

___, ~~

0 RNL / TM- 10 9 3 8

Engineering Physics and Mathematics Division

Mathematical Sciences Section

FINDING EIGENVALUES AND EIGENVECTORS
OF UNSYMMETRIC MATRICES USING

A DISTRIBUTED-MEMORY MULTIPROCESSOR

G . A. Geist *
G. J . Davis **

* Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, T N 37831-8083

Mathematics and Computer Science
Georgia State University
Atlanta, Georgia 30303

P.O. BOX 2009, Bldg. 9207-A

..

Date Published: November, 1988

Research was supported by the Applied Mathematical Sciences Research
Program of the Office of Energy Research, TJ.S. Department of Energy.

Prepared by the
Oak Ridge Nationa.1 Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400

3 4 4 5 h 0 2 8 3 9 4 b 3

Contents

1 INTRODUCTION

2 PARALLEL HESSENBERG REDUCTION

3 FINDING EIGENVALUES

4 FINDING EIGENVECTORS

5 RESULTS

6 CONCLUSIONS

REFERENCES

1

2

3

10

13

14

15

.

FINDING EIGENVALUES AND EIGENVECTORS

OF UNSYMMETRIC MATRICES USING

A DISTRIBUTED-MEMORY MULTIPROCESSOR

G. A. Geist

G. J. Davis

Abstract

Distributed-memory parallel algorithms for finding the eigenvalues and eigen-

vectors of a dense unsynunetric matrix are given. While several parallel algorithms

have been developed for symmetric matrices, little work has been done on the

unsymmetric case. Our parallel implementation proceeds in three major steps:

reduction of the original matrix to Ilessenberg form, application of the implicit

double-shift QR algorithm to compute the eigenvalues, and back transformations

to compute the eigenvectors. Several modifications to our parallel QIt algorithm,

including ring communication, pipelining and delayed updating are discussed and

compared. Results and timings are given.

- v -

1. INTRODUCTION

In the past few years several parallel algorithms have been developed for the solution

of the symmetric eigenvalue problem, including bisection, multisection, and Cuppen’s

method [2,5]. Until recently, little has been published about developing algorithms for

the more difficult unsymmetric case. Since the symmetric methods do not extend to

the unsymmetric problem in any natural way, other algorithms must be developed.

R. van de Geijn [SI has explored variants of the QR algorithm on dense matrices for

an array of processors. Boley and Maier [l] have investigated the Qft algorithm for

O (n) processors, where n is the order of the matrix, and they are developing hypercube

implementations.

This paper describes a parallel implementation of an efficient serial algorithm on

a hypercube multiprocessor. The most eficient serial algorithm known for finding all

the eigenvalues and eigenvectors of a dense n x n matrix involves the following steps

[9]. First, the original matrix, A , is reduced to upper IIessenberg form, N i.e. it is zero

below the first subdiagonal. Having the matrix in Hessenberg form greatly reduces the

amount of computation in the followiiig steps. There are several methods for. reducing

A to upper Hessenberg form. The most popular methods use either orthogonal or

elementary similarity transformations. The methods that use orthogonal similarity

transformations have better stability properties, but they are slower by a factor of two

than the methods that use elementary similarity transformations, Because instabilities

using elementary similarity transformations with pivoting are rarely seen in practice,

we chose to implement a parallel method that uses these transformations.

The second step of the serid algorithm is to appIy implicit double-shift QR iter-

ations to H until all the eigenvalues are found. This variation of QR iteration was

originally proposed by Francis [3] and lias the advantage of using only real arithmetic

throughout the computation. Since complex arithmetic often requires more than twice

as much work as real arithmetic, this variation saves time. Researchers have found that

the iteration method converges in an average of two iterations, usually to the eigenvalue

of smallest modulus remaining in the matrix.

In the third step, inverse iteration is performed using the known eigenvalues to

find the eigenvectors of If. Serially, this step is similar t o doing n triangular solutions

(one for each eigenvector). Finally, we apply to these cigcnvectors the inverses of the

- 2 -

transformations used to reduce A to H . The result is all the eigenvectors of the original

matrix A .

In the following sections we will describe parallel implementations of each of the

above steps. We assume the reader is familiar with the details of the operations re-

quired to annihilate individual matrix entries (see, e.g.,[9]), and we will therefore give

only a high-level description of the parallel algorithms. We will also describe several

enhancements that were incorporated into step 2. In the final sections we summarize

the results obtained to date and comment on future research areas.

