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FINDING EIGENVALUES AND EIGENVECTORS 

OF UNSYMMETRIC MATRICES USING 

A DISTRIBUTED-MEMORY MULTIPROCESSOR 

G. A. Geist 

G. J. Davis 

Abstract 

Distributed-memory parallel algorithms for finding the eigenvalues and eigen- 

vectors of a dense unsynunetric matrix are given. While several parallel algorithms 

have been developed for symmetric matrices, little work has been done on the 

unsymmetric case. Our parallel implementation proceeds in three major steps: 

reduction of the original matrix to Ilessenberg form, application of the implicit 

double-shift QR algorithm to compute the eigenvalues, and back transformations 

to compute the eigenvectors. Several modifications to our parallel QIt algorithm, 

including ring communication, pipelining and delayed updating are discussed and 

compared. Results and timings are given. 
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1. INTRODUCTION 

In the past few years several parallel algorithms have been developed for the solution 

of the symmetric eigenvalue problem, including bisection, multisection, and Cuppen’s 

method [2,5]. Until recently, little has been published about developing algorithms for 

the more difficult unsymmetric case. Since the symmetric methods do not extend to 

the unsymmetric problem in any natural way, other algorithms must be developed. 

R. van de Geijn [SI has explored variants of the QR algorithm on dense matrices for 

an array of processors. Boley and Maier [l] have investigated the Qft algorithm for 

O ( n )  processors, where n is the order of the matrix, and they are developing hypercube 

implementations. 

This paper describes a parallel implementation of an efficient serial algorithm on 

a hypercube multiprocessor. The most eficient serial algorithm known for finding all 

the eigenvalues and eigenvectors of a dense n x n matrix involves the following steps 

[9]. First, the original matrix, A ,  is reduced to  upper IIessenberg form, N i.e. it is zero 

below the first subdiagonal. Having the matrix in Hessenberg form greatly reduces the 

amount of computation in the followiiig steps. There are several methods for. reducing 

A to upper Hessenberg form. The most popular methods use either orthogonal or 

elementary similarity transformations. The methods that use orthogonal similarity 

transformations have better stability properties, but they are slower by a factor of two 

than the methods that use elementary similarity transformations, Because instabilities 

using elementary similarity transformations with pivoting are rarely seen in practice, 

we chose to implement a parallel method that uses these transformations. 

The second step of the serid algorithm is to  appIy implicit double-shift QR iter- 

ations to  H until all the eigenvalues are found. This variation of QR iteration was 

originally proposed by Francis [3] and lias the advantage of using only real arithmetic 

throughout the computation. Since complex arithmetic often requires more than twice 

as much work as real arithmetic, this variation saves time. Researchers have found that 

the iteration method converges in an average of two iterations, usually to the eigenvalue 

of smallest modulus remaining in the matrix. 

In the third step, inverse iteration is performed using the known eigenvalues to 

find the eigenvectors of If. Serially, this step is similar t o  doing n triangular solutions 

(one for each eigenvector). Finally, we apply to these cigcnvectors the inverses of the 
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transformations used to reduce A to H .  The result is all the eigenvectors of the original 

matrix A .  

In the following sections we will describe parallel implementations of each of the 

above steps. We assume the reader is familiar with the details of the operations re- 

quired to annihilate individual matrix entries (see, e.g.,[9]), and we will therefore give 

only a high-level description of the parallel algorithms. We will also describe several 

enhancements that were incorporated into step 2. In the final sections we summarize 

the results obtained to  date and comment on future research areas. 

2. PARALLEL HESSENBERG REDUCTION 

The use of elementary similarity transformations resembles Gaussian elimination with 

two important modifications: elements on the first subdiagonal are not eliminated, and 

both row and column operations are performed to  preserve similarity. Nevertheless, 

much of our previous work on the parallel solution of lineax systems applies. In partic- 

ular LU factorization can be implemented quite efficiently with row or column storage 

on distributed-memory multiprocessors[4]. 

