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ABSTRACT 

I 

A parabolic system with nonlinear local or nonlocal interactions is considered, 
with specific applications to the description of competition/combat situations. 
Global existence and comparison results are proven under suitable assumptions 
on the interaction terms. Comparisons with solutions of the “equivalent” ordinary 
differential (space independent) model, that has been previously used in modelling 
combat are of special interest. The stationary state of such a system - corresponding 
to a stalemate - is also considered. Under certain conditions on the interaction, 
domain size and boundary conditions, a uniqueness result is obtained for the 
stationary state. A simple example shows that these conditions are sharp and 
uniqueness may be lost when they are not fulfilled. 





1. INTRODUCTION 

Analytic models for combat (competition) originate in the seminal paper by 
Lanchester [I] who described the dynamics of fighting troops on the battlefield by 
simple ordinary differential equations. He proposed two sets of equations: the first 
is based on an aimed fire model under which the rate of attrition on one side is 
proportional to the number of troops on the other side: 

du - -d1v 
dt 
dv -- - -dZU. 
d t  

-- 
di > 0 

The second is based on an area fire model of combat in which the rate of attrition 
is proportional to the product of the number of troops on each side: 

du 

The coefficients di,  ci in (l.l),  (1.2) are usually referred to as the aimed fire and area 
fire attrition coefficient. Many variants of these models have been developed since, 
some of them including the effects of smart weapons, guerilla fights, and stochastic 
sources. For a good account of these aspects the interested reader is referred to the 
monograph of Taylor[2]. One of the major drawbacks of the Lanchester equations is 
that they do not account for spatial dependence, in the absence of which, advance, 
retreat, maneuvers, deployment, ete., cannot be properly described. 

To correct - at least in part - this deficiency, an analytic description of 
combat based on partial differential equations has been recently proposed. [3] The 
n-dimensional version of these equations is 

U t  = L ~ u  - Fi(X,t ,u,v) 

vt = LZV - F~(X, t ,  u ,v ) ,  

where Ll and L2 are the nondegenerate second-order operators 

n n 

with 

i = 1,2 (1.4) 

i = 1,2 (1.5) 

In the evolution equations (1.3) the different terms have the following 
interpretation: 
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- the second-order terms describe (Fickian) diffusion that models the natural 
tendency of any force to lose its initial configuration; 

-- the first-order terms describe the large-scale, ordered flow through advection 
(convection) as opposed to the chaotic “flow” induced by the diffusion term and 
accounting for small-scale movement; 

the functions F1, F2 contain local and nonlocal nonlinear interactions between 
the opposing forces u and v as well as external sources. As an example, we can 
consider: 

where 91” represents resupply of the force u at the rate $1 > 0, f l u 2  f1 > 0) 
models self-repressing effects due to crowding, saturation, confusion, u i c1v and 
dlv ( d l  > 0) describe possible interactions between the forces, and el > 0 is an 
autonomous source. For c1(z - y) = 6(z - y) we recapture Lanchester’s fonn.[l,2] 

The system (1.3) has to be supplemented with boundary conditions (BC) 

and initial conditions 
u(z,  0) = ?io(%)  sESZ 

V(”, 0) = v o ( 4  

Such systems, often called reaction-diffusion (RB) systems are of a very general 
nature and appear quite naturally in biology and ecology [4], as well as in chemistry, 
solid state physics, viscous fluid dynamics through porous media, etc. The study 
of R-D systems from both theoretical, experimental and computational viewpoints 
has already an impressive history and i s  steadily growing. Recent summaries of 
rigorous results and methods can be found in the monographs of Fife [5] and Srnoller 
[GI, where some of the applied aspects are also considered. For the computational 
aspects, the monographs of Oran and Boris [7] is probably the most complete. 

Apart from their ubiquity, the interest for R-D systems lies in their extremely 
rich variety of responses, such as wave propagation, hysteresis, bifurcations, limit 
cycles, catastrophe-like behavior, pattern formation and propagation, mode locking, 
etc. 

In the single equation case, when ajk,  b j ,  F ,  a , P , h  are time independent, 
the system (1.3) (which reduces actually to one equation) generates a strongly 
monotonic semigroup (flow) and its dynamics are “completely” determined by its 
stationary states.[S] Although no a priori indication is given about the number, 
location) and basins of attraction of the fixed points, the result is important because 
it reduces the study of the evolution equation to the study of its stationary solutions. 
This result does not apply to typical combat situations where more than one force 
is involved and one usually deals with time-dependent coefficients and data. As a 
result, the battle outcome contains potentially elements of both predictability and 
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uncertainty, order and chaos, stability and instability. The realization of any of 
these situations depends on the type of interactions, range of parameters, strength 
of coupling, boundary data, and size or even shape of the domain. 

