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REGULARIZATION, GSVD AND TRUNCATED GSVD 

Per Christian Nansen 

Copenhagen University Observatory 
0ster Voldgade 3 

DK-1350 Copenhagen K 
Denmark 

ABSTRACT 

The generalized singular value decomposition (GSVD) is used to analyze two alterna- 

tive methods for solving ill-posed problems: regularization in general form, and truncated 

SVD. We give conditions in which suitable solutions can be found. discuss the perturba- 

tion theory, and show that the optimum regularization and truncation parameters can be 

computed via generalized cross-validation. Our analysis also sheds light on a particulax 

method, based on a transformation to standard form, that avoids the numerical difficulties 

associated with computation of the GSVD. 

1. INTRODUCTION 

The purpose of this report is to analyze regularization in general form by means of 

generalized SVD (GSVD) in the same spirit as SVD is used to analyze standard-form regu- 

larization 181. We also define a Truncated GSVD solution, which has interest in its own 

right, and which sheds light on regularization as well. Attention is primarily put on least 

squares problems derived from the numerical treatment of Fredholm integral equations of 

the first kind, but the theory holds for ill-posed problems in general. 

We start by reminding that the regulan’zed solution xx is the solution to: 

min II Ax - b 1 1 2  + h2 I I  Lx t i 2  } . (1.1) 

This x x  is obviously a least squares solution to the equivalent problem: 

Here, and throughout the report. 114 = 1 1 ~ 1 1 ~ .  If L = I , ,  then (1.1) is said to be in standard 

form. The problem (1.1) usually occurs in connection with the numerical solution of ill- 

posed problems where A is an ill-conditioned matrix derived from a compact operator, 

‘Part of this work was carried out while visiting the Mathematical Sciences Section, Oak Ridge National 
Laboratory as part of the Spccial Year on Numerical Linear Algebra sponsored by the Departments of 
Computer Science and Mathematics, University of Tennessee and the Mathcmatisal Sciences Section of 
Engineering Physics and Mathematics Division at ORNL The work was also sponsored by the Danish 
Natural Science Research Council. 
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and where the right-hand side b is contaminated by errors. The singular values of A are 

associated with the singular values of the underlying operator. and A must therefore be 

ill-conbitioned l6.141. The standard least squares solution A+& is useless because it i s  

dominated by rapid oscillations due to the errors. Hence, in (1.11, one adds a term II Ln 112 

where L typically is a discrete approximation to some derivative operator, and the regular- 

itdkon parrsmetep. X controls the weight given to minimization af II Lx 1 1 2  relative to minim- 

ization of II AX - E, 1 1 ~ .  

Throughout the report we shall use the notations R ( a )  and N (-1 for range and null 

space, respectively, and use Ps to denote the orthogonal projection matrix onto the sub- 

space S .  We shall make the following assumptions about the problem (1.1): 

A ERmX” L ERPXn , m 2 n  > p  , r a n k ( L ) - p  (1.3a) 

I I A I l Z l  . I I L I I a l  (1.3b) 

Assumption (1.3b) i s  simply a convenient scaling of the problem, and assumption (1.3~) 

ensures that there is a unique solution x x  to (1.1) for all X >O. Notice that there is no 

assupt ion on the rank of A .  By setting up the normal equations associated with (1.2) it 

is easy to see that X A  is given by: 

x k = A f b  , A f  3 (A‘A + X 2 L T L ) - 1 A T .  (1.4) 

The matrix A is only a { 3,4)-inverse of A [ 151 and therefore not really an inverse. 

In section 2 we introduce the GSVD as a convenient tool for analysis of (1.11, and we 

define the Truncated GSVD solution. Section 3 discusses the requirements L and b must 

satisfy in order to be able to compute reasonable solutions, and Section 4 gives the pertur- 

bation theory for regularization and truncated GSVD. In section 5 we discuss the General- 

ized Cross-Validation as a method for choosing the regularization parameter and trunca- 

tion parameter. Finally. in Section 6 we show how the solution can be computed 

efficiently via transformation of (1.1) to standard form as suggested by E l d k  [2]. thus 

avoiding explicit computation of the GSVD. 

2. THE GSVD OF ( A ,  L) 
In this section we introduce the GSVD of the pair of matrices (A , L and prove some 

relations associated with it. We also write x X  in terms of the GSVD and define the Trun- 

cated GSVD solution. 
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Theorem 2.1. Let the nah.ix pair ( A ,  L ) satisfy (1.3~-c).  Then there exist matrices 

U E R m x n ,  V E Rp* with UTU = I , ,  VTV =I, and a rumsingular X E Rn” m h  that: 

A = U EX-’ , L = V E M , O ] X ” ’ ,  (2.1) 

where 

Bmf. See e+ 11, Theorem 22.21. 