The need to preserve similarity affects the choice of storage scheme in Hessenherg 

reduction. In a column-mapped scheme, the search for the pivot and the formation of 

the multipliers must be done entirely on the processor that holds the pivot column. This 

serial phase can seriously degrade the performance of a parallel implementation unless 

this sequential thread is masked. If the pivot search is effectively masked, a column- 

oriented LU decomposition can be competitive with a row-oriented version. However, 

Hessenberg reduction requires that both row and column interchanges be done. This 

hampers attempts at  the kind of masking used in LU factorization. Since the column 

oriented LIT algorithm performs poorly without masking, we chose to implement the 

reductic.)n to Hessenberg form using row storage. 

The algorithm for Hessenberg reduction is presented in Figure 1, and is described 

below. In the following discussion, processors will be numbered from 0 to p - 1, and 

rows of the matrix will be numbered from 1 to n. The parallel Hessenberg reduction 

is implemented by initially having the host processor send rows of the matrix to the 

processors in a wrap mapping, i.e., row i of A is sent to processor (i- 1) mod p .  Unless 

the matrix is diagonally dominant, this mapping is changed due to pivoting during the 
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for k = 1 to (TZ  - 2) do 
determine pivot row: 

scan my portion of column k ,  find local max 
determine global maximum and which processor has the pivot 

do column interchanges and update row permutation map 
if I have the pivot row 

else 

compute multipliers to eliminate my pieces of column k 
apply transformation to  my rows 
assemble row multipliers which I have into a local vector 
concatenate multipliers from all processors into one global vector 
apply inverse transformation to  my pieces of the unreduced columns 

broadcast pivot row to all other processors 

await pivot row 

Figure 1: Algorithm for Hessenberg reduction. 

reduction phase. Thus, wrap mapping cannot be assumed as the algorithm proceeds. 

The algorithm loops over the n - 2 unreduced columns of the matrix. At  step k ,  

all the processors search their portions of column k and send their local maxima up a 

spanning tree of the processor topology rooted at processor 0. Processor 0 determines 

the global maximum and fans this information back down the spanning tree. All 

processors perform an explicit column interchange and an implicit row interchange 

by updating a map vector. The map vector keeps track of which processors contain 

which rows. The pivot row is broadcast, aid the processors apply row modifications to 

their respective parts of the matrix. Next, the processors again work together through 

the spanning tree to concatenate their elements of column k. This column is fanned 

back down the spanning tree, where all the processors use it to  complete the column 

modification for this step. 

3. FINDING EIGENVALUES 

In Figure 2 we present an algorithm for finding the eigenvalues of the TIessenberg 

matrix. This algorithm has two major loops. The outer loop checks whether one real 

eigenvalue, a pair of complex conjugate eigenvalucs, or no eigenvalues have been found. 

The outer loop also checks whether the problem can be deflated at  this step. (Deflation 
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While( n > 2 ) 
If problem can be deflated 

Adjust problem size 
If root(s) found 

decrease n 
numits = 0 

Inner Loop: one &It iteration 
numits = numits + 1 
If I have column 2 

Send column modification information to processor with column 1 
Else if I have column n - 1 or n 

Send shift information to processor with column 1 
Else if I have column 1 

Await shift and column modification information 
For k = 0 to ( n  - 3) of currently active submatrix do 

If (k = 0 and I have column 1) or (I have column k) 
Calculate Householder vector pqr 
Broadcast vector pqr 

Await vector pqr 
Else 

Modify my parts of rows k 4- 1, k + 2 and k + 3 
If I have column k + 1 

Await columns k + 2 and k 4- 3 
Form vector ZI as linear combination of the three columns 
Send ZI to processors holding columns k + 2 and k 4- 3 
Modify column k + 1 

Send column to processor with column k + 1 
Await v 
Modify column k f 2 or b t 3 

End of iteration 

Else if I have columns k + 2 or k t 3 

If numits > 30 then print message and stop 
End while 

Figure 2: Synchronous Algorithm for Finding Eigenvalues. 
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is a process by which the original problem is split into two or more smaller problems.) 

The inner loop performs one implicit double-shift QR iteration on H .  

All the operations in this algorithm are symmetrical so there is no advantage in 

storing E1 by rows or by columns. The amount of communication and the potential 

for pardelism are the same for either storage method. We have implemented this 

algorithm assuming H is stored by columns in a wrap mapping. We will see that this 

storage method will improve the efficiency of the third step, finding the eigenvectors, 

but it requires us to transpose the matrix H .  

