
i

i

I

ORNL/TM-11045

Engineering Physics and Mathematics Division

Mathematical Sciences Section

PARALLEL DIRECT SOLUTION OF SPARSE LINEAR SYSTEMS

Esmond Ng

Oak Ridge National J,aboratory
Mathematical Sciences Section
P.O. BOX 2009, Bldg. 9207-A
Oak Ridge, T N 37831-8083

Date Published: .January, 1989

Research was supported by the Applied Mathematical Sciences Research
Program of the Office of Energy Research, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT O F ENEItGY
under Contract No. DF:-AC-05-840Et2140Q

MAHTN MAHIEITA FNtRGY %STEMS il0RASIE.E

3 4456 02BB4L7 7

Contents

1 Introduction

2

3

4

5

6 References

Sequential Algorithms for Sparse Linear Systems

Parallel Sparse Matrix Factorization Algorithms

Identifying Parallelism and Scheduling Independent Subtasks

Numerical Experiments and Concluding Remarks

1

1

4

6

11

14

...
- 111 -

PARALLEL DIRECT SOLUTION OF SPARSE LINEAR SYSTEMS

Esmond Ng

Abstract

In this paper the direct solution of sparse linear systems on multiprocessor
systems is considered. Elimination trees are used as a tool for identifying and ex-
ploiting parallelism in the parallel numerical factorization of the coefficient matrix.
Some open problems are described and results of some numerical experiments are
provided.

This paper is based on a talk by the author at a Workshop on Methods and Algorithms for
PDE’s on Advanced Processors held in Austin, Texas on October 17-18, 1988.

- v -

1. Introduction

In this paper, we consider direct methods for solving large sparse Linear systems

Ax = b

on multiprocessor systems, where A is an n x n nonsingular matrix. The basic approach
is to decompose A into triangular factors

where Qr and Qc are some permutation matrices chosen to preserve sparsity and/or
maintain numerical stability, and L and U are respectively lower and upper triangular
matrices. With the triangular factorization, the solution to the linear system can be
obtained by first solving Lu = Q t b and Uv = u, and then setting z = QCv.

In general the most expensive part of the solution process is the factorization of A.
Thus much effort has been spent in designing efficient factorization algorithms for both
sequential and parallel computers. The objective of this paper is to provide an overview
of some of the approaches and to discuss some of the issues in the design of effective
parallel factorization algorithms. An outline of the paper is a6 follows. In Section 2,
we briefly survey some of the effective sequential algorithms for solving sparse linear
systems. Parallel algorithms are then described in Section 3. Tools for identifying and
exploiting parallelism are introduced in Section 4, together with a discussion of related
issues. Finally, some concluding remarks are provided in Section 5.

2. Sequential Algorithms €or Sparse Linear Systems

There has been extensive research in the design of efficient sequential algorithms for
the solution of large sparse linear systems. For example, [17] contains an excellent
discussion of most of the state-of-the-art methods for solving sparse symmetric positive
definite systems and [5] has a detailed description of some methods for handling sparse
nonsymmetric problems. The approach we consider in this paper can he summarized
as follows. There are basically four steps in the solution process:

1. Ordering:
Compute permutations QT and Qc so that L and U are sparse, where LU =
QTAQC.

2. Symbolic factorization:
Compute the structures of L and U . Set up a compact data structure for storing
the nonzeros of 1; and U .

3. Numerical factorization:
Input QrAQc and compute L and U numerically. (Pivoting may be needed to
ensure stability.) Store the nonzeros in the fixed data structure determined at
step 2.

- 2 -

4. Triangular solution:
Solve Lu = Q,b and U v = ZR. Set x = Qcv.

The approach stated above has been widely adopted for solving sparse symmetric
positive definite systems [7,8,17], in which case Gholesky factorization is employed
and is numerically stable by choosing the diagonal elements as pivots [37]. Moreover,
Qc = QT and U = L T . Because of the fact that the factorization is stable without
pivoting, the structure of L can therefore be determined solely from the structure
of Q,AQT, if we make the assumption that exact cancellation does not occur during
numerical factorization. Once the structure of L is known, a compact data structure can
then he set up to exploit the sparsity of L . There are efficient symbolic factorization
algorithms for computing the structure of L and setting up the data structure [35].
Then the numerical factorization and triangular solution can be performed using the
fixed data structure.

The set of nonzeros introduced into L during numerical factorization is referred to
as fill. The role of the permutation Qr is to control the amount of fill in L. It is well
known that the choice of Qr can affect the sparsity of L drastically. This is illustrated
by an example in Figure 2.1, in which O T A @ is obtained from Q,AQT by reversing
the ordering of rows and columns. Unfortunately, the general problem of finding the

Figure 2.1. An example illustrating the effect of permutations on the sparsity
of the Cholesky factors.

permutation that minimizes the number of nonzeros in L is NP-complete [38]. Thus,
we have to rely on heuristic strategies for finding permutations that reduce fill in L .
Some of the well-known strategies are the nested dissection algorithm [10,16] and the
minimum degree algorithm [18]. Efficient implementations of these ordering algorithms
and algorithms for the other three steps can be found, for example, in the SPARSPAK
package [2].

