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TRIPLE TON BEAM IRRADIATION FACILITY*

M. B. Lewis, W. R. Allen, R. A. Buhl,
N. H. Packan, S. W. Cook, and L. K. Mansur

ABSTRACT

A unique ion irradiation facility consisting of three
accelerators is described. The accelerators can be operated
simultaneously to deliver three ion beams on one target sample.
The energy ranges of the ions are 50 to 400 keV, 200 keV to
2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the
appropriate mass range can be simultaneously implanted to the
same depth in a target specimen as large as 100 mm? in area.
Typical depth ranges are 0.1 to 1.0 um. The X~Y profiles of all
three ion beams are measured by a system of miniature Faraday
cups. The low-voltage accelerator can periodically ramp the ion
beam energy during the implantation. Three different types of
target chambers are in use at this facility. The triple-beam
high~vacuum chamber can hold nine transmission electron
microscopy specimens at elevated temperature during an irra-
diation by the three simultaneous beams. A second high-vacuum
chamber on the medium-voltage accelerator beamline houses a low-
and high~temperature translator and a two—-axis goniometer for ion
channeling measurements. The third chamber on the high-energy
beamline can be gas~filled for special stressed specimen irra-
diations. Special applications for the surface modification of
materials with this facility are described. Appendixes con-~
taining operating procedures are also included.

1. INTRODUCTION

Ion irradiation is a modern technigque used for the near-surface
modification and characterization of materials. There are at least
three major efforts in the ion irradiation field: (1) ion implantation
and mixing used to alter the chemical environment in the matrix of atoms

in a given substrate; (2) ion irradiation damage used to alter the

*Research sponsored by the Division of Materials Sciences,
J.5. Department of Energy under contract DE-AC05-840R21400 with
Martin Marietta Energy Systems, Inc.



defect concentration and microstructure in the matrix or lattice of the
target substrate; and (3) ion beam analysis used to characterize the
stoichiometry, defects, and lattice positions of atomic mixtures ‘mn a
sample substrate.

Ion implantation and mixing was first exploited by the semiconductor
industry to carry out doping of silicon by a well-controlled and well-
characterized low-temperature process. The success of ion implantation
in the semiconductor industry has led to studies of implantation into
many materials other than semiconductors. Such experiments have shown
that the properties of surfaces with regard to such phenomena as friction,
wear, fatigue, and corrosion can be changed by ion implantation, and
exciting possibilities for improving the functional capability of
materials in a variety of applications have been uncovered.!

Ion irradiation can produce atomic displacement dawmage in materials
at very high rates without generating radiocactivity. This has led to the
use of ion beam irradiation to supplement reactor neutron irradiation for
studying mechanisms leading to such phenomena as swelling, irradiatiom
creep, solute segregation phase instability, and embrittlement of struc-—
tural materials of future fusion and advanced fission reactors. In order
to simulate the effects of helium gas, which is also generated along with
displacements by reactor neutrons in transmutation reactions, the tech-
nique of dual jion irradiation was developed; in this case, a heavy ion
beam generates displacement damage while helium from a second ion beam is
simultaneously implanted in the damaged region of the target. The details
of this technique have been previously described.?

Numerous analytical techniques use directed ion beams to measure the
chemical or defect concentration versus depth profiles near the surface of
test samples. Typical techniques include Rutherford backscattering (KBS},
nuclear reaction analysis (NRA), proton—-induced X-ray emission (PIXE), and
ion channeling.® These techniques are often most advantageous when used
in conjunction with ion implantation. The atomic mixing and defect
generation that accompany ion implantation can also be quantitatively

characterized by these analytical methods.



The facility described in this work was designed with the purpose of
carrying out original research in all of the previously mentioned ion
irradiation areas. This triple ion beam facility is an upgrade of our
previously reported? dual ion beam facility. 1In addition to the installa-
tion of a third ion accelerator, we describe new target chamber develop—
ments and the incorporation of the Auger electron spectroscopy technique
for measuring surface modifications caused by energetic ion beams. Future
target chamber design and the unique applications of the new triple-beam

facility are also addressed.
2. ACCELERATORS
2.1. ARRANGEMENT OF ACCELERATORS

An overall view of the Triple Ion Irradiation Laboratory is shown in
Fig. 1. A simplified top view of the beamline geometry is shown in
Fig. 2. The accelerators are located on two floors of the laboratory. A
vertical 5-MV Van de Graaff [(a) in Fig. 1] is located on the second floor,
and both horizontal Van de Graaffs, 2.5 MV [(q) in Fig. 1] and 0.4 MV
[(0) in Fig. 1], are located directly below the 5-MV machine on the first
floor.

