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A PARTITIONING STRATEGY FOR PARALLEL SPARSE 

CHOLESKY FACTORIZATION 

G. A. Geist 

E. Ng 

Abstract 

This paper presents a solution to the problem of partitioning the work for 

sparse matrix factorization on a multiprocessor system. The goal of this partition- 

ing strategy is to achieve load balancing and a high degree of concurrency among 

the processors while reducing the amount of processor-to-processor data communi- 

cation. The task assignment strategy is based on the structure of the elimination 

tree for a given ordering, and can be applied to arbitrarily unbalanced trees. This 

is important because popular fill-reducing ordering methods, such as the minimum 

degree algorithm, often produce unbalanced elimination trees. Results from the 

Intel iPSC/2 are presented for various finite-element problems using both nested 

dissection and minimum degree orderings. 
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1. Introduction 

In this paper we address the problem of partitioning the computational work in the 

factorization of sparse matrices for a multiprocessor system. More specifically, we con- 

sider the solution of As  = b, where A is sparse, symmetric and positive definite. This 

system of equations is solved using the Cholesky factorization A = LLT,  where L is 

lower triangular. We partition the columns of L among the processors rather than the 

individual elements of the matrix because this level of granularity is well suited for 

most of the multiprocessors commercially available today [3,5]. Given this choice of 

granularity, the partitioning problem becomes how to  assign columns of L to the indi- 

vidual processors so that the work load i s  balanced, and a high degree of concurrency 

i s  achieved among processors. It is also desirable to  minimize the interaction between 

processors, which takes the form of message passing for distributed-memory computers 

or synchronization for shared-memory computers. While no particular architecture is 

assumed in this work, the results are particularly well suited to distributed-memory 

parallel computers such as hypercube multiprocessors. 

The partitioning scheme we present can be thought of as a generalization of the 

subtree-to-subcube mapping scheme [8] to arbitrarily unbalanced elimination trees. 

The subtree-to-subcube scheme is designed to work with nested dissection orderings 

and with the number of processors equal to a power of 2 while the general scheme has 

no restrictions on the number of processors or ordering method. 

An outline of the paper is as follows. In Section 2, we describe elimination trees and 

how they are used as a tool to identify parallelism. We survey existing partitioning 

schemes for the above problem, including subtree- to-subcube mapping, in Section 3 

and describe our partitioning scheme in Section 4. Finally, some typical results for 

finite-element problems are presented in Section 5. 

2. Elimination Trees 

We assume the reader is familiar with basic graph theory notions and the correspon- 

dence between undirected graphs and the structure of symmetric matrices. For back- 

ground in this area the reader is referred to [7]. In particular, the methods in this paper 

depend heavily on the notion of elimination trees and their properties. An elimination 
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tree corresponding to the structure of the Cholesky factor L is defined as follows. FOP 
each column j 1. n, if column j has off-diagonal nonzeros, then let 7 ( j )  be the row 

subscript of the first off-diagonal nonzero in column j ;  otherwise, let 7 ( j )  = 0. An 

elimination tree of L is a tree with n vertices labelled from 1 to ri, and the parent of 

vertex j is - / ( j ) .  The labelling of the vertices in an elimination tree corresponds to the 

columns of L ,  and the structure of the tree contains useful information pertaining to 

the factorization process. 

We illustrate this process with an example. The Cholesky factor L of a matrix and 

Consider the first its elimination tree are displayed in Figures 1 and 2, respectively. 

L = I X  X 

X 

X 

X 
X 

X 

X 
X 

X 
X 

X 
X 

X X 1 
Figure 1: Structure of a Cholesky factor. 

Figure 2: The elimination tree associated with the Cholesky factor in Figure 1. 

step of Cholesky factorization of A.  Suppose the first column of L has been computed. 

Since 121 is zero, the second column of L is not affected by column 1 of L.  When 

column 2 of I, is computed, only columns 5 and 6 are affected, These dependencies 

are expressed in the elimination tree in Figure 2. The elimination of column i in the 

matrix affects only those columns that are ancestors of vertex i in the elimination 

tree. In other words, columns in disjoint subtrees are independent during Cholesky 

factorization. The observation above and several other properties of elimination trees 
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are given in [14]. 