For sparse nonsymmetric problems, it i s well known that pivoting is necessary to
ensure stability during numerical factorization [37]. Since the choice of pivot at each
step of the numerical factorization depends on both the structure and the numerical
values of the active matrix, it is not clear how steps 1 and 2 can be performed prior
to step 3. In fact, in almost all implementations of sparse triangular factorization with

- 3 -

symbolic factorization
numerical factorization

triangular solution

pivoting, steps 1, 2 and 3 axe often combined together [3,25,27,36]. For example, at
each elimination step in MA28 (during which a column is elimination), the pivot i s
chosen to preserve sparsity and to maintain stability [3]. Then storage for the nonzeros
is allocated immediately before the elimination of the column is performed numerically.

However, if we relax somewhat the condition that only nonzeros are stored, then it is
possible to apply the previous four-step approach to nonsymmetric problems. Suppose
8,. = Qc = I for the moment. Consider computing a triangular factorization of A
using Gaussian elimination with partial pivoting (i.e., row interchanges):

1.917 2.150 2.450 2.783 3.117
59.533 73.317 89.167 105.817 126.567

4.867 5.733 6.550 7.617 8.667

where P; corresponds to the row interchange that occurs at step i and Li is a Gauss
transformation at step i. Define L = Cy.: L; - (n - 2)I. In [21], George and Ng
have presented a symbolic factorization algorithm that dl generate a lower triangular
matrix and an upper triangular matrix I!? from the structure of A alone so that
the structures of and 0 contain respectively those of L and U, irrespective of the
choice of PI, 1 5 i 5 n - 1. Thus, we can use the structures of L and U as bounds
on the structures of L and I/ respectively in step 2 of the solution process. Using
this approach, an effective static data structure for Gaussian elimination with partial
pivoting can be set up [20]. Preserving the sparsity of and 0 is important for the
effectiveness of this scheme. It was demonstrated in [21] that the sparsity of 1 and U
depends on the column ordering of A, and furthermore a good symmetric reordering
of ATA appears to be a good column reordering of A.

We conclude the discussion in this section by presenting results of some numerical
experiments. The objective is to illustrate the cost of performing each step in the
solution process. There are two sets of test problems, all of which are finite element
problems defined on L-shaped domains with triangular elements. The problems in the
first set are symmetric positive definite and those in the second set are nonsymmetric
(with symmetric structures). The experiments were performed on (one processor of)
a Sequent Balance 8000 using single-precision floating-point arithmetic and execution
times are in seconds. The symmetric positive definite problems were solved using the
SPARSPAK package, and the nonsymmetric problems were solved using the approach
described in [20]. The results are provided in Tables 2.1 and 2.2.

n I 3025 I 3466 3937 1 4438 I 4969
ordering I 8.550 I 9.917 I 11.533 I 13.183 I 15.100

Table 2.1. Execution time statistics (in seconds) for symmetric positive
definite problems. (n is the order of the matrix.)

- 4 -

Table 2.2. Execution time statistics (in seconds) for nonsymmetric problems.
(n is the order of the ma.trix.)

3. Parallel Sparse Matrix Factorization Algorithms

It is clear from the numerical results in the previous section that the ordering, symbolic
factorization and triangular solution phases are relatively inexpensive; the numerical
factorization phase is usually the most expensive part of the solution process. Thus,
when multiprocessor systems became available, much effort was spent on parauelizing
numerical factorization. In this section, we discuss the potential sources of parallelism
in sparse numerical factorization.

We begin with a description of a sequential numerical factorization algorithm, in
which columns are eliniinated, and we will ignore sparsity for the moment.

for k = 1 to R
perform row and/or column interchanges, if necessary
compute multipliers at step k
for j = k + 1 to n

modify row/column j by row/column k

Whether we use a row-oriented algorithm or a column-oriented algoritlim will depend
on the choice of data structure for the matrix A . For example, if the elements of A arp
stored by columns, then it may be beneficial to use the column-oriented algorithm to
facilitate access of the matrix elements. At any rate, we see from the algorithm above
that the computation at each major step can be broken up into subtasks: cd iv (k) and
mod(j ,k) . The subtask c d i v (k) refers to the computation of the multipliers at step I C ,
which includes the row and/or column interchanges that may be necessary to ensure
numerical stability, and the subtask m o d (j , k) is the modification of row/coliimn j by
row/column k . TIIUS, we can express the computation in a compact way.

for k = 1 to n
d i u (k)
for j = k t 1 t o n

m o d (j ,

It is important to note that for a given I C , each m o d (j , k) subtask uses data from
row/column IC to update row/column j . Hence, the m o d (j , k) subtasks are independent
subtasks for a fixed k . Suppose there are several processors available in a multiproces-
sor system. As long as c d i v (k) has been performed arid row/column k is available to
each processor, the iodppendent subtasks m o d (j , k) ’ s may therefore be performed con-
currently. Note that the operations within a mod subtask are also independent. Such

- 5 -

independence may be exploited, for example, if the processors have vector processing
capability or if there are enough processors in the multiprocessor system. However, we
will not consider such fine-grain pa rde l algorithms in this paper; we are interested in
medium-grain parallel algorithms. Furthermore, note that the c&v(k) subtask cannot
begin until mod(C,i) has been performed for all i < k. Thus, if the matrix is dense,
the cdiv subtasks will be executed sequentially even though some of the mod subtasks
can be carried out in parallel.

Sparsity of the matrix can enhance the amount of parallelism available. Following
is an illustration.

X

A = 1
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X
X

For definiteness, suppose we are using a row-oriented factorization algorithm. Consider
the first three steps of the factorization, and for simplicity ignore the necessity of
pivoting. Because of the nonzero pattern, the first three columns are independent.
This implies that c$iv(i) , 1 5 i 5 3, can be carried out simultaneously, provided that
there are enough processors available. This small example illustrates the fact that
because of sparsity in the matrix, not only can some of the mod subtasks be executed
in parallel, but some of cdiv subtasks may become independent during fdctorization,
and they can be performed concurrently.

