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CHEMICAL VAPOR DEPOSITION IN THE SILICON-CARBON AND
BORON-CARBON-NITROGEN SYSTEMS™

T. M. Besmann

ABSTRACT

The chemical vapor deposition of SiC from methyl-
trichlorosilane was studied using a combination of measure-
ment and analytical techniques., Equilibrium analysis and mass
spectrometric measurements were used to identify gas-phase
species and determine their concentrations. Analysis of kinetic
data coupled with a thermokinetic assessment allowed determina-
tion of rate-limiting mechanisms.

The preparation of a two-phase coating of B,C-BN was
addressed as a potential wear coating, because of its likelihcod
of having a high fracture toughness resulting from its composite
nature and inherent lubrication resulting from the presence of
BN. Equilibrium analysis identified appropriate deposition con-
ditions; however, deposited coatings were found to be single-
phase BN with a high degree of substitution of carbon for
nitrogen.

INTRODUCTION

This report is an account of work performed on the Energy Conversion and
Utilization Technologies Program from October 1, 1985, to September 30,
1987, The efforts are divided into two related areas. The first area was
a study of the fundamental, rate-limiting processes in the deposition of
SiC coatings. This included thermochemical analysis and experimental
determination of gas phase compositions. The second area was an
investigation of the preparation of two-phase B,C-BN as a potential wear
coating. Equilibrium analysis was performed to determine likely deposition

conditions, and coatings were prepared and analyzed.

*Research sponsored by the Office of Energy Utilization Research, Energy
Conversion and Utilization Technologies (ECUT) Program, U.S. Department of
Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy
Systems, Inc.



SiC DEPOSITION PROCESSES

The understanding of rate-limiting processes in the chemical vapor
deposition (CVD) of SiC from methyltrichlorosilane (MTS) has been developed
using a combination of measurement and analytical techmiques. These
involve equilibrium analysis, mass spectrometric measurements of gas-phase
species in the CVD reactor, analysis of kinetic data, and thermokinetiec

assessment,

EQUILIBRIUM ANALYSIS

An equilibrium analysis was performed for the system of MTS diluted
with either hydrogen or an inert gas. Individual calculations were
performed utilizing the SOLGASMIX-PV computer code {(Besmann, 1977),
considering 81 gaseous species and 6 condensed phases. Thermodynanic data
were obtained for all species from the JANAF Thermochemical Tables, with
the exception that those for MTS were derived from Aleman et al. (1985).
The calculations indicated equilibrium partial pressures and stable
condensed phases. An example of these results is shown in Fig. 1, which
is a plot of reactant and equilibrium partial pressures as a function of
tempevature. 1t is apparent from the calculations that MIS is a relatively
unstable species and that it readily decomposes to 5iCl, and CH,. 1In
addition, single-phase SiC forms under all the conditions explored, with

HC1 the expected product gas.

MASS SPECTROMETRIC MEASUREMENTS

The deviation from eguilibrium in the SiC CVD system must be deter-
mined experimentally. This was accomplished by measurement of species
partial pressures in the CVD reactor, using mass spectrometry. A simple,
but versatile, CVD system was constructed for the deposition of 5iC from
MTS and is shown schematically in Fig. 2. A probe for a gquadrupole mass
spectrometery was Inserted into the reactor on the exhaust side of the
system. Measurements made continuously during SiC CVD runs gave generally

consistent concentration values throughout their duratioms.
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The major species identified were MTS, 8iCl,, CH,, and HCL; their
measured pressures at 1300 K are shown in Fig. 1. The most significant
difference between the calculated and measured values was in the pressure
of MTS. Although thermodynamically the species should decompose to an
extremely low partial pressure, it remained present at significsnt
concentrations. It is likely that much of the gas stream did not heat
sufficiently to overcome the kinetic barrier to MTS decomposgition, since
only the 2.5-cm-diam graphite substrate was at an elevated temperature in
the cold-wall CVD reactor used (Fig. 2).