In connection with the GSVD it is convenient to split the matrices U. E and X as follows: 

0 

(2.3) 

where Up and X, have p columns, and when E, is p X p . The subscript ‘0 ’ is a short- 

hand notation for n - p  . It is also convenient to let uj = 1 for i = p +1, . . . , n . 
The quantities ai/ pi are termed the generalized singular values of (A,  L). Notice 

that if one knows their ratios, then cri and pi can be computed from: 

The ai and pi are related to the usual singular values of A and L as shown in the fol- 

lowing theorem: 

Theorem 2.2 Let t,hi ( A  and Jl j  (L denote the u d  singulm values of A and L , respec 

tivsly, and let Z T = [ A T , L T l .  Then far clll J l i ( A ) ,  i = l , .  . . , n  and t,bj(L), 

j = 1 , .  . . , p :  

where: 

(2.5b) 



- 4 -  

Here, inf(ABN (1.1) denotes the smallest nonzero singular value of APN(L ). 

&mf. For a product of two matrices. one has $ i ( A B )  d +j(A )*Ill3 II [lo. p. 891. This 

relation and 4. (2.1) lead to: 

(the relation vn -i +I Jli (E) is due to  the ordering in (2.2~)). and thus: 

The bounds for JP1 ( L  )/ p~ are derived analogously. The upper bounds in (2.5a-b) follow 

from the relation $i(X-') = $i(Z) [I, Theorem 22.21. SO that llX-'ll = IIIAT.LT]II d 
I I  A II + I I  L 11. Concerning the lower bound. the same relation also leads to IIX 11-1 = $n (2 ). 

The interlacing inequalities for singular values [ 1, Theorem 3.51 immediately lead to: 

+i(z) 3 J / ~ ( [ O . L ~ ] ) = J " ~ ( L ) .  i ==I, . . . , p .  

Further. we have $ i ( [ O ,  L T ] )  =: 0 for i = p  + 1, . . . , R ,  and from [ll] it thus follows 

that: 

where we consider [AT.O] a perturbation at [O,LT1. Since RL([O,LT])  = RL(LT) = N ( L ) ,  

the right-hand side becomes inf (A P~(1 .1 ) .  Thus, we can take 

for i = 1,. . . , p  

PN(L)) for i = p f l , .  . . ,n . 

Hence. B lower bound for 9, ( Z  ) is $I, ( L  ) for p = n , and min { $ p  (L  ), inf (A PN(L 1) ) for 

p < n .  El 

These relations between vi and pi and the singular values of A and L are used in the fol- 

lowing sections. In the above proof, bounds were derived for the norms of X and X-I, 

and they lead to  bounds for the condition number of X: 

Corollq 2.3. Th.e condition nu& K(X) of X is bmmded by: 

II A I I  f II L I I  

P P  
K ( X )  = I I  XI1 llx-lll d 

arzd for the pap-tieulap- case p = n : 

(2.6) 
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Using the GSVD (2.1) for A and L , it is easy to  derive the following expression for 

A{  in (1.4): 

A straightforward extension of Truncated SVD (TSVD) [SI to general-form regulari- 

zation is easily derived from Eqs. (2.7) and (2.8). We introduce the Truncated GSVD sdu- 

tion Xk by substituting for F in (2.7) a diagonal matrix with k unit elements correspond- 

ing to the k largest cri in Cp and otherwise 0's. thus simply neglecting the contributions 

corresponding to the p - k smallest cri 191. 

Definition 2.4. pefine the numix kz by: 

(2.9) 2: G diag (0, . . . , o , $..k 1 +1, . . . , c r ~ l >  . 

Than the Truncated 

ponents of xp E; UT 

xk = A f  

G w D  (EwD) sdution xk to (l . l) ,  defined by neglecting the com- 

corespading to the p - k smallest ui , is given by: 

(2.10) 

The matrix A/ is a {2.3}-inverse of A .  