2. PARALLEL HESSENBERG REDUCTION

The use of elementary similarity transformations resembles Gaussian elimination with

two important modifications: elements on the first subdiagonal are not eliminated, and

both row and column operations are performed to preserve similarity. Nevertheless,

much of our previous work on the parallel solution of lineax systems applies. In partic-

ular LU factorization can be implemented quite efficiently with row or column storage

on distributed-memory multiprocessors[4].

The need to preserve similarity affects the choice of storage scheme in Hessenherg

reduction. In a column-mapped scheme, the search for the pivot and the formation of

the multipliers must be done entirely on the processor that holds the pivot column. This

serial phase can seriously degrade the performance of a parallel implementation unless

this sequential thread is masked. If the pivot search is effectively masked, a column-

oriented LU decomposition can be competitive with a row-oriented version. However,

Hessenberg reduction requires that both row and column interchanges be done. This

hampers attempts at the kind of masking used in LU factorization. Since the column

oriented LIT algorithm performs poorly without masking, we chose to implement the

reductic.)n to Hessenberg form using row storage.

The algorithm for Hessenberg reduction is presented in Figure 1, and is described

below. In the following discussion, processors will be numbered from 0 to p - 1, and

rows of the matrix will be numbered from 1 to n. The parallel Hessenberg reduction

is implemented by initially having the host processor send rows of the matrix to the

processors in a wrap mapping, i.e., row i of A is sent to processor (i- 1) mod p . Unless

the matrix is diagonally dominant, this mapping is changed due to pivoting during the

- 3 -

for k = 1 to (TZ - 2) do
determine pivot row:

scan my portion of column k , find local max
determine global maximum and which processor has the pivot

do column interchanges and update row permutation map
if I have the pivot row

else

compute multipliers to eliminate my pieces of column k
apply transformation to my rows
assemble row multipliers which I have into a local vector
concatenate multipliers from all processors into one global vector
apply inverse transformation to my pieces of the unreduced columns

broadcast pivot row to all other processors

await pivot row

Figure 1: Algorithm for Hessenberg reduction.

reduction phase. Thus, wrap mapping cannot be assumed as the algorithm proceeds.

The algorithm loops over the n - 2 unreduced columns of the matrix. At step k ,

all the processors search their portions of column k and send their local maxima up a

spanning tree of the processor topology rooted at processor 0. Processor 0 determines

the global maximum and fans this information back down the spanning tree. All

processors perform an explicit column interchange and an implicit row interchange

by updating a map vector. The map vector keeps track of which processors contain

which rows. The pivot row is broadcast, aid the processors apply row modifications to

their respective parts of the matrix. Next, the processors again work together through

the spanning tree to concatenate their elements of column k. This column is fanned

back down the spanning tree, where all the processors use it to complete the column

modification for this step.

3. FINDING EIGENVALUES

In Figure 2 we present an algorithm for finding the eigenvalues of the TIessenberg

matrix. This algorithm has two major loops. The outer loop checks whether one real

eigenvalue, a pair of complex conjugate eigenvalucs, or no eigenvalues have been found.

The outer loop also checks whether the problem can be deflated at this step. (Deflation

- 4 -

While(n > 2)
If problem can be deflated

Adjust problem size
If root(s) found

decrease n
numits = 0

Inner Loop: one &It iteration
numits = numits + 1
If I have column 2

Send column modification information to processor with column 1
Else if I have column n - 1 or n

Send shift information to processor with column 1
Else if I have column 1

Await shift and column modification information
For k = 0 to (n - 3) of currently active submatrix do

If (k = 0 and I have column 1) or (I have column k)
Calculate Householder vector pqr
Broadcast vector pqr

Await vector pqr
Else

Modify my parts of rows k 4- 1, k + 2 and k + 3
If I have column k + 1

Await columns k + 2 and k 4- 3
Form vector ZI as linear combination of the three columns
Send ZI to processors holding columns k + 2 and k 4- 3
Modify column k + 1

Send column to processor with column k + 1
Await v
Modify column k f 2 or b t 3

End of iteration

Else if I have columns k + 2 or k t 3

If numits > 30 then print message and stop
End while

Figure 2: Synchronous Algorithm for Finding Eigenvalues.

- 5 -

is a process by which the original problem is split into two or more smaller problems.)

The inner loop performs one implicit double-shift QR iteration on H .