In the example, since nodes 1 and 2 are on different independent branches of the 

tree and thus do not affect each other, columns 1 and 2 of the Cholesky factor can be 

computed in parallel. Conversely, node 5 is the parent of nodes 2 and 4, and therefore 

column 5 cannot be computed until columns 2 and 4 are finished. A graphical interpre- 

tation of the factorization can be illustrated using the elimination tree. Computing a 

column of the Cholesky factor corresponds to removing or eliminating that node from 

the tree. At the first step, any or all of the leaf nodes can be eliminated. This creates 

a new set of leaf nodes in the tree, which can now be eliminated, and so on. 

In general, the leaf nodes in the elimination tree denote all the independent columns 

of the sparse matrix, and the paths up the elimination tree to the root specify the 

column dependencies. Thus the elimination tree provides precise information about 

the column dependencies of L and hence can be used to partition columns of the sparse 

matrix among different processors. 

The structure of the elimination tree depends on the structure of the matrix. Since 

the structure of the matrix changes under symmetric permutations, the structure of 

the elimination tree also changes. Ordering methods commonly used do not take the 

structure of the elimination tree into consideration. Instead, they rely on heuristics that 

reduce fill in the Cholesky factor [7]. While these methods produce good orderings in 

terms of fill and operation counts, they may not produce orderings that lend themselves 

to  parallel computation. A desirable tree structure for parallel execution is short and 

wide. A wide tree indicates a high degree of concurrency can be exploited, and a 

short tree has a small parallel execution time. Nested dissection orderings [2,6] often 

produce trees that are wide and short, and for some very regular problems such as b x k 
grids, Some nested dissection orderings produce balanced binary trees. However, the 

elimination trees associated with minimum degree orderings are often unbalanced. In 

Figures 3 and 4 the elimination trees are displayed for a nested dissection ordering and 

a minimum degree ordering, respectively, on a 7 x 7 grid. 

If the elimination tree is not balanced, then there are two obvious approaches to 

the partitioning problem. First, the tree could be manipulated in the hope that it 

will become more balanced, or at least have more branches, without increasing fill, 

A second approach is to use the unbalanced tree but to partition it in such a way 
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Figure 3: The elimination tree associated with a nested dissection ordering on a 7 x 7 
grid. 

that the computational load across the processors is roughly equal. The first approach 

was taken by Liu in [12,13], where special tree rotation algorithms are described that 

attempt to  reduce the tree height while preserving fill. 

There are advantages and disadvantages to the tree rotation approach. In the ideal 

case, the rotated tree becomes shorter and nicely balanced. Unfortunately this behavior 

is the exception. For some trees the algorithm is unable to  reduce the height of the 

tree. In most cases the algorithm reduces the height of the tree significantly, but the 

structure of the tree remains unbahnced. An example illustrating this fact is given in 

Figure 5 in which Liu’s strategy is applied to the elimination tree in Figure 4. 

3. Existing Partitioning Schemes 

Several partitioning methods have been suggested for use on multiprocessors with a 

hypercube topology. In the dense case good load balance is achieved when the columns 

of the matrix are assigned to the processors using the following formula: column i is 

assigned to processor (i-1) mod p .  This form of partitioning is called wrap mapping [1]. 
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x 
1 

Figure 4: The elimination tree associated with a minimum degree ordering on a 7 x 7 
grid. 
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Figure 5:  The elimination tree obtained when tree rotations are applied to the elimi- 
nation tree in Figure 4. 
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An early attempt partitioned the columns of the sparse matrix using this wrap mapping. 

Experimental results showed that the communication load was evenly distributed across 

the communication links, but the communication load was quite high [5]. 
A second partitioning scheme, which we call sparse-wrap mapping, is a variation of 

wrap mapping. This scheme uses the structure of the elimination tree to partition the 

columns. This sparse-wrap mapping is generated by assigning all the leaf nodes in the 

tree to the processors in a wrap fashion regardless of the column label. Then, assuming 

these nodes are eliminated, the next set of leaf nodes is assigned, and so on, working up 

the elimination tree. In Figure 6 ,  the sparse-wrap mapping for the elimination tree in 

Figure 3 is illustrated. Here the number of processors is assumed to be 4. This scheme 

Figure 6:  Sparse-wrap mapping for the elimination tree in Figure 3. The labelling 
refers to the processor to  which a column is assigned. 

has the advantage of assigning potentially concurrent work to different processors so 

that all available parallelism is exploited. While this scheme improves the amount of 

concurrency, it still suffers from a large communication load. 