Parallel sparse numerical factorization algorithms have been developed for various
classes of multiprocessor systems [4,6,12,14,15,22,23]. Of course, the crucial issue is
how the independence among the ediu and mod subtasks can be identified and how
such independent computations can be scheduled in such a way that the computational
load is balanced and the amount of synchronization or commiinication is kept low. We
will discuss these issues in the next section.

We have concentrated our discussion in this section on the potential for parallelism
in sparse numerical factorization. We conclude the section by making a few remarks
about parallel algorithms for the other phases in the solution process. Although the nu-
merical factorization phase is usually the most expensive phase in the solution process
on sequential machines, if we are able to reduce the factorization time by employing
multiple processors on a multiprocessor system, the cost of doing the remaining three
phases (sequentially) may become significant, Thus, research on designing efficient par-
allel algorithms for the ordering, symbolic factorization and triangular solution phases
has been initiated. Some of the work has been reported in [1,12,13,14,24,2G,39,40].
However, since the amount of computing in ordering, symbolic factorization or trian-
gular solution is often relatively small, and the sequential algorithms for each of these
three phases are extremely efficient, it is in general difficult to devise parallel algorithms
with good efficiencies for thew three phases. On the other hand, there are situations
in which pmallel algorithms for ordering, symbolic factorization and triangular solii-

- 6 -

A =

' X X X
X X X

X X X
X X X

X X X
x x X X

X X X
X X X X

x x X
X X X

I X
X

X
X X

X X
x x X

X t c x
X x + t x

X + x t t x
\ x x + x

Figure 4.1. A sparse symmetric positive definite matrix and its Cholesky
factor. (x is a nonzero in the original matrix and + is a fill element.)

tion are desirable even though efficiencies may be poor. For example, if the numerical
factorization is performed on a local-memory multiprocessor, the columns of L will be
distributed among the processors. Instead of sending the columns from the processors
to a single processor and performing the triangular solution sequentially, it may be
desirable to have all the processors collaborate in the computation.

4. Identifying Parallelism and Scheduling Independent Subtasks

In the previous section, we have described the potential parallelism available in sparse
numerical factorization. However, in order to make use of multiple processors in the
numerical factorization, it is important to have efficient tools for identifying indepen-
dent subtasks in the computation and scheduling these subtasks among the processors.
For simplicity, let us consider the case in which the matrix A is symmetric and positive
definite. Denote by L the Cholesky factor of A . Thus, A = LLT and L is lower tri-
angular. If column k of L has more than oiie nonzero, then let f(k) be the row index
of the first off-diagonal nonzero; otherwise, let f (k) = 0. Then {f(C)} forms a tree
structure, which is often referred to as the elimination tree of A. More precisely, if
f (k) # 0, then node f (k) is the parent of node k in the elimination tree and k is one of
several children of f(k). An example is given in Figures 4.1 and 4.2. In general, there
may be several disjoint elimination trees associated with A . However, there is exactly
one elimination tree if A is irreducible. In our discussion below, we will assume that
the matrix A is irreducible. Each elimination tree has a distinct node k , called the
root, such that f(L) = 0. There is a unique path between the root of the elimination
tree and any node in the same tree. Suppose nodes i and j are in the same elimination
tree, with i < j. If node J is on the path between the root and node i, then node j is
an ancestor of node i and node i is a descendant of node j . A subtree rooted at node
i is the set of all descendants of node i in the elimination tree.

The notion of elimination trees has been used extensively in research on sparse
direct methods, and an excellent survey can be found in [31]. For example, elimination
trees are employed in [4,6,11,14,15,20,22,28,30,32,39,40]. Other references related to
elimination trees are in [31]. It should be noted that the structure of the elimination
tree depends solely on the structure of A. Moreover, the elimination tree can be
computed directly from the structure of A .

The elimination tree of A provides much information about the dependency among

- 7 -

Figure 4.2. The elimination tree associated with the matrix in Figure 4.1.

the subtasks d i u ’ s and mod’s in sparse numerical factorization. It serves as a tool for
identifying and exploiting parallelism in sparse matrix factorization. Consider Cholesky
factorization and suppose we are using a column-oriented algorithm. We note that in
order to perform cdiv(k) , mod(k , i) has to be performed first, for all d < k such that
Lk. # 0. It is easy to show that node i must be a descendant of node k in the elimination
tree; the proof follows from the way the Cholesky factor L is computed. A corollary
of this result is that column k of L depends explicitly on column k of A and a subset
of the columns of L that are associated with the subtree rooted at node k. In other
words, cd iv (k) cannot be executed unless

1. cdiv(i)’s have been performed, for all nodes i in the subtree rooted at node k,
and

2. mod(k, i) has been applied, for appropriate nodes i in the subtree rooted at node
k .

In general, column k of L depends either explicitly or implicitly on the columns of L
that are associated with the subtree rooted at node k. Hence, for kl # k2, if nodes k1
and are in two disjoint subtrees, then columns kl and ka are independent, since the
two sets of columns on which columns kl and k2 depend are disjoint. For the example in
Figures 4.1 and 4.2, columns 1 , 2 and 3 are therefore independent. Also, columns 5 and
7 are independent, but column 7 depends either explicitly or implicitly on colunins 2 , 3 ,
4 and 6. In summary, dependencies among subtasks in sparse numerical factorization
can be identified by analyzing the structure of the elimination tree associated with the
matrix A .

