

ORNL/TM - 10937

Engineering Physics & Mathematics Division

Mathematical Sciences Section

A PARTITIONING STRATEGY FOR PARALLEL SPARSE
CHOLESKY FACTORIZATION

G. A. Geisr
E. Ng

Oak Ridge National Laboratory
Mathematical Sciences Section
P.O. Box 2009, Building 9207A

Oak Ridge, Tennessee 37831-8083

Date Published: November. 1988

Research was supported by the Applied Mathematical Sciences Research
Program of the Office of Energy Research, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 3783 1
operated by

Marlin Marietta Energy Systems, Inc.
€or the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-OS-840R21400

3 4 4 5 6 0 2 8 3 9 4 4 5

Contents

1 Introduction

2 Elimination Trees

3 Existing Partitioning Schemes

4 The Partitioning Algorithm

5 Experimental Results

6 References

1

1

4

10

14

19

A PARTITIONING STRATEGY FOR PARALLEL SPARSE

CHOLESKY FACTORIZATION

G. A. Geist

E. Ng

Abstract

This paper presents a solution to the problem of partitioning the work for

sparse matrix factorization on a multiprocessor system. The goal of this partition-

ing strategy is to achieve load balancing and a high degree of concurrency among

the processors while reducing the amount of processor-to-processor data communi-

cation. The task assignment strategy is based on the structure of the elimination

tree for a given ordering, and can be applied to arbitrarily unbalanced trees. This

is important because popular fill-reducing ordering methods, such as the minimum

degree algorithm, often produce unbalanced elimination trees. Results from the

Intel iPSC/2 are presented for various finite-element problems using both nested

dissection and minimum degree orderings.

- v -

1. Introduction

In this paper we address the problem of partitioning the computational work in the

factorization of sparse matrices for a multiprocessor system. More specifically, we con-

sider the solution of As = b, where A is sparse, symmetric and positive definite. This

system of equations is solved using the Cholesky factorization A = LLT, where L is

lower triangular. We partition the columns of L among the processors rather than the

individual elements of the matrix because this level of granularity is well suited for

most of the multiprocessors commercially available today [3,5]. Given this choice of

granularity, the partitioning problem becomes how to assign columns of L to the indi-

vidual processors so that the work load i s balanced, and a high degree of concurrency

i s achieved among processors. It is also desirable to minimize the interaction between

processors, which takes the form of message passing for distributed-memory computers

or synchronization for shared-memory computers. While no particular architecture is

assumed in this work, the results are particularly well suited to distributed-memory

parallel computers such as hypercube multiprocessors.

The partitioning scheme we present can be thought of as a generalization of the

subtree-to-subcube mapping scheme [8] to arbitrarily unbalanced elimination trees.

The subtree-to-subcube scheme is designed to work with nested dissection orderings

and with the number of processors equal to a power of 2 while the general scheme has

no restrictions on the number of processors or ordering method.

An outline of the paper is as follows. In Section 2, we describe elimination trees and

how they are used as a tool to identify parallelism. We survey existing partitioning

schemes for the above problem, including subtree- to-subcube mapping, in Section 3

and describe our partitioning scheme in Section 4. Finally, some typical results for

finite-element problems are presented in Section 5.

2. Elimination Trees

We assume the reader is familiar with basic graph theory notions and the correspon-

dence between undirected graphs and the structure of symmetric matrices. For back-

ground in this area the reader is referred to [7]. In particular, the methods in this paper

depend heavily on the notion of elimination trees and their properties. An elimination

- 2 -

tree corresponding to the structure of the Cholesky factor L is defined as follows. FOP
each column j 1. n, if column j has off-diagonal nonzeros, then let 7 (j) be the row

subscript of the first off-diagonal nonzero in column j ; otherwise, let 7 (j) = 0. An

elimination tree of L is a tree with n vertices labelled from 1 to ri, and the parent of

vertex j is - / (j) . The labelling of the vertices in an elimination tree corresponds to the

columns of L , and the structure of the tree contains useful information pertaining to

the factorization process.

We illustrate this process with an example. The Cholesky factor L of a matrix and

Consider the first its elimination tree are displayed in Figures 1 and 2, respectively.

L = I X X

X

X

X
X

X

X
X

X
X

X
X

X X 1
Figure 1: Structure of a Cholesky factor.

Figure 2: The elimination tree associated with the Cholesky factor in Figure 1.

step of Cholesky factorization of A. Suppose the first column of L has been computed.

Since 121 is zero, the second column of L is not affected by column 1 of L. When

column 2 of I, is computed, only columns 5 and 6 are affected, These dependencies

are expressed in the elimination tree in Figure 2. The elimination of column i in the

matrix affects only those columns that are ancestors of vertex i in the elimination

tree. In other words, columns in disjoint subtrees are independent during Cholesky

factorization. The observation above and several other properties of elimination trees

- 3 -

are given in [14].