In an attempt to obtain partial pressures more indicative of the CVD
reaction mechanism, the mass spectrometer probe was inserted into a hole
that extended through the graphite substrate so that the probe entrance
was flush with the front surface of the substrate. Vapor species were thus
sampled directly from the CVD growth surface. The results, however,
closely matched those obtained from sampling the exhaust gases, indicating
that either the compositions were similar or that any high-temperature
species did not remain stable during transport through the capillary probe
to the mass spectrometer vacuum chamber.

The results shown in Fig. 1 confirm, as noted above, that MIS is an
unstable reactant that quickly decomposes to SiCl, and CH, at elevated
temperatures. In essence, these latter species are thus the CVD reactants
which reach the substrate surface and thus are likely to be important in

discerning the rate-limiting mechanisms.

ANALYSIS OF KINETIC DATA

Another basis for this mechanistic study is the development of kinetic
parameters from deposition rate data. For CVD systems this is inherently
difficult, since gas-phase diffusion of reactants through a boundary layer
above the substrate is typically rate controlling. Limiting surface or
gas-phase reactions, which are potentially more important than gas-phase
diffusion with regard to growth habit and composition mechanisms, are rapid
compared with the gas-phase diffusion, and thus they are masked.

Brennfleck et al. (1984) have determined rate data iu the absence of

gas-phase diffusion effects, by depositing SiC on a graphite wirs that was



vibrating. The relatively high velocity of the vibrating wire results in
an exceptionally small boundary layer between the bulk gas and the sub-
strate, allowing gas-phase diffusion to be rapid and deposition rates to be
limited by other CVD mechanisms. Brennfleck et al. determined data for the
CVD of SiC from MTS diluted with either hydrogen or argon, and the results
are shown in Figs. 3 and 4.

In one set of measurements, deposition rates were determined as a
function of MTS concentration. The linear behavior with respect to MTS
partial pressure in the systems diluted with hydrogen or argon indicates
that deposition is first order with respect to MTS concentration for both.
Brennfleck et al. (1984) also determined that the logarithms of the deposi-
tion rates were linear with respect to reciprocal absolute temperature
(Figs. 3 and 4), and thus the Arrhenius relationship was usable (Benson,
1976). The slope of the plots yielded activation energies, which they
reported as 120 and 400 kJ/mol for MTS plus hydrogen and for MTS plus
argon, respectively. The difference in the activation energies is,
naturally, a reflection of the difference in the deposition rates, and it
is thus apparent that hydrogen catalyzes the CVD of SiC from MTS.

The data determined by Brennfleck et al. (1984) were refit to an
Arrhenius relationship that included both the first-order dependence on MTS

concentration and a frequency factor:

r = Cyrs A exp(-E/RT) , (1)

where r is the deposition rate, Cyrg is the MTS concentration, A is the
frequency factor, E is the activation energy, R is the ideal gas law
constant, and T is the absolute temperature. It is apparent from the
comparative results shown in Table 1 that the frequency factors for the
two systems are, like the activation energies, significantly different.
As expected, the activation energies computed by Brennfleck et al. are
equivalent to those recalculated here.

The magnitude of the frequency factor has been observed to be descrip-
tive of the nature of the rate-limiting process. Baetzold and Somorjai
(1976) have correlated experimentally determined frequency factors with
various processes. When compared with the correlation, the values in

Table 1 indicate that the deposition of SiC from MTS in the presence of
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Table 1. Derived activation energies of Brennfleck et al. (1984)
and the activation energies and frequency factors
rederived from their data

Brennfleck et al. Recalculated
Diluent
E E
(kJ/mol) (kJ/mol) ILn A
H, 120 134 + 7 10.9 + 0.7
Ar 400 405 + 23 37.7 £ 2.5

hydrogen is limited by adsorption or surface diffusion, whereas the
deposition of SiC from MTS diluted with an inert gas is limited by a

unimolecular surface or gas-phase reaction.
THERMOKINETIC ANALYSIS
Thermokinetic analysis can be used to identify rate-limiting reactions

from derived Arrhenius parameters. Activation energies and frequency

factors are equated to the thermodynamic values for specific rate-limiting

reactions:
In Kygte = In A -- E/RT , (2)
In RKequil = AS°/R -- AH°/RT , (3)
and
In Krate = In Kequil » (4)

where Kysto is the rate constant, Kequil is the equilibrium constant, and
AS® and AH® are the entropy change and the enthalpy change, respectively,
for the rate-limiting reaction. Values of entropy and enthalpy for

specific reactions can thus be compared with the determined frequency
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factor and activation energy, using the appropriate class of processes
chosen via the frequency factor correlations, to then identify likely
rate-limiting reactions.

