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A FAST ALGORITHM FOR REORDERING SPARSE MATRICES 

FOR PARALLEL FACTORIZATION 

John G .  Lewis 

Barry W. Peyton 

Alex Pothen 

Abstract 

Jess and Kees (1982) introduced a method for ordering a sparse symmetric 
matrix A for efficient parallel factorization. The parallel ordering is computed in 

two steps. First, the matrix A is ordered by some fill-reducing ordering. Second, a 

parallel ordering of A is computed from the filled graph that results from factoring 
A using the initial fill-reducing ordering. Among all orderings whose fill lies in  the 
filled graph, this parallel ordering achieves the minimum number of parallel steps 
in the factorization of A.  Jess and Kees did not specify the implementation details 
of an algorithm for either step of this scheme. Liu and Mirzaiari (1987) designed an  

algorithm implementing the second step, but it has time and space requirements 
higher than the cost of computing common fill-reducing orderings. 

We present here a new fast algorithm that implements the parallel ordering 
step by exploiting the clique tree representation of a chordal graph. We succeed in 
reducing the cost of the parallel ordering step well below that of the fill-reducing 
step. Our algorithm has time and space complexity linear in the number of corn-- 

pressed subscripts for L ,  i.e., the sum of the sizes of the maximal cliques of the 
filled graph. Empirically we demonstrate running times nearly identical to Liu's 
heuristic Composite Ilotations algorithm that approximates the minimum nurnher 
of parallel steps. 
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1. Introduction 

An important problem in the design of parallel algorithms for the direct solution of 

sparse, symmetric, positive definite systems is reordering the given matrix A so that 

the reordered matrix can be factored efficiently in parallel. Jess and Kees [9] suggested 

a modular approach to this problem. First, a permutation matrix P is computed such 

that the factor L is sparse, where PAPT = LLT;  the adjacency graph of the resulting 

filled matrix F = L + LT is a chordal graph. Second, a parallel ordering is computed 

from the chordal filled graph by successively removing maximum independent sets 

of simplicial (non-deficient) nodes from the graph. If F were viewed as a matrix to 

be factored, then the computed ordering permits the parallel factorization of E' in 

the minimum number of steps, under the constraint that no additional fill in F is 

permissible. Alternatively, the computed ordering achieves the minimum number of 

parallel steps in factoring A for all ordering; whose fill lies in the filled graph resulting 

from the original sequential ordering. 

Liu [13] showed that the Jess and Kees method finds a parallel ordering that has 

the shortest elimination tree over all perfect elimination orders of the filled graph. 'The 

elimination tree captures the dependencies among the columns of A ,  and its height is 

an appropriate measure of parallel complexity in a computing environment in which the 

elimination of a column can be assumed to be a constant-time operation. In addition, 

the elimination tree height is closely related to  other measures of parallel complexity 

(Liu [12]), and provides a simple but effective criterion for parallelism in several models 

of parallel factorization. 

This modular approach only provides the minimum number of parallel steps for 

parallel orderings with fill constrained by the initial fill-reducing ordering. Some justi- 

fication for this restricted approach is provided in [18], where it is shown that the prob- 

lem of computing an ordering of A with the shortest elimination tree is NP-complete, 

and hence intractable. 

In the Jess and Kees approach, the parallel reordering algorithm is applied as a 
post-processing to  an initial fill-reducing ordering. It is important that this post- 

processing not markedly increase the complexity of the overall reordering scheme. Jess 

and Xees did not specify the implementation details of an algorithm for the second step 

of their scheme. Liu and Mirzaian [I51 have designed an algorithm that implements 

this step, but its complexity is unsatisfactory. Its time and space requirements are 

linear in the size of the filled matrix F = L + L T ,  and the post-processing is often more 

expensive than the rest of the ordering process. Indeed, more storage may be needed 

for the post-processing than for the factorization of the matrix. Recognizing these 

requirements as unacceptably large, Liu [13] designed a heuristic Composite Rotations 
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algorithm that attains nedy minimal tree height. This algorithm is based on the 

concept of elimination tree rotations and has space and time requirements that are 

almost linear in the size of the original matrix A.  In [13] I i u  empirically compares the 

Liu and Mirzaian implementation of the Jess and Kees method with the tree rotations 

heuristic and demonstrates that the heuristic is an excellent approximation in practice 

and is also much faster. Indeed, this heuristic also minimizes tree height on all but two 

of his test problems. 

The motivation for this work is to  reduce the complexity of computing the Jess and 

Kees reordering. By representing the chordal graph as a clique tree we reduce both 

the time and storage required for the reordering algorithm to terms linear in the sum 

of the sizes of the maximal cliques of the filled graph. In terms of sparse matrix data 

structures, our algorithm has complexity bounded by the size of the array of subscripts 

for L after mass elimination compression. Empirically, the cost of our Jess and Kees 

implementation is essentially the same as the cost of Liu's heuristic. This cost is small 

enough that finding the equ ivah t  ordering with a shortest tree can be viewed as merely 

another smdl  part of the reordering process. 

The organization of our paper is as follows. We begin in 52 by describing the Jess 

and Kees method and show how the rnazimal cliques of the filled graph can be used to 

design an efficient implementation. This will provide the reader with an overview of our 

algorithm. The next sections present the details of an efficient practical implementation 

that is obtained from the compressed row subscript lists of the sparse Cholesky factor. 

The first tool we need is a description of the maximal cliques of the filled graph; an  

algorithm for identifying the maximal cliques from the subscript lists of the Cholesky 

factor is given in $3. In $4 we extend the maximal clique algorithm to arrange the 

maximal cliques in a clique tree and present some important properties of the clique tree. 

The following section 55 discusses how the maximal clique structure and the clique tree 

change as nodes are eliminated and, in particular, how clique trees simplify determining 

these changes. At this point all necessary tools are in place to design an efficient parallel 

reordering algorithm, which is presented in $6. A complexity analysis shows that our 

algorithm is linear in the size of the cornpressed version of the row subscripts. In 57, 

we present experimental results on our reordering algorithm and empirical comparisons 

with the Liu and Mirzaiaii algorithm and Liu's heuristic algorithm. The last section 58 

contains some concluding observations on clique trees and directions for further work. 

We denote the adjacency graph of F ,  the filled graph, by GF.  The number of nodes 

in GF is the order n of the matrix A.  The size of the adjacency lists of GF (twice the 

number of edges in GF,  also twice the number of offdiagonal nonzero entries in L ) ,  we 

denote by ~ ( 1 " ) .  The number of maximal cliques in GF will be denoted by rn. Let 
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{ K I ,  Kz,. . . , Km) be the set containing the maximal cliques of GF. The total size of 

the maximal cliques of the graph will be denoted by q and is defined by q := IKiI. 

2. The Jess and Kees Method 

In this section we describe the Jess and Kees method for computing a good ordering 

for parallel sparse factorization and provide an overview of our clique tree algorithm 

that implements this method. 

We begin with a matrix PAPT,  where P is a permutation matrix chosen to  preserve 

sparsity, and we assume that a symbolic factorization has been computed. Note that 

the ordering (1,2,. . . , n} is a perfect elimination (nefill) ordering for the filled rnalriz 

F = L + LT. We want to find a reordering that is more suitable for the parallel 

factorization of A. If we find a good parallel ordering Q from among the perfect 

elimination orderings of F ,  then we incur no additional fill (compared to Y A P T )  when 

A is ordered by the composition of the two orderings, QP. 

We now seek to  motivate the Jess and Kees method. In the elimination graph 

model, a node v in GF can be eliminated without causing any fill only if its adjacency 

set ad j (v )  is a clique; such a node is called simplicial or non-deficient. To obtain 

a perfect elimination ordering of F appropriate for parallel factorization, we could 

attempt to eliminate all the simplicial nodes of GF in one step. This is not feasible, 

however, because of the dependencies between the columns that these nodes represent. 

'I'o see this, consider the submatrix Cholesky method for computing the numeric 

factorization. The elimination of a node numbered j in the graph is equivalent to 

computing the j - th  column of L from the j - th  column of A by scaling each element by 

the square root of its diagonal element, and then subtracting a multiple of this column 

of I, from all higher numbered columns k of A with i k j  # 0. Thus, column k of L 
cannot be computed before column j of L is computed. This implies that in parallel 

factorization, columns j and IC of L ,  j < k, may be computed in the same step only if 

In the graph model of the factorization, two nodes j and k- can be eliminated at 

the same step only if no edge joins them, or equivalently, only if the nodes j and k 
are independent. Therefore a perfect elimination ordering of GF suitable for parallel 

factorization generally cannot eliminate all of its simplicial nodes in  a single step, bu t  

only an independent subset of the simplicial nodes. The Jess and Kees method is a 

typical greedy algorithm: it eliminates a mazimum independent set of simplicial nodes 

at each step, as described below. 

l k j  = 0. 
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repeat 

choose a maximum independent set of simplicial nodes 

number these nodes consecutively and eliminate them from the graph 

all nodes are eliminated. 

until 

Consider an example: If F is a tridiagonal matrix, then GF corresponds to a chain 

graph, and the only simplicial nodes are the two nodes at either end of the graph. 