Since the elimination tree provides information on the dependency among the sub-
tasks in sparse numerical factorization, the tree can be used to schedule the independent
computations on a multiprocessor system. One strategy is to schedule the columns by
pruning the elimination tree. The idea is to schedule the columns so that the cdiv’s
can be performed as soon as possible. For example, for the matrix in Figurp 4.1, we
will first schedule columns 1 , 3 and 2. This amounts to removing the leaves lioin the
elimination tree. Then based on the pruned tree, we schedule columns 5 and 6, and

- 8 -

again this corresponds to renzoving the leaves from the pruned tree. The process is
repeated until all the columns are scheduled. Note that the height of the elimination
tree is a lower bound on the number of serial. d i u ’ s that have to be performed in a
parallel sparse numerical factorizatioii algorithm.

The elimination tree is dso useful in reducing the amount of communication or
synchronization required in parallel sparse numerical factorization. Observe that if the
coliimns of a subtree are assigned to a subset of processors, then the comrnunicatiori
or synchronization involved when these columns are computed will be limited to the
processors in this subset, although communication or synchronization may be required
in order to make these columns available to those associated with the ancestors of the
subtree. Thus, by assigning disjoint suhtrees to different disjoint sets of processors,
communication or synchronization requirements are reduced. George, Liu and Ng have
used this observation to assign columns to processors to reduce the cost of cotnmii-
nication in the numerical Cholesky factorization on multiprocessor systems with the
hypercube topology [193.

‘fhe discussions above demonstrate that effective p a r d e l sparse numerical factoriza-
tion relies on the structure of the elimination tree. For example, a balanced elimination
tree with many branches appears to be desirable. So what is a good elimination tree
for parallel sparse numerical factorization? Note that the elimination tree is defined in
terms of the structure of the Cholesky factor of A . Since we know that the structure
of the Cholesky factor depends on the reordering of columns and rows of A , the struc-
tiire of the elimination tree depends on the row and column reordering. An example
illustrating the effect of reordering on the structure of the elimination tree is provided
in Figures 4.3 and 4.4, in which A is obtained from the matrix A in Figure 4.1 by
reversing the ordering of r o w and columns. Thus, we can rephrase the question as
follows. Given the structiire of a matrix, what is a good reordering for parallel sparse
numerical factorization?

Figure 4.3. A symmetric matrix A and its Cholesky factor. (A is obtained
by reversing the ordering of the rows and columns of the matrix A in Figure
4.1.)

Since the height of the elimination tree is a lower bound on the number of serial
cdiw’s that have to be performed, it is desirable to find a reordering for A so that the
elimination tree is as short as possible. However, Pothen has shown that the problem
of finding such a reordering is NP-complete [34].

Recall that the sparsity of L also depends on the choice of the reordering. Hence, it
is desirable not only to find a reordering so that the associated elimination tree is short,

- 9 -

7

4 5 6A 3 2

Figure 4.4. The elimination tree associated with the matrix A in Figure 4.3.

but also the fill is small. This suggests the following heuristic. We first determine a
reordering UT that attempts to minimize fill in I,, where LLT = PTAPT. Thus, there
is an elimination tree associated with 1:APT. Then the tree is restructured in such
a way that the new tree has a dilfermt shape and hopefully has a smaller height, but
the fill and operation count are preserved. This approach is proposed by Liu [30,32].
It amounts to finding another reordering P,. for PrAP,T with the constraint that both
fill and operation count are preserved. When fill and operation count are preserved,
the reordering P, is said to be equivalent to P,.

If A is a finite dement matrix arising from a two-dimensional problem, and PT is a
nested dissection reordering, then our experience is that the resulting elimination tree is
often short and balanced, and more importantly, Pr often adequately reduces fill. Thus,
nested dissection reorderings are often good reorderings for parallel sparse numerical
factorization, at least for certain classes of problems. For general sparse symmetric
positive definite problems, a minimum degree reordering is in general a much better
reordering in terms of fill-reduction. Unfortunately, the resulting elimination tree is
often tall and unbalanced, and hence, may not be suitable for parallel factorization.
The example in Figure 4.5 is an elimination tree associated with a minimum degree
reordering on a 7 x 7 grid, with a nine-point operator. When we apply Liu's heuristic to
the elimination tree in Figure 4.5, we obtain the elimination tree in Figure 4.6, which
is again not balanced, although the height of the new tree is somewhat sIrzaller than
that of the old tree. In fact, it is our experience that such a phenomenon is typical for
minimum degree reorderings.

There is a different way of finding an elimination tree with a short height. S ~ p p o s e
we first find a reordering P, that attempts to minimize fill in .L, where LLT = P,)TAP~.
There may be equivalent reorderings which preserve fill and operation count. Each
equivalent reordcring will result in a Cholesky factor with different structure from that
of L , and consequently a different elimination tree. Thus, a possibility is to choose from
the set of equivaknt rcorderings the one that has an elimination trec of the shortest
height. The scheme for firiding the equivalent reordering was first described by Jess and
Kees [28], but it was Liu wlio proved that the resulting elimination tree indeed has the

- 10 -

Figure 4.5. The elimination tree associated with a minimum degree reorder-
ing on a 7 x 7 grid.

Figure 4.6. The elimination tree obtained by applying Liu’s heuristic to the
elimination tree in Figure 4.5.

