and numerical rnodcls. First, the analytic theory is local to a flux surface, while the 

eigenfunctions in the numerical results have a distributed radial mode structure. 

Also, tlir numerical results are based upon a relatively finite value of toroidal mode 

number ( n  = S), wlrjle the analysis is asymptotic in n ( n  - - f  GO). A final tliffvrencc 

is that the radial flow terms (a VT) in Cq. (6)  had to  be included in the code t o  

maintain regularity a t  the origin, wlivreas these terms wcre neglected in the analysis. 

' rhe othcr significant aspect of Fig. 2 is its demonstration of tlie fact  that the  drive 

for the neoclassical ~~ressure-gradient-criven instability comes from a soiirce (the 

fluctuating bootstrap current) other than the usual pressure gradient curvaturc 

term that drives resistive ballooning instabilities. 

Besides the altered growth rate, a fiirther distingiiisbing characteristic of the 

neoclassical I"essure-gradient-driven instability is a modification in the mode struc- 

ture. As p,/ue is increased, the rnode is expected to broaden radially from the highly 
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peaked structure of the resistive ballooning i n ~ t a b i l i t y . ~ ! ~ * ~  This feature is demon- 

strated in Fig. 3, which displays contour plots of the perturbed potential function 

and the radial mode structure of the dominant poloidal mode of the potential for 

several of the cases of Fig. 1. As p , / v e  is increased into the neoclassical regime 

(p,/v, 2 c2 = 0,0625), the radial mode structure broadens and assumes a roughly 

Gaussian shape, in contrast to the highly peaked resistive ballooning mode limit 

(p,/v, = 0). Also, the dominant poloidal mode number shifts upward slightly, and 

the peak in the potential moves outward in radius with increasing p e / v e .  This effect 

is probably caused by the radial dependence (.c r 2 )  of the neoclassical viscosities 

used in the code. Analytic predictions of  the radial 

pressure-gradient-driven instabili ty2y4 1' result in 

width scaling of the neoclassica.1 

Local evaluations of 6, near the peak in the numerical radial rnodc structure are 

shown in Fig. 4, along with the measured width at half-maximum of the dominant 

poloidal potential mode in the numerical results. These evaluations are for cases 

shown in Fig. 1. Again, the slopes with respect to p e / v e  are similar, but the mag- 

nitudes difkr for reasons similar to those given for the discrepancies in rnagnitiide 

of the growth rates in Fig. 1. 

It is also of interest to check the scaling with respect to two other parameters, 

/3 and 71, (toroidal mode number), that occur in Eq. (20). The numerical results and 

local evaluations of Eq. (20) are compared in Figs. 5 and 6. 'The slopes indicate 

good agreement with the P 2 l 3  and n2I3 scalings. The analytic predictions deviate 

from straight lines here as a result of the radial and poloidal mode number shifts 

that occur in the dominant mode in the numerical results its Po and 71, are varied. 

Parallel compressibility has been found to be a strongly stabilizing mechanism 

for resistive ballooning instabilities.' As mentioned earlier, the results presented so 

far have neglected parallel compressibility, which can be included in mir equations 

through the V11(RVji;) term in the density evolution equation (15). Figure 7 presents 

a comparison of the results given in Fig. 1 with (dashed line) and without (solid 

line) compressibility. As expected, parallel compressibility is strongly stabilizing 

in the resistive regime ( p E / v e  < 0.06). In the neoclassical regime (,ue/ve > 0.06), 

compressibility i s  still stabilizing, but to a much lesser extent than for the resistive 

ballooning mode. 



The rieoelassical MMD evolution equations presented here incorporate the 

proper damping of the poloidal ion flow velocity. This damping is railsed by 

collisions between trapped and untrapped particles in the plateau and banana 

regimes and by magnetic compression/expansiori from the 8 dependence of the 

magnetic field in the Pfirsch-Schliiter regime. An approximation commonly used 

in the a n a l y ~ i s ~ 1 ~ 9 ~  is that the ion parallel flow is rapidly damped so that the 

neoclassical term in the eqiiation (16) can be set equal to zero, resulting i n  

yll - ( q / T e F ' ) ( a $ / & ) .  This approximation is checked in Fig. 8, where the growth 

rate vs pe /ve  is plotted both with the full equation time evolved (solid line) and 

with the rapid damping limit (dashed line) and compressibility absent. This indi- 

cates that ,  for the parameters corisidered here, this is a fairly good approximation, 

as would be expected since the parallel ion flow darnping time is fast compared to  

the growth of the instability. 

One further effect of interest for the neoclassical P'ess.nre-gra$ient-driven insta- 

bility is that of resistivity. In Fig. 9 ,  growth rates both with (solid line) and without 

(dashed line) resistivity are plotted vs p e h e  with compressibility present. In the 

neoclassical regime, resistivity seems to have only a very weak influence because of 

tlie dominant effect of the dissipation from the neoclassical viscous damping. 