In the example, since nodes 1 and 2 are on different independent branches of the

tree and thus do not affect each other, columns 1 and 2 of the Cholesky factor can be

computed in parallel. Conversely, node 5 is the parent of nodes 2 and 4, and therefore

column 5 cannot be computed until columns 2 and 4 are finished. A graphical interpre-

tation of the factorization can be illustrated using the elimination tree. Computing a

column of the Cholesky factor corresponds to removing or eliminating that node from

the tree. At the first step, any or all of the leaf nodes can be eliminated. This creates

a new set of leaf nodes in the tree, which can now be eliminated, and so on.

In general, the leaf nodes in the elimination tree denote all the independent columns

of the sparse matrix, and the paths up the elimination tree to the root specify the

column dependencies. Thus the elimination tree provides precise information about

the column dependencies of L and hence can be used to partition columns of the sparse

matrix among different processors.

The structure of the elimination tree depends on the structure of the matrix. Since

the structure of the matrix changes under symmetric permutations, the structure of

the elimination tree also changes. Ordering methods commonly used do not take the

structure of the elimination tree into consideration. Instead, they rely on heuristics that

reduce fill in the Cholesky factor [7]. While these methods produce good orderings in

terms of fill and operation counts, they may not produce orderings that lend themselves

to parallel computation. A desirable tree structure for parallel execution is short and

wide. A wide tree indicates a high degree of concurrency can be exploited, and a

short tree has a small parallel execution time. Nested dissection orderings [2,6] often

produce trees that are wide and short, and for some very regular problems such as b x k
grids, Some nested dissection orderings produce balanced binary trees. However, the

elimination trees associated with minimum degree orderings are often unbalanced. In

Figures 3 and 4 the elimination trees are displayed for a nested dissection ordering and

a minimum degree ordering, respectively, on a 7 x 7 grid.

If the elimination tree is not balanced, then there are two obvious approaches to

the partitioning problem. First, the tree could be manipulated in the hope that it

will become more balanced, or at least have more branches, without increasing fill,

A second approach is to use the unbalanced tree but to partition it in such a way

- 4 -

Figure 3: The elimination tree associated with a nested dissection ordering on a 7 x 7
grid.

that the computational load across the processors is roughly equal. The first approach

was taken by Liu in [12,13], where special tree rotation algorithms are described that

attempt to reduce the tree height while preserving fill.

There are advantages and disadvantages to the tree rotation approach. In the ideal

case, the rotated tree becomes shorter and nicely balanced. Unfortunately this behavior

is the exception. For some trees the algorithm is unable to reduce the height of the

tree. In most cases the algorithm reduces the height of the tree significantly, but the

structure of the tree remains unbahnced. An example illustrating this fact is given in

Figure 5 in which Liu’s strategy is applied to the elimination tree in Figure 4.

3. Existing Partitioning Schemes

Several partitioning methods have been suggested for use on multiprocessors with a

hypercube topology. In the dense case good load balance is achieved when the columns

of the matrix are assigned to the processors using the following formula: column i is

assigned to processor (i-1) mod p . This form of partitioning is called wrap mapping [1].

- 5 -

x
1

Figure 4: The elimination tree associated with a minimum degree ordering on a 7 x 7
grid.

- 6 -

Figure 5: The elimination tree obtained when tree rotations are applied to the elimi-
nation tree in Figure 4.

- 7 -

An early attempt partitioned the columns of the sparse matrix using this wrap mapping.

Experimental results showed that the communication load was evenly distributed across

the communication links, but the communication load was quite high [5].
A second partitioning scheme, which we call sparse-wrap mapping, is a variation of

wrap mapping. This scheme uses the structure of the elimination tree to partition the

columns. This sparse-wrap mapping is generated by assigning all the leaf nodes in the

tree to the processors in a wrap fashion regardless of the column label. Then, assuming

these nodes are eliminated, the next set of leaf nodes is assigned, and so on, working up

the elimination tree. In Figure 6 , the sparse-wrap mapping for the elimination tree in

Figure 3 is illustrated. Here the number of processors is assumed to be 4. This scheme

Figure 6: Sparse-wrap mapping for the elimination tree in Figure 3. The labelling
refers to the processor to which a column is assigned.

has the advantage of assigning potentially concurrent work to different processors so

that all available parallelism is exploited. While this scheme improves the amount of

concurrency, it still suffers from a large communication load.