3. THE REQUIREMENTS ON L AND b 

In this section we use the GSVD of (A , L to analyze some of the properties of the 

regularized solution xx to  (1.1). First of all. it follows immediately from F2q. (2.7) that 

x k  is given by: 

X x  = Xi1) + X(') x , Xi1) = X,F C;UTb , X i 2 )  x, UTb . (3.1) 

We see that x x actually consists of a smoothed component x and a nonsmoothed com- 

ponent xi2). The latter component is associated with N ( L  which is spanned by the 

columns of X, , and it vanishes for p = n . Concerning the smoothed component x il) , the 

basic idea in regularization is to  use I: to dampen the contributions to the solution 

corresponding to the small ui. A general observation is that the columns xi of X tend to 

be increasingly oscillating for decreasing ai, and the regularized solution X A  will. therefore 
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'smoother' than without the factor F .  

It is of interest to analyae: the behavior of x x  for A -+ =and for X 4 0. In the former 

case, I: -+ 0 for X 4 00, so that: 

X h  - ? X i 2 )  for X + O O ,  (3.2) 

i.e.. x ,  is identical to  the unregulariaed part x i 2 )  of xX. In the second ease. for X 40, F 
consists of 0's and 1's. and thus: 

X X  -4 xo E X .C'UTb = A I i b  for A + O  (3.3) 

where AIi  is the weighted pseudoinverse of A as defined in 133. Notice that if A is rank 

deficient then A$, f A', and thus x, f A'b. Eq. (3.3) shows that x, is a least squares 

solution to (1.2). with A = 0, and if A is rank deficient then x, is not the minimum norm 

solution since it has a component in N (A ) and N (L ). via the matrix X. In connection 

with general-form regularization (1.1) it is therefore natural to define the megularized 

sdution to be n, (instead of the usual least squares solution A 'b  1. Notice that for k = p 

(is., no truncation). the TGSVD solution xk is identical to xo . 
Eq. (3.1) shows that L must satisfy several requirements in order to obtain a satis- 

factory regularizd solution xk.  First, it is common experience that the noise e present in 

the right-hand side is usually 'white' in the Sense that all the coefficients I ?$e I are of the 

same magnitude. Hence, the filter coefficients in F must dampen the contributions 

corresponding to the small si Z 0 which appear as in X:. This again requires that the 

corresponding generalized singular values ai/ pi must also be small when ai is small. so 

that f (2.8) is small. Hence. all the pi should preferably be as large 8s possible, and 

according to Theorem 2.2 this means that L should be weU-fwnditwned, and A T  must 

have a b g e  component in N ( L  ). Second, x A  is expressed in terms of the columns of X ,  

and one must therefore require that II XI1 be small in order to keep the norm of x k  small. 

Since IIX-'ll= I I  2 II. which is of order 1. this leads to the requirement that the condition 

number K ( X )  = II XI1 llX-lll of X be small. Corollary 2.3 then leads to the same require- 

ments on Z as above. 

Fortunately, the matrices L most frequently used in regularization. such as approxi- 

mations to the first and second derivative operators, are well-conditioned as long as the 

grid defining the solution is not too irregular. Further, for t h w  matrices the null space 

N ( L  ) either vanishes or is spanned by very 'smoath' vectors such that I1  A P N ( ~  1 I I  is large 

for all practical A .  For example, for 

L1 = bidiag(1 . -I> E R("-"* (3.4) 

the null space N (I. 1> is spanned by the vector e = [l ,1,  . . . ,1]'. 
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Throughout the rest of the report we shall assume that L is properly chosen so that 

it is well-conditioned and, when p < n  , so that inf(A PN(L))  is not large. Practical experi- 

ence then shows that the vectors ui of II in (2.1) have behavior very similar to the usual 

left singular vectors of A : the smaller the vi. the more oscillations are present in the 

corresponding ui. Similar observations hold for the oscillations in the columns xi of X 
and in the columns vi of V. In order to be able to compute reasonable solutions, i.e. solu- 

tions that are sufficiently ‘smooth’. a necessary condition is that the solution to the wtper- 

Wbed problem (with exactly given b ) is reasonably smooth for X 3 0 (no regularization) 

and for k = p (no truncation). This essentially means that the norm of x, (3.3) must 

not be large, which can only be satisfied if X is well-conditioned (so that I I  XI1 is not 

large) and if none of the coefficients I ufb I / cri in the expression: 

(3.5) 

are significantly larger than the others. The first requirement is satisfied when L is chosen 

properly, but the second requirement puts a bound on allowable right-hand sides. A care- 

ful  analysis can be applied to the differences x~ - r, and xk - x,, by analogy with the 

technique used in 171 (via a transformation of variables to = X-’x ). and the conclusion 

is that in order for X X  as well as x,: to be close to x, , the unperturbed b must satisfy the 

f o 110 wing condition: 

The Discrete Picard Condition (DPC). Let b denote CUL wrpertwbed right-hand side in 

(1.1). Then b satisjEes the Discrete picard condition if the coe&ientJ f l i  = urb satisfy: 

Due to the above mentioned analogy between the ui and the usual left singular vectors of 

A ,  the DPC is satisfied if the problem underlying (1.1) - usually a Fredholrn integral 

equation of the first kind - satisfies the Picard condition, (see 161). 