All three beamlines are located on the first floor and converge at
the damage target chamber [(a) in Fig. 1]. The vertical ion beam from the
5~MV accelerator is bent 90° to horizontal by the analyzing magnet [(d) in
Fig. 1]. 1In Fig. 2, the beamline from the 400-kV machine is essentially
normal to the actual target, whereas the beamlines from the remaining
accelerators are at about 15° on each side of the 400-kV line. The ion
beam from the 2.5-MV accelerator is analyzed by a 30° bending magnet,

whereas that from the 400-kV accelerator is analyzed by a 15° magnet.
2.2. THE 5.0-MV ACCELERATOR AND BEAMLINE

The type "CN" (1.0- to 5.0-MV) Van de Graaff was originally built by
High Voltage Engineering Corporation (HVEC) in the early 1950s. 1In the
early years it was used for nuclear physics studies. Since then it has

undergone several modifications, especially with regard to its ion source.
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It is now operated primarily with a Model 910 Physicon ion source
originally designed by Danfysik and based on the ion source research of
Nielsen.® Although the Model 910 produces ample quantities of heavy
metallic ions, its output of light ions, such as protons, is often not
adequate. When high currents of light ions are needed, this source is
replaced by a duoplasmatron source.® Details on the operation of the ion
sources are given in Appendixes A and B.

The essential components of the terminal and beamline optics are
shown schematically in Fig. 3. A more detailed and scaled drawing of the
terminal only is shown in Fig. 4. At the source, carbon tetrachloride is
brought into a quartz tube filled with metal powder. The metal (M) forms
a metal halide and vaporizes near a hot filament. ELlectrons streaming
from the filament to the anode ionize and dissociate the metal halide to
form Mt and C1% ions.

Positive ions are accelerated out of the anode by the negatively
charged extractor electrode. The ions are then focused by a three-barrel
einzel lens into a Wien velocity filter (ExH mass analyzer) that is
adjusted to allow only the metal ions to pass, thus reducing the total
beam current and accelerator loading. The mass resolution is shown in
Fig. 5. The metallic ions are refocused by a gap accelerating lens before
entrance into the main accelerator tube. After acceleration to a few
million electron volts, if the mass—energy product is greater than 60, the
M* ions have to be stripped to charge state +2 in order to be analyzed by
the 90° magnet. The stripping is done by directing the ions through a
differentially pumped argon gas—-filled tube. A summary of typical beam
intensities at various points along the beamline is given in Table 1.

The metal ion beam bombards a target area of about 1 cm?. It is
desirable to irradiate such a surface as uniformly as possible with mini-
mum loss of ion beam flux. Because of the high divergence of the beam at
the control slits [(f) in Fig. 1] and the long path to the target chamber
[(1) in Fig. 1], a special split field ring lens® [(i) in Fig. 1] was
developed and mounted along the ion path. Assuming that the distribution
of the ions in the beam is radially Gaussian, the function of the lens is
to deflect the Gaussian tail region of the beam into the more central por-

tion, which is itself unchanged by the zero field center of the lens. The
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Table 1. A summary of typical beam currents at
various sites along the beam transport system

Location Components Int?ﬁi;tles

Before stripper Nit ~12

c1¥, c1,* ~ly, ~1

ct Not seen
After stripper Nit, Ni2*, Nidt, - ~24 (total)

cit, c12%, c13t, - ~8 (total)

ct Not seen
Control slits Ni%t, Nidt 5.2, 5.0

ci12t, c1*t 1.3, 1.6

2 MeV C12%% 1.0

(from dissociation

of Cl,%)

ct <0.05
Target Ni%t 2.4

divergence of the beam is so modified that its cross—sectional area at the
target is reduced and made more uniform in intensity. Details of the iomn
beam transport are given in Appendix A.