All the operations in this algorithm are symmetrical so there is no advantage in

storing E1 by rows or by columns. The amount of communication and the potential

for pardelism are the same for either storage method. We have implemented this

algorithm assuming H is stored by columns in a wrap mapping. We will see that this

storage method will improve the efficiency of the third step, finding the eigenvectors,

but it requires us to transpose the matrix H .

Eigenvalues are found when one of two things occurs. If Hn,n-l has converged to

zero, then lln,n is a single real eigenvalue. On the other hand, if Hn-l,n-a has converged

to zero, then this signals that a pair of complex conjugate eigenvalues has been found.

In order to determine their values it is necessary for the two processors that contain

elements of the isolated 2 x 2 submatrix to solve the quadratic equation.

Checking for possible deflation requires a large amount of communication, which

is often wasted, since most of the time the problem does not deflate. The two main

advantages of checking for deflation are that a significant amount of computational

work can be avoided, and if the matrix is known to Lave split, separate shifts can

be calculated for each part. We irnplemented the following test for deflation. The

subdiagonal is searched in parallel for “zero” elements. If any elements are “small”

relative to the diagonal entries around them, then they are taken as zero. If such a

“zero” is found, this signifies that the matrix can be split into two smaller matrices.

The parallel implementation of this test has each processor send its diagonal entries

to its left and right neighbors in the wrap mapping. Each processor then compares

the subdiagonals it holds with the appropriate diagonal entries and sends the highest

column number that has a 4 c ~ e r ~ ” subdiagonal (sending a 1 if it has none) to the

processor that holds the last column of the active matrix. The latter processor chooses

the maximum of these values and broadcasts this information to all the other processors.

All the processors assume the matrix has split at this column and adjust their work

accordingly.

The implicit double shift QR iteration on a Hessenberg matrix can be regarded as

a loop with the index k going from 0 to ‘ri - 2. At each step k, except for the last, three

consecutive rows and then three consecutive columns are modified. To understand our

- 6 -

Figure 3: A bulge is chased down the diagonal during the QR iteration.

parallel implementation, it is important to understand how and when the operations

are done. Figure 3 shows a snapshot of the matrix being modified during the iteration.

There are two communication phases a t each step of the iteration. Before the row

or column modifications can be performed, the IIouseholder vector, which we call pqr,

must be formed and broadcast to all the processors. Once the processors have p q r ,

they modify their parts of the three rows in parallel. 'The second coinmunication phase

occurs before the column modifications are performed, A linear combination of the

three columns, u, must be formed. This vector is formed on the processor holding the

leftrnost of the three columns after it receives information from the other two processors.

The formation of u is serial but, once formed, it is sent back out and used in parallel

by the three processors to modify the three columns.

While finding the eigenvalues, about half of the computational work is performed

in the column modifications and half in the row modifications. As described in the

synchronous algorithm above, only three processors work on the column inod ifications

at one time. By Amdahl's Law, if half the work in an algorithm is performed by only

three processors, then the maximum speedup obtainable with that algorithm is about 6.

This is unacceptable for distributed-memory architectures, which may have thousands

of processors. Since the performance bottleneck is attributable to the serial nature of

our initial implementation of the coluiiin modifications, we concentrated our efforts on

developing implementations that were more parallel.

- 7 -

P2 P3 P4

Figure 4: Pipelining requires knowing which processors contain active elements.

Several methods were employed in an attempt to mask the column modification

phase of the algorithm. One of these methods involved using a ring architecture. In

this method the roles of the three processors computing the column modification were

switched. In a ring it makes more sense to let the middle processor compute and send

it back out, since this involves only nearest neighbor connections.. Since we restricted

ourselves to a strict ring architecture, the broadcast of pqr used a ring broadcast. In

a ring broadcast a message is passed serially around the ring. While this method of

broadcast requires O (p) steps, it is often possible to mask this work completely by

pipelining the operations around thc ring.

We define pipelining to be a nietliod in which a processor calculates and sends

needed information before finishing the rest of its work for the current step. Thus,

when the other processors finish their work the information they need is already avail-

able to them. Up to this point we have been describing synchronous algorithms. In

synchronous algorithms computation and communication are parallelized, but they are

not overlapped. In our case, either or both the row and column modifications can be

pipelined. This pipelining can be applied to the original algorithm or the ring algo-

rithm. To understand how this pipelining i s implemented we will refer to Figure 4. In

Figure 4, p2, p3, and p4 are the processors that contain the three active columns of !I

at step I;.