The Jess and Kees method would eliminate both of these nodes in a single step, which 

results in a smaller chain graph. This results in the ‘burn at both ends’ algorithm, 

which has the smallest number of parallel steps for factoring a tridiagonal matrix with 

no fill. 

A fast implementation of the Jess and Kees method requires a n  efficient way to 

detect simplicial nodes and to identify a maximum independent set of simplicial nodes. 

As noted earlier, Jess and Kees did not specify how these operations should be per- 

formed. In the Liu and Mirzaian implementation [15], the filled graph is represented 

explicitly by the adjacency lists of the nodes, and the nodes are assumed to  be in a 

perfect elimination order. Then a simplicial node z, is identified by a test involving 

the degrees and monotone degrees of nodes. (The monotone degree of a node is the 

size of the set of nodes adjacent to w and numbered higher than w, and is denoted 

by IMadj(v)l. These degree measures must be maintained throughout the elimination 

process, and this requires updating these quantities for all iineliminated neighbors of 

each node when it is eliminated. Thus the cost of detecting Simplicial nodes in their 

implementation is O(n + ~ ( p ) ) .  Some of this work can be eliminated by considering 

the degree measures as functions of cliques of simplicial nodes [17]; however, the worst- 

case complexity does not change. A better approach is obtained by using the maximal 

clique structure of the chordal graph directly to  identify simplicial nodes. 

We exploit the maximal clique structure of the chordal filled graph and i t s  clique tree 

representation to  obtain a more efficient implementation of the Jess and Kees method. 

Recall that a clique is a set of nodes that are all pairwise adjacent. A maximal cliguc 

is a clique to  which no other node in the graph can be added while preserving the 

pairwise adjacency property. Our algorithm is based on the following key properties of 

the maximal clique structure of chordal graphs, each of which will be verified later: 



- 5 -  

0 a node is simplicial if and only if it is contained in exactly one maximal clique 

~5,201. 

a simplicial node is independent of the simplicial nodes in other maximal cliques, 

but not independent of simplicial nodes in the same maximal clique. 

0 the maximal cliques can be organized into a clique tree structure [1,2,6,16,20,21]. 

0 the elimination of simplicial nodes changes the maximal clique structure of the 

reduced graph; the changes cause simple local changes in the clique tree of the 

graph. 

The first of these properties is the basis for detecting simplicial nodes. It is clear from 

the second property that a mazimurn independent set of simplicial nodes can be found 

by choosing one simplicial node from each maximal clique that contains any simplicial 

nodes. Thus, both independence and simpliciality of nodes can be characterized from 

the maximal clique structure. The use of clique trees will enable us to  track the 

clique structure as it  evolves during the elimination process. In addition, the cliquc 

tree representation of the filled graph is much more compact than its adjacency list 

representation; indeed, sometimes it is even more compact than the adjacency list 

representation of the original graph. 

Our fast implementation of the Jess and Kees method is outlined below. 

repeat 

choose one simplicial node from each maximal clique with at least one 

eliminate this maximum independent set of simplicial nodes 

update the clique tree 

all nodes are eliminated. 

unt i l  

By recognizing and maintaining the maximal clique structure, we reduce the tests for 

simpliciality and independence from operations that occur on the nodes and edges of 

the filled graph to  operations that occur on the maximal cliques. The fundamental 

tools we use itre first, maximal cliques, as discussed in $3; second, the clique tree, 

which is described in $4; and third, the evolution of the clique tree as it changes during 

elimination, considered in $5. Finally, in 56> we use these results to state our parallcl 

reordering algorithm in detail. 

We assume the following context in the next three sections. A sparse symmetric 

matrix has been ordered by a fill-reducing procedure such as the minimum degree 
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algorithm. To simplify notation, we assume that the matrix A has been renumbered 

in the fill-reducing ordering. Under this assumption, the natural ordering is a perfect 

elimination ordering for the filled matrix F .  In addition, we assiirne that an efficient 

symbolic factorization procedure has been used to compute the row subscripts of the 

nonzeros in the columns of the Cholesky factor L,  and that the row subscripts for each 

column are stored in ascending order, For simplicity, we assume that the adjacency 

graph of A is connected; otherwise, the generalizations from clique trees to clique forests 

are straight forward. 

3, The Maximal Cliques of Filled Graphs 

In this section we establish some fundamental properties of the maximal cliques of 

chordal. graphs. We then present an algorithm for identifying and representing the 

maximal cliques using the row subscript lists obtained from a symbolic factorization. 

We begin with the characterization of a simplicial node in terms of maximal cliques, 

which exhibits the fundamental connection between the two concepts. I t  is worth 

noting that Proposition 1 holds for any graph. 

Proposition 1. A node is simplicial if and only if it  is contained in onJy one maximal 

dig ne. 

Proof: If a node u is simplicial, then, by definition, K = crdj(u) I J  {u} is a clique. IC is 

a maximal clique because any I $! Ii is not adjacent to v and so { z }  1J I< is not a clique. 

K is the only maximal clique containing since m y  other maximal clique containing 'u 

must contain some z I$ K .  Since z and u are not adjacent, they cannot be in the same 

clique. 

Conversely, suppose v is not simplicial. We show that u must lie in at  least two 

maximal cliques. By definition, a d j ( v )  is not a clique, so there exist two nodes zi and 

w E adj(v) that are not mutually adjacent. Since (u ,  v} i s  a clique, we can choose some 

rnaximal clique Ku containing {u ,  u}. Similarly there exists some maximal clique A',,, 

containing {v, w}. Since u and ?I) are not adjacent, u $! Ii,, and w $! Ku, and SO 

and K ,  are distinct maximal cliques, both containing v. ~FI 

Duff and Reid [5] have employed this characterization of a simplicial node as a 

theoretical. tool. In [20] Tarjan and Yannakakis use the result in a scheme for partially 

reducing acyclic hypergraphs. To make this characterization a practical tool, we must 

have an efficient way to find arid represent the maximal cliques. We proceed to show 

that the maximal cliques are already represented in the subscript lists produced by the 

symbolic factorization. 
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Proposition 2. If K is a maximal clique in GF and v is the lowest numbered node in 
K ,  then K = {v} u Mudj(v) .  

Proof: By definition, the monotone adjacency set Madj(v)  consists of all nodes adja- 

cent to  v and numbered higher than v. K' = {v} U Madj(v)  is a clique because the 

numbering is a perfect elimination ordering for GF. Consider some node z in X - K'. 
By the choice of v, z must be numbered higher than 'u. But z cannot then be adjacent 

to  v ,  else i t  belongs to  K'. This contradiction shows that K C K'. Equality follows 

because K is maximal. 

Proposition 2 implies that the maximal cliques of GF can be represented as IC(vl), 

K ( q ) ,  . . ., K(vm) ,  where X ( v )  specifies the maxima3 clique (v}U Madj(v) generated by 

the lowest numbered or representative node v. If a node is not the representative of any 

maximal clique, we c d  it  a non-representative. Since the set Madj(v)  is precisely the 

row subscripts of the nonzero entries in column v of L ,  the maximal cliques of GF are 

given implicitly by the subscript lists. Each maximal clique consists of its representative 

together with the subscripts in the column corresponding to the representative. 

In Figure 1, a perfect elimination ordering of a chordal graph is shown. The reader 

can verify that its maximal cliques are K(1) = {1,2,3}, K ( 3 )  = {3,4,6,7}, K ( 5 )  = 
{ 5 , 6 } ,  and K ( 6 )  = {6,7,8}. 

Figure 1: A perfect elimination ordering of rt chordal graph. 

We use this characterization to  identify the maximal cliques from the row subscript 

lists generated by symbolic factorization. The problem is to recognize which nodes are 

representatives; the solution is to recognize the nodes that are not representatives. 
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Proposition 3. A node v is a not a representative if and only if there exists a repre- 

sentative node t numbered lower than v, with {TI} U Madj(v)  C { z }  U Madj ( z ) .  

Proof: If such a node z exists, then the clique { z }  U M ~ d j ( z )  is a proper superset 

of {v} U Madj(w) and hence {TI) U Madj(v) is not maximal. 

Conversely, suppose there is no node z numbered lower than w with { v) U Mndj (  v) C 

{ z }UMad j (z ) .  By Proposition 2, any maximal clique has the form {w}UMudj(w) where 

w is its representative, Thus any maximd clique containing {v} U Madj(w) contains 

only v and nodes numbered higher than o. But then v is the lowest numbered node in 

such a maximal clique and by Proposition 2, v is the representative that generates the 

maximal clique K ( v )  = {v} u Madj(v) .  

The following Proposition provides an eficient test of whether {v} U Madj (v )  C 

{ z )  I J  Madj ( z ) ,  using only the sizes of the subscript lists. The relevant quantities can 

be easily obtained when we recall that M a d j ( t )  is the subscript list for column z ,  and 

the monotone degree Mdeg(z) is the size of this list. 

Proposition 4. Let K ( w )  be a maximal clique, with representative v and nodes v < 
tu1 < w2 < . . . < wp. Then wi is not a representative node for any maximal clique if 

Mdeg(w;) = p - i. 