Beam chopping has also been added to the capabilities of the system.
Magnetically actuated pivoting beam stops are used in conjunction with a
dual binary programmable timer to allow a wide range of chopping or
pulsing parameters. Presently, this range is variable and can be set as
low as 0.1 s. Both beam~on and beam—off periods can be independently
adjusted. The beams from both the 5-MV and the 400-kV machines can be
chopped simultaneously. The beam stops are located about 80 cm upstream
from the target chamber along the respective beamlines. High-frequency
beam chopping, up to 0.1 MHz, has been realized by using a push-pull
oscillator to control the voltage on the parallel plates of the ExH ana-
lyzer in Fig. 4. Further details of this technique can be found in
ref. 7 and Appendix C.
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2.3. THE 400-kV ACCELERATOR AND BEAMLINE

The type "AN" (50~ to 400-kV) Van de Graaff, also built by HVEC, was
initially used to implant alloys with helium in low concentrations to
simulate helium generated by neutron transmutations in breeder reactor
fuel cladding material or in fusion reactor first-wall material. The
ion source for the AN is of the "RF" type, with a quartz bottle con-
taining low-pressure gas surrounded by a radio-frequency exciter field
to ionize the gas; typical light ions presently accelerated are HY, Het,
B*, cH,*, N*, o*, and F*.

Beam uniformity over the target is in this case accomplished by
beam expansion and collimation ahead of the target. The expansion takes
place at the singlet quadrupole lens [(p) in Fig. 1], whereas the l-cm?
defining aperture is located downstream from the lens and near the
target chamber.

When it is important to make the depth of light-ion implantation
overlap the broad depth region of radiation damage caused by the heavy~-
jon beam, the AN 400 energy is varied continuously by cycling the ter-
minal voltage from 200 to 400 kV. To maintain lateral beam uniformity
as the energy is changed, the singlet quadrupole lens current is also
cycled. The automatic control arrangement by which the beam energy is
varied while maintaining a uniform intensity on target is shown in
Fig. 6. The heart of the system is a variable frequency signal genera-
tor that provides the driving ramp signal for all controlled devices.
Each power supply has a reference and a ramp signal so that the accel~
erator may be operated in a conventional mode (without ramping) or in a

voltage~cycling manner.
2.4, THE 2500~kV ACCELEKATOR AND BEAMLINE

The "AN" (200~ to 2500-kV) Van de Graaff was recently built by HVEC
and is similar in design to the AN 400, except that the RF source is
larger and capable of delivering several hundred microcamps of current.
This accelerator is equipped for external control of three source-gas
supplies. Although only gases such as H,, He, BF;, CH,, N,, and 0,, Ne,
or Ar are presently used in this source, future development will include

metals such as Mg and Al.®
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In order to increase the uniformity of the ion beam over targets as
large as a square centimeter, a wobbling technique is sometimes used.
This consists of a set of magnetic steering ceoils [(r) in Fig. 1]. The
current to these coils is driven by a programmable power supply that is,
in turn, governed by a function generator. One power supply and

generator is needed for each wobbling direction.

3. TARGET CHAMBERS

3.1. TRIPLE-BEAM CHAMBER

3.1.1. Chamber Construction

The triple-beam chamber is geometrically located at the inter-
section of the three accelerator beamlines in Fig. 1 and is shown
in Fig. 7. The body is constructed from intersecting stainless steel
tubes, the outer ends of which terminate in standard ultrahigh vacuum
(copper gasket) flanges. The target assembly has six individual
target/heater modules in a row, a large bellows which permits 230 mm of
linear motion along the axis of the row, and all power and instrumen-—
tation feedthroughs. A precision machine-tool bed attached to the
chamber body is used to manually align any desired target with the com-
mon intersection point of the three charged-particle beams. The beams
enter the chamber by separate ports with 15° angles between them.
Other ports at the same angle relative to the heavy-ion beam permit
illumination and visual observation of the specimens during bombardment.