A more elaborate partitioning scheme, called subtree-to-subcube mapping, was re-

cently developed to reduce this communication load [$]. The scheme is based on the

- 8 -

structure of the elimination tree and the topology of the hypercube. Although a bal-

anced binary tree is ideal for this method, m y tree associated with a nested dissection

ordering can be used. Similarly, the method assumes the number of processors, p ,

is a power of two, although modifications can be made to the method to avoid this

restriction. Starting at the root, the method assigns the columns in the initid chain

of nodes in a wrap fashion to all processors. Since the elimination tree is produced

from a nested dissection ordering, the initial chain splits into two chains. These in turn

split into two and so on to the bottom of the tree. The method uses this fact in its

assignments. It divides the processors into two equal groups and wrap maps each of

the chains to each group. The method continues recursively until only one processor

remains in each of p groups. It then assigns the portion of the tree below each group to

that processor. Figure 7 shows an example of subtree-to-subcube partitioning om four

processors of a, 7 x 7 grid ordered by nested dissection. For a k x b grid ordered by

Figure 7: A subtree-to-subcube mapping for the elimination tree in Figure 3. The
labelling refers to the processor to which a column is assigned.

nested dissection, George, Liu and Ng proved that the subtree-to-subcube mapping has

the minimum amount of interprocessor communication [8] . The major disadvantage of

- 9 -

this partitioning method is that it requires a balanced elimination tree to work well.

Otherwise, a large load imbalance results and performance suffers accordingly.

For wrap and sparse-wrap partitioning methods the time required to perform the

backward substitution using a row-oriented data structure was sometimes as large as

the time to do the factorization! This is due to the randomness of the communication

pattern, which forces the parallel backward solution to behave like a sequential algo-

rithm. Recall that in the serial case the triangular solution is an order of magnitude

faster than the factorization. Using the subtree-to-subcube mapping, the communi-

cation requirement for each solution component is limited to only a subtree in the

elimination tree, and thus the relative proportions of the two phases of the solution

have returned to normal.

Compared to minimum degree and banded orderings, the nested dissection ordering

produces the most balanced elimination trees. Since balanced trees are desired when

using the subtree-to-subcube partitioning, a parallel nested dissection algorithm has

been developed for use on 2-dimensional finite element problems [4]. The combination of

this nested dissection algorithm and the subtree-to-subcube partitioning is compared to

our new partitioning scheme in Section 5. The main drawback to the nested dissection

ordering algorithm is the tendency to produce a large amount of fill and consequently

a large amount of computational work for general problems. Of the three ordering

methods mentioned above, minimum degree ordering algorithms often generate the

least fill. Table 1 gives the amount of fill produced by Liu’s multiple minimum degree

algorithm (MMD) and by the parallel nested dissection algorithm described in [4]. The

test problems are a sequence of finite-element problems defined on itn L-shaped domain.

The MMD ordering was performed on one processor and so its qudity is unaffected by

the number of processors used in the factorization. On the other hand, the quality of

the parallel nested dissection ordering depends on the number of processors used during

the ordering. This is because the graph is divided into two equal pieces recursively until

p pieces are generated, then a regular nested dissection [7] is performed on the subgraph

in each processor.

In general the MMD ordering produces a very unbalanced elimination tree. Liu’s

tree rotation algorithm can sometimes improve the balance, but seldom to the point

that a subtree-to-subcube partitioning can be applied effectively (see Figures 4 and 5) .

- 10 -

2,6 14
3,025
3,466
3,937
4,438
4,969
5,530

46,624 50,275
57,276 61,637
67,912 73,647
83,116 86,717
95,374 101,190

111,493 116,954
125,706 134,710
146,089 151,897
164,054 173,906

ND
> = 16

50,967
63,357
75,696
88,972
03,719
19,529
36,914
55,440
75,902

I-

~ - _
Table 1: Offdiagonal nonzero counts for ininimum degree ordering and nested dissection
orderings.

4. The Partitioning Algorithm

It is our intent to work with arbitrarily unbalanced elimination trees to allow the user

flexibility in his choice of ordering methods, Our approach uses some additional prop-

erties of elimination trees. The elimination tree can be generated from the structure of

the reordered matrix A before the Cholesky factor L is known [10,14]. Also in [14] is an

algorithm to predict the annoant of fill that will occur in L using only the structure of

the reordered matrix A and the elimination tree. Given the number of nonzeros in each

column and the elimination tree, it is possible to calculate the number of floating-point

operations performed on each column of E . An efficient algorithm for generating these

operation counts is shown in Figure 8. We will use these operation counts as nodal

weights in our scheme.

Given an arbitrary tree and p processors, our task is to find the smallest set of

branches such that this set can be partitioned into exactly p subsets, all of which

contain approximately the same amount of work. Over this class of solutions we wish

to maximize the operation counts in the set of branches.