- 11 -

shortest height [30]. lmplementations of this scheme were described in [a91 ancl [33].
Unfortunately, we do not have much numerical experience with this approach, since
the codes are not available to us. However, even though the new reordering gives an
elimination tree that has the smallest height, there is no guarantee that the new tree
is balanced or has many branches. Investigation into the effectiveness of this technique
in terms of parallel sparse numerical factorization is underway.

The height of a,n elimination tree is not the only criterion for effective parallel sparse
numerical factorization. The shape of the elimination tree is also important. Tt is our
experience that elimination trees which are balanced and have many branches, such as
those corresponding to nested dissection orderings, appear t o be desirable. However, for
most reorderings, their elimination trees are not balanced. Thus, for unbalanced elim-
ination trees, another issue is how to schedule the columns so that the computational
work is balanced and the synchronization or communication requirements are reduced.
Based on the structure of a weighted elimination tree, Geist and Ng have proposed a
heuristic for assigning the columns so that part of the computation can be distributed
evenly among the processors, and at the same time the amount of synchronization or
communication i s reduced [9].

Finally, although our discussions in this section are on the solution of sparse sym-
metric positive definite systems, they apply equally well to nonsymmetric problems.
When A is nonsymmetric, the elimination tree is defined in terms of the structure of
the Cholesky factor of ATA [20,22,233.

5. Numerical Experiments and Concluding Remarks

In this paper, we have provided an overview of the current state of affairs in the direct
solution of sparse linear systems on multiprocessor systems. Clearly one of the open
problems is how to characterize and determine an appropriate reordering for parallel
sparse numerical factorization. Note that there are several constraints to be satisfied. It
is important to find a reordering so that fill is reduced, and it is desirable to choose the
reordering SO that the height of the resulting elimination tree is minimized. Moreover,
it is also important to have an elimination tree that contains many branches and is
balanced, so that there is a high degree of parallelism. Of course, to make the problem
even harder, it is desirable to be able to compute the reordering itself in parallel. There
are other problems to consider as well, such as the design of efficient parallel algorithms
for performing symbolic factorization and triangular solution. These problems are
undcr investigation.

We conclude this paper by providing some numerical results for parallel sparse nii-
rnericd factorization we have obtained on two different parallel computers, The lest

problems are the finite element problems we have used in Section 2. Tables 5.1 and
5.2 contain respectively the performance statistics for sparse symmetric positive defi-
nite problems and sparse nonsymmetric problems on a Sequent Balance 8000, whicli
is a multiprocessor system with shared-memory. Table 5.3 contains the performance
statistics for sparse symmetric positive definite problems on an Ttitel/iPSC-2, which
is distributed-memory parallel machine. For each sparse symmetric positive definite
problem, a nested dissection reordering was computed to reduce fill. For each sparse

- 12 -

b f i 0 5 . 8 1 7

nonsymmetric problem, a minimum degree reordering with multiple elimination was
used [MI. In all tables, 78 is the order of the matrix, and the second column (“sequen-
tial”) contains the execution times in seconds required by the sequential algorithm.

79.92% 75.87% 71.79%
66.233 34.633 24.467

1.60 3.06 4.32

n I sequential I p = 2 1 p = 4 I p =:= 6
3025 I 59.533 I 37.700 I 19.967 I 14.333

1 1 1 1.58 1 2.98 1 4.15 I
3466 73.317 45.967 24.200 17.183

78.96% 74.54% 69.23%
I_ H2*{ 79.75% 75.74% 71.11%

I 1 79.88% I 76.38% I 72.08%
4969 I 126.567 I 78.533 I 41.133 1 29.033

I 1.61 I 7i::i 1 4.36 I
80.58% 72.66%

Table 5.1. Performance results on a Sequent Balance 8000 for sparse sym-
metric positive definite systems. For each problem/processor pair, the three
entries are respectively the execution time in seconds, the speed-up ratio and
the efficiency.

Table 5.2. Performance results on a Sequent Balance 8000 for sparse non-
symmetric systems. For each problem/processor pair, the three entries are
respectively the execution time in seconds, the speed-up ratio and the effi-
ciency.

Like most parallel algorithms, we see from the tables that, for a fixed number of
processors, the efficiency increases as the size of the problem increases. However, for

- 13 -

p = 1 6
4.695
3.79

23 70%
6.198
3.63

22.70%
7.456
3.78

23.62%
8.980
3.85

24.09%
10.670
3.97

24.82%
12.551
4.01

25.09%
14.498

25.84%
1 4.13

p = 3 2
3.513
5.07

15.84%
4.400
5.12

15.99%
5.292
5.33

16.64%
6.313
5.48

17.13%
7.565
5.60

17.50%
8.437
5.97

18.66%
9.872
6.07

18.97%

p = 8
6.500
2.74

34.24%
8.480
2.65

33.18%
10.532

2.68
33.45%
13.141
2.63

32.92%
15.175

2.79
34,90%
18.224
2.76

34.56%
21.868

2.74
34.26%

2614

3025

3466

3937

4438

4969

22.512

28.183

34.607

42.368

50.379

59.932

Table 5.3. Performance results on an Intel/iPSC-2 for sparse symmetric
positive definite systems. For each problem/processor pair, the three entries
are respectively the execution time in seconds, the speed-up ratio and the
efficiency.

- 14 -

a fixed problem, the eificiency decreases as the number of processors increases. The
efficiencies on the Intel/iPSC-2 are poor; this is niainly because the communication
overhead is relatively high compared to the speed of computation.