Clean ultrahigh vacuum is provided by a 1000-1s~! cryopump together
with two liquid—nitrogen sorption pumps that are used for initial pump-—
down. The cryopump, attached to the chamber through a large-diameter
gate valve and an elbow coupling to minimize the radiant thermal load
from the specimen heaters, is used below about 2 x 107® torr. If no
specimens are being heated, the chamber can be pumped to a base pressure
as low as 7 x 107% torr. Actual bombardment of specimens at 600°C is
generally conducted with a vacuum in the low 10~7 to high 10™® torr
range. Both a nude ionization gage and an intermediate-range Varian

millitorr gage are used to monitor the pressure, whereas a Varian
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quadrupole residual gas analyzer (RGA) is available to evaluate the
composition of the remaining atmosphere. A typical spectrum from the RGA
is shown in Fig. 8. (The primary peaks in such a spectrum are readily
identifiable in the figure.) The water vapor pressure is high because

of the strong dipole moment of the H,0 molecule which makes it resistant
to pumping. The dissociation of H,0 in the analyzer gives rise to OH

and H peaks. The H, and CO, peaks are assumed to be contaminants of the
stainless steel in the chamber itself. The argon peak is from the argon
gas stripper upstream from the chamber.

Built into each target assembly is a resistance-heating loop and a
water—cooling channel. Heating to =100°C hastens out-gassing just after
pumpdown, whereas the water line hastens the necessary cooling of speci-
mens and heaters to ambient temperature before being exposed to air. A

more complete description of the system can be found in ref. 9.

3.1.2. Faraday Cups

The triple—beam chamber was primarily designed to irradiate
simultaneously nine transmission electron microscopy (TEM) specimens
spanning a total area of 1 ecm?. For this reason, it is important to
know the beam flux level at the sites of the nine samples.

An array of nine miniature Faraday cups (Fig. 9) on the 5~MV line
is used to measure the beam current just in front of the position in
which the specimens are located. These cups have an aperture plate in
front to collimate the beam and reduce secondary electron interference.
They have a length/diameter ratio of 4.45 and an entrance aperature
diameter of 2.01 mm. The cups are symmetrically located in the beam on
3.43~-mm centers. Similar cup assemblies on the 0.4- and 2.5~MV lines have
five individual cups'(with an entrance aperature diameter of 2.26 mm)
located at the corners and in the center of the irradiated area; the four
remaining currents corresponding to the remaining TEM disks in the target
are estimated by interpolation. A bellows-sealed pneumatic activator is
used to position the cups in the beams directly in front of the target.
This device is activated under computer controcl, typically every 10 min of
irradiation. After the cup assembly has been inserted for about 20 s and
readings have been taken, the results are printed for each cup on the

three beamlines. An example of typical numbers in arbitrary units is
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given in Table 2. The parameters at the top are selected at the beginning
of the run. The beam currents at the middle of the table are used by the
accelerator operator to make fimal tuning adjustments before the run
begins. The accumulated dose (dpa) for all beams and the concentrations
(appm) for each beam are printed out at regular intervals during a run and
are shown at the bottom of Table 2.

of Table 2.

3.1.3. Electron Gun Heaters

Figure 10 is a view of a target assembly with each of the six
specimen/holder heater modules in progressive stages of assembly. The
heaters, located behind the targets, are dispenser cathode triode-type
electron gun assemblies. The support structures around the guns were
machined from Macor glass-ceramic material. The electron guns operate
with the cathode at 600 to 800 V negative to ground drawing ~10 mA,
whereas the specimen assembly at ground potential serves as the anode.
Very sensitive control is afforded by varying the potential on the fine
mesh grid from about 0 to -1 V with respect to the cathode. The cathode
is heated by an internal filament that requires about 1.5 to 2.0 A at
10 to 12 V. Since the grid and filament are operated relative to the
negative cathode potential, their power supplies must be electrically
isolated from ground (via an isolation transformer) and physically
enclosed within a Plexiglas cage. Across this potential difference,
control is accomplished by a pair of voltage/frequency optical isolation
couplers. The heaters can bring a target temperature up to about
825°C.