- 8 -

We first consider the pipelining of the column modifications. In the synchronous

algorithm, p2 modifies all of column k , and the next row modification is started when

p2 calculates and broadcasts new values for p q r . In the pipelined algorithm, p2 modifies

the last three nonzero elements in column k, then calculates and broadcasts pqr before

finishing modifications to the column. Since row modifications can start as soon as

p q r is known, all processors except p2, p3, and p4 will begin the next step while these

three processors finish the previous step, The effect is that now all processors are

doing computations during part of the time when only three processors were busy in

the original algorithm.

Next we consider pipelining the row modification. In the pipelined version, p2, p3,

and p4 perform row modifications only on elements inside the leftmost 3 x 3 block in

Figure 4, then complete column modifications (sending out p q r) before finally going

back to finish the rest of their row modifications. Again, the idea is to have needed

information available when processors finish the current stage. Pipelining the row mod-

ification masks the serial work of calculating TJ and modifying the last three elements

in the pipelined column modification scheme.

Figure 5 presents the inner loop of a node algorithm for finding the eigenvalues of

a IIesseiiberg matrix in which the row and column updates are pipelined.

There is still a problerii even with these pipelining schemes. I n the column modifi-

cation step of oiir example, p2, p3, and p4 will finish the column modification while the

other processors are doing row modifications. But now these processors will wait while

p3 and p4 do the next row and column modification. It is not clear how to eliminate

this problem, but it can be improved by using a scheme we call delayed updating. The

basic idea is for key processors to delay calculating any values that are not immediately

useful until later, when these processors would otherwise be idle.

Like pipelining, delayed updating can be applied to either the column modification

or the row modification. During the kth column modification, elements with row indices

less than k - 2 will not be needed until the next iteration is started. In Figure 4, since

p3 and p4 must perform key calculations at this step, the updating of these column

elements is delayed until step j, where p (m o d j) = 0. In the above example, p2 is now

in this position so it will modify the appropriate elements in its column with the last

three modifications.

- 9 -

Inner Loop one QR iteration
If I have column 2

Else if I have column n - 1 or n

Else i f f have column 1

Send column modification information t o processor with column 1

Send shift information to processor with column 1

Await shift and column modification information
Calculate householder vector pqr
Broadcast vector pqr

If k # 0 and I do not have column k

Modify the first three elements in rows k + 1, k + 2 and k + 3
If I have column k + 1

For k T 0 to (n - 3) of currently active submatrix do

Await vector pqr

Await columns k + 2 and k + 3
Form vector v as linear combination of the three columns
Send w to processors holding columns k + 1 and k + 2
Modify last three elements of column k + 1
Calculate pqr for the next value of k
Broadcast pqr
Finish row modification on rows k + 1, k + 2 and k + 3
Finish column modification on column k + 1

Send column to processor with column k f 1
Finish row modification on rows k + 1, k + 2 and k + 3
Await v
Modify column k + 2 or k f 3

Finish row modiiication on rows k + 1, k + 2 and k + 3

Else if I have columns k + 2 or k + 3

Else

End of iteration

Figure 5 : Inner loop of Pipelined Algorithm for Finding Eigenvalues.

- 10 -

Similarly, when several columns are contained on each processor, the row modifica-

tions can be delayed. In our example, p2, p3, and p4 must perform a row modificatioii

on their respective parts of the active columns, but not on any other columns they

hold. (We are assuming that p 2 4). After p2 has finished broadcasting the next p q r ,

it can finish the row modifications it has delayed. At subsequent steps, p3 and p4 will

do the same.

The idea behind delayed updating in this algorithm is t o allow the 3 x 4 block of

computations to move down the diagonal as quickly as possible. The delayed work will

tend to string out behind this block and allow more than three processors to be active

during the column modifications. However, it is possible that delayed updating of the

column modifications can hurt performance. Using the above scheme, the speed of the

3 x 4 block is increased at the expense of increasing the serial work of otlierwise idle

processors by a factor of three. Depending on the size of the problem, the number of

processors, and the Iliachine parameters, the result could be an increase in execution

time.

4. FINDING EIGENVECTORS

When the QR iteration phase is coinplete, the Hessenberg matrix has been reduced to a

quasi-upper triangular ma,trix, T , and the eigenvalues of A are known. The eigenvectors

of T are found by iiiverse iteration. Although the parallel inverse iteration algorithm

is similar to the column-oriented backsolve algorithm given in nomine and Ortega [GI,

the presence of the 2 x 2 blocks on the diagonal of T complicates the process. The

algorithm is given in Figure 6,

For each eigenvalue, the algorithm calls a backsolve routine for a matrix of appro-

priate size. We illustrate this with the matrix T of order eight shown in Figure 7. The

2 x 2 blocks on the diagonal of 7’ correspond to either a real or a complex conjugate

pair of eigenvalues. Diagonal elements of T that are not in a 2 x 2 block correspond to

real eigenvalues.