Eigenvalues are found when one of two things occurs. If Hn,n-l has converged to 

zero, then lln,n is a single real eigenvalue. On the other hand, if Hn-l,n-a has converged 

to  zero, then this signals that a pair of complex conjugate eigenvalues has been found. 

In order to determine their values it is necessary for the two processors that contain 

elements of the isolated 2 x 2 submatrix to solve the quadratic equation. 

Checking for possible deflation requires a large amount of communication, which 

is often wasted, since most of the time the problem does not deflate. The two main 

advantages of checking for deflation are that a significant amount of computational 

work can be avoided, and if the matrix is known to Lave split, separate shifts can 

be calculated for each part. We irnplemented the following test for deflation. The 

subdiagonal is searched in parallel for “zero” elements. If any elements are “small” 

relative to  the diagonal entries around them, then they are taken as zero. If such a 

“zero” is found, this signifies that the matrix can be split into two smaller matrices. 

The parallel implementation of this test has each processor send its diagonal entries 

to  its left and right neighbors in the wrap mapping. Each processor then compares 

the subdiagonals it holds with the appropriate diagonal entries and sends the highest 

column number that has a 4 c ~ e r ~ ”  subdiagonal (sending a 1 if it has none) to  the 

processor that holds the last column of the active matrix. The latter processor chooses 

the maximum of these values and broadcasts this information to  all the other processors. 

All the processors assume the matrix has split at this column and adjust their work 

accordingly. 

The implicit double shift QR iteration on a Hessenberg matrix can be regarded as 

a loop with the index k going from 0 to ‘ri - 2. At each step k, except for the last, three 

consecutive rows and then three consecutive columns are modified. To understand our 
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Figure 3: A bulge is chased down the diagonal during the QR iteration. 

parallel implementation, it is important to  understand how and when the operations 

are done. Figure 3 shows a snapshot of the matrix being modified during the iteration. 

There are two communication phases a t  each step of the iteration. Before the row 

or column modifications can be performed, the IIouseholder vector, which we call pqr,  

must be formed and broadcast to all the processors. Once the processors have p q r ,  

they modify their parts of the three rows in parallel. 'The second coinmunication phase 

occurs before the column modifications are performed, A linear combination of the 

three columns, u,  must be formed. This vector is formed on the processor holding the 

leftrnost of the three columns after it receives information from the other two processors. 

The formation of u is serial but, once formed, it is sent back out and used in parallel 

by the three processors to modify the three columns. 

While finding the eigenvalues, about half of the computational work is performed 

in the column modifications and half in the row modifications. As described in the 

synchronous algorithm above, only three processors work on the column inod ifications 

at  one time. By Amdahl's Law, if half the work in an algorithm is performed by only 

three processors, then the maximum speedup obtainable with that algorithm is about 6. 

This is unacceptable for distributed-memory architectures, which may have thousands 

of processors. Since the performance bottleneck is attributable to the serial nature of 

our initial implementation of the coluiiin modifications, we concentrated our efforts on 

developing implementations that were more parallel. 
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P2 P3 P4 

Figure 4: Pipelining requires knowing which processors contain active elements. 

Several methods were employed in an attempt to mask the column modification 

phase of the algorithm. One of these methods involved using a ring architecture. In 

this method the roles of the three processors computing the column modification were 

switched. In a ring it makes more sense to let the middle processor compute and send 

it back out, since this involves only nearest neighbor connections.. Since we restricted 

ourselves to  a strict ring architecture, the broadcast of pqr used a ring broadcast. In 

a ring broadcast a message is passed serially around the ring. While this method of 

broadcast requires O ( p )  steps, it is often possible to  mask this work completely by 

pipelining the operations around thc ring. 

We define pipelining to be a nietliod in which a processor calculates and sends 

needed information before finishing the rest of its work for the current step. Thus, 

when the other processors finish their work the information they need is already avail- 

able to them. Up to this point we have been describing synchronous algorithms. In 

synchronous algorithms computation and communication are parallelized, but they are 

not overlapped. In our case, either or both the row and column modifications can be 

pipelined. This pipelining can be applied to the original algorithm or the ring algo- 

rithm. To understand how this pipelining i s  implemented we will refer to Figure 4. In 

Figure 4, p2, p3, and p4 are the processors that contain the three active columns of !I 

at  step I;. 
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We first consider the pipelining of the column modifications. In the synchronous 

algorithm, p2 modifies all of column k ,  and the next row modification is started when 

p2 calculates and broadcasts new values for p q r .  In the pipelined algorithm, p2 modifies 

the last three nonzero elements in column k, then calculates and broadcasts pqr  before 

finishing modifications to the column. Since row modifications can start as soon as 

p q r  is known, all processors except p2, p3, and p4 will begin the next step while these 

three processors finish the previous step, The effect is that now all processors are 

doing computations during part of the time when only three processors were busy in 

the original algorithm. 