A more elaborate partitioning scheme, called subtree-to-subcube mapping, was re- 

cently developed to reduce this communication load [$]. The scheme is based on the 
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structure of the elimination tree and the topology of the hypercube. Although a bal- 

anced binary tree is ideal for this method, m y  tree associated with a nested dissection 

ordering can  be used. Similarly, the method assumes the number of processors, p ,  

is a power of two, although modifications can be made to the method to  avoid this 

restriction. Starting at the root, the method assigns the columns in the initid chain 

of nodes in a wrap fashion to all processors. Since the elimination tree is produced 

from a nested dissection ordering, the initial chain splits into two chains. These in turn 

split into two and so on to the bottom of the tree. The method uses this fact in its 

assignments. It divides the processors into two equal groups and wrap maps each of 

the chains to each group. The method continues recursively until only one processor 

remains in each of p groups. It then assigns the portion of the tree below each group to 

that processor. Figure 7 shows an example of subtree-to-subcube partitioning om four 

processors of a, 7 x 7 grid ordered by nested dissection. For a k x b grid ordered by 

Figure 7: A subtree-to-subcube mapping for the elimination tree in Figure 3. The 
labelling refers to the processor to which a column is assigned. 

nested dissection, George, Liu and Ng proved that the subtree-to-subcube mapping has 

the minimum amount of interprocessor communication [8] .  The major disadvantage of 
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this partitioning method is that it requires a balanced elimination tree to  work well. 

Otherwise, a large load imbalance results and performance suffers accordingly. 

For wrap and sparse-wrap partitioning methods the time required to perform the 

backward substitution using a row-oriented data structure was sometimes as large as 

the time to do the factorization! This is due to  the randomness of the communication 

pattern, which forces the parallel backward solution to  behave like a sequential algo- 

rithm. Recall that in the serial case the triangular solution is an order of magnitude 

faster than the factorization. Using the subtree-to-subcube mapping, the communi- 

cation requirement for each solution component is limited to only a subtree in the 

elimination tree, and thus the relative proportions of the two phases of the solution 

have returned to normal. 

Compared to minimum degree and banded orderings, the nested dissection ordering 

produces the most balanced elimination trees. Since balanced trees are desired when 

using the subtree-to-subcube partitioning, a parallel nested dissection algorithm has 

been developed for use on 2-dimensional finite element problems [4]. The combination of 

this nested dissection algorithm and the subtree-to-subcube partitioning is compared to 

our new partitioning scheme in Section 5. The main drawback to the nested dissection 

ordering algorithm is the tendency to produce a large amount of fill and consequently 

a large amount of computational work for general problems. Of the three ordering 

methods mentioned above, minimum degree ordering algorithms often generate the 

least fill. Table 1 gives the amount of fill produced by Liu’s multiple minimum degree 

algorithm (MMD) and by the parallel nested dissection algorithm described in [4]. The 

test problems are a sequence of finite-element problems defined on itn L-shaped domain. 

The MMD ordering was performed on one processor and so its qudity is unaffected by 

the number of processors used in the factorization. On the other hand, the quality of 

the parallel nested dissection ordering depends on the number of processors used during 

the ordering. This is because the graph is divided into two equal pieces recursively until 

p pieces are generated, then a regular nested dissection [7] is performed on the subgraph 

in each processor. 

In general the MMD ordering produces a very unbalanced elimination tree. Liu’s 

tree rotation algorithm can sometimes improve the balance, but seldom to the point 

that a subtree-to-subcube partitioning can be applied effectively (see Figures 4 and 5 ) .  
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2,6 14 
3,025 
3,466 
3,937 
4,438 
4,969 
5,530 

46,624 50,275 
57,276 61,637 
67,912 73,647 
83,116 86,717 
95,374 101,190 

111,493 116,954 
125,706 134,710 
146,089 151,897 
164,054 173,906 

ND 
> =  16 

50,967 
63,357 
75,696 
88,972 
03,719 
19,529 
36,914 
55,440 
75,902 

_I_- 

~ - _  
Table 1: Offdiagonal nonzero counts for ininimum degree ordering and nested dissection 
orderings. 