Proceed down the list of eigenvalues, beginning with T(1,l). This eigenvalue is real

and its eigenvector is trivially (1 ,0 ,0 ,0 ,0 , O , O , O) T . However, the nest two eigenvalues

of T are found in a 2x2 block. The backsolve algorithm must be called with the 3x3

principal submatrix of T , and this step will find two eigenvectors.

- 11 -

x x x x x x x
x x x x x x x

x x x x x
x x x x

x x x
x x x

T =

Main program:

For IC = 1 to n do
Broadcast block structure corresponding to eigenvalue k
If column IC is the first part of a 2x2 block for eigenvalue k

Else if column k is the second part of a 2x2 block €or eigenvalue k

Else

Backsolve the (I C + 1) x (k 4- 1) submatrix for vectors k and (k 4- 1)

Increment k (work is already done)

Backsolve the k x k submatrix for eigenvector k

Backsolve algorithm for k x k submatrix:

For c = k to 1 do
If I have column e - 1 and it is first part of a 2x2 block then

Send multiplier information to processor with column c

Accumulate backsubs ti tu tion summation froin all processors
If I have column c

If column c is the second part of a 2x2 block then

Compute entry e of the eigenvector
Receive multiplier information from column c - L

Figure 6: Backsolve Algorithm for Finding Eigenvectors of Quasi-Triangular Matrix.

- 12 -

Although the fourth eigenvalue is real, when the backsubstitution is performed

on the 4x4 principal submatrix, additional communication is again required to pass

through the 2x2 block.

During the QR iteration phase, the transformations that are applied to If are

also accumulated in a two-dimensional array, 2, The eigenvectors of H are found by

applying these transformations to the eigenvectors of T . Since Z is stored by columns,

each processor contains n / p rows of ZT and n / p columns of eigenvectors of T . Thus

the parallel matrix-matrix miiltiplication can be performed efficiently and with perfect

load balance.

To obtain the eigenvectors of A , we must finally apply the inverses of the transfor-

mations that reduced the original A to IIessenberg form. This algorithm is outlined in

Figure 8.

For k = (n - 2) to 1 do
Concatenate and broadcast multipliers for eoliimn k
Apply multipliers to my pieces of column k
Do column interchange to complete the similarity transformation

Figure 8: Algorithm for Transforming Eigenvectors of If to Eigenvetors of A .

The permutation information has been recorded during the IIessenberg reduction,

and the multipliers have Leen stored in the lower triangle of A. Storage of the eigenvec-

tors of H is by columns. If we were to calculate each of the eigenvectors of A one a t a

time using all the processors, then the calculation would be essentially sequential. Our

implementation calculates the first component of all the eigenvectors, then the second

component and so on, allowing a large degree of parallelism.

This phase begins with all the processors working together to concatenate a column

of multipliers. Once each processor has received the assembled vector, it has all the

information necessary to both calculate the first coinponent of each eigenvector for

which it is responsible, and to permute the respective rows of the eigenvectors in the

same way that A was originally permuted. All processors work independently and in

parallel during this phase. These three processes of concatenating the next column of

multipliers, calculating the next component of the eigenvectors, and then permuting

- 1 3 -

the eigenvectors continue until all the components are found.

5 . RESULTS

This section gives performance results for our implementation of parallel Kessenberg re-

duction, four versions of parallel eigenvalue algorithms, an implementation of a parallel

eigenva,lue/eigenvector code, and the final parallel eigenvector transformation routine

on an Intel iPSC/2 hypercube. The square test matrices are dense with entries ran-

domly distributed between [0,1]. Three matrix sizes and up to 32 processors were used

in the experiments. Table 1 shows the execution time in seconds for each of the aIgo-

rithms on various size problems. We use the same names as the analogous serial codes

in EISPACK [7] t o indicate the function of the various parallel codes.

+j--%p
1 .o

128 4.9

Table 1: Execution times in seconds for test problems.

The parallel reduction to Hessenberg form (ELMHES) is very effecient. The time

required for the reduction is less than 10% of the total time to find the eigenvalues of

the matrix. The execution time decreases as p increases, and efficiencies as high as 90%

have been observed for large matrices.