Notice that the existence of a satisfactory solution does not depend on the presence of 

a particular gap in the Uj -spectrum associated with A . Instead. the DPC requires that the 

coefficients I pi I must decay to zero at least as fast as the ui. This requirement applies to 

regularization as well as TGSVD. 

4. PERTURBATION ANALYSIS 

In this section we give the perturbation bounds for the TGSVD solution xt (2.10) 

and for the regularized solution X A  (1.4). We restrict ourselves to the case when only the 
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right-hand side is perturbed. This is the common situation in connection with integra). 

equations. 

Tknesrenn 4.1. Let o denote the perturbation of the right-hand side 

relative perturbetims of n k  and xk me bounded as: 

= b + e .  Then the 

-(l - h2)-% for A < 11 d z .  I (4.3) 

II zk - x k  II < II XII max { II~,+II , 1 II UT II II e II = 11 X I I  I le l l .  
u p  --k +1 

This immediately leads to Eq. (4.1). Similarly, for the regularized solution. (2.7) yields: 

in which 

F Cp” = diag 

where we have set yi =ui/ pi and used (2.4). If we define the function g(y.A) - 
y (y2  + l)& (y2  f X2)-’, then II F X:ll < max g (?,A) for all A 2 0. It is straightforward to 

show that max g ( y  ,A) = +A given in (4.3). and since c$k > 1, we have proved (4.2). 
Y 

D 
I 

From Theorem 4.1 we see that the condition numbers associated with TGSVD and 

regularization are 
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. K ~ = # ~ K ( X ) ,  (4.4) K ( X )  
K t  = 

respectively. Since we assume L is well-conditioned, Corollary 2.3 shows that K ( X )  is 

small, and the condition numbers depend primarily on the choice of k and A. We see that 

it is always possible to choose parameters that improve the condition of the problem, com- 

pared to the condition of the original problem: min II Ax - 6 II. 

u p - - k  +1 

Following the reasoning that led to Definition 2.4 of the TGSVD solution, one would 

usually choose a regularization parameter or a truncation parameter k such that d a m p  

ing or filtering, respectively. of the cri sets in at about the same level. From Eq. (2.8) we 

see that this is the case when X 5 u'/ & . Now, since the pi are guaranteed to be of the 

order 1 (Theorem 2.2 and well-conditioned I,), this roughly corresponds to choosing 

A a uk II L II = a,. %. (4.3) then shows that when TGSVD and regularization produce 

approximately the Same solution. .xk XA. both these solutions are approximately equally 

sensitive to perturbations in 6 . 
The condition numbers K k  and K k  in (4.4) are consistent with the corresponding con- 

dition numbers & and for TSVD and standard-form regularization [7]: 

These condition numbers follow from (4.1) and (4.2) when replacing C T ~ =  1 with 

$l(A ) = II A II. f lppk+ l  with +k (A 1, and using the facts that L = I,  => K ( X )  = 1 and #X 

simply becomes 1/(2 A). The proper choice of X and k is determined mainly by the size of 

the errors II e II (cf. Section 5).  and X and k would therefore be practically the same for all 

methods (standard-f ordgeneral regularization and TSVD/TGSVD). This leads to the 

conclusion that the sensitivity of the solutions to perturbations of the right-hand side is 

approximately the same for L = 1, and L * I, (still provided that L is chosen properly). 

The argument for using an L Z I, is therefore primarily associated with L 's properties, in 

connection with the choice of X or k , as a filter of the errors e .  