Since the rate-limiting process for the deposition of SiC from MTS in
hydrogen is adsorption or surface diffusion, no rate-limiting reaction can
be written for which tabulated thermodynamic data can be used to derive
entropy and enthalpy changes. Any further elucidation of this process will
thus depend on further in situ analysis of the deposition process.

The rate-limiting process for the CVD of SiC from MTS diluted in
argon is a unimolecular gas-phase or surface reaction, and thus candidate
reactions can be examined for applicability utilizing tabulated thermo-
dynamic data. Thermodynamic caleculations were performed assuming that
there is equilibrium in the gas phase, but that no 5iC forms, in order to
obtain partial pressures in the system in which 5iC formation is con-
strained by intermediate reactions. The major and minor species listed in
Table 2 were derived from the equilibrium calculations and were taken to be
candidates for rate-limiting process reactants.

All conceivable reactions in the system were then written, using the
species listed in Teble 2 as unimolecular reactants. The thermodynamic
calculations for each were performed, using the reactant partial pressures
of Table 2 and the equilibrium thermodynamic codes in the FACT interactive
system, to derive entropy and enthalpy changes at 1300 K. Four reactions
were found to best match the frequency factor and the activation energy
with the entropy change and the enthalpy change, respectively. These
reactions are listed in Table 3. These, thervefore, are primary candidates
for the mechanism controlling the deposition of SiC from MTS diluted with

an inert gas.

TWO-PHASE COATINGS

The well-known increase in fracture toughness in ceramic bodies due to
the presence of a second phase is thought to extend to ceramic coatings as
well. Coatings with improved fracture toughness could solve one of the
most difficult problems in the use of ceramic protective coatings, the

cracking and spalling that result from the difference in thermal expansion
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Table 2. Major species equilibrium
partial pressures calculated at
1300 K and 0.101 MPa for the MTS
system diluted with inert gas.
It is assumed that no condensed
phases are present

: Partial pressure
Species

(kPa)
H, 5.3
SicCl, 3.1
SicCl, 2.1
sicl, 1.4
CgHg 0.92
HC1 0.75
SiHC1, 0.74
CH, 0.63
C,H, 0.28
C,Hg 0.13

Table 3. Possible rate-limiting reactions for
S$iC CVD from MTS plus argon

Reaction AHCE AS°b
(8iCl,) ~ <8i> + 2(C1) 420 342
1/2(C,H,) + <C> + 2(H) 430 377
(Hy) ~ 2(H) 448 344
(8iCl,) - (SiCly) + (C1) 374 288

9E = (405 * 23) kJ/mol.

bR 1n A = (313 + 21) J mol-1 K1,
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coefficient between coating and substrate, In particular, it was postu-
lated that coatings of B,C-BN would be attractive as protection agalunst
oxidation, corrosion, wear, and erosion, The major phase, B,C, is excep-
tionally hard and would provide wear and erosion protective qualities,
whereas the presence of the substantially softer minor phase, hexagonal BN,

would improve the fracture toughness.

PREVIOUS WORK

Earlier work on the CVD of SiC-TiSi, was very encouraging (Stinton
et al. 1984). Coatings produced on graphite exhibited fracture toughnesses
approximately double those of the major phase, SiC (Fig. 5). In addition,
it was demonstrated that the morphology of the coatings could be controlled
to some extent by controlling the reactant concentrations and deposition
temperature. Deposits were also produced using fluidized bed deposition;
these were more fine-grained and equiaxed, although the fracture toughness

remained equivalent to that of the columnar coatings shown in Fig. 5.