Next we consider pipelining the row modification. In the pipelined version, p2, p3, 

and p4 perform row modifications only on elements inside the leftmost 3 x 3 block in 

Figure 4, then complete column modifications (sending out p q r )  before finally going 

back to finish the rest of their row modifications. Again, the idea is to  have needed 

information available when processors finish the current stage. Pipelining the row mod- 

ification masks the serial work of calculating TJ and modifying the last three elements 

in the pipelined column modification scheme. 

Figure 5 presents the inner loop of a node algorithm for finding the eigenvalues of 

a IIesseiiberg matrix in which the row and column updates are pipelined. 

There is still a problerii even with these pipelining schemes. I n  the column modifi- 

cation step of oiir example, p2, p3, and p4 will finish the column modification while the 

other processors are doing row modifications. But now these processors will wait while 

p3 and p4 do the next row and column modification. It is not clear how to eliminate 

this problem, but it can be improved by using a scheme we call delayed updating. The 

basic idea is for key processors to  delay calculating any values that are not immediately 

useful until later, when these processors would otherwise be idle. 

Like pipelining, delayed updating can be applied to either the column modification 

or the row modification. During the kth column modification, elements with row indices 

less than k - 2 will not be needed until the next iteration is started. In Figure 4, since 

p3 and p4 must perform key calculations at this step, the updating of these column 

elements is delayed until step j, where p ( m o d j )  = 0. In the above example, p2 is now 

in this position so it will modify the appropriate elements in its column with the last 

three modifications. 
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Inner Loop one QR iteration 
If I have column 2 

Else if I have column n - 1 or n 

Else i f f  have column 1 

Send column modification information t o  processor with column 1 

Send shift information to processor with column 1 

Await shift and column modification information 
Calculate householder vector pqr  
Broadcast vector pqr 

If k # 0 and I do not have column k 

Modify the first three elements in rows k + 1, k + 2 and k + 3 
If I have column k + 1 

For k T 0 to  ( n  - 3) of currently active submatrix do 

Await vector pqr 

Await columns k + 2 and k + 3 
Form vector v as linear combination of the three columns 
Send w to processors holding columns k + 1 and k + 2 
Modify last three elements of column k + 1 
Calculate pqr for the next value of k 
Broadcast pqr 
Finish row modification on rows k + 1, k + 2 and k + 3 
Finish column modification on column k + 1 

Send column to processor with column k f 1 
Finish row modification on rows k + 1, k + 2 and k + 3 
Await v 
Modify column k + 2 or k f 3 

Finish row modiiication on rows k + 1, k + 2 and k + 3 

Else if I have columns k + 2 or k + 3 

Else 

End of iteration 

Figure 5 :  Inner loop of Pipelined Algorithm for Finding Eigenvalues. 
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Similarly, when several columns are contained on each processor, the row modifica- 

tions can be delayed. In our example, p2, p3, and p4 must perform a row modificatioii 

on their respective parts of the active columns, but not on any other columns they 

hold. (We are assuming that p 2 4). After p2 has finished broadcasting the next p q r ,  

it  can finish the row modifications it has delayed. At subsequent steps, p3 and p4 will 

do the same. 

The idea behind delayed updating in this algorithm is t o  allow the 3 x 4 block of 

computations to  move down the diagonal as quickly as possible. The delayed work will 

tend to  string out behind this block and allow more than three processors to  be active 

during the column modifications. However, it  is possible that delayed updating of the 

column modifications can hurt performance. Using the above scheme, the speed of the 

3 x 4 block is increased at  the expense of increasing the serial work of otlierwise idle 

processors by a factor of three. Depending on the size of the problem, the number of 

processors, and the Iliachine parameters, the result could be an increase in execution 

time. 