5. THE CHOICE OF A AND k 

In this section we briefly discuss the behavior of the solutions nR and x A ,  and this 

enables us to choose the appropriate values of k and X. We assume the following realistic 

'model' for the right-hand side: - 
b = b  + e  (5.1) 

where b represents the underlying exact data while e denotes the errors. We assume that 
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b satisfies the DPC (3.6) and that e is ‘white noise’. To visualize this, consider the usual 

case in connection with Fredhoh integral equations of the first kind. where A has ill- 

determined numerical rank, Le. all its singular values decay gradually towards zero. Then 

the coefficients Iurb I and lure I typically appear as shown in Fig. 1. When one starts 

with k = 1 and increases k , the TGSVD solution x t  contains increasing amounts of the 

‘signal’ (from b 1 until the noise starts to dominate; then xk starts to oscillate and II xk II 

grows rapidly. The proper choice of R is obviously the one for which I u:b I I .?e I , i.e. 

where the signal-to-noise ratio in the solution is best. The same conclusion holds for any 

ui-spectrum of A as long as the DPC is satisfied. 

Consider now the regularized solution. For the case L = I , ,  Hansen 151 proved that 

once the D X  (3.6) is satisfied, there always exists a A E [uk+1. ck 1 such that xk =Z x k  . 
The proof carries immediately over to the case L Z I,, whenever L is properly chosen. 

Consequently, the behavior of xk as a function of A is roughly the same as the behavior of 

x k  as outlined above, and the optimum A is therefore roughly given by A =:ah, where A is 

the optimum truncation parameter. 
m - 

Cancerning the behavior of the residuals ;k = b - A& and x = b - A; A. one should 

look at the functions: 

In (5.2). k f ( n - p )  is the number of t e r m  in the expression (2.10) for % k ,  and 

rn-k -(n-p ) is therefore the number of degrees of freedom in Fk. Thus, with our 

‘model’ of i, V(k ) will behave as follows: when k is increased from 1. V(k is an overall 

decreasing function until it settles at a level where it stays almost constant. Then most of 

the ‘signal’ is extracted. and V(k ) becomes an estimate for the variance II e II! m of the 

noise Similar arguments hold for V(X). The optimum k and A are exactly those for 

which V ( k  ) and V(X> start to level of€. 

A computationally attractive method for determining these optimum values of k and 

X is to compute the minimizers of the generalized cross-vuZidatwn (GCV) functions 141. 

defined as: 

Since the denominators of these functions are slowly increasing functions of k and A. 

G (K ) and G (A) will have a rninimm at the optimal k and A where V (k ) and V(X) start 
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to level off. Notice that there are several other statistical reasons for choosing k and X as 
the minimizers of the GCV functions, cf. E12.131. 

6. SOLUTION VIA TRANSFORMATION TO STANDARD FORM 

We conclude this report by investigating a particular numerical method, due to Eldin 

[2], for  solving (1.1) via a transformation to a standard-form problem: 

min { II f - K1l2 4- X2 II i l l 2  1 . (6.1) 

The algorithm can be summarized as follows: 

1) Compute the Q-R decomposition of L T :  

, Kp € R R @  , KO E R n x ( n - p )  . (6.2) 

2) Compute the Q -R factorization of A KO : 

3) Solve the standard-form problem (6.1) with: 

X = H ; A L +  . L+ = K P P  R'T b = H T b .  

4) Compute the solution to (1.1) as: 

I: = L'X i- KoT,-'Ho(b - A L + Z ) .  

(6.4) 

(6.5) 

One might suppose that there is a connection between the standard-form regularized 

solution EA to (6.1) and the regularized solution E X  to (1.1). One may also expect a con- 

nection between the TSVD solution Z b  to (1.1) and the TGSVD solution xk to (1.1). That 

this is indeed the case is demonstrated by the following theorem. 

Theorem 6.1. Let the SVD of (6.4) be given by: 

= f i y 7  (6.6) 

and let the G W D  of (A . L  ) be given by (2..2)-(2.3). Then: 

u=w;u,II , 3v=IIzpM-111 , v = v n  (6.7) 

where II = [ ep , . . . ,e 11 is the p -by-p exchange matrix. Further, let Xk and xlh denote the 

TSVD and regularized sdutions to (6.1), 
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T h n  the solutions Obtained by inserting these $k and 5~ into (6.5) are exactly the TGSVD 
ited SOh&iO?LS K k  (2.10) and X A  (1.4). 

A-mf. &. (6.7) is proved in [g. Theorem 11. The relations between z k  and x k .  and 

between Z, and xx,  follow immediately by insertion of (6.7) into (6.8) and noting that 

diag ($:/ (+? + h2> 1 = F .  

Theorem 6.1 shows that when (6.1) is solved by means of standard-form regulariza- 

tion. then the solution obtained via insertion of EX into (6.5) is exactly the regularized 

solution X A  to (1.1). Likewise. when the TSVD solution Z,, is inserted into (6.5). one is 

enteed to obtain the T@SW solution x k  as defined in (2.10). We remind the reader 

that in both z k  and X k  , p -k is the number of neglected (generalized) singular values. 