Our strategy involves a breadth first search of the elimination tree, cutting off

branches and applying a heuristic bin packing algorithm to the set of branches. The

procedure is aqplied iteratively until the work load across all processors meets a user

defined tolerance. That is, the iterative procedure will be terminated when the diRer-

ence in work load between any two processors is less than a user specified parameter.

Each processor is then assigned the set of branches in a particular bin. The remaining

- 11 -

for j := 1 to n do
n z (j) := 1

end for

for i := 1 to n do
marker(i) := 0
for each k wit5 a;k # 0 and k > i do

j := k
while rnarker(j) # i and j < i do

..(j) := n.(j) + 1
marker(j) := i
j := parent(j)

end while
end for

end for
for i := 1 to n do

end for
for i := 1 to n do

rnarker(i) := 0

fcnt(d) := fcnt (i) + nz(i)

for each k with a;k # 0 and k > i do
j := k:
while marber(j) # i and j < i do

fcnt(i) := fcnt(i) + n.z(j)
marber(j) := i
n z (j) := m (j) - 1
j := paren t (j)

end while
end for

end for

Figure 8: Algorithm for predicting the number of flops required to generate each column
of L .

- 12 -

nodes are assigned to all processors in a wrap around manner.

The key to this strategy is knowing how large each of the branches is without

searching down it each time. The relative size of the branches determines which parts

of the tree need pruning and which parts should be taken as a whole. We accomplish

this by using a weighted elimination tree. Each node of the tree is given a weight

corresponding to the sum of the weights of its children and the number of floating-

paint operations performed on that column of L The algorithm in Figure 9 describes a

method for generating these weights.

for i := 1 to n do

end for
nodewt(i) := 0

for i := I to do
nodezut(i) := nodewt(i) + fcnt(i)
if (purent(i) # 0)

end if
nodewt(parent(i)) := nodewt(parent(i)) + nodewt(i)

end for

Figure 9: Algorithm. to generate tree weights.

Each node of the tree corresponds to one column of L , but the weight of a node is

the sum of the floating-point operations to factor that column and the weight of all of

its children. Thus, the weight of a given node is the number of floating-point operations

needed to eliminate all of the nodes below and including that node. The weight of the

root node in the trce is always the total nuinher of floating-point operations required

to factor the rnatttrix.

The partitioning algorithm is shown in Figures 10 and 11. As an initial step the

first p branches of the tree are selected and their weights are placed in the p bins. If

the weights in the bins meet the user specified balance, then the partitioning algorithm

terminates. Otherwise, the largest branch in the set of branches is searched until it

splits. Assuming that the branch splits into only two smaler branches (and this is

almost always the case), the number of branches in the set has increased by one and

the largest weight i s replaced by two smaller weights whose sum is less than the original

weight. This new set of weights is placed in the p bins using the heuristic rule of placing

- 13 -

ratio := 0

While(ratio 5 to1)
ip := p- 1

ip := ip + 1
partition tree into 2 ip branches
build heap of branch op-counts (m u on top)
initialize bin heap := 0
While(op-heap not empty)

add top of op-heap to top of bin-heap
reheap bin-heap (min on top)
delete top of op-heap and reheap

end while
find max bin in bin-heap
ratio := minbin/maxbin

end while
assign nodes in bins to proc.
assign rest nodes in wrapped manner

Figure 10: Partitioning Algorithm.

if(first call)

end if
While(size-of-list < ip)

initialize linked list as first branches of tree

find stode in list with max QPS

find next branch in subtree with root node
add next branch and all its siblings to list
delete node from the list

end while
return list of branches

Figure 11: Algorithm to partition tree.

- 14 -

the largest weight in the bin with the smallest sum. Finding the largest and smallest

weights is accomplished using two heaps [9]. The weights of the nodes selected for

partitioning are arranged into a heap with the maximum on top. Similarly, the weights

of the p bins are also ordered into a heap, but with the minimum weight on top. Both

heaps are updated when the maximum in the node heap is deleted from that heap and

added to the minimum in the bin heap. Since the weights are organized ~5 heaps, this

updating can be done in logq time, where q is the number of entries in a heap. (The

use of heaps i s one of the rnain reasons the partitioning algorithm is so efficient.) This

process is continued until the node heap is empty. Once all the weights are assigned to

a bin, the load balance criterion is again checked. If the test is not met the algorithm

continues to prune the tree until it is met or until no more branches can be found. An

example of a final. mapping using this scheme on an unbalanced tree is shown in Figure

12. This particular mapping produces the same amount of work on each processor.

The stopping criterion can be used to trade off load balance for less communication.