3.1.4. Specimen Holders

The specimen holders mount directly in front of the electron gun
heaters; there is a space of about 0.8 mm between the electron gun grid
and the lower portion of the specimen holder (thermalizer block). The
two parts of the specimen holder, the theymalizer block and the face
plate, clamp the specimens between them. Both specimen holder parts are
fabricated from Kulite—112 machinable tungsten alloy to reduce problems
of bonding with most specimen materials. A crushable ring of annealed

platinum wire, 0.1 to 0.2 mm thick, is placed between the face plate and



Table 2.

run begins.

TINREL----AL20T

w10 LIS

PARAMETER OPTISNS CHOSER ARE
(14,17,53 NICROCOUL/BPA FOR THE SKY,2.5KY,400KY BEANS: 330 1000 9000

20 LOMLONNIMULSE ¢

0.000000000100

(3) COUKTING TINE PER COP (SEC.) =

(4) ST, DEV, IAPLARTED 2.5WEY 19K OIS, *
16) ATRRIC BCHSITY (10422} =
£7) STV, DEVIATION OF IASLANTCD L1687 104 815, =
(8) DURATION BETHEEN Cup REABINGS (SEC.) =

11.79

9) HELIEA CHP CALIBRATION FACTOR =
110) 2.5 NEY (UP CALIERATION FACTOR =

400 kY ENERGY:
2.5 AY 298 ENERGY: 400 ION RASS:
5O 1N ENERGY:

Y00 1em AASS

718k BASS:

4

‘ The accumulated dose (dpa) for all beams and concentrations (appm) for each
beam are printed out at regular intervals during a run and shown at bottom of the table.

LU P

.00
0.10

[
£0.00
8.50

2.50

i
Hi

Q08 TERRIAATION CORTRGLLED BY FOYAL DPA DOSE FROS ALL 1005 AT 40

STARTING TINE- 1299.5

S000%  INITIAL C4P REAQINGS BEFORE N34 STALTS #ipd

BEAN CURRENTS (310-) MAPS)

Sy LOF MRAY

99.10 9%.75 9%.70
15.45 %.1 9%.7¢
14.70 96.70 191.65
S AY JEEP LHP- ?
CALCHLATED TOTAL= 3039
T8TAL PPASMOUR: 8
TPROFILE FARDRIS XY) = ?

weeneseans  MCURTLATED VALUES AND CHF CHRRENT (£-9 AMPS)  ness

0.7 9.7 6.7
0.7 0.7 0.7
0.7 0.7 2.7

VG DIAITOTALIF !

>
ENP A

1.
1.6
1.8

1.
1
!

>
S o=

V6 WPAITITAL): ?

400 KV 4P ARRAY

STATION L]

1]

" 97.53 %.70
17,53 $6.7¢ %.68
¥%.7¢ 9.68 94,65
400 KY PECP CoP: 9
CALCILATER TaTAL: 282
APPRIG0D KY)/ROUR: 8187
TPROFILE ERRORIS00 KY)= {

401.5
0.9
i

niz
3910
mie

91,8
1.0
£10.9

A¥G APPEISRY): 334
I9NCR2000M5)= L

914.8
89..8
990.9

892.1
290.9
8909

8921
390.9
§i0.¢

AYS APPRISRY): 898
1on/CR2010% 150 3

---5HY CORRENT--=-omcmromonoae FOOKY APPU----memmm e
e0.3 8.8 %7 185,50 1426 1413
95.7 6.7 %7 Y I U3 B S L P
9.7 957 1016 414 144 1413
TAL. TATAL(SHYI= J0M4 A APPRC4Q0RYI: 2
EVIATION(SHYE: 2 T08S/CM20104 80 (
99.3 9.8 9s.8 299.1 2853 2827
96.7 #7967 205.1 2828 2817
[T AL T 2.7 227 1924
LAL, TQTAL(SEY):= 3014 A¥S APPREADONY)= 204
JEYIATIONCS ) 2 1oNs/CazietIS): 2

2.5 Av CUP ARRRY

99.3¢ 97.55 %.70
97.5% 96,45 Y547
%.70 %%6.47 16.45

2.5 MY BEEP CHP: 9
CALCTUATER TOTAL= 2926
APPRI2.S M) i%0¥Rs 1055]
TPROFILE ERRORID.S ¥Y)= i

----400K¥ CURRENT:
97.6 96
3.7

APPRCA0D £V IRPA:

5

93.1
7.6
96.7

3.7

CAL. TCTALI400AY) =
TDEYTATIONT400KY) =

CAL, TUTALI4OOKY)=
19EVTATIONT400RY )=

9.7 %6,

7

7

pir]
I

NaN

Fay

2,50 ArrY
1.0 358
1158 LT
.1 ad

AVE APPNI2,58V)=
109510020104 18)=

642.1
$30.5
$24.0

8310
425.4
42¢.9

RE RPON(2,500)=
10W5/CR2(10%15)=

27
T
kil

n
1

625,35
$25.4
$25.3

§28
2

<2.5HY CHRRENT-----mmmmmoee TERP, #(-~--
LLI% S 1N S
7.5 W %6 N

9%.7 %7 %

CAL. TOTAL(2.389)= 2926 £TA:

WEVIATIDNG2. S8 )= ]

9%.1 1.4 987

.3 T T .0

95,3 %64 %7

CAL. TRTALI2.5M)= 2921 (a1}

WEVIATIOND.SAY e

Format and test run values for all information printed out during a triple ion beam run.
parameters at the top are selected at the beginning of the run. The beam currents at the middle
of the table are used by the accelerator operator to make final tuning adjustment before the

1414

141%

The

61



ORNL PHOTO 5351-7

Fig. 10. Detailed view of the target assembly showing from left to right the six
heater stations in progressive stages of assembly: (&) electron guns; (b) spring-loaded
thermalizer block thermocouples; (c) nine-disk specimen holder; (d) tantalum heat
shield; and (e) specimen thermocouple.
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the specimen front surface to accommodate small specimen—to—-specimen
variations in thickness. A mask is available to shield selected speci-
mens during part of a bombardment interval. In this configuration, large
differences in fluence can be applied to individual specimens. The TEM

specimen loading procedure is given in the Appendix D.

3.1.5. Temperature Control

Temperature control begins with the signal from either of two
1-mm—diam sheathed Chromel-P-Alumel thermocouples spring—loaded into
6-mm-deep holes in the edge of each thermalizer block. A third ther-
mocouple output is available at each station for measuring the specimen
surface temperature, using pairs of 0.13-mm-diam Chromel-P-Alumel wires
spot welded near the periphery of a dummy specimen. All of these
signals are led through a switching panel that permits any of the three
to be used for control; any one may also be displayed on a room-
temperature—compensated digital indicator. Temperature control is
effected by means of a strip-chart recorder with current-adjusted type
controllers; the control signal is fed back (via optical isolation) to
the electron gun grid potential. The result is control, which is both
rapid in response and stable. With an electron gun that has been
"conditioned” since its last air exposure, a specimen holder starting at
ambient temperature can be raised to and held at 700°C in <5 min, and
any such irradiation temperature can be maintained within ~ #1°C for at
least several hours. With one specimen temperature measured directly by
the thermocouple, the others (up to eight) are measured relative to the
first by means of an infrared pyrometer that can be sighted on each

individual specimen.
3.2. STRESSED-SPECIMEN CHAMBER

The stressed-specimen chamber [(m) in Fig. 1], located immediately
downstream from the triple—-beam damage chamber, is intended to generate
through-thickness radiation damage in 40-um—thick (0.0015-in.) ribbon
specimens using a 4-MeV proton beam from the 5-MV Van de Graaff accel-

erator. In addition to providing the important parameter of a chosen
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static tensile load during irradiation, the resulting quasi-bulk
irradiated volumes are amenable to a variety of postirradiation charac-
terizations, including thin-specimen tensile tests, nano—indentation
hardness studies, fractography, and electron microscopy.

The layout of chamber components is depicted in Figs. 11 through 13.
The ribbon specimen, 3 mm wide and from 125 to 280 mm (5 to 11 in.) long,
is installed by means of upper and lower grips with internal wedge-~holding
into a load train that ends in a weight pan (weighing 100 g empty).
Weights to achieve any desired static stress can be added directly through
the lower port, whereas m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>