EQUILIBRIUM ANALYSIS GF THE B-C-N GVD SYSTEM

An extensive equilibrium analysis was perforwed using the SOLGASMIX-
PV code (Besmann, 1977) and varying reactant concentrations, total
pressure, and temperature. It was assumed that deposition would take place
from the reactants BCl,, CH,, NH;, and hydrogen. Figure 6 illustrates some
of the results of those calculations, in this case showing the effect of a
low hydrogen concentration. Low nitrogen content is seen to result in
three deposited phases, with higher values causing the disappearance of
B,C. Significantly increasing the hydrogen content, however, allows the
free carbon to form hydrocarbons, and a large compositiomal area of the
desired phases B,C-BN emerges (Fig. 7). Both deposition temperature and

pressure appear to have minor effects on the deposition system equilibria,

DEPOSITION EXPERIENCE

A CVD system for the deposition of B,C-BN was constructed and is

depicted schematically in Fig. 8. Deposition rums were performed to
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separately produce B,C and BN on graphite substrates to prove the system
and demonstrate that each phase could be prepared. These runs were
successful, although it was determined that the high hydrogen concen-
trations predicted to be necessary from the equilibrium calculations to
deposit B,C resulted in a porous, friable coating (Fig. 9). Substantially
reducing the hydrogen flow produced dense, single-phase B,C, and it is
postulated that free carbon must be kinetically hindered in its formation
from methane, as has been observed by others (Cartwright and Popper, 1970).
All runs were made at reduced pressure, 3.3 kPa (25 torr), to improve
coating uniformity.

Experimental runs were next performed to deposit two-phase coatings
with a variety of compositions. Predicted phase contents ranged from 50
to 10 mol $ BN. The results, however, were unexpected. All deposits were
single-phase when subjected to examination by metallography (Fig. 10) and
X-ray diffractometry. The X-ray diffraction patterns were also found to be
equivalent to that determined by Badzian et al. (1972), who interpreted it
to indicate a graphitic structure which was turbostratic. A turbostratic
structure is one in which the graphite-like planes are highly ordered;
however, there is little order between planes. Thus the hexagonal BN
apparently formed its typical graphite-like structure in the a and b
directions, with little orientation in the c direction.

Scanning Auger electron spectroscopy was performed on fracture
surfaces of the coatings. The results confirmed the uniformity of the
coating, with the average composition determined from a spot size over
100 pm? equivalent to that from a spot size of square-nanometer scale.

A typical sample composition was BC, ,3Ny 59, indicating a likely
substitution of carbon for nitrogen in the hexagonal BN structure.

Microindentation of the cross section of the coatings indicated a
relatively soft material (Vickers hardness of ~430). In addition, relaxa-
tion of the indentation after removal of the load was observed, which
indicates that the material is substantially more elastic than B,C would
be expected to be.

Reciprocal sliding tests were performed on the surface of a typical

coating to determine its coefficient of friction. The counterface material
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Fig. 9. Scanning electron micrograph of the porous,
friable coating of B,C deposited using a high concentration
of hydrogen.



Fig. 10. Scanning electron micrographs of (&) polished cross section and (b) top surface of a

B-C-N coating.
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was alumina. Coefficient of friction values of ~0.39 were measured,
which agree well with the room-temperature value reported for BN of 0.4
(Rabinowicz, 1965).

SUMMARY

Equilibrium analysis calculations, experimentally determined gas-phase
composition, and analysis of kinetic data coupled with thermokinetic
analysis were used to develop an understanding of the CVD of SiC from MTS.
The rate-limiting process for SiC deposited from MTS diluted with hydrogen
(which acts as a catalyst) appears to be adsorption or surface diffusion.
The rate-limiting process for the CVD of MTS diluted with argon is a
unimolecular gas-phase or surface reaction, and the four most probable
reactions have been identified.

The CVD of B-C-N yields a single-phase, turbostratic coating.

Scanning Auger analysis has revealed a substoichiometric (in the nonmetals)
B(C,N) phase. Microindentation indicates the coating to be somewhat
elastic, and reciprocal sliding measurements against an alumina counterface

give a coefficient of friction of ~0.39.
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