Much communication occurs in the top portion of the tree where it is wrap mapped. If

the load balance criterion is set very strict, then the algorithm will have to search further

down the tree to meet it than if the criterion is set more leniently. Subsequently, the

portion of the tree that is wrap mapped is larger in the former, which induces a larger

amount of communication during the factorization. Our experience is that performance

is more sensitive to load balance than to the amount of communication so we have set

the criterion to favor load balance. Some experiments in the next section will display

this effect.

5 . Experimental Results

This section presents some experimental results on the performance of our partitioning

algorithm. The test problems were based on a sequence of finite-element problems

defined 011 L-shaped domains. A detailed description of the problems can be found

in [7]. Each of the problems was initially ordered using the MMD algorithrn before

applying our partitioning algorithm.

Table 2 contains the times (in seconds) for performing the Cholesky factorization on

8 and 16 processors of an Intel iPSC/2 using the sparse-wrap mapping. As mentioned in

Section 2, Liu has developed an algorithm for reducing the height of elimination trees

- 15 -

Figure 12: Result of applying the partitioning algorithm to the elimination tree in
Figure 5 . The labels refer to the processors to which the columns are assigned.

- 1 6 -

original tree

under the constraint that no additional fill is introduced [11,13]. To determine how

effective the height reducing heuristic is, we applied Liu’s algorithm to the MMD or-

dering and then performed the factorization. The factorization times are also reported

in ‘Fable 2.

tree with
reduced height

7L

2,233
2,614
3,025
3,466

4,438
4,969
5,530
6,121

3,937

n

2,233
I

25% 20% 15% 10% 5% -~

5.289 5.286 5.242 5.250 5.216

..
p = 8

5.793
7.421
9.121

11.569
13.228
16.187
17.621
21..885
25.123

--

2,614
3,025
3,466
3,937
4,438
4,969
5,530

I

, 6.276 6.277 6.474 6.491 6.463
1 7.630 7.648 7.677 7.837 7.896

9.922 9.788 9.826 9.783 10.220 , 11.415 11.394 11.442 11.445 11.656
13.497 13.505 13.512 13.627 13.639
15.617 15.404 15.443 15.438 15.454 ‘ 18.600 18.450 18.451 18.594 18.775

1

p = 16

4.111
5.117
6.159
7.897
9.001

11.271
11.869
14.127
16.525

Table 2: Factorization times (in seconds) using MMI) and sparse-wrap mapping.

The partitioning algorithm requires the user to specify a load balance criterion.

Table 3 shows the effect of varying this criterion between 25% and 5% for 8 processors.

For our tests it was set to 20%; that is, the partitioning algorithm terminates when

r II maximum load variation 1

the numbers of floating-point operations on the busiest and the most idle processors

differ by less than 20%. Tables 4 and 5 give the times in seconds to do the partitioning

and the factorization for each of the test problems using 8 and 16 processors. The

partitioning strategy was applied to the tree associated with the initial MMD ordering

- 17-

and also to the tree with reduced height.

n
2,233
2,614
3,025
3,466
3,937
4,438
4,969
5,530
6.121

original tree
p = 8 I p = 1 6

tree with
reduced height
p = 8 I p = 1 6

Table 4: Factorization times (in seconds) using MMD and partitioning strategy.

I I I I1 tree with
5 tree
p = 16

0.150
0.140
0.130
0.160
0.200
0.240
0.210
0.260
0.260

reduct
p = 8
0.100
0.100
0.130
0.130
0.140
0.170
0.190
0.220
0.230

. height
p = 16

0.140
0.140
0.150
0.160
0.180
0.230
0.230
0.250
0.260

Table 5: Times (in seconds) to do the partitioning using MMD.

From Tables 4 and 5 , we conclude that the partitioning strategy can be implemented

very efficiently. The time required to determine the partitioning is negligible compared

to the factorization time. Comparing the results in Tables 2 and 4, we see that the

column-to-processor mapping using the partitioning strategy can be quite effective.

For our set of test problems, the factorization times using the partitioning strategy are

always smaller than those using the sparse-wrap mapping. The decrease in factorization

times is primarily due to a reduction in the amount of communication required using

the mapping from the partitioning strategy.

For comparison, we have provided in Table 6 the factorization times (in seconds)

- 18 -

using the parallel nested dissection ordering and the induced subtree-to-subcube map-

ping. Comparing Tables 4 and 6, the factorization times for the two mapping schemes

Table 6: Factorization times (in seconds) using a parallel nested dissection ordering
and the induced subtree-to-subcube mapping.

are nearly equal. It is important to point out that, unlike the subtree-to-subcube map-

ping, our partitioning strategy is designed to handle an elimination tree associated

with any fill-reducing ordering. While the MMD ordering appears to be much better

than the parallel nested dissection ordering in terms of fill (see Table l), the subtree-

to-subcube mapping induced by parallel nested dissection attempts to minimize the

communication load throughout the computation. The reduced computation in MMD

and the reduced communication in svbtree-tosubcube have cancelled each other in the

timing comparisions. However, we now describe how to reduce the communication in

our scheme.