4. FINDING EIGENVECTORS 

When the QR iteration phase is coinplete, the Hessenberg matrix has been reduced to  a 

quasi-upper triangular ma,trix, T ,  and the eigenvalues of A are known. The eigenvectors 

of T are found by iiiverse iteration. Although the parallel inverse iteration algorithm 

is similar to  the column-oriented backsolve algorithm given in nomine and Ortega [GI, 

the presence of the 2 x 2 blocks on the diagonal of T complicates the process. The 

algorithm is given in Figure 6, 

For each eigenvalue, the algorithm calls a backsolve routine for a matrix of appro- 

priate size. We illustrate this with the matrix T of order eight shown in Figure 7. The 

2 x 2  blocks on the diagonal of 7’ correspond to either a real or a complex conjugate 

pair of eigenvalues. Diagonal elements of T that are not in a 2 x 2  block correspond to  

real eigenvalues. 

Proceed down the list of eigenvalues, beginning with T(1,l). This eigenvalue is real 

and its eigenvector is trivially (1 ,0 ,0 ,0 ,0 ,  O , O ,  O ) T .  However, the nest two eigenvalues 

of T are found in a 2x2 block. The backsolve algorithm must be called with the 3x3 

principal submatrix of T ,  and this step will find two eigenvectors. 
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x x x x x x x  
x x x x x x x  

x x x x x  
x x x x  

x x x  
x x x  

T =  

Main program: 

For IC = 1 to n do 
Broadcast block structure corresponding to eigenvalue k 
If column IC is the first part of a 2x2 block for eigenvalue k 

Else if column k is the second part of a 2x2 block €or eigenvalue k 

Else 

Backsolve the ( I C  + 1) x (k 4- 1) submatrix for vectors k and (k 4- 1) 

Increment k (work is already done) 

Backsolve the k x k submatrix for eigenvector k 

Backsolve algorithm for k x k submatrix: 

For c = k to  1 do 
If I have column e - 1 and it is first part of a 2x2 block then 

Send multiplier information to  processor with column c 

Accumulate backsubs ti tu tion summation froin all processors 
If I have column c 

If column c is the second part of a 2x2 block then 

Compute entry e of the eigenvector 
Receive multiplier information from column c - L 

Figure 6: Backsolve Algorithm for Finding Eigenvectors of Quasi-Triangular Matrix. 
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Although the fourth eigenvalue is real, when the backsubstitution is performed 

on the 4x4 principal submatrix, additional communication is again required to pass 

through the 2x2 block. 

During the QR iteration phase, the transformations that are applied to  If are 

also accumulated in a two-dimensional array, 2, The eigenvectors of H are found by 

applying these transformations to  the eigenvectors of T .  Since Z is stored by columns, 

each processor contains n / p  rows of ZT and n / p  columns of eigenvectors of T .  Thus 

the parallel matrix-matrix miiltiplication can be performed efficiently and with perfect 

load balance. 

To obtain the eigenvectors of A ,  we must finally apply the inverses of the transfor- 

mations that reduced the original A to IIessenberg form. This algorithm is outlined in 

Figure 8. 

For k = ( n  - 2) to 1 do 
Concatenate and broadcast multipliers for eoliimn k 
Apply multipliers to my pieces of column k 
Do column interchange to complete the similarity transformation 

Figure 8: Algorithm for Transforming Eigenvectors of If to Eigenvetors of A .  

The permutation information has been recorded during the IIessenberg reduction, 

and the multipliers have Leen stored in the lower triangle of A.  Storage of the eigenvec- 

tors of H is by columns. If we were to calculate each of the eigenvectors of A one a t  a 

time using all the processors, then the calculation would be essentially sequential. Our 

implementation calculates the first component of all the eigenvectors, then the second 

component and so on, allowing a large degree of parallelism. 

This phase begins with all the processors working together to concatenate a column 

of multipliers. Once each processor has received the assembled vector, it has all the 

information necessary to both calculate the first coinponent of each eigenvector for 

which it is responsible, and to permute the respective rows of the eigenvectors in the 

same way that A was originally permuted. All processors work independently and in 

parallel during this phase. These three processes of concatenating the next column of 

multipliers, calculating the next component of the eigenvectors, and then permuting 
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the eigenvectors continue until all the components are found. 