4. The Partitioning Algorithm 

It is our intent to work with arbitrarily unbalanced elimination trees to  allow the user 

flexibility in his choice of ordering methods, Our approach uses some additional prop- 

erties of elimination trees. The elimination tree can be generated from the structure of 

the reordered matrix A before the Cholesky factor L is known [10,14]. Also in [14] is an 

algorithm to predict the annoant of fill that will occur in L using only the structure of 

the reordered matrix A and the elimination tree. Given the number of nonzeros in each 

column and the elimination tree, it  is possible to calculate the number of floating-point 

operations performed on each column of E .  An efficient algorithm for generating these 

operation counts is shown in Figure 8. We will use these operation counts as nodal 

weights in our scheme. 

Given an arbitrary tree and p processors, our task is to  find the smallest set of 

branches such that this set can be partitioned into exactly p subsets, all of which 

contain approximately the same amount of work. Over this class of solutions we wish 

to  maximize the operation counts in the set of branches. 

Our strategy involves a breadth first search of the elimination tree, cutting off 

branches and applying a heuristic bin packing algorithm to the set of branches. The 

procedure is aqplied iteratively until the work load across all processors meets a user 

defined tolerance. That is, the iterative procedure will be terminated when the diRer- 

ence in work load between any two processors is less than a user specified parameter. 

Each processor is then assigned the set of branches in a particular bin. The remaining 



- 11 - 

for j := 1 to n do 
n z ( j )  := 1 

end for 

for i := 1 to n do 
marker(i) := 0 
for each k wit5 a;k # 0 and k > i do 

j := k 
while rnarker(j) # i and j < i do 

..(j) := n.(j) + 1 
marker( j )  := i 
j := parent( j )  

end while 
end for 

end for 
for i := 1 to n do 

end for 
for i := 1 to n do 

rnarker(i) := 0 

fcnt(d) := fcnt ( i )  + nz(i) 

for each k with a;k # 0 and k > i do 
j := k: 
while marber(j)  # i and j < i do 

fcnt(i) := fcnt(i)  + n.z(j) 
marber( j )  := i 
n z ( j )  := m ( j )  - 1 
j := paren t ( j )  

end while 
end for 

end for 

Figure 8: Algorithm for predicting the number of flops required to generate each column 
of L .  
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nodes are assigned to  all processors in a wrap around manner. 

The key to  this strategy is knowing how large each of the branches is without 

searching down it  each time. The relative size of the branches determines which parts 

of the tree need pruning and which parts should be taken as a whole. We accomplish 

this by using a weighted elimination tree. Each node of the tree is given a weight 

corresponding to  the sum of the weights of its children and the number of floating- 

paint operations performed on that column of L The algorithm in Figure 9 describes a 

method for generating these weights. 

for i := 1 to n do 

end for 
nodewt(i) := 0 

for i := I to do 
nodezut(i) := nodewt(i) + fcnt(i)  
if ( purent(i) # 0 ) 

end if 
nodewt(parent(i)) := nodewt(parent(i)) + nodewt(i) 

end for 

Figure 9: Algorithm. to generate tree weights. 

Each node of the tree corresponds to  one column of L ,  but the weight of a node is 

the sum of the floating-point operations to  factor that column and the weight of all of 

its children. Thus, the weight of a given node is the number of floating-point operations 

needed to eliminate all of the nodes below and including that node. The weight of the 

root node in the trce is always the total nuinher of floating-point operations required 

to factor the rnatttrix. 