For a multiprocessor system with p processors, our partitioning algorithm identifies

p independent sets of columns and assigns one set to each processor. The remaining

columns (denoted by S) arc: assigned to the processors using a wrap mapping. Thus,

one drawback about our approach is that the remaining set of columns S may be

large. Consequently, the amount of communication required to process the columns

in S may be large. One way to reduce this communication overhead at the possible

expense of disrupting the load balance is to apply the subtree-to-subcube mapping to

S . The algorithm incorporating this idea can be described as follows. We first apply

the partitioning strategy to the elimination tree to identify the independent sets of

columns that are assigned to the processors. We then work back up the tree starting

at the roots of these subtrees. In order to implement this idea, we keep a list of

- 19 -

processors for each path in S. Initially, a list contains only the processor assigned

to the subtree. As we move up each path, the nodes are assigned to processors in

that list in a wrapped fashion. When multiple paths coalesce, their lists are merged.

When continued to the root of the tree, this scheme will produce a subtree-to-subcube

mapping of S. However, the overall algorithm is more complicated, and its efficient

implementation is under investigation.

6. References

[l] G . A. Geist and M. T. Heath. Puru2ZeZ Cholesky factorizution on a hypercube

multiprocessor. Technical Report ORNL-6211, Oak Ridge National Laboratory,

Oak Ridge, Tennessee, 1985.

[2] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.

Anal., 10:345-363, 1973.

[3] J. A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse

positive definite systems on a shared memory multiprocessor. Internat. J. Parallel

Progrurnming, 15:309-325, 1986.

[4] J. A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse

positive definite systems on Q hypercube. Technical Report ORNL/TM-l0865, Oak

Ridge National Laboratory? 19SS.

[5] J. A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Sparse Cholesky

factorization on a local-memory multiprocessor. SIAM S. Sci. Stat. Cornput.,

9~327-340, 1988.

[6] J. A. George and J. W-11. Liu. An automatic nested dissection algorithm for

irregular finite element problems. SIAM J . Numer. A n d , 15:1053-1069, 1978.

[7] J. A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive Definite

Systems. Prentice-Hall Tnc., Englewood Cliffs, New Jersey, 1981.

[8] J. A. George, J. W-H. Liu, and E. G-Y. Ng. Communication results for parallel

sparse Cholesky factorization on a hypercube. Parallel Computing, 1988. (to

appear).

- 20 -

[9] D. E. Knuth. The cart of computer programming, volume 3: Sorting and searching.

Addison- Wesley, Reading, Mass., 1973.

[lo] J. W-H. Liu. A compact row storage scheme for Cholesky factors using elimination

trees. ACM Trans. on Math. Software, 12:127-148, 1986.

[11] J. W-H. Liu. Equivalent sparse matrix reordering by elimination tree rotations.

SIAM J . Sei. Stat. Cornput., 9:424-444, 1988.

[12] J . W-H. Liu. A gmph partitioning algorithm by node sepamtors. Technical Re-

port CS-88-01, Dept. of Computer Science, York University, Downsview, Ontario,

1988.

[13] J. W-PI. Liu. Reordering sparse matrices for parallel elimination. Technica.1 Re-

port CS-87-01, Dept. of Computer Science, York University, 1987.

[14] J . W-PI. Liu. The role of elimination trees in sparse factorization. Technical

Report CS-87- 12, Dept. of Computer Science, York University, 1987.

- 21 -

ORNL/TM- 10937

INTERNAL DISTRIBUTION

1.

2.
3-7.
8-9.
10.

11-15.

16.
17-21.
22-24.

25.
26.

27-31.

8. R. Appleton

J. B. Drake
G. A. Geist
R. F. Harbison
M. T. Heath
J. K. Ingersoll

M. R. Leuze
F. C. Maienschein
E. G. Ng

G. Ostrouchov
C. H. Romine
R. C. Ward

32.
33.
34.
35.
36.
37.
38.
39.

40.
41-42.