Proof: Since the nodes are in  a perfect elimination order, 

... 
c {?1)1 , .  . . , w p }  u MUdj(W,). 

This implies that Mdeg(v) 5 Mdeg(w1) -+ 1 5 Mdeg(wz) + 2 5 . . . 5 Mdeg(w,) + p .  

Assume Mdeg(v) - i = p - i = Mdeg(w,). It follows that equality holds for every set 

inclusion in the chain from { w l , .  . . ,w,} u Madj(w,) down to Madj(w), so that these 

two sets are equal. Then by Proposition 3, w, is not a representative node. 

Although Proposition 4 is stated as a test on a single node, it should be clear 

from the proof that when w, is non-representative, wl ,  7 1 ~ 2 , .  . . , w,-1 are also non-  

representative. On the other hand, suppose that for some j ,  i < j 5 p ,  we have 

Mdeg(w,) > p - j. Then Mdeg(wk) > p . k for each I C ,  j 5 k 5 p .  If we take j as the 

index of the lowest numbered node that fails the degree test, then the rnaximal clique 
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K(v)  has the structure 

where wlr.. . , wj-1 are not representative and wj, . . ., wp cannot be judged as non- 

representative by examining l i ( w ) .  We use this result to reduce the work needed to 

apply Propositions 3 and 4 in an algorithm to determine the maximal cliques of GF. 
Our algorithm for determining the maximal cliques of GF does so by finding which 

nodes axe representatives and which nodes axe not. Initially we mark all nodes as 

possible representatives, and process nodes in the given perfect elimination order. If 

a node v has not been marked as a non-representative by the time it is processed, 

no earlier node can satisfy the role of z in Proposition 3 and so we accept v as a 

representative. We then examine Madj(v) and mark nodes satisfying the degree test 

in Proposition 4 as non-representatives, stopping when a node fails the degree test. An 

informal algorithm follows. 

mark all nodes as possible representatives 

for v = 1 to n do 
if w is still a possible representative then 

/*v is a representative*/ 

mark the nodes in Mad’(v) in order as non-representative 

until a node fails the degree test. 

endif 

endfor 

The marking procedure in the algorithm can be modified to  make it faster, since it 

is redundant to mark a given node repeatedly as non-representative. We can terminate 

the marking procedure as soon as a previously marked node is encountered. That this 

is sufficient grounds for terminating the search is shown by the following proposition. 

Proposition 5. Let the non-representative nodes in K ( v )  be w1,. . . , w3-1. Suppose 

that for some i 5 j - 1, w; is dso non-representative in a maximal clique li( u ) ,  where 

u < v. Then w,+l,. . . wj-1 are also non-representative nodes in K ( u ) .  

Proof: Let K ( u )  = {u}u{z~, ...,t~-l} U{ZI, ..., tt}, with wj = ztk E (21 , .  . .,a-i} 
appearing as a non-representative node in K(u) .  Then, as we saw in the proof of 
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Proposition 4 and the discussion following it, 

that implies that 

Hence, wj-1 is a non-representative node in K(u) .  The same argument obviously holds 

for {w;+~,. . . , ~ j - ~ }  as well. 

Proposition 5 implies that we can stop the search for non-representative nodes as 

soon as we find a node 201 which fails the degree test or has already been marked as non- 

representative. The modified algorithm for finding the representative nodes imposes 

the following structure on the maximal clique M(o), where tu1 is the last node examined 

in K(v):  

The notation adopted for these sets will become more meaningful when we use these 

sets to organize the maximal cliques into a clique tree. The set n e w ( K ( v ) )  consists 

of the representative TI together with the nodes marked as non-representative while 

examining K(o) .  The set ane(# (o ) )  (rea,d ‘ancestor set of K ( w ) ’ )  consists of the nodes 

in X ( o )  that either fail the degree test or were marked as non-representative in  some 

other maximal clique K ( u ) ,  with u < o. The node first-unc(k’(v)) (read ‘first ancestor 

node in K(v)’) ,  the last node examined at K ( v ) ,  is also the lowest numbered node in 

a n c ( K ( v ) ) .  It will play a crucial role in the clique tree structure. 

Again it might be helpful to the reader to consider the new,  nnc partition for the 

maximal cliques in Figure 1. These sets are as follows: 

nezu(K(1)) = (1,2} a n c ( K ( 1 ) )  = (3) 

new( .K(3) )  = (3,4} a n c ( K ( 3 ) )  = ((47) 
n e w ( K ( 5 ) )  = ( 5 )  Q ~ c ( K ( ~ ) )  = (6) 

nezo(K(6) )  = (6,7,8} a n e ( K ( 6 ) )  = 8. 
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Algorithm 3.1. 

clique-num := 0 
for v := 1 to n do 

newin-cIique(v) := nil 
cliquerount(v) := 0 

endfor 

for 'u := 1 t o  n do 
if new-in-clique(v) = nil then 

/*node v is a representative*/ 
clique-num := clique-num t 1 

ne w..in-clique( v )  := clique-num 
clique-count (v) 
#-new(clique-num) := 1 
f irst-anc(clique-num) := nil 

cliquesize := lL*"l 

:= clique,count(v) + 1 

for tu E L,, in increasing order d o  
clique-count(w) := clique-count(w) + 1 
if first,unc(clique-n.m) = nil then 

clique-size := cliquesize - 1 
if IL*wl = cZiquesize and new-in-clique(w) = nib then  

#,new(clique-num) := #-new(clique-num) + 1 
new-ia-cliqve( 20) := clique-num 

first-unc(cZique-nuIm) := tu 
else 

endif 
endif 

endfor 
endif 

endfor 

The partition of a maximal clique into the sets new(K) and anc(1C) has two impor- 

tant properties that we note now for future use. First, the first ancestor node of K splits 

K into the ordered subsets, new(K)  and anc(K);  all nodes in n e w ( K )  are numbered 

lower than the first ancestor, and the other nodes in anc(K) are numbered higher than 
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the first ancestor. Second, the sets {new(K(q)), new(K(vz)), . . . , netu(K(v,))} form 

a partition of the nodes of the chordal graph, since every node is chosen as a repre- 

sentative or marked as a non-representative exactly once. We will use these properties 

later in defining a clique tree from the maximal cliques. 

Algorithm 3.1 finds the representative nodes and the first ancestor nodes for each 

maximal clique in GF. The maximal cliques are numbered from 1 to m, using the 

variable cliq~se-num. The first ancestor node partitions each maximal clique K into the 

sets n e m ( K )  and anc(K) .  The procedure also computes cZique_count(v), the number 

of maximal cliques containing v, and #-new(K),  the number of nodes in n e w ( K ) .  

The former count will enable u s  to  identify simplicial nodes, using Proposition 1. ‘To 

emphasize the connection between the maximal cliques and the subscripts of the factor 

L ,  we use the notation L,, to denote the subscripts of the nonzero entries in the 

v-th column of L ,  i.e., Mudj(u) .  The mapping nem-in-clique(o) = K means that 

o E new(K) .  Later, we use this mapping together with the first ancestor nodes to 

compute the clique tree. 

The complexity of the algorithm is easily analyzed. The initializations require U ( n )  

time. The processing of the nodes, excluding the examination of the Mudj (v )  sets, also 

cost O(n) time. Since the M a d j ( v )  sets are examined only for representative nodes, 

and the cost of the operations associated with a node tu E Mudj (v )  is a constant, the 

total cost of the latter operations is proportional to the size of the rtiaximal cliques, 

which is O(Q). Thus the overall complexity is O(n + q). 

4. Clique Trees 

In this section we exhibit how the maximal cliques of a chordal graph can be joined 

together in a meaningful tree structure. The concept of a clique tree has previously 

appeared in [1,16,20], and proofs that a clique tree can be constructed if and only if thc 

graph is chordal can be found in the first two references. Our goals here are, first, to 

demonstrate that a clique tree can be constructed from Algorithm 3.1, and, second, to 

elucidate some properties of clique trees. We will use these properties in the following 

section to show how clique trees express the changing clique structure as simplicial 

nodes are eliminated from the filled graph by the Jess and Kees algorithm. 

Recall that the sets { n e w ( K l ) ,  n e w ( K z ) ,  . . . , n e w ( K m ) } ,  defined with respect to 

Algorithm 3.1, partition the nodes of the graph because every node is either chosen 

as a representative or marked as non-representative exactly once. As a result, the 

following parent function is well-defined if anc( K )  # 8: 

parent(K) = the clique P ( K )  such that j irst_anc(K) f new(P(K) ) .  
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The clique tree has a node corresponding to  each maximal clique, and an edge joining 

each maximal clique to  its parent. The root of the clique tree has anc(K)  = 0. We 

let P ( K )  denote the parent of a maximal clique K .  Let first-anc(K) = TU. Then 

w E new(P(K))  implies that w < first-anc(P(K)). Hence there cannot be any cycles of 

the form K ,  P ( K ) ,  P ( P ( K ) ) ,  . . . , K ,  which shows that the parent function does indeed 

define a tree. 

Figure 2: The clique tree of the chordal graph with perfect elimination order shown i n  
Figure 1. 