5 .  RESULTS 

This section gives performance results for our implementation of parallel Kessenberg re- 

duction, four versions of parallel eigenvalue algorithms, an implementation of a parallel 

eigenva,lue/eigenvector code, and the final parallel eigenvector transformation routine 

on an Intel iPSC/2 hypercube. The square test matrices are dense with entries ran- 

domly distributed between [0,1]. Three matrix sizes and up to  32 processors were used 

in the experiments. Table 1 shows the execution time in seconds for each of the aIgo- 

rithms on various size problems. We use the same names as the analogous serial codes 

in EISPACK [7] t o  indicate the function of the various parallel codes. 

+j--%p 
1 .o 

128 4.9 

Table 1: Execution times in seconds for test problems. 

The parallel reduction to Hessenberg form (ELMHES) is very effecient. The time 

required for the reduction is less than 10% of the total time to  find the eigenvalues of 

the matrix. The execution time decreases as p increases, and efficiencies as high as 90% 

have been observed for large matrices. 

The parallel algorithms labeled TTQR in Table 1 are implicit double shift QR al- 

gorithms to  find only the eigenvalues of a matrix. Several versions were developed 

because the original synchronous version performed poorly. The execution times of the 

synchronous code are displayed along with the times for a pipelined version, a pipelined 

version using only ring communication, and a tlelayed updatiiig version. While there 
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was a significant improvement in going from the synchronous to  a pipelined imple- 

mentation, variations in the pipelining and delayed updating made suprisingly little 

improvement. Moreover, there is almost 110 decrease in execution time as p increases. 

The efficiencies of the improved versions of HQK are about 50% for p = 8 and grow 

slowly with n. Thus the performance of these parallel algorithms is still not satisfactory. 

Finding the eigenvectors serially requires about the same amount of time as finding 

the eigenvalues serially. Thus, a parallel algorithm that also finds eigenvectors should 

require about twice as much time as HQR to execute. We expanded the synchronous 

code HQR to include eigenvector calculations and called it HQR2. Our timings reveal 

that HQR2 ran 2.5 to  3 times longer than HQR. After profiling HQR2, it was found 

that in the 71 = 25G case approximately 10% of the extra time is spent doing the n 

backsubstitutions, and 90% of the time is spent applying tranformations to 2. Since 

HQR2 is a direct modification of the synchronous IIQR code, the serial portions of HQR 

are being exaggerated in HQR2 by also applying the transformations to  2 serially. It 

may he possible to  mask much of the formation of 2 in the pipelined codes, and a 

fututre project is to develop a pipelined version of IIQR2. 

The parallel algorithm for transforming the eigenvectors of E1 to those of A is called 

ELMI3AK. The performance properties of ELMBAK are similar t o  those of ELMHES, 

It is not only highly efficient, but as p increases it consumes less than 1% of the total 

time for finding the eigenvalues and eigenvectors of a matrix. 

6. CONCLUSIONS 

In this paper we have presented a parallel approach to  the solution of the eigen- 

value/eigenvector problem for a dense, unsymmetric matrix. The reduction to Hes- 

senberg form and the final transformation for the eigenvectors were direct extensions 

of previous work on linear systems. The performance of these routines is very much 

as we expected. First, the combined time for ELMIIES and ELM13AK is a small per- 

centage of the total work load. More importantly, for fixed problem size n, execution 

times decrease as the nuiribcr of processors p increases. 

After implementing the synchronous algorithm for eigenvalues (HQR), we discov- 

ered that the sequential thread of the 3 x 4 block procecding down the diagonal of the 

matrix was the major bottleneck. Considerable time and effort were put into masking 
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this bottleneck. Although improvements were made, the timing results revealed the 

apparent independence of execution time with number of processors. The primary rea- 

son for this independence is due to the large communication to  computation ratio of 

existing hypercubes. On the iPSC/2, sending a single message takes about G O  times as 

long as a single floating point operation. The modification of the elements in the 3 x 3 

block requires communication with two other processors. While we have concentrated 

on improving the computational part of the sequential thread, the communication part 

still remains as the next likely target for parallelization. Other mappings of columns to  

processors (e.g. block mapping) could reduce the communication, but at the expense 

of more serial arithmetic. Various methods of improving the iteration step are under 

investigation. 
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