The partitioning algorithm is shown in Figures 10 and 11. As an initial step the 

first p branches of the tree are selected and their weights are placed in the p bins. If 

the weights in the bins meet the user specified balance, then the partitioning algorithm 

terminates. Otherwise, the largest branch in the set of branches is searched until it 

splits. Assuming that the branch splits into only two smaler branches (and this is 

almost always the case), the number of branches in the set has increased by one and 

the largest weight i s  replaced by two smaller weights whose sum is less than the original 

weight. This new set of weights is placed in the p bins using the heuristic rule of placing 
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ratio := 0 

While( ratio 5 to1 ) 
ip := p- 1 

ip := ip + 1 
partition tree into 2 ip branches 
build heap of branch op-counts ( m u  on top) 
initialize bin heap := 0 
While( op-heap not empty ) 

add top of op-heap to top of bin-heap 
reheap bin-heap (min on top) 
delete top of op-heap and reheap 

end while 
find max bin in bin-heap 
ratio := minbin/maxbin 

end while 
assign nodes in bins to proc. 
assign rest nodes in wrapped manner 

Figure 10: Partitioning Algorithm. 

if( first call ) 

end if 
While( size-of-list < ip ) 

initialize linked list as first branches of tree 

find stode in list with max QPS 

find next branch in subtree with root node 
add next branch and all its siblings to list 
delete node from the list 

end while 
return list of branches 

Figure 11: Algorithm to partition tree. 



- 14 - 

the largest weight in the bin with the smallest sum. Finding the largest and smallest 

weights is accomplished using two heaps [9]. The weights of the nodes selected for 

partitioning are arranged into a heap with the maximum on top. Similarly, the weights 

of the p bins are also ordered into a heap, but with the minimum weight on top. Both 

heaps are updated when the maximum in the node heap is deleted from that heap and 

added to the minimum in the bin heap. Since the weights are organized ~5 heaps, this 

updating can be done in logq time, where q is the number of entries in a heap. (The 

use of heaps i s  one of the rnain reasons the partitioning algorithm is so efficient.) This 

process is continued until the node heap is empty. Once all the weights are assigned to  

a bin, the load balance criterion is again checked. If the test is not met the algorithm 

continues to  prune the tree until it is met or until no more branches can be found. An 

example of a final. mapping using this scheme on an unbalanced tree is shown in Figure 

12. This particular mapping produces the same amount of work on each processor. 

The stopping criterion can be used to trade off load balance for less communication. 

Much communication occurs in the top portion of the tree where it is wrap mapped. If 

the load balance criterion is set very strict, then the algorithm will have to  search further 

down the tree to  meet it than if the criterion is set more leniently. Subsequently, the 

portion of the tree that is wrap mapped is larger in the former, which induces a larger 

amount of communication during the factorization. Our experience is that performance 

is more sensitive to load balance than to the amount of communication so we have set 

the criterion to  favor load balance. Some experiments in the next section will display 

this effect. 

5 .  Experimental Results 

This section presents some experimental results on the performance of our partitioning 

algorithm. The test problems were based on a sequence of finite-element problems 

defined 011 L-shaped domains. A detailed description of the problems can be found 

in [7]. Each of the problems was initially ordered using the MMD algorithrn before 

applying our partitioning algorithm. 

Table 2 contains the times (in seconds) for performing the Cholesky factorization on 

8 and 16 processors of an Intel iPSC/2 using the sparse-wrap mapping. As mentioned in 

Section 2, Liu has developed an algorithm for reducing the height of elimination trees 
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Figure 12: Result of applying the partitioning algorithm to the elimination tree in 
Figure 5 .  The labels refer to the processors to which the columns are assigned. 



- 1 6 -  

original tree 

under the constraint that no additional fill is introduced [11,13]. To determine how 

effective the height reducing heuristic is, we applied Liu’s algorithm to the MMD or- 

dering and then performed the factorization. The factorization times are also reported 

in ‘Fable 2. 

tree with 
reduced height 

7L 

2,233 
2,614 
3,025 
3,466 

4,438 
4,969 
5,530 
6,121 

3,937 

n 

2,233 
I 

25% 20% 15% 10% 5% -~ 

5.289 5.286 5.242 5.250 5.216 

.. 
p = 8  

5.793 
7.421 
9.121 

11.569 
13.228 
16.187 
17.621 
21..885 
25.123 

-- 

2,614 
3,025 
3,466 
3,937 
4,438 
4,969 
5,530 

I 

, 6.276 6.277 6.474 6.491 6.463 
1 7.630 7.648 7.677 7.837 7.896 

9.922 9.788 9.826 9.783 10.220 , 11.415 11.394 11.442 11.445 11.656 
13.497 13.505 13.512 13.627 13.639 
15.617 15.404 15.443 15.438 15.454 ‘ 18.600 18.450 18.451 18.594 18.775 

1 

p =  16 

4.111 
5.117 
6.159 
7.897 
9.001 

11.271 
11.869 
14.127 
16.525 

Table 2: Factorization times (in seconds) using MMI) and sparse-wrap mapping. 