The clique tree corresponding to the perfect elimination order of the chordal graph 

in Figure 1 is shown in Figure 2. The partition of each maximal clique into the new 
and Q ~ C  sets is shown by writing the nodes in anc(li7) above the nodes in new(li'). The 

first ancestor node of each maximal clique is the first node listed in anc(K) ,  and the 

reader can verify that the first ancestor node of each maximal clique is a new node in  

its parent clique. 

We now prove some elementary relationships between a child clique and its parent. 

Proposition 6. Let w be the first ancestor node in a maximal clique Ii and k t  P(li) 

be the parent of K .  Then 

e w E new(P(K))  

0 a n c ( K )  c P(K) ,  

e net@) n P ( K )  = 0. 

Proof: The first statement follows immediately from the definition of a parent clique. 

To prove the second, note that by definition of the first ancestor node we have an@') c 
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{w) U Madj(w). Because w E n e w ( P ( K ) ) ,  either w is the representative of P ( K )  
or u) was marked as a nsn-representative in P ( K )  by Algorithm 3.1. In either case 

{w} U Madj(w) & P ( K ) .  Thus anc(#) c P ( K ) .  
To prove the third statement, suppose there exists a node y E n e w ( # ) n P ( I i ) .  Since 

y E new(Ki), and w is the first ancestor of X, y < w by the definition of the sets new(K)  

and m e ( # ) .  Now w E n e w ( P ( K ) )  and y < w imply that y E new(P(K) ) ,  again by the 

definition of the sets t i e w ( P ( X ) ) ,  and anc(P(K) ) .  Then y E n e w ( P ( K ) )  n n e w ( K ) ,  

and this contradicts the fact that the new sets partition the nodes. 

Algorithm 3.1 partitions each maximal clique into the sets anc(K) and new(1i'). 

The previous result shows that the clique tree also splits each maximal clique Ii' into 

the same two sets: The nodes in nelo(K) are not in the parent; each node in anc(Ii') 

is also in P ( K ) .  

Proposition 6 gives a local characterization of the new, anc partition. The following 

theorem presents a global interpretation of this partition-viewed from the root El of 

the tree, the new nodes appear first in the clique which marked them as new, and the 

anc nodes appear first in some ancestor of this clique. 

Theorem 1. Given a maximal clique I +  and the partitioiling K = new(1i') U anc(h'), 

a a node u E new(1i) belongs to another maximal clique D only i f l l  is a descendant 

of K in the clique tree; 

a a node u E a n c ( K )  belongs to new(A) ,  where A is some ancestor of K i n  the 

clique tree, and u also belongs to aii maximal cliques on the path between Ii' and 

A .  

Proof: For the first part, assume that there is some maximal clique J f K which 

is not a descendant of li and yet contains a node u in new(4i ) .  Choose J to be a 

maximal clique at the least distance from the root R satisfying this property. The 

node u cannot be a member of new(J), lest we contradict the partitioning principle. 

However, u $Z n e w ( J )  implies u E anc(J) ,  which, by Proposition 6, implies that u is in 

J's parent, P(J) .  But P ( Y )  is then closer to the root than J ,  contradicting the choice 

of J. (The special case where J = p1 leads to a contradiction because a n c ( J )  = 0.) 
To prove the second part, let u E anc(1i). Since the new sets partition the nodes, 

u E new(A)  for some maximal clique ,4. It follows from the first part of the theorem 

that K must be a clique in the subtree rooted at A .  Thus A is an ancestor of A'. 

It remains only to prove that 11 belongs to all the intermediate ancestors P(I<) = 
I l , P ( P ( K ) )  = 1 2 , .  . . , Ip  = A.  Suppose not. By Proposition 6, u E P(IC) = 11. Hence 

there must exist a least index 2 5 j < p such that u E Ij-1 and yet u @ I J .  By the 
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same Proposition, u E Ij-l implies either u E new(lj-1) or u E P(Ij-1)  = fj. The 

assumption that u # I, then requires u to belong to new(Ij-l) ,  which again violates 

the fact that the new sets form a partition. 

Recall that iffirst-onc(K) = w, then w E nezo(P(K)), and hence w does not belong 

to  any other ancestor of K .  Thus, by our construction of a clique tree, the parent P ( K )  
is the only ancestor clique that contains the set anc(KiT); all other ancestors of K contain 

only a proper subset of anc(K).  This property will be extremely useful in efficiently 

updating the clique tree in the Jess and Kees method. 

5.  Reduced Clique Trees 

In the preceding sections we have presented the maximal clique structure of a filled 

graph and its clique tree representation. The Jess and Kees method produces another 

perfect elimination ordering of the filled graph in a sequence of steps. At each step 

a maximum independent set of simplicial nodes (and the edges incident on them) are 

removed from the graph, producing a sequence of reduced {elimination) graphs. Since 

we delete only simplicial nodes, no new edges are created in the elimination graphs. It 

is well known that each of the reduced graphs is also chordal. 

Observat ion 5.1. Let G* be the Educed subgraph obtained by applying a single step 

of  the Jess and Kees method to a chordal graph G. Then 

1. A clique of G* is also a. clique of G. 

2. G" is a chordal graph. 

Thus, the Jess and Kees method generates a sequence GF do) ,G( ' ) ,  d2), . . ., 
G(') I 0 of chordal graphs, where h is the total number of steps in the method. The 
goal of this section is to demonstrate that there is a simple set of transformations that 

can be applied to  generate a corresponding sequence of clique trees. This will also 

give an efficient method for identifying new simplicial nodes in the elimination graphs. 

Throughout this section, we will describe the stepwise transformation of the clique tree 

representing a chordal graph G(i) into a clique tree representing its successor G('+'). 
For simplicity, we shall drop the superscripts and let G denote an arbitrary member 

(other than the last) of the sequence of chordal graphs and let G* denote its successor. 

Consider the effect of the reduction from G to G* on the ma;uimal cliques. Let li 
be a maximal clique in G and define its residual clique in G* by: 

if K contains no simplicial nodes in G, 
where u is the eliminated simplicial node of I< in G. K - {u) 

R(K) = 
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We call the cliques from which a simplicial node is eliminated, shrinking cliques. It is 

evident that if K i s  unchanged, it is maximal in G* as well as G. 
All of the action, then, occurs within the shrinking cliques. In particular, R(K)  = 

M - {?L} need not be a maximal clique in G". When this occurs, there i s  some other 

maximal clique J of G such that R ( K )  is contained in a maximal clique R(J) of G*. 

We will say that R ( K )  has been absorbed by R ( J ) .  We call R ( J )  an absorbing &que. 

However, i t  should be borne in mind that no nodes are added to the absorbing clique; 

we shall show that absorption of a non-maximal clique at most changes the new, anc 

partition of the absorbing clique. 

= R ( K )  in G(l), 

Id2) = R ( R ( K ) )  in d2), . . . , K(')  = R( ' ) (K]  in G(*). For ease of notation, we will 

associate the same name K with the cliques K ( l ) ,  K @ ) ,  . . . ,I<(') until such point that 

R(' ) (K)  becomes a non-maximal clique, in which case we say that the clique (and the 

name) K disappear. 

An understanding of how the maximal clique structure changes, when one maximal 

clique shrinks to  the point of being absorbed by another clique, is crucial for a fast 

implementation of the Jess and Kees algorithm. These changes are described in the 

following theorem. 

A cliqiie di' of GF i s  naturally associated with a unique clique 

Theorem 2, Let G be a chordal graph with clique tree T .  Let K be a shrinking clique 

in G, with residual clique R ( K )  in G*. 

s R ( K )  is non-maximal only if K contained only one simplicial node. 

a If B ( K )  is non-maximal, and K is a leaf clique in T ,  then R ( K )  is contained in 

the residual clique of its parent P(K). 

e If R ( K )  is non-maximal, and K is an interior clique in T ,  then R ( K )  is contained 

in the residual clique of a child C ,  specifically a child whose ancestor set is largest. 

Proof: The first statement follows from the fact that a simplicial node belongs to 

exactly one maximal clique. If K contained more than one simplicial node, only one 

was eliminated in the reduction, and so R ( K )  retains at least one simplicial node from 

K .  This node is not in any other maximal clique, and so R ( K )  cannot be a subclique 

of any other maximal clique. Thus a clique can become non-maximal only when its 

last simplicial node is eliminated. 

To prove the second statement, observe that the simplicial nodes of a lcaf are 

precisely its new nodes. By Proposition 6, the anc nodes of any clique also belong 

to its parent, and are not simplicial; hence only the new nodes in a clique are ever 
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simplicial. By Theorem 1, the new nodes lie only in the leaf and its empty set of 

descendants; hence all new nodes of a leaf are simplicial. Thus a leaf clique becomes 

non-maximd only when its last new node is eliminated. In this case R ( K )  = a n c ( K ) ,  

which, by Lemma 6, is a subset of the parent clique P ( K ) .  As anc nodes, these nodes 

in R ( K )  were not simplicial in G, and hence they belong to  R(P(4r')) also. 