6. References

1. G. Alaghband and H. F. Jordan. Multiprocessor sparse L / U decomposition ,with
controlled fill-in. Technical Report 85-48, ICASE, NASA Langley Research Cen-
ter, Hampton, Virginia, 1985.

2. E. C. H. Chu, J. A. George, J. W-H. TAU, and E. G-Y. Ng. User's guide for
SPARSPAK-A: Waterkoa sparse linear equations package. Technical Report CS-
84-36, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
1984.

3. I. S. Duff. MA28 - A set of FORTRAN subroutines for sparse unsymmetric linear
equations. Technical Report AERE R-8730, Harwell, 1977.

4. I. S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing,
3:193-204, 1986.

5. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, England, 1987.

6. 1. S. Duff, N. I. M. Gould, M. Lescrenier, and J. K. Reid. The miiltifrontaI
method in a parallel environment. Technical Report C S S 211, Computer Science
and Systems Division, IIarwell, 1987.

7. I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Trans. on Math. Sojtwaw, 9:302-325, 1983.

8. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. The Yale
sparse matrix package. I. the symmetric codes. Internat. J. Numer. Meth.
Engrg . , 18: 1 145- 1 1.5 1 , 1982.

9. G. A. Geist and E. G-Y. Ng. A partitioning strategy for parallel sparse Cholesky
factorization. Technical Report ORNL/TM-10937, Oak Ridge National Labora-
tory, Oak Ridge, TN, 1988.

10. J. A. George. Nested dissection of a regular finite element mesh. S U M J. Numer.
A n d . , 10:345-363, 1973.

11. J. A. George, M. T. Heath, and J. W-H. Iin. Parallel Cholesky factorization on a
shared-memory multiprocessor. Linear Algebra and its Appl. , 77:165-187, 1986.

12. J. A. George, M. T . Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse pos-
itive definite systems on a shared memory multiprocessor. Internat. J. Parallel
Programming , 15 :309-325 , 1986.

- 15 -

13. J . A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Symbolic Cholesky
factorization on a local-memory multiprocessor. Parallel Computing, 5:85-95,
1987.

14. J. A. George, M. T. Heath, J . W-H. Liu, and E. G-Y. Ng. Solution of sparse
positive definite systems on a hypercube. Technical Report ORNL/TM-10865,
Oak Ridge National Laboratory, Oak Ridge, T N , 1988.

15. J. A. George, M. T. Heath, J . W-II. Liu, and E. G-Y. Ng, Sparse Cholesky
factorization on a local-memory multiprocessor. SlAM J . S’ci. Stat. Cornput.,
9:327-340, 1988.

16. J. A. George and J. W-H. Liu. An automatic nested dissection algorithm for
irregular finite element problems. SIAM J. Numer. Anal., 15:1053-1069, 1978.

17. J. A. George and .I. W-I€. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

18. J . A. George and J. W-II. Liu. On the evolution of the minimum degree algorithm.
1989. (To appear in SIAM Review.)

19. J. A. George, J. W-H. Liu, and E. G-Y. Ng. Communication reduction in parallel
sparse Cholesky factorization on a hypercube. In M. T. Heath, editor, Hypercube
Multipmessors, pages 576-586, SIAM Publications, Philadephia, PA, 1987.

20. J. A. George, J. W-II. Liu, and E. G-Y. Ng. A data structure for sparse QR and
LU factors. SIAM J . Sci. Stat. Cornput., 9:lOO-121, 1988.

21. J. A. George and E. G-Y. Ng. Symbolic factorization for sparse Gaussian elimi-
nation with partial pivoting. SIAM J . Sei. Stat. Cornput., 8:877--498, 1987.

22. J. A. George and E. G-Y. Ng. Parallel sparse Gaussian elimination with purtial
pivoting. Technical Report ORNL/TM- 10866, Oak Ridge National Laboratory,
Oak Ridge, TN, 1988.

23. J . R. Gilbert. An eficient parullel sparse partial pivoting algorithm. Technical
Report CMI No. 88/45052-1, Centre for Computer Science, Dept. of Science and
Technology, Chr. Michelsen Institute, Bergen, Norway, 1988.

24. J . R. Gilbert and TI. Hafsteinsson. A parallel algorithm for jindiag fill in a sparse
symmetric matrix. Technical Iteport TR 86-789, Dept. of Computer Science,
Cornell University, Xthaca, New York, 1986.

25, J. R. Gilbert and T. I’eierls. Sparse partial pivoting in time proportional to
arithmetic operations. SIAM J. Sci. Stat. Conput., 9:862 -874, 1988.

26. J . R. Gilbert and E. Zmijewski. A pnrullel graph partitioning algorithm fur a
message-passing multiprocessor. Technical Report TR 87-803, Dept. of Com-
puter Science, Cornell TJniversity, Ithaca, New York, 1987.

- 16 -

2'7. P. E. Gill, W. Murray, M. A. Sanders , and M. H. Wright. Maintaining LU
factors of a general sparse matrix. Linear Algebra and its Appl. , 88/89:239-270,
1987.

28. J. A. G . Jess and I€. 6. M. Kees. A data structure for parallel L / U decomposition.
IEEE Tmns, Comput., C-31231-239, 1982.

29. J. G . Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse
matrices for para1ZeZ factorization. Technical Report, Oak Ridge National Labo-
ratory, Oak Ridge, TN, 1988. (Submitted to SIAM J. Stat. Sci. Comput.)