The partitioning algorithm requires the user to specify a load balance criterion. 

Table 3 shows the effect of varying this criterion between 25% and 5% for 8 processors. 

For our tests it was set to 20%; that is, the partitioning algorithm terminates when 

r II maximum load variation 1 

the numbers of floating-point operations on the busiest and the most idle processors 

differ by less than 20%. Tables 4 and 5 give the times in seconds to  do the partitioning 

and the factorization for each of the test problems using 8 and 16 processors. The 

partitioning strategy was applied to the tree associated with the initial MMD ordering 
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and also to the tree with reduced height. 

n 
2,233 
2,614 
3,025 
3,466 
3,937 
4,438 
4,969 
5,530 
6.121 

original tree 
p = 8  I p = 1 6  

tree with 
reduced height 
p = 8  I p = 1 6  

Table 4: Factorization times (in seconds) using MMD and partitioning strategy. 

I I I  I1 tree with 
5 tree 
p =  16 

0.150 
0.140 
0.130 
0.160 
0.200 
0.240 
0.210 
0.260 
0.260 

reduct 
p = 8  
0.100 
0.100 
0.130 
0.130 
0.140 
0.170 
0.190 
0.220 
0.230 

. height 
p = 16 

0.140 
0.140 
0.150 
0.160 
0.180 
0.230 
0.230 
0.250 
0.260 

Table 5: Times (in seconds) to do the partitioning using MMD. 

From Tables 4 and 5 ,  we conclude that the partitioning strategy can be implemented 

very efficiently. The time required to  determine the partitioning is negligible compared 

to the factorization time. Comparing the results in Tables 2 and 4, we see that the 

column-to-processor mapping using the partitioning strategy can be quite effective. 

For our set of test problems, the factorization times using the partitioning strategy are 

always smaller than those using the sparse-wrap mapping. The decrease in factorization 

times is primarily due to a reduction in the amount of communication required using 

the mapping from the partitioning strategy. 

For comparison, we have provided in Table 6 the factorization times (in seconds) 
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using the parallel nested dissection ordering and the induced subtree-to-subcube map- 

ping. Comparing Tables 4 and 6, the factorization times for the two mapping schemes 

Table 6: Factorization times (in seconds) using a parallel nested dissection ordering 
and the induced subtree-to-subcube mapping. 

are nearly equal. It is important to point out that, unlike the subtree-to-subcube map- 

ping, our partitioning strategy is designed to  handle an elimination tree associated 

with any fill-reducing ordering. While the MMD ordering appears to be much better 

than the parallel nested dissection ordering in terms of fill (see Table l), the subtree- 

to-subcube mapping induced by parallel nested dissection attempts to  minimize the 

communication load throughout the computation. The reduced computation in MMD 

and the reduced communication in svbtree-tosubcube have cancelled each other in the 

timing comparisions. However, we now describe how to reduce the communication in 

our scheme. 

For a multiprocessor system with p processors, our partitioning algorithm identifies 

p independent sets of columns and assigns one set to  each processor. The remaining 

columns (denoted by S )  arc: assigned to the processors using a wrap mapping. Thus, 

one drawback about our approach is that the remaining set of columns S may be 

large. Consequently, the amount of communication required to  process the columns 

in S may be large. One way to reduce this communication overhead at the possible 

expense of disrupting the load balance is to  apply the subtree-to-subcube mapping to 

S .  The algorithm incorporating this idea can be described as follows. We first apply 

the partitioning strategy to  the elimination tree to identify the independent sets of 

columns that are assigned to the processors. We then work back up the tree starting 

at the roots of these subtrees. In order to implement this idea, we keep a list of 
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processors for each path in S. Initially, a list contains only the processor assigned 

to the subtree. As we move up each path, the nodes are assigned to processors in 

that list in a wrapped fashion. When multiple paths coalesce, their lists are merged. 

When continued to the root of the tree, this scheme will produce a subtree-to-subcube 

mapping of S. However, the overall algorithm is more complicated, and its efficient 

implementation is under investigation. 
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