Note that, unlike a leaf, an interior clique need not become non-maximal when 

its last simplicial node is eliminated, for it has non-simplicial new nodes. The third 

condition in the theorem applies only in those cases where the elimination of the last 

simplicial node of K causes it to  become non-maximal. We prove the result in three 

steps. 

First, we show that if K becomes non-maximal, any clique that absorbs R ( K )  must 

be the residual clique of one of the descendants of K .  Because II is an interior clique, 

it has at least one child clique C. The first ancestor node of C is a new node in Ii' 
and is not simplicial in G. Hence R ( K )  also contains u. But by Theorem I, u can 

belong only to  descendants of K, hence only to their residual cliques, and thus only a 

descendant's residual clique can possibly absorb R( K ) .  
Second, we show that if R ( D )  absorbs R ( K )  for some descendant r )  of K ,  then 

R(C) absorbs R ( K )  for some child C of K . If R(D) absorbs K ,  we must have 

R ( K )  C anc(D). Suppose that D is not a child of K. By Theorem 1, any nodes that 

appear in a clique's ancestor set must appear as new nodes in some ancestor and in 

all cliques on the path in between. All of the nodes in R ( K )  are new nodes in Ii' or 

one of its ancestors. Hence if they belong to  D, they belong also to  all cliques lying on 

the path from D to  K in the clique tree, and in particular, to  a child of K .  Thus, it 

suffices to consider only the children of I< to find out if an absorbing clique exists. 

Finally, we show that only a child C with the largest ancestor set has a residual 

set that can absorb R(K).  On the one hand, we know that ane(C) C K ;  since none 

of these nodes is simplicial, we know that for all children C, anc(C) C R ( K ) .  Hence, 

Iunc(C)l 5 IR(K)I. On the other hand, no node in II or R ( K )  is found in netu(C); 

hence R(K)  E R(C) only if anc(C) = R(K). Thus, such a child C has the largest 

possible ancestor set among the children of K. Note the stronger result - if any child 

of maximum ancestor set size can absorb IT, so could any other child of maximum 

ancestor set size. rn 

Our identification of non-maximal cliques is central to the Jess and Kees algorithm, 

since it is only by having cliques become non-maximal that the clique count for any 

node can decrease, allowing nodes to be identified as simplicial. Corollary 3 gives us a 

simple test to  identify non-maximal cliques at each step of the algorithm. 
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Corollary 3. Consider a shrinking clique K whose last simplicial node is eliminated. 

Then R ( K )  is non-maximal if and only if either Inew(R(K))I = 0 or a child C of K 
with the largest ancestor size satisfies Ianc(C)l = IR(K)I. 

Proof: First, observe that the two conditions are mutually exclusive: the first applies 

to a leaf clique and the second to  an interior clique. If the first condition holds, K must 

be a leaf of T, since we showed in the proof above that an interior clique must have a 

non-simplicial new node. Conversely, if the first condition fails, then K was not a leaf 

because all new nodes of leaves are simplicial, but at least one of K's new nodes was 

not simplicial. 

The proof is then a straight-forward extension of the proof of Theorem 2. If R ( K )  
is non-maximal, and K is a leaf, then we have already shown that R(K)  = a n c ( l i ) ,  

and hence n e w ( R ( K ) )  = 8. If R ( K )  is non-maximal and K is an interior clique, then 

again from the proof of Theorem 2, R ( K )  = nrzc(C). 

Conversely, if Inew(R(K)I = 0, then K is a leaf and R ( K )  = anc(li)  5 P(1i). 

Then R ( K )  is non-maximal. If the second condition applies, we have anc(C) = R(Ii) ,  
since we know that anc(C) 5 R(1i). Hence R(K) C R(C),  and again R ( K )  is not 

maximal. 

The next goal then is to build a clique tree for G*. To avoid a possible ambiguity that 

arises from eliminating a maximum independent set of simplicial nodes simultaneously, 

we arbitrarily order the simplicid nodes that are eliminated from G at  this step as 

261, u2, - .  . , ut. We will build the clique tree for G* from the clique tree for G in t minor 

steps, where the i-th step removes u; from G -- {ul, .. . , u;-1} and properly alters the 

clique tree. Note that in a given minor step in which a node ui is removed, ui belongs 

to  exactly one clique K; for aLI other cliques I?, it follows that R ( 2 )  = I?. The rules 

for transforming the tree at each step are described in the following Theorem. 

Thesrem 4. Let G be a chordal graph with a clique tree T .  Let u be a simplicial 

node, belonging to a maximal clique K ,  tha.t is eliminated from G. Then a clique tree 

for G - { u }  can be constructed by the following rules: 

e If R ( K )  is maximal, make no changes. 

e Otherwise, 

- if K is a leaf of T ,  prune Ir' from 1'. 

- if K is an interior clique of T ,  let C be a child with the largest ancestor set 

among the children of K .  Then: 

c assign all nodes in new(di) to new(C), removing them from anc(C) 
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* attach C as a child of P ( K ) ,  with first-anc(C) reset to first,anc(K) 

* attach children of K other than C as children of C 

* remove K from the tree. 

Proof: We must show that the changes preserve a correct new, anc, JirsLanc labeling 

of each clique. Note that u appeared only in K ,  and hence all other cliques remain the 

same after the elimination of u. 
The result is trivial when R ( K )  remains maximal. The only change made to  the 

tree is to remove a node from new(K) that appeared only in K .  Thus, there are no 

structural changes in the clique tree. 

There are two cases to  consider when R ( X )  is not maximal, corresponding to 

whether K was a leaf of the clique tree or an interior clique. If K was a leaf, u 

was the last node in new(K),  which now becomes empty. This node appeared only in  

K ,  so the partition of nodes elsewhere is unaffected by removing K from the tree. 

In the case of an interior clique, we need to check that the revised partition satisfies 

the required conditions for a parent and its child. For ease of notation, let G‘ G- {u}. 

We use primed quantities to  refer to updated variables in G’. Note that when K is 

an interior clique absorbed by a child C, R ( K )  = unc(C). Also, anc(C) is an ordered 

subset of C consisting of all nodes numbered higher than or equal to C’s first ancestor. 

By our rules, 

new’(C) = new(C) u (new(K)  - {u}), 
anc’(C) = unc(C) - ( n e w ( K )  - {u}) = anc(K) .  

Thus our rules update C by moving nodes numbered lower than the first ancestor of 

K from the anc set of C to the new set of C. We now show that the revised partition 

new’(C), anc’(C) of C is correct, and then that the parent-child relationships in the 

new clique tree are correct. 

If a node w is included in new’(C) by these rules, either it was in new(C) or in 

new(R(I i ) ) .  In the former case, Mudj(w)  C C before the elimination of u, and this 

relationship is unaffected by the elimination of u. In the latter case, Mudj(zu) C I\‘ 
before the elimination of u implies that Mudj’(w) C B ( K )  = unc(C) C C. In both 

cases, by Proposition 4, Algorithm 3.1 applied to the graph G‘ would mark w as a new 

node in C. 
Similarly, if w is included in anc’(C), then w E a n c ( K ) .  Therefore, by Proposition 4, 

Madj(w) e K ,  and thus Mudj‘(w) R(K) .  Each node in Madj(w) is numbered higher 

than w, which in turn is numbered higher than each node in new(C)  since w E nnc(C). 
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Therefore, 

Madj'(w) R ( K )  u new(C) = anc(6)  u new(C) = C. 

Thus Algorithm 3.1 applied to G' would not mark .up as a new node in C. 

Y ( K )  is the correct choice as the parent of C because pirst-aac'(C) = first-ane(K), 

a node in n e w ( P ( K ) ) .  To demonstrate that the other children of K have been properly 

reassigned in TI, consider any such child J .  The eliminated node u was simplicial, and 

therefore did not appear in ane(J) .  Hence anc'(J) = a n c ( J )  2 R ( K )  = C. The 

node f i r s t -~nc(J)  was in tzew(K) and so becomes a member of new'(C). C is then the 

correct choice for the parent of J .  

When a clique loses its last simplicial node, we need to check if i t  is non-maximal. 

Clearly, maintaining a count of the number of new nodes sulfices for leaf cliques. For 

an interior clique we need to  find a child that can absorb it, without searching through 

all of its children. This is easy to do in the initial clique tree, since the children of a 

clique aae sorted by ancestor set size, and the first child can absorb its non-maximal 

parent. However, this becomes a subtle issue for a clique tree at some intermediate 

stage in the Jess and Kees method, since a clique may absorb its parent and acquire 

new children, and then its children may no longer be ordered in decreasing ancestor 

size. Thus i t  might appear that we have to  re-sort the child cliques every time a clique 

absorbs new children. 

The next two results show that such resorting is not necessary. The initial child 

ordering by ancestor size may be destroyed by interior clique absorptions, but a careful 

treatment of the child lists can maintain an ordering in which only the first child needs 

to be considered as a candidate for absorbing a parent clique. These results will turn 

out to be crucial in obtaining a linear time bound for our implementation of the Jess 

and Kees method. 