The parallel algorithms labeled TTQR in Table 1 are implicit double shift QR al-

gorithms to find only the eigenvalues of a matrix. Several versions were developed

because the original synchronous version performed poorly. The execution times of the

synchronous code are displayed along with the times for a pipelined version, a pipelined

version using only ring communication, and a tlelayed updatiiig version. While there

- 14 -

was a significant improvement in going from the synchronous to a pipelined imple-

mentation, variations in the pipelining and delayed updating made suprisingly little

improvement. Moreover, there is almost 110 decrease in execution time as p increases.

The efficiencies of the improved versions of HQK are about 50% for p = 8 and grow

slowly with n. Thus the performance of these parallel algorithms is still not satisfactory.

Finding the eigenvectors serially requires about the same amount of time as finding

the eigenvalues serially. Thus, a parallel algorithm that also finds eigenvectors should

require about twice as much time as HQR to execute. We expanded the synchronous

code HQR to include eigenvector calculations and called it HQR2. Our timings reveal

that HQR2 ran 2.5 to 3 times longer than HQR. After profiling HQR2, it was found

that in the 71 = 25G case approximately 10% of the extra time is spent doing the n

backsubstitutions, and 90% of the time is spent applying tranformations to 2. Since

HQR2 is a direct modification of the synchronous IIQR code, the serial portions of HQR

are being exaggerated in HQR2 by also applying the transformations to 2 serially. It

may he possible to mask much of the formation of 2 in the pipelined codes, and a

fututre project is to develop a pipelined version of IIQR2.

The parallel algorithm for transforming the eigenvectors of E1 to those of A is called

ELMI3AK. The performance properties of ELMBAK are similar t o those of ELMHES,

It is not only highly efficient, but as p increases it consumes less than 1% of the total

time for finding the eigenvalues and eigenvectors of a matrix.

6. CONCLUSIONS

In this paper we have presented a parallel approach to the solution of the eigen-

value/eigenvector problem for a dense, unsymmetric matrix. The reduction to Hes-

senberg form and the final transformation for the eigenvectors were direct extensions

of previous work on linear systems. The performance of these routines is very much

as we expected. First, the combined time for ELMIIES and ELM13AK is a small per-

centage of the total work load. More importantly, for fixed problem size n, execution

times decrease as the nuiribcr of processors p increases.

After implementing the synchronous algorithm for eigenvalues (HQR), we discov-

ered that the sequential thread of the 3 x 4 block procecding down the diagonal of the

matrix was the major bottleneck. Considerable time and effort were put into masking

- 1 5 -

this bottleneck. Although improvements were made, the timing results revealed the

apparent independence of execution time with number of processors. The primary rea-

son for this independence is due to the large communication to computation ratio of

existing hypercubes. On the iPSC/2, sending a single message takes about G O times as

long as a single floating point operation. The modification of the elements in the 3 x 3

block requires communication with two other processors. While we have concentrated

on improving the computational part of the sequential thread, the communication part

still remains as the next likely target for parallelization. Other mappings of columns to

processors (e.g. block mapping) could reduce the communication, but at the expense

of more serial arithmetic. Various methods of improving the iteration step are under

investigation.

7. References

[l] D. Boley and R. Maier. A parallel QR algorithm for the nonsymmetric eigenvalue

problem. July 1988. Talk at SIAM Annual Meeting, Minneapolis Minnesota.

[2] J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric

eigenvalue problem. SIAM J . Sei. Statist. Conaput., 8:139-154, March 1987.

[3] J. G. F. Francis. The QR transformation - Part 2. The Computer Journal, 4:332-

345, 1961.

[4] G. A. Geist and C. H. Romine. LU factorization algorithms on distributed-memory

multiprocessor architectures. SIAM J . Sci. Statist. Cornput., 9539-649, 1988.

[5] I. C. F. Ipsen and E. R. Jessup. Solving the Symmetric Tridiagonal Eigenvalue

Problem on the Hypercube. Tech. ltept. YALEU/DCS/RR-548, Dept. of Comp.

Sci., Yale University, New Haven, CT, 1987.

[6] C. H. Romine and J. M. Ortega. Parallel solution of triangular systems of equations.

Parallel Cornput., 6:109-114, 1988.

[7] B. T . Smith, J. M. Boyle, J. J. Dongarra, B. S. Garabow, Y. Ikebe, V. C. Klema,

Springer, and C. 13. Moler.