In order to determine the optimum parameters & and X. one may of course compute 

the -functions G (k  ) arid G (X) (5.4) via insertion of Z k  or FL into (6.5). However. 

the optimum parameters can be determined directly from the problem (6.1) without refer- 

ence to the original problem. This is an attractive feature that simplifies the numerical 

procedure for solving (1.1) via (6.1). The result relies on the following theorem: 

Theorern 6.2. Let rk  and Fk denote the residuals corresponding to xk and Zk, respectively: 

(6.9a) 
- 

r& = b  - A  kt , r k  =g-xd;Q. 

Proof. First. we extend the matrix U = [Up .Uo] in (2.3) with Uq to an orthogonal matrix: 

ir [up.u,.u,] E R M X "  . 

Since R ( H o ) = . R ( U o >  [91, WiU0 =O. And since H T C  is orthogonal, the matrix 

HT[  Up .Uq] must also be orthogonal. If we define b = [PI, . . . , p"IT, then insertion of 

(2.2) and (2.10) into r k  (6.9a) yields: 

rk = r i [ P , ,  " . * ,Pp+ .o, - . , O . P n + I , .  . . ,BmF => 

11 T t  11' = pf f . . ' $- 0 i - k  f @,"+I " . * f @; . 
Concerning F k .  ~ q s .  (6.4). (6.7) and (6.8) lead to Z z k  = EIT U, 

0'6- = (WT Up IOTHf  b = FI ( H &  ZJ, IT b = IIUF6 , 

T Y ~  ( P T ) .  where: 

such that Zk becomes: 
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E' = HI; f i [ O ,  . . . , 0. /&+I, . . . , &, , 0, . . . , OIr . 
Inserting this relation and 6 = H f  b = HT Cfi into (6.9a). we get: 

r = H r  zr[P,, . . . IP' s 0, - 9 0 .  B p + l , -  - * I @,IT 

because HfU,  = 0. Since HT[ U p ,  U9 1 is orthogonal. we see that I I  Fk I I  = I I  rk 11. The same 

argumentation and the fact that Xk = v F \uc UT&. with F given by (2.8). lead to the 

second result II F ~ l l  = I1 rkll. 

- -  
0 

Consider now the GCV-function G ( k  associated with the TSVD solution Fk : 

(6.11) 

Due to Theorem 6.2, IFk II = Ilr, II. which shows that c ( k  is identical to the original GCV 

function G (k ) in (5.4). It is easy to show that a similar result holds for the GCV func- 

tions associated with Zk and "1. Thus: 

(6.12) 

and the minimizer of G(*) is therefore identical to the minimizer of G (e). This shows that 

the truncation parameter k or the regularization parameter A, chosen by the GCV method 

applied directly to the standard-form problem (6.1). is identical to the parameter that 

would be obtained by application of GCV to the original problem (1.1). The same argu- 

ment shows that the variance I1 e I t 2 /  m of the errors can be estimated directly from (6.1). 

In this connection we would like to emphasize the TSVD solution because of its sim- 

plicity and because the SVD of the transformed problem sheds light on both Zk and on the 

original problem, due to the strong connection between the SVD of and the GSVD of 

(A,  L ). We stress that the success of TSVD relies only on satisfaction of the DPC (3.6) 

and not on the singular value spectrum of A .  For more details on these aspects. see [8] 

where several efficient methods for computing Xk are also discussed. 

7. CONCLUSION 

The first part of our investigations deals with the properties of the regularized and 

TGSVD solutions to (l-l), and we have derived conditions on L and b which are neces- 

sary to  ensure a satisfactory solution. The main conclusion is that if L is well- 

conditioned and if b satisfies the Discrete Picard Condition (3.6). then both methods lead 

to  reasonable solutions which are approximately identical and approximately equally 
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sensitive to perturbations. 

The second part of our investigations shows that if (1.1) is transformed into stan- 

dard form (6.11, then it i s  not AWSSZI~Y to transform the solutions back to the form (1.1) 

in order to determine the appropriate A: or A. since these can be determined directly from 

the standard-form problem. 

Finally. we stress that in order to understand the different filter properties of 

L Z I,, and L = I , ,  more investigations have to be carrid out. It is necessary to get a 

better understanding of the similarities between the singular vectors of A and the general- 

ized singular vectors of (A , L ). 
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