Proposition 7. Let Cl and C2 be siblings in tho clique tree for G F ,  with lanc(C1)I 2 
Iunc(C2)l. Then Iane(C1)l 2 lanc((72)l holds at all later stages Qf the method as long 

C1 and C2 continue to  be siblings. 

Proof: Let Iane(C1)I 2 Ianc(C2)l in the initial clique tree. No updating operations 

increase the size of the ancestor sets, and ancestor nodes are never simplicial, so a 

change in this relationship can be caused only by nodes being transferred from anc(C1) 

t o  new(C1) or by the disappearance of either C1 or Cz. In the latter case, they are 

trivially no longer siblings. The former case is nearly as trivial because i t  can only 

occur if C1 absorbs its parent, in which case d l  of its siblings become its children. 

Obviously then Cz will no longer be a sibling of C1. 
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The gist of Proposition 7 is that the original children of K remain in the same 

relative order even if some of the children are eliminated from the tree. Thus, the 

elimination of a leaf of the clique tree requires no changes in how its siblings are listed. 

When an interior clique is absorbed, a simple ordering of the revised child lists will 

enable us to continue testing only the first child for absorbing its parent clique. 

Figure 3: Updating the clique tree when an interior clique Ir' is absorbed by its first 
child C1. 

Our rule for arranging the revised child lists when an interior clique is absorbed is 

as follows. Let C1 be the first child which absorbs its parent clique K .  Let the other 

children of K be ordered C2, . . ., Ci, and let the children of C1 be ordered D1, . . ., D,. 
After the update of the tree, arrange the children of CI in the order Dl, . . ., D,, C2, 
. . ., Ci. This requires only the minimal cost of appending one list of children to  the 

end of another list. Figure 3 illustrates this rule. The next Theorem shows that this 

rule can be applied whenever an interior clique is absorbed during elimination. 

Theorem 5. Assume that the fists of children in the clique tree are iriitjally sortod 

by decreasing ancestor set size, and that the child lists are revised by the above rule 
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when an interior clique is absorbed. Then, at any future step in the elimination, a 

non-maximal interior clique can be absorbed by its first child. 

Proof: We prove that the rule for arranging child lists when ail interior clique is 

absorbed preserves the property that a non-maximal clique can be absorbed by its first 

child. First, we introduce the concept of a cohort: we group the children of a maximal 

clique into ordered sets called cohorts. 

We define cohorts inductively. If K is a maximal clique in the original clique tree, 

its children form a cohort H. When K becomes non-maximal and is absorbed by some 

child Cl, the cohort structures change as follows: Let P be the parent of K ,  the children 

of K be ordered C'l7 . . ., Cl, . . ., C;, and let the children of C1 be ordered Di, . . ., D j -  

In the clique tree Cl takes the place of K as a child of Y; hence the clique CI is removed 

from the cohort it belonged to, and joins the cohort that Ii belonged to. The cliques 

C1, . . ., (71-1, CI+~, . . ., C; become new children of C1, listed after U1, . . ., D,; if the 

latter cliques form q cohorts ordered as 'HI, . . ., 'Ifq, and the former cliques form T - q 

cohorts ordered as ' I fq+ l ,  . . ., H r ,  then after the tree update, the children of Ci form r 

cohorts ordered as 'HI, . . ., H q ,  ' H q + l ,  . . ., H r m  Note that the relative ordering of the 

cohorts within each group of children is preserved. We will prove that the absorbing 

child Ci can always be taken to be the first child C1. 
We use the concept of a cohort only in this proof; in our algorithms we do not need 

to maintain the cohort structures at  parent cliques. 

Let J be a maximal clique in the clique tree at some intermediate stage in the elim- 

ination, with its children grouped into cohorts 'Ifl, . . ., 7it. Except for the uneliminatcd 

children of J from the original clique tree, other cohorts are acquired when J absorbs 

a parent clique. 

We claim that our rule for merging child lists preserves the following two properties 

of the cohort structure at  any clique J :  

1. within each cohort 'Hs7 the cliques are listed in  decreasing order of ancestor size. 

2. each child in a cohort 31, contains some node in new( J )  that is found in no clique 

in the cohorts 'HHS+l, . . ., Et .  

We prove the claim by induction on the number of interior clique absorptions. It 

holds trivially before the first such absorption because each clique has only one cohort, 

its original children, which are ordered by ancestor size. For the inductive step, assume 

the properties hold before the absorption of a non-maximal clique K by its first child 

C1. As before, denote the parent of K by f, the other children of K by C2, . . ., C,, 
and the children of C1 before the clique tree update by D1, . , ., D,. Let R(I<) denote 



- 23 - 

the set of nodes in K when it is absorbed, and denote the ancestor and new sets of 

Cl after the update by anc'(C1), and new'(CI), respectively; note that the former set 

is equal to  anc(R(K)) ,  and similarly the latter set is new(C1) U new(R(K)).  Assume 

also that CI'S children D1, . . ., Dj before the absorption form q cohorts, El,  . . ., E,, 
and that its new children C2, . . . 9  C; form T - q cohorts, H,+I, . . ., H,. 

Note that the only cliques whose child lists are modified by the absorption of Ii' are 

the two cliques P and C1. It is only for these two cliques that we need to prove that 

the properties hold. 

The child list for P is modified only by replacing I< with C1, and the relative order 

of the cohorts is unchanged. Also, anc'(Cl) = anc(R(Ii)), so the ancestor sets of the 

children of P are unchanged. Since only the relative ordering of the cohorts and the 

ancestor sets are addressed by both properties, they continue to hold for P.  

It remains to  examine the children of C1. The first property holds trivially, since 

within a cohort we do not change the relative order of the cliques. Hence we prove the 

second property. 

Consider the situation before the absorption of K by C1. For IC = 1, . . ., j ,  let the 

first ancestor of Dk be 'uk. These nodes are not necessarily distinct; let V = a = l { v k }  

be the corresponding set of nodes. Each node in V belongs to  new(C,), but not to 

Cz, . . ., Ci, since the latter cliques are siblings and not descendants of C1. This result 

continues to  hold after the clique tree update, when these cliques become new children 

of CI. 
Thus, we have shown the second property with respect to the two groups of cohorts, 

H I ,  * .  .) E,, and ?&+I, ..., E,.. By the induction hypothesis, this property held 

within each group of cohorts before the update. It holds after the update for the first 

group trivially. It holds for the second group because neu'(C1) contains all nodes in 

new(R(K))  included in C2, . . ., C;. This completes the proof of the claim. 

The consequence of the second property for the Jess and Kees method is the fol- 

lowing: For each child D in its first cohort and for every child C in later cohorts, there 

exists some node 'u in both n e w ( J )  and D, but not in C.  Thus the child clique C cannot 

absorb J until this node w has been eliminated. But before w is eliminated, it must first 

become simplicial, which requires that D become non-maximal and be deleted from 

the clique tree. Thus, only a child belonging to  the first cohort can possibly absorb J .  

Within each cohort, the children are listed in decreasing order of ancestor set size; in 

particular, this is true for the first cohort of J .  From Theorem 2 and from Proposition 7, 

only a child of largest ancestor set size in  the first cohort can absorb J .  The result is 

then that the structure induced by our child list merging rule ensures that only the 

first child needs to  be tested as a candidate for absorption. 
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We conclude this section with a discussion of the operations of downdating clique 

memberships counts and of finding new simplicial nodes. In both cases the proper view 

simplifies the data structures required to make the identification. 

The count of clique membership for a node changes only when a clique containing 

it is absorbed by another clique. The rule for changing membership counts is: When a 

clique R ( K )  is absorbed, reduce the clique count by 1 for each node in R ( K ) .  In the 

case of a leaf clique, this set of nodes is ntac(K). When an interior clique is absorbed, 

this set is arzc(C), where C' i s  the absorbing child. In both cases, the set of nodes is a 

contiguous trailing segment of the list of row subscripts for a representative column of 

L ,  and can be obtained easily from the array of row subscripts. 

Which nodes can be simplicial a t  the next step of Jess and Kees? Which cliques will 

be the shrinking cliques at  the next step? Any node that was simplicial and was not 

eliminated remains simplicial. Thus, any shrinking clique whose set of simplicial nodes 

was not exhausted remains a shrinking clique. The only nodes that can become newly 

simplicial are those whose clique membership counts become one when downdated. 

Such nodes belong to a clique that became non-maximal, and also to the clique that 

absorbed the non-maximal clique. Hence only a maximal clique that absorbed another 

clique can possibly become a new shrinking clique. Thus we have proved the following 

corollary: 

Corollary 8 .  Let G* be the graph resulting from elimination of an independent set of 

simplicial nodes from G. Then: 

a a node can be Simplicial in G* only if i t  was simplicial in (3 or i t  lies in  a clique 

that absorbed another clique during this elimination 

a a clique of G* can be a shrinking clique only if it was a shrinking clique for G or 

i t  absorbed some other clique during this elimination. 