30. J. W-11. Liu. Reordering sparse matrices for parallel elimination. Technical Re-
port CS-87-01, Dept. of Computer Science, York University, Downsview, Ontario,
1987. (To appear in Parallel Computing.)

31. 3 . W-H. Liu. The role of elimination trees in sparse factorization. Technical Re-
port CS-87-12, Dept. of Computer Science, York University, Downsview, Ontario,
1987. (To appear in SIAM J . Matrix Anal. & Appl.)

32. J. W-11. Liu. Equivalent sparse matrix reordering by elimination tree rotations.
SIAM J . Sca. Stat. Cornput., 9:424-444, 1988.

33. J. W-H. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting
of chordal graphs. Technical Report CS-87-02, Dept. of Computer Science, York
University, Downsview, Ontario, 1987. (To appear in SIAM J. Disc. Math.)

34. A. Pothen. The complexity of optimal elimination trees. Technical Report CS-
88-16, Dept. of Computer Science, The Pennsylvania State University, University
Park, PA, 1988.

35. A. H. Sherman. On the eficient solution of sparse systems of linear and nonlinear
equations. Technical Report 46, Dept. of Computer Science, Yale University, New
Haven, Connecticut, 1975.

36. A. 8. Sherman. Algorithm 533. NSPTV, a FORTRAN subroutine for sparse
Gaussian elimination with partial pivoting. A C M Tmns. on Math. Software,
4:391-398, 1978.

37. 9. PI. Wilkinson. 1 he Algebraic Eigenvalue Problem. Oxford University Press,
Oxford, 1965.

38. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J . Alg.
Dasc. Meth., 2:77-79, 1981.

39. E. Zmijewski. Sparse Chdesky Factorization on a Multiprocessor. PhD thesis,
Department of Computer Science, Cornell University, Ithaca, New York 14853-
7501, August 1987.

40. E. Zmijewski and J. R. Gilbert. A parallel algorithm for sparse symbolic Cholesky
factorization on a multiprocessor. Pamllel Computing, 7:199-210, 1988.

- 17 -

ORNL/TM- 11045

INTERNAL DISTRIBUTION

1.

2.
3.

4-5.
6.

7-11.

12.
13-17.
18-22.

23.
24.

25.

B. R. Appleton

J. B. Drake
G. A. Geist
R. F. Harbison
M. T. Heath
J. K. Ingersoll

M. R. Leuze
F. C. Maienschein
E. G. Ng
G. Ostrouchov
€3. W. Peyton

C. H. Romine

26-30.

31.
32.
33.
34.
35.

36.
37.
38.

39.

40-41.

R. C . Ward

P. 1%. Worley
A. Zucker
J . J. Doming (Consultant)
R. M. Haralick (Consultant)
Central Research Library

ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library

/Document Reference Station
Laboratory Records - RC

Laboratory Records Department

EXTERNAL DISTRIBUTION

42. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7, Germantown Building, U.S. Department of Energy, Washington, DC 20545

43. Dr. Robert G . Babb, Department of Computer Science and Engineering, Oregon
Graduate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

44. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, T X 77252-2189

45. Dr. Jesse I,. Barlow, Department of Computer Science, Pennsylvania State Uni-
versity, University Park, PA 16802

46. Dr. Chris Bischof, Mathematics and Computer Science Division, hrgonne Na-
tional Laboratory, 9700 South Cass Avenue, Argonne, 11, 60439

47. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping
58183, Sweden

48. Dr. James C. Browne, Department of Computer Sciences, University of Texas,
Austin, T X 78712

49. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmo-
spheric Research, P.0. Box 3000, Boulder, CO 80307

- 18 -

50. Dr. Donald A. Calahan, Department of Electrical aid Computer Engineering,
University of Michigan, Ann Arbor, MI 48109

51. Dr. Tony Chan, Department of Mathematics, University of California, Los An-
geles, 405 IIilgard Avenue, Los Angeles, CA 90024

52. Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

53. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Wa-
terloo, Ontario, Canada N2L 3G1

54. Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca,
NY 14853

55. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

56. Prof. Andy Conn, Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

57. Dr. Jane K. Cullum, LBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

58. Dr. George Cybenko, Computer Science Department, University of Illinois, Ur-
bana, IL 61801

59. Dr. George J. Davis, Department of Mathematics, Georgia State University, At-
lanta, GA 30303

GO. Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne
National Laboratory, 9708 South Cass Avenue, Argonne, 11, 60439

61. Dr. lain Duff, CSS Division, llarwcll Laboratory, Didcot, Oxon OX11 ORA,
England

62. Prof. Pat Eberlein, Department of Computer Science, S UNY/Buffalo, Buffalo,
NY 14260

63. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, Y.O. Box
21.58 Yale Station, New Haven, CT 06520

64. Dr. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkop-
ing, Sweden

65. Dr. Howard C. Elman, Computer Science Department, University of Maryland,
College Park, MD 20742

66. Dr. nlbert M. Erisman, Boeing Computer Services, 565 Andover Park West,
Tukwila, WA 98188

- 1 9 -

67. Dr. Peter Fenyes, General Motors Research Laboratory, Department 15, GM
Technical Center, Warren, MI 48090

68. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Clare-
mont, CA 91711

69. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of
Technology, Pasadena, CA 91125

70. Dr. Paul 0. Frederickson, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 8754.5

71. Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Liv-
ermore National Laboratory, P.O. Box 808, Livermore, CA 91550