Heidelberg, 1974.

Matrix Eigerzsystem lloutines - EISPACK Guide.

- 16 -

[8] It. A. van de Geijn. Storage schemes for efficient parallel methods €or solving linear

eigenvalue problems. May 1988. Dept. of Computer Science, U. of Texas at Austin.

[9] J. H. Wilkinson.

Oxford, 1965.

The Algebraic Eigenvalue Problem. Oxford University Press,

- 17-

ORNL'TM-10938

1.
2.

3-7.
8-9.
10.

11-15.
16.

17-21.
22.
23.
24,

25-29.

B. R. Appleton
J. B. Drake
G. A. Geist
R. F. Harbison
M. T. Heath
J. K. Ingersoll
M. R. Leuze
E C. Maienschein
E. G. Ng
G. Ostrouchov
C. H. Romine
R. C. Ward

INTERNAL DISTRIBUTION

EXTERNAL DISTRIBUTION

30.
31.
32.
33.
34.
35.
36.
37.

38.
39-40.

P. H. Worley
A. Zucker
J. J. Doming (Consultant)
R. M. Haralick (Consultant)
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library,'

Document Reference Station
Laboratory Records - RC
Laboratory Records Department

41. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7, Germantown Building, U.S. Deparlment of Energy, Washington, DC 20545

42. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Grd-
duate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

43. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Houston,

44. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

45. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IT, 60439

46. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping
58 183, Sweden

47. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Aus-
tin, TX 787 12

48. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

49. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, AM Arbor, MI 48109

50. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

TX 77252-2 189

- 1 8 -

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Dr. Jagdish CX~mdra, Army Research Office, Q.O. Box I221 1, Research Office, P.O.
Box 1221 1, Research Triangle Pa&, NC 27709

Dr. Eleanor Chu, WpartImnE of Computer Science, University of Waterloo, Ontario,
Canada N2IJ3G1

Pmf. Tom Coleman, Departlarent of Computer Science, CorneU University. Ithaca,
NY 14853

Dr. Paul Concus, Mathematics and COmpUEbg, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

Prof. Andy Conn, Department of Combinatorics, and Optimization, University of
Waterloo, Waterloo, Ontario, Canada N2L 3C1

Dr. Jane K. Cullum, IBM T.J. Watson Research Center, P.Q. Box 218, Yorktown
Heights, NY 10598

Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana,
TL 61801

Dr. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Dr. Jack 4. Dongarra, Mathematics and Computer Scicnce Division, Argonne National
Lakmtory, 9700 South Cass Avenue, Argonne, K 60439

Dr. Iain Duff, CSS Division, €Ianve%l Laboratory, Didcot, Qxon OX1 1 O M , England

Prof. Pat Ekrlein, Department of Computer Science, SUNY/’Buffalo, Buffalo, NY
14260

Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. Lars Elden, Department of Mathematics, Linkoping University, 58 183 kinkoping,
Sweden

Dr. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege ’Park, MX) 20742

Dr. Albert M. Erisman, Boeing Cornputer Services, 565 Andover Park West, Tukwila,
WA 98 188

Dr. Peter Fcnzyes, General Motors Rcsearch Laboratory, Department 15, GM Techni-
cal Center, Warren, MT 48090

Prof. David Fisher, Qepament of Mathematics, Harvey Mudd College, Clammont,
CIA 9171 1

Dr. Geofi~cy C. Fox, Booth Computing Center 158-79, California Institute of Tech-
nology, Pasadena, CA 91 125

Dr. Paul 0. Frederickson, Computing Division, Los All os National Laboratory, Los
Alamos, NM 87545

- 19-

70. Dr. FIwi N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livennore
National Laboratory, P.Q. Box 808, Livermore, CA 94550

71. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

72. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

73. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

74. Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

75. Dr. W. Momen Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada R1A
OR8

76. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, Univetsity of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

77. Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road Palo Alto,
CA 94304

78. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook Drive,
Reading, MA 01867

79. Prof. Gene H. Golub, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

80. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

81. Dr. Per Christian Hansen, Copenhagen University Observatory, @0@ster Voldgade
3, DK-1350 Copenhagen K, Denmark

82. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

83. Dr. F. J. Helton, GA Technologies, P.O. Box 81608, San Diego, CA 92188

84. Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

85. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

86. Dr. nse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

87. Ms. Elizabeth Jessup, Department of Computer Science, Yale University, P.O. Box
2158, Yale Station, New Haven, CT 06520