6. A Parallel Reordering Algorithm 

We are now ready to describe our parallel reordering algorithm. We assume that the 

initial clique tree T has been constructed, that the maximal cliques are numbered from 

1 to  'm, and that the children of each maximal clique are ordered in decreasing ancestor 

set size. We represent each maximal clique K in the clique tree by the list of the nodes 

in a n c ( K ) .  Our algorithm does not require the list of nodes in new(K)-it will siiffice 

to maintain the number Inew(K)I of such nodes. As noted previously, the subscript 

lists for the Cholesky factor L suffice as the list of anc nodes. 
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In addition, we assume that we are given for each node o, cZique,count(v), the 

number of maximal cliques to which o belongs, and new,in-clique(u), the maximal 

clique in which e, is a new node. We also require the list L: of shrinking cliques, and the 

list of simplicial nodes S ( K )  in each shrinking clique K .  The list C is maintained as a 

linked list, and each list S ( K )  is maintained as a queue. R(K)  will denote the residual 

set of nodes immediately after the removal of a simplicial node from IC. 

To update the clique tree when a clique becomes non-maximal, we may require 

the parent of a leaf clique, or the parent and children of an interior clique. Hence we 

represent the clique tree in terms of both the parent relationship and the child relation- 

ship. The latter representation is explicitly maintained by means of the first-child and 

right-ssibling lists. The right-sibling list is maintained as a doubly linked list to permit 

constant time deletions of any clique in the list. We do not represent the parent rela- 

tionship explicitly by means of the parent vector; it does not seem possible to update 

the parent vector explicitly and obtain a linear algorithm. Instead, we maintain the 

parent relationship implicitly by means of the vectors first-anc and new-in-clique. If 

first-anc(K) = o, then v is a new node in K 7 s  parent P.  Hence new-in-cZique(v) = P.  

Thus the first-anc and new-in-clique vectors enable us to  identify the parent clique in 

constant time. 

At the outset, all the required data structures can be computed in O(n + q )  time 

from Algorithm 3.1. In addition, we can sort the children of all the maximal cliques 

with a careful bucket sort in O(n)  time. 

Algorithm 6.1 computes the parallel reordering from the clique tree, numbering 

nodes from 1 to n. Each iteration of the while loop corresponds to one step of the Jess 

and Kees method. In each step, one simplicial node is eliminated from each shrinking 

clique in L. After the elimination of a simplicial node v from a shrinking clique I(, the 

clique tree and other data structures are updated as necessary. The list is the 

list of new shrinking cliques. At the end of each step, these new shrinking cliques are 

added to the existing list of shrinking cliques. 

An auxiliary procedure Downdate, is used to decrement clique-count (v) for each 

node o in a clique K that becomes non-maximal, to  update the queue S ( J )  of simplicial 

nodes in the clique J that absorbs Ii', and to  add, if necessary, the absorbing clique J 
to  the list Lnew. This procedure is shown separately. 

The operations associated with a non-maximal interior clique K require some com- 

ment. When such a clique K is deleted, the set of nodes in it,  &(I<),  is precisely the set 

anc(C) for its first child C. After the absorption of K ,  f i~st-anc(C) needs to be reset to 

first-anc(K), and the partition new(C), anc(C) needs to be updated. By our rules, all 

nodes in n e w ( R ( K ) )  are removed from anc(C) and added to  new(C). We now discuss 
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Algorit hrn 6.1. 

Make L,,, the empty list 
while C is  not empty do 

for each K E C do 
number the first simplicial node v E S ( K )  
remove v from S ( K )  and decrement Iraew(K)l 
if S ( K )  is empty then 

delete K from L 
if K is a leaf t hen /*R(K) = anc(K) */ 

delete K from T 
Down da te(a nc [ I<),  P( K ) )  

else 
c := fifirst-chiZd(K) 
if IR(K)( = Ianc(C)( then /*R(K) = anc(C)*/ 

2, := pirst-anc(C) 
for i := 1 to  Jnew(K)J  do 

aetu-in-clique(v) := C 
:= next node in ane(C) 

endfor 
Down date(a nc( C ) ,  C )  

update Inew(C)I and Ianc(C)l 
delete K from T and replace Ii by C as child of  Y ( K )  
append other children of I{ to end of children list of C 

jirst-aac(C) := 2, 

endif 
endif 

endif 
endfor 
A d d  the shrinking cliques in C,,, to L 
Make C,,, the empty list 

endwhile 

how this is accomplished, since we do not explicitly maintain the set new(R(Ii ')) ,  but 

only its size. 

Since we assume that the nodes in the maximal cliques are ordered by a symbolic 

factorization procedure, the set anc(C) is a contiguous list of nodes, listed in increasing 

order of node numbers. Since R ( K )  = aac(C),  and nodes in new(R( l<) )  are nurnhered 

lower than nodes in anc(R(K)) ,  the nodes in n e w ( R ( K ) )  are the first Inew(R(K))I 
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procedure Downdate(U, J )  
{downdate clique,count(u) for the set of nodes U in an absorbing clique J ,  
and identify new simplicial nodes and new shrinking cliques} 
for each u E U do 

ciique,count(u) := clique-count(u) - 1 
if cldque,count(u) = 1 then 

/*u is simplicial*/ 
if S(J) is empty then 

set the queue S ( J )  := { u }  

Add J to  the list C,,, 

Add u to the queue S ( J )  
else 

endif 
endif 

endfor 

nodes in anc(C). For these nodes, we reset new-in-clique(v) to be the clique C, and 

then first-anc(C) is the node immediately following these nodes in anc(C). We perform 

the Downdate operation first, and then update first-anc(C), and implicitly, the set 

In the remainder of this section we verify our claims regarding the complexity of 

the algorithm. Clearly, in the algorithm as written, the only non-constant work in 

deleting a non-maximal clique is the B((R(K)I) operations in the call to Downdate 

and resetting the new-in-clique values. Let R ( K )  be the residual clique of I-i when it 

becomes non-maximal. Each call of downdate requires O(IR(K)I) time, and hence the 

total cost of all calls of Downdate i s  

unc(C). 

We now compute the complexity of the rest of the algorithm. The cost of eliminating 

simplicial nodes, without considering clique tree updates, is 8 ( n ) .  There are my cliques 

initially, so the constant work of removing a clique takes O(m)  5 B(n)  time overall. 

Thus the algorithm has time complexity O(n 4 q). 
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Table 1: Test Matrices from the Harwell-Hoeing Sparse Matrix Collection 

key 
BCSPWROS 
BCSPWRlO 
BCSSTK 08 
RCSSTK13 
B CSSTM 13 
BLCKWOLE 
CAN 1072 
DWT 2680 
LSHP 3466 
GR 40x40 
GR 80x80 

7. Empirical Results 

Eastern US power grid 
TV Studio structure 

Fluid Flow Mass Matrix 
Geodesic Dome 
Aircraft structure 

In this section we present experimental results on the parallel reordering algorithm, 

and compare the performance of our algorithm with the Liu and Mirzaian algorithm 

and Liu’s Composite Rotations heuristic. 

We have written Fortran 77 codes for Algorithms 3.1 and 6.1. An additional proce- 

dure was written to create the data structures required by the latter algorithm. Each 

maximal clique K was represented by the nodes in a n c ( K ) ;  this set of nodes i s  already 

represented in the subscript lists for L ,  if we maintain a pointer to the first ancestor 

node of each maximal clique. The subscript lists for L were generated by a symbolic 

factorization of A .  

We used eleven problems from the Iiarwell-Roeing test set [4,3] to test our algo- 

rithm. These are described in ‘Table 1. The storage statistics for the Cholesky factoriza- 

tions of these matrices, after ordering with the multiple minimum degree heuristic [ll], 

are given in ‘Table 2. These statistics give the primary terms in the complexities of 

each of the three algorithms. Liu’s heuristic requires time almost linear in the number 

of nonzeros in A; the Liu and Mirzaian algorithm runs in time linear in the number 

of nonzeros in I, -+ L’; and our algorithm is linear in the number of elements in the 

mass-elimination compressed subscript array. It is clear from Table 2 that the size of 

the representation of the origind matrix ,4 and the size of the compressed subscript 

representation €or C are similar, and much smaller than the size of C. Table 2 also lists 

the number of maximal cliques in the filled graph for each problem. 

Our experiments were performed on a Sun 3/260 workstation running Sun  Unix 

3.3, and we used the f77 compiler with the optimization turned on. Because of the 
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Table 2: Fill Statistics from the Multiple Minimum Degree Ordering, Subscript Com- 
pression only by Mass Elimination 

key 

BCSPWRO9 
BCSPWRlO 
B CSSTK08 
BCSSTK13 
BCSSTM13 
BLCKHOLE 
CAN 1072 
DWT 2680 
LSHP 3466 
GR 40x40 
GR 80x80 

order 

1723 
5300 
1074 
2003 
2003 
2132 
1072 
2680 
3466 
1600 
6400 

number of nonzero entries in 
lower triande of 

A 

2394 
8271 
5943 

40940 
99 70 
6370 
5686 

11173 
10215 
12324 
50244 

- 
compressed 

subscripts 
3995 

16843 
10845 
28027 

69 72 
13053 
7091 

18410 
21270 
10299 
44222 

L 

4592 
22764 
29973 

269668 
43491 
51012 
19332 
50072 
83116 
33304 

183301 

number 
of 

maximal 
cliques 

1621 
4846 

756 
597 

1540 
1150 
620 

1550 
1845 
845 

3285 

coarse granularity of the timing subroutines on this machine, we obtain the times 

by averaging over several hundred repetitions. In Table 3, we report the CPU times 

required by the four steps in computing the parallel ordering. First is the fill-reducing 

minimum degree ordering step, second is the symbolic factorization step, next the 

procedure that computes the initial clique tree and other data structures (setup costs), 

and finally Algorithm 6.1. These results show that the minimum degree ordering time 

dominates the other three steps. Also note that the time required to  create the initial 

clique tree and the required data structures is comparable to  the time taken by the 

parallel reordering algorithm. Both Algorithm 3.1 and Algorithm 6.1 are O(n + (I) in 

complexity, and hence these results are in accord with our complexity analyses. 