72. Dr. Robert E. FunderLic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

73. Dr. Dennis B. Cannon, Computer Science Department, Indiana University, Bloom-
ington, IN 47405

74. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J
07974

75. Dr. C. William Gear, Computer Science Department, University of Illinois, Ur-
bana, Illinois 61801

76. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Reseaxch
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A O R 8

77. Dr. Alan George, Vice President, Academic and Provost, Needles Hall , University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

78. Dr. John Gilbert, Xerox Palo Alto Research Center 3333 Coyote Hill Road Palo
Alto, CA 94304

79. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook
Drive, Reading, MA 01867

80. Prof. Gene €1. Golub, Department of Computer Science, Stanford University,
Stanford, CA 94305

81. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore,
CA 94550

82. Dr. Per Christian Hansen, Technical University of Denmark, Danish University
Computing Centcr, UCI-C Lyngby, Building 305, DK-2800 Lyngby, Denmark

83. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77002

- 20 -

84. Dr. F. J. Helton, GA Technologies, P.O. Box 81608, San Diego, CA 92188

85. Dr. Charles J. Holland, Air Force Ofice of Scientific Research, Building 410,
Bolling Air Force Base, Washington, DC 20332

86. Dr. Robert E. Nuddleston, Coniputation Department, Lawrence Livermore Na-
tional Laboratory, P.O. Box 808, Livermore, CA 94550

87. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 21.58
Yale Station, New Haven, CT 06520

88. Ms. Elizabeth Jessup, Department of Computer Science, Yale TJniversity, P.O. Box
2158, Yale Station, New Haven, CT 06520

89. Prof. Barry Joe, Department of Computer Science, University of Alberta, Ed-
monton, Alberta, Canada T6G 2H1

90. Dr. Harry Jordan, Department of Electrical and Computer Engineering, Univer-
sity of Colorado, Boulder, CO 80309

91. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901
87 Umea, Sweden

92. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

93. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J
07974

94. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Labo-
ratories, Livermore, CA 94550

95. Ms. Virginia KleIna, Statistics Center, E40-131, MIT, Cambridge, MA 02139

96. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA
91101

97. Dr. Alan J. h u b , Department of Electricad and Computer Engineering, Univer-
sity of California, Santa Barbara, CA 93106

9s. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

99. Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, California Institute
of ‘I’echnology, 4800 Oak Grove Drive, Pasadena, CA 91109

100. Prof. Peter D. T,ax, Director, Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, NY 10012

101. Dr. John G. Lewis, Roeing Computer Services, P.O. Box 24346, M/S 7L-21,
Seattle, WA 98124-0346

- 21 -

102. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department
of Computer Science and Statistics, Queen Mary College, University of London,
Mile End Road, London El 4NS, England

103. Dr. Joseph Liu, Department of Computer Science, York Wniversity, 4700 Keele
Street, Downsview, Ontario, Canada M3J 1P3

104. Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca,
NY 14853

105. James 6. Malone, General Motors Research Laboratories, Warren, Michigan
48090-9055

106. Dr. Thomas A. Manteuffel, Computing Division, Cos Alamos National Labora-
tory, Los Alamos, NM 87545

107. Dr. Bernard McDonald, National Science Foundation, 1800 G Street, NW, Wash-
ington, DC 20550

108. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena,
CA 91125

109. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

110. Dr. Brent Morris, National Security Agency, Ft. George G . Meade, MD 20755

111. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland,
College Park, RID 20742

112. Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory,
Kirtland Air Force Base, Albuquerque, N M 87115

113. Dr. Janies M. Ortega, Department of Applied Mathematics, University of Vir-
ginia, Charlottesville, VA 22903

114. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-
brooke Street W., Montreal, Quebec, Canada II3A 2K6

115. Dr. John F. Pitlnier, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ
85284

116. Prof. Roy P. Pargas, Department of Computer Science, Clemson University,
Clemson, SC 29634-1906

117. Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 91720

118. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

119. Dr. Robert .J. Plemmons, Departments of Mathematics and Computer Science,
North Carolina State University, Raleigh, NC 27650

- 22 -

120. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State Univer-
sity, University Park, PA 16802

121" Dr. John K . Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon,
England OX11 ORA

122. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

123. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labo-
ratory, Livermore, CA 94550

124. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,
NC 27706

125. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Ur-
bana, IL 61801

126. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research
Department, Stanford University, Stanford, CA 94305

127. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic
Institute, Troy, NY 12150

128. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, C T 06520

129. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

130. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Uni-
versity, Dallas, T X 75275

131. nr . Kermit Siginon, Department of Mathematics, liniversity of Florida, Gainesville,
FI, 32611

132. Dr. Horst Simon, Mail Stop 258-5, NASA Ames Research Center, MofTett Field,
CA 94035

133. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

134. Prof. G. W. Stewart, Computer Science Department, University of Maryland,
College Park, MD 20742

135. Dr. Kosmo D. Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy
Lane, Suite 300, Breenbelt, MD 20770-1406

136. Prof. Charles Van Loan, Department of Computer Science, Cornell University,
Ithaca, NY 14853

- 23 -

137. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hsmy-
ton, VA 23665

138. Dr. Andrew 3. White, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

139. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

140. Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J
07974

141. Dr. A. Yeremin, Department of Numerical Mathematics of the USSR Academy
of Sciences, Gorki Street 11, Moscow, 103905, USSR

142. Office of Assistant Manager for Energy Research a.nd Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N
37831-8600

143-152. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN
37831