88. Prof. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta, Canada T6G 2H1

-20 -

89. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

90. Dr. Bo Kagstrom, Institute of Information Processing, University of Urnea, 5-901 87
Umea, Sweden

91. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National

92. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

93. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livemore, CA 94550

94. Ms. Virginia Klema, Statistics Center, MO-131, MT, Cambridge, MA 02139

95. Dr. Richard Lau, Office of Naval Research, 1030 E.Green S tmt , Pasadena, CA 91 101

96. Dr. Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

97. Dr. Robert L. Launer, A m y Research Office, P.O. Box 12211, Research Triangle
Park, NC 27709

98. Dr. Charles Lawson, Applied Mathematics Group, Jet Propulsion Laboratolry, Califor-
nia Institute of Technology, M/S 506-232, 4800 Oak Grove Drive, Pasadena, CA
91 103

99. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer S tmt , New Yo&, NY 10012

100. Dr. John 6. Lewis, Boeing Computer Services, P.O. Box 24346, M / S 7L-21, Seattle,

101. Da. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com-
puter Science and Statistics, Queen Many College, University of London, Mile End
Road, London E l 4NS, England

102. Dr. Joseph Liu, Depamenr of Computer Scicnce, York University, 4700 Keele
Street, Downsview, Ontario, Canada M3J 1P3

103. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

104. James G. Malone, General Motors Research Laboratories, Warren, MI 48090-9055

105. Dr. Thomas A. Manteuffel, Computing Division, LOS Alarnos National Laboratory,
Los Alamos, NM 87545

106. Dr. Bernard McDonald, National Science Foundation, 1800 G Street, NW, Washing-
ton, DC 20550

107. Dr. Paul. C. Messina, California Tnstitute of Technology, Mail Code 158-79, Pasadena,
CA 91125

mtory, 9700 South Cass Avenue, Argonne, IL 60439

WA 98124-0346

-21 -

108. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sumyvale, CA 94086

109. Dr. Brent Moms, National Security Agency, Ft. George G. Meade, MD 20755

110. Dr. Dianne P. O’Leary, Computer Science Department, University of Maffyland, Col-
lege Park, MD 20742

11 1. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory, Kirt-
land Air Force Base, Albuqueque, NM 871 15

112. Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlottesville, VA 22903

113. Prof. Chris Paige, Department of Computer Science, McGa University, 805 Sher-
b m k e Street W., Montreal, Quebec, Canada H3A 2K6

114. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, A 2 85284

115. Prof. Roy P. Pargas, Department of Computer Science, Clemslon University, Clemson,

116. Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 94720

117. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

118. Dr. Robert J. Plemmons, Deparlments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

119. Dr. Alex Pothen. Department of Computer Science, Pennsylvania State Univexsity,
University Park, PA 16802

120. Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon, Eng-
land OX11 ORA

121. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

122. Dr. Gany Rodripe, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livemore, CA 94550

123. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

124. Dr. Ahtned H. Smeh, Computer Science Department, University of Illinois, Urbana,
IL 61801

125. Dr. Michael Saunders, Systems Optimization Laboratory, Operatiom Research
Department, Stanford University, Stanford, CA 94305

126. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic Insti-
tute, Troy, NY 12180

127. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

SC 29634- 1906

- 22 -

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Dr. David S. Scott, Intel Scientific Computers, 15201 N.W.GreenbIier Parkway,
Bcaverton, OR 97006

Dr. Lawrence F. Shampine, M emattics Department, Southern Melhclist University,
Dallas, TX 75275

Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 3261 1

Dr. Danny C. Soremen, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cas Avenue, Argome, IL 60439

Prof. G. W, Stewart, Computer Science Ikqmrtment, University of Maryland, College
Park, MD 20742

Dr. Kosrno D. Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy Lane,
Suite 300, Brcenbelt, MD 20770-1406

Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Nampton,
VA 23665

Dr. Andrew B. White, Computing Division, Lss Alamos National Laboratory, Los
Alamos, NM 87545

Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

Dr. A. Yeremin, Department of Numeaicd Mathematics of the USSR Academy of
Sciences, Gorki Street 11, Moscow, 103905, USSR

Office of Assistant Manager for Energy Research and Development, U S Department
of Energy, Oak Ridge Operations Office, P.O. Box 2881 Oak Ridge, TN 37831-8600

141-150. Office of Scientific & 'Technical Information, P.O. Box 62, Oak Ridge, TN 37831