The second most expensive step is the symbolic factorization. The procedure we 

used is a modification of the Fortran program smbfct in [7]. We made several modi- 

fications to  this code to  take greater advantage of mass elimination compression. We 

removed the limited capability for finding accidental compression from the procedure. 

This has the advantage of exhibiting precisely the size of the representation of the 

maximal cliques of the filled graph. It also results in a faster symbolic factorization, 

running 8% faster, while increasing storage by 0.4% on average. In addition, to  im- 

prove its speed we rewrote the initial processing that detects mass elimination before 

creating the subscript lists speed. As a result our symbolic factorization is somewhat 

faster than smbfct. 
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Table 3: Time to  compute a parallel ordering (CPU Seconds) on a Sun 3/26O 

BCSPWROS 
BCSYWRlO 
BCSSTKQ8 
BCSSTK13 
BCSSTM13 
BLCKHOLE 
CAN 1072 
DWT 2680 
LSHP 3466 
GR 40x40 
GR 80x80 

min degree 
ordering 

0.48 
1.96 
2.78 
4.56 
1.03 
0.69 
0.69 
1.78 
1.12 
0.51 
2.06 

Algorithm 
6.1 

0.07 
0.23 
0.05 
0.10 
0.04 
0.08 
0.04 
0.11 
0.13 
0.06 
0.25 

Codes for Liu’s heuristic and for the Liu and Mirzaian algorithm were not avail- 

able to us for direct comparison. However, Liu has published timing results for his 

algorithms applied to the problems in Table 1, using a SUN 3/50 workstation. This 
computer is closely related to the SUN 3/260 we used, but it is not as powerful. How- 

ever, Liu has used his multiple minimum degree ordering code [ll] for the first step, 

and we also used this code to find the fill-reducing ordering. The common minimum 

degree ordering code consistently ran approximately 4 times faster on our workstation. 

To make our results comparable to Liu’s results, we normalize the statistics published 

by Eiu [13] to a cost relative to that of the common minimum degree ordering. For all 

three approaches, we report the ratio of the CPU time required for the postprocessing 

to the CPU time for the minimum degree ordering on the same machine. In our case 

the postprocessing requires a symbolic factorization, computation of the initial clique 

tree and other data structures, and Algorithm 6.1, all of which together we refer to as 

the Clique Tree Jess and Xees algorithm. The total time for all of these steps in the 

Clique Tree Jess and Kees algorithm is reported in ‘Table 4. 
From the relative perforniances in Table 4, it is clear that the Liu and Mirzaian 

algorithm is much more expensive than the other two. Between our algorithm and 

Liu’s Composite Rotations algorithm, we see a significant difference on only three of 

the eleven problems. The difference in perforinance on the remaining eight prohlems is 

smaller than the variation in relative times we have seen with our own code at various 

levels of compiler optimization. 

The threc problems with extrema1 behavior distinguish between the codes in a pre- 

dictable way. The first two, BCSPWROS and BCSPWRIO, are electric power problems, 
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Table 4: Performance relative to  Minimum Degree Ordering Time 

mparative perfo 
Clique Tree 

Jess and Kees 
0.48 
0.41 
0.08 
0.14 
0.24 

I 0.47 ' 0.26 
0.26 
0.48 
0.50 
0.52 

'mance 
Liu & Mirzaian 
Jess and Kees 

0.54 
0.55 
0.53 
1.74 
1.30 
1.93 
0.98 
0.90 
2.04 
1.66 
2.42 

a class of problems where very low fill is typical and the number of maximal cliques is 

close to  n. For these problems essentially all operations are Q(n), and the use of cliques 

makes only relatively small improvements on the Liu and Mirzaian implementation of 

Jess and Kees. The third problem, BCSSTK13, is a t  the other extreme. This is a large 

finite element model with a number of degrees of freedom associated with each physical 

node. Mass elimination compression has an enormous effect, similar to  what we usually 

see on much larger problems, which means that the maximal clique representation is 

very compact. The compressed subscripts lists are smaller than the representation of 

the original matrix A; the complexity bounds correctly predict that our algorithm is 

faster than Liu's heuristic. 

After the parallel ordering is computed, we wili require the structure of the reordered 

L to  compute the numeric factorization. The equivalence of the subscript lists and the 

maximal cliques used to  create the initial clique trees for the Clique Tree Jess and 

Kees algorithm may serve to  further advantage. The maximal cliques are the same 

for the parallel ordering as for the sequential ordering; the uneliminated nodes in a 

clique K from which a node u is eliminated in Algorithm 6.1 compose the subscript 

list for ti. A symbolic factorization for the parallel ordering based on this observation 

has been written, and it proved to be somewhat faster than the modified smbfct 

procedure. In contrast, the tree rotations algorithm must be followed by a general 

symbolic factorization step. Since symbolic factorization accounts for about half the 

post processing time in our algorithm, the comparison of the relative performances of 
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these algorithms appears favorable to the tree rotations algorithm. But it remains to  be 

seen whether the completed symbolic factorization provides an advantage in practice, 

8. Concluding Observations 

The concept of a clique tree h a  previously appeared in the graph theory literature 

and in the context of acyclic relational database schemes. Buneman [2], Gavril [6], 

and Walter [21] have considered the clique tree representation of chordal graphs, and 

Golombic [8] contains a good discussion of several properties of chordal graphs. In 

the context of database theory, an acyclic hypergraph captures the relations in acyclic 

database schemes, and a clique tree can be used to  represent this hypergraph. Beeri et 

al. [l] and Tarjan and Yannakakis [20] have considered the clique tree in this context and 

call it a join tree. In his thesis, Peyton [16] discusses some applications of clique trees 

to sparse linear systems, including the design of a multifrontal Cholesky factorization 

algorithm based on the clique tree. 

The method we use to compute a clique tree differs from the approaches employed 

in the graph theory literature and in database theory since we have more information 

about the chordal filled graph that we can take advantage of. At the outset, we have a 

perfect elimination order for the filled graph f1oi-n the fill-reducing ordering, and also 

a compact representation of the maximal cliques from the compressed row subscripts 

available from the symbolic factorization step. By using this information, Algorithm 3.1 

generates a clique tree efficiently with regard to both storage and time. Indeed, if we 

do not compute the clique-count information (which is not necessary to generate the 

clique tree), this algorithm computes the clique tree in O(n)  time. 

Algorithms that simultaneously compute a perfect elimination order and a clique 

tree cannot be as efficient. Tarjan and Yannakakis [20] first renumber the nodes by a 

generalized maximum cardinality search of the hypergraph and then compute a clique 

tree from this ordering in O(n + q )  time. Their algorithm requires node-clique incidence 

lists in addition to  the node lists of the maximal cliques. Peytoii [16] has designed an 

O(n 4- q ( F ) )  algorithm to compute simultaneously the maximum cardinality ordering 

of a chordal graph and a clique tree when the graph i s  represented by adjacency lists. 

Note that we define a clique tree algorithmically, by means of Algorithm 3.1. There 

is a significant difference between our definition of a clique tree and the definitions 

employed in other contexts. We require the first ancestor node of a clique to be a new 

node in its parent clique. Previous definitions have required a clique tree to satisfy 

only the last two properties in Proposition 6. With our more restrictive definition, we 

acquire the property that the parent P is the only ancestor of a maximal clique Ii that 

contains all nodes in the set a n c ( K ) ;  other ancestors of K can contain only proper 
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subsets of the nodes in anc(K).  This property turned out to  be useful in updating the 

clique tree by local changes during elimination, and is at the heart of the lineax time 

bounds in our pwdlel reordering algorithm. 

The clique tree representation of the filled graph has consequences in several other 

sparse matrix problems as well. The clique tree helps to clarify the notion of a super- 

node in vectorized numeric factorization. It makes possible the design of a multifrontal 

factorization in which the fronts are precisely the maximal cliques, thereby requiring 

the minimum number of frontal elimination steps. A carefully designed clique tree mul- 

tifrontal algorithm may have smaller working storage requirements than a multifrontal 

algorithm based on an elimination tree. an elimination tree. The clique tree aids in 

the understanding of how elimination tree restructuring algorithms change the height 

of an elimination tree. It is useful in the context of sparse orthogonal factorization 

algorithms also. The notion of a ‘best’ clique tree in a particular context needs careful 

study as well. We intend to  explore several of these issues in future work. 
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