P. H. Worley

A. Zucker
J. J. Dorning (Consultant)
R. M. Haralick (Consultant)
Central Research Library
ORNL Patent Office

K-25 Plant Library
Y- 12 Technical Library
Document Reference Station

Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

43. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,

ER-7, Germantown Building, U.S. Department of Energy, Washington, DC 20545

44. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon

Graduate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

45. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Rous-

ton, TX 77252-2189

46. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State Uni-

versity, University Park, PA 16802

47. Dr. Chris Bischof, Mathematics and Computer Science Division, ATgonne Na-

tional Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

48. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping

58183, Sweden

- 22 -

49. Dr. James C. Browne, Department of Computer Sciences, University of 'Texas,

Austin, T X 78712

50. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atma-

spheric Research, P.O. Box 3000, Boulder, 60 80307

51. Dr. Doadd A. Calahan, Department of Electrical and Computer Engineering,

University of Michigan, Ann Arbor, MI 48109

52. Dr. Tony Chan, Department of Mathematics, University of California, Los An-

geles, 405 Hilgard Avenue, Los Angeles, CA 90024

53. Dr. Jagdish Chandra, Army Research Office, P.Q. Box 12211, Research 'Mangle

Park, North Carolina 27709

54. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Wa-

terloo, Ontario, Canada N2L 3G1

55. Prof. Torn Coleman, Department of Computer Science, Cornel1 University, Ithaca,

NY 14858

56. Dr. Paul C O ~ C U S , Mathematics and Computing, Lawrence Berkeley Laboratory,

Berkeley, CA 94720

57. Prof. Andy Conn, Department of Combinatorics and Optimization, University of

Waterloo, Waterloo, Ontario, Canada N2L 3G1

58. Dr. Jane K . Cullum, IBM T. J. Watson Research Center, P.Q. Box 218, Yorktown

Heights, NY 10598

59. Dr. George Cybenko, Computer Science Department, University of Illinois, Ur-

bana, IT, 61801

60. Dr. George J. Davis, Department of Mathematics, Georgia State University, At-

lanta, GA 30303

61. Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne

National Laboratory, 9900 South Cass Avenue, Argonne, IL 60439

- 23 -

62. Dr. Iain Duff, CSS Division, Haxwell Laboratory, Didcot, Oxon OX11 ORA,

England

63. Prcf. Pat Eberlein, Department of Computer Science, SUNY/Buffalo, Buffalo,

NY 14260

64. Dr. Stanley Eisenstat, Department of Computer Science, Yale Universit;y, P.O. Box

2158 Yale Station, New Haven, CT 06520

65. Dt. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkop-

ing, Sweden

66. Dr. €i[oward C. Elman, Computer Science Department, University of Maxyland,

College Park, MD 20742

67. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West,

Tukwila, WA 98188

68. Dr. Peter Fenyes, General Motors Research Laboratory, Department 15, GM

Technical Center, Warren, MI 48090

69. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Clase-

mont, CA 91711

70. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of

Technology, Pasadena, CA 91 125

71. Dr. Paul 0. Frederickson, Computing Division, Los Alamos National Laboratory,

Los Alamos, N M 87545

72. Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Liv-

ermore National Laboratory, P.O. Box 808, Livermore, CA 94550

73. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State

University, Raleigh, WC 27650

74. Dr. Dennis B. Gannon, Computer Science Department, Indiana university, Bloom-

ington, IN 47405

- 24 -

75. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

079134

76. Dr. C. William Gear, Computer Science Department, University of Illinois, Ur-

bana, Illinois 61501.