Another form of classical dissipation that could influence the neoclassical 

prec;sure-gratlient-driven instability is the classical viscous damping term in the 

vorticity equation (14) (;.e., the RLT1 V2, U term). This term has not been present in 

the results given so far. Its eEect is considered in Fig. 10 for one of the ideal cases 

shown in Fig. 9. The classical viscosity may be expressed in terms of other physical 

parameters as R, T H ~  - S - 1 f l t , , ~ ~ ( p , / a ) 2 ,  where O,-, is the ion cyclotron frequency 

and pz is the ion gyroradius; a typical value of R ; ' T H ~  for the parameters used here 

is - ~ 8  x Thew results indicate only a slight degree of stabilization at this 

level. Examination of the radial mode structure indicates some radial broadening 

as RIil is increased, thus yielding a smaller value of V2,U in the vorticity equation 

than would be expected with a fixed radial mode structure. 

1 

IV. CONCLUSIONS AND SUMMARY 

A new form of pressure-gradient-driven instability, which is an extension of 

the resistive ballooning mode into high- temperature regimes, has been arialyzed 

numerically. This instability arises from including the appropriate modifications to 

the plasma flows and currents caused by neoclassical MBD eiTects. The instahility 
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examined here is driven primarily through the fluctuating bootstrap current in 

Ohm’s law. It has higher growth rates than the resistive ballooning instability and 

a broadened radial mode structure in the neoclassical regime. 

We have used a 3-D toroidal initial-value code that includes the relevant neo- 

classical MHD corrections to resistive MWD. In the appropriate limits, this code has 

reproduced the analytically expected scalings for the growth rate of the instability 

with respect to the neoclassical viscosity parameter p, /v, ,  the toroidal mode num- 

ber n, and the plasma beta. Since the code includes the driving terms for both the 

new neoclassical instability and the resistive ballooning mode, it provides a means 

of carefully examining the transition from one type of instability to the other. In 

addition, the influence of several new effects such as compressibility s tab i l i~  ,a t’ ion, 

classical viscosity, resistivity, and self-consistent ion parallel flow evolution can be 

easily checked. T h e  main conclusion is that the neoclassical pressure-gradient-driven 

instability seems to be resilient against many of the mechanisms, such as parallel 

compressibility, that tend to be strongly stabilizing for the resistive ballooning mode. 

This could be of importance in understanding confinement in higher-temperature 

plasmas operating in the long mean-free-path regime. 
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NUMERICAL RESULTS 
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io - ’  IO0 
Pe fve 

Fig. 1. Growth rate vs electron neoclassical viscosity parameter p,/v, in  resis- 
tive and neoclassical regimes from numerical results (solid line) and analytic scaling 
(dotted line) (n = 6, Po = 0.087, 5’ -7 l o5 ,  wcYz - 3 x l o6 ,  incomprrssible). 
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Fig. 2.  Growth rate vs electron neoclassical viscosity parameter pJv, in re 
sistive and neoclassical regimes with (solid line) aiid without (dashed line) pres- 
sure gradient curvature drive in vorticity equation ( n  - 6, ,& = 0.087, S ~ l o5 ,  
wcYz = 3 x Io6,  incornpressihlc). 
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Fig. 4. Scalings of radial mode width vs pJve from numerical (solid l ine)  and 
analytical (duttcd line) calculations based on the results given in Fig. I .  
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Fig. 5 .  Numerical (solid line) and analytical (dotted line) scalings of growth 
3 x lo6,  rate vs P o ,  peak plasma beta (n  = 6, P o  - 0.087, S 

incompressible). 
lo5 ,  w+ 
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Fig. 6. Numerical (solid line) and analytical (dotted line) scalings of growth 
rate vs n, toroidal mode number ( n  = 6, P o  - 0.087, S = l o 5 ,  wcYz = 3 x l o 6 ,  
incompressible). 
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to p, /v,  with (dashed line) and without (solid line) parallel compressibility coupling 
(n -2 6, P o  = 0.087, S = lo5 ,  wcYz = 3 x 10')). 
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Fig. 8. Scaling of growth rate with respect to y,/v, with parallel flow cquation 
time evolved (solid line) and under strong poloidal flow damping approxirnation 
(dashed line) (n L 6, P o  - 0.087, S - l o 5 ,  wcYz - 3 x l o 6 ,  incompressible). 
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Fig. 9. 
10') and without (dashed line) resistivity ( n  = 6, Po 
compressible). 

Scaling of growth rate with respect to p, /v,  with (solid line, ,S : 
0.087, wcYz - 3 x IO6, 
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Fig. 10. Dependence of growth rate for a neoclassical p~e"ufe-gradient-driven 
iristability on the classical viscosity ( p e / v e  = 0.22, n = 6, PO = 0.087, wCyi  = 3 x l o 6 ,  
compressible, ideal case as in Fig. 9). 
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