77. Dr. W. Morven Gentleman, Division of Electrical Engineering, Nationd Research

Council, Building M-50, Room 344, Montreal Road., Ottawa, Ontario, Canada

KIA OR8

78. Dr. Alan George, Vice President, Academic and Provost, Needles Ball, University

of Waterloo, Waterloo, Ontario, Canada N21, 3G1

79. Dr. John Gilbert, Xerox Palo Alto Research Center 3333 Coyote Hill Road Palo

Alto, @A 94304

80. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook

Drive, Reading, MA 01867

81. Prof. Gene 11. Golub, Department of Computer Science, Stanford University,

Stanford, CA4 94305

82. Dr. Joseph F. Grcar, Division 3331, Sandia National Laboratories, Livermore,

CA 94550

83. Dr. Per Christian Hansen, Copenhagen University Observatory, C3ster Voldgade

3, UK-1350 Copenhagen K, Denmark

84. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development

Co., P.O. Box 484, Houston, TX 77001

85. Dr. F. J. Welton, GA Technologies, P.Q. Box 81608, §an Diego, CA 92188

86. Dr. Charles J . Holland, Air Force Office of Sciefitific Research, Building 410,

Mollirtg Air Force Ba,se, Washington, DC 20332

87. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore Na-

tional Laboratory, P.O. Box 808, Livermore, CA 94550

- 25 -

$8. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158

Yale Station, New Haven, CT 06520

89. Ms. Elizabeth Jessup, Department of Computer Science, Yale University, P.O. Box

2158, Yale Station, New Haven, CT 06520

90. Prof. Barry Joe, Department of Computer Science, University of Alberta, Ed-

monton, Alberta, Canada T6G 2H1

91. Dr. Harry Jordan, Department of Electrical and Computer Engineering, Univer-

sity of Colorado, Boulder, CO 80309

92. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901

87 Umea, Sweden

93. Dr. Bans Kaper, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

94. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J

07974

95. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Labo-

ratories, Livermore, CA 94550

96. Ms. Virginia Klema, Statistics Center, E40-131, MIT, Cambridge, MA 02139

97. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA

91101

98. Dr. Alan J. Laub, Department of Electrical and Computer Engineering, Univer-

sity of California, Santa Barbara, CA 93106

99. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle

Park, North Carolina 27709

100. Dr. Charles Lawson, Applied Mathematics Group, Jet Propulsion Laboratory,

California Institute of Technology, M/S 506-232,4800 Oak Grove Drive, Pasadena,

CA 91103

- 26 -

101. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New

York University, 251 Mercer Street, New York, NY 10012

102. Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21,

Seattle, WA 98124-0346

103. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department

of Computer Science and Statistics, Queen Mary College, University of London,

Mile End Road, London E l 4NS, England

104. KIT. Joseph Eiu, Department of Computer Science, York University, 4700 Meek

Street, Downsview, Ontario, Canada M3J 1P3

105. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca,

NY 14853

106. James G. Malone, General Motors Research Laboratories, Warren, Michigan

48090-9055

107. Dr. Thomas A. Manteuffel, Computing Division, T,os Alamos National Labora-

tory, Los Alamos, NM 87545

108. Dr. Bernard McDonald, National Science Foundation, 1800 G Street, NW, Wash-

ington, DC 20550

109. Dr. Paid C. Messina, Califorilia Tnstitute of Technology, Mail Code 158-79, Pasadena,,

CA 91125

110. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA4 94086

111. Dr. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

112. Dr. Dianne P. O'Leary, Computer Science Department, University of Maryland,

College Park, MD 28742

113. Maj. C. E. Oliver, Ofice of the Chief Scientist, Air Force Weapons Laboratory,

Kirtland Air Force Base, Albuquerque, NM 87115

114. Dr. James M. Ortega, Department of Applied Mathematics, University of Vir-

ginia, Cbarlottesville, VA 22903

- 27 -

115. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-

brooke Street W., Montreal, Quebec, Canada H3A 2K6

116. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ

85284

117. Prof. Roy P. Pargas, Department of Computer Science, Clemson University,

Clemson, SC 29634-1906

118. Prof. Beresford N. Parlett, Department of Mathematics, University of California,

Berkeley, CA 94720

119. Prof, Merrell Patrick, Department of Computer Science, Duke University, Durham,

NC 27706

120. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science,

North Carolina State University, Raleigh, NC 27650

121. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State Univer-

sity, University Park, FA 16802

122. Dr. John K. Reid, CSS Division, Building 8.9, AERE Haxwell, Didcot, Oxon,

England OX11 ORA

123. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,

IN 47907

124. Dr. Gamy Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labe

ratory, Livermore, CA 94550

125. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,

NC 27706

126. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Ur-

bana, IL 61801

127. Dr. h4ichael Saunders, Systems Optimization Laboratory, Operations Research

Department, Stanford University, Stanford, CA 94305

- 28 -

128. Dr. Robert Schreiher, Department of Computer Science, Rensselaer Polytechnic

Institute, Troy, NY 12180

129. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box

2158 Yde Station, New Haven, CT 06520

130. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

Beaverton, OR 97006

131. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Uni-

versity, Dallas, T X 75275

132. Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,

FL 32611

133. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

134. Prof, G. W. Stewart, Computer Science Department, University of Maryland,

College Park, MD 20742

135. Dr. KOSIXIQ D. Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy

Lane, Suite 300, Breenbelt, MD 20770-1406

136. Prof. Charles Van Loan, Department of Computer Science, Cornel1 University,

Ithaca, NY 14853

137. Ur. Robert @. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Harnp-

ton, VA 23665

138. Dr. Andrew . White, Computing Division, Los Alamos National Laboratory,

Los Alamos, NM 87545

139. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle

Park, North Carolina 27709

140. Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

07974-

- 29 -

141. Dr. A. Yeremin, Department of Numerical Mathematics of the USSR. Academy

of Sciences, Gorki Street 11, MOSCOW, 103905, USSR

142. Office of Assistant Manager for Energy Research and Development, U.S. Depart-

ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Edge, TN

37831-8600

143-152. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN

37831