Assuming that by appropriate choice of the input parameters the system (1.3)- 
(1.5) may be adapted to provide an accurate representation of (some kind of) 
combat, we are interested here in studying its time-dependent and stationary 
features and in giving them a military interpretation. 

We shall make the following additional assumptions: [9] 

i) 52 is a smooth bounded domain; 
ii) utj are Hiilder continuous functions of (2, t )  in ($2 x (0,T)) of orders a and 

iii) b f ,  c; are continous functions of (2, t )  in (a x (0,T)) and Holder continuous 

iv) hi,ai,pi are continuous functions of (x,t) in (ai2 x (O,T)); 
v) uo, vo are continuous functions of x in R; 
vi) Fi are continuous functions of ( x , t )  in (0 x (0 ,T))  and Holder continuous 

Usually, we shall denote by Fi(5, t ,  u ,  v) a general interaction, including local and 
nonlocal terms. Purely local interactions will be denoted by $'i(z, t ,  u(z,  t ) ,  v(x, t ) ) .  
Section 2 is devoted to the general existence and comparison theory for such systems. 
Solutions are constructed by a monotone iteration scheme using upper and lower 
solutions. In Section 3 we compare the solution of the PDE Competitive system with 
the solutions of the corresponding Lanchester equations. In Section 4 we prove a 
general theorem on the uniqueness of stationary states for the competitive PDE 
system by using a generalized maximum principle. We show the uniqueness criteria 
a m  sharp by constructing an example showing nonuniqueness, 

a/2 , respectively ; 

functions of x in R; 

functions of x in Q. 



2. EXISTENCE AND COMPARISON RESULTS 

We shall study the classical solutions of the system (1.3)-( 1.5) with the boundary 
conditions (1.7)-(1.8). The system is assumed to satisfy the condition ;)-vi) in the 
Introduction. Then, we can prove the following existence result: 

Proposition 2.1 

Suppose the following assumptions are true: 

F1 is increasing in the TI position. 
F2 is increasing the u position. 

There exists a constant M such that 
F1 - Mu is decreasing in the u position. 
Fz - Mil is decreasing in the v position. 

There exists a constant C such that 

IIF1(xit,ul,o) -F1(z,t,~2~O)l\ce 5 CllUl - ' U Z ~ ~ O O  

llF2(x, t ,  0, v1) - F2(3, t ,  0, v2)llm 1. Cllv1 - v2Ilce 

Fl(z ,  t ,  0, v) 5 0 on R €or all v 

F'(z, t ,  u ,  0) 5 0 on R for all u 

o;, pi, hi 2 0, +- pi > 0 on 8 R  x (0, T), i = 1 ,2  

u g ,  00 2 o on s1 
Then there exists a classical solution to the system (1.3)-(1.5) with 
boundary/initial conditions (1.7), (1.8). 

We shall construct the solutions as limits of sequences {u~},{v"} 
obtained by iteration. These sequences will have lower bounds g = 0 , ~  = 0 and 
upper bounds ii, 6, respectively. The upper bounds are solutions of the equations 

Proof 

~t - L26-1- Fz(x,t,O,i~) = 0 on S1 x (O,T) 

ut - L ~ G  + Fl(z, t ,  u,  0) = 0 R x (0, T )  

(2.1) 

(2.2) on 

satisfying the boundary Conditions (1.7)-(1.8).[9710 Ch. V, Th. 2.11 

subsolution of (1.3)-(1.5). 
Define uo = 0 and notice that by assumption (A7) and (2.1) (uo,vo) is a 

We define iteratively un, D" as solutions of 

ut" - L ~ u "  + Mun +- d;;(z, t, un-', vn-') - Mun-' = 0 

V: - Z2wn + Mv" + F~(x, t, u~-', v n I 1 )  - Mvn-' = 0 
in R x (O,T) 

satisfying houndarylinitial conditions (1.7)-( 1.8). Note uo 5 u1 by assi.irnptions 
( A . 7 ,  (A.9), and (A.lO) and o0 = V' by construction. Assuming vn-' 2 v"-l and 
u"- 5 u"-', one obtains 

vn-' 2 v" and un-' 5 u n  

4 
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by using assumptions (A.l)-(A.4) and comparing RNS of the equations 

- Llun + Mun = - F ~ ( z ,  t ,  Un-' ,  vndl) + Mun-' 

un-' t - L1un-' + Mun-' = -Fl(x, t ,  u*-', vne2) -+ Mun-' 

vn-1 t - L1Vn--1 + MVn--l = -&(x, t ,  un-2, I?"-2) + 

(2.3) 
V: - L2vn + Mvn = -F~(x,~,u~-',v~-') + Mv"-' 

The sequences (u") ,  {vn} are monotonically increasing and decreasing 
respectively. The {v") sequence is bounded below by zero by assumptions (A.8)- 
(A.lO). Since the RHS in 
(2.3) converge, by standard regularity results the sequences {un) ,  { v n }  and their 
derivatives converge to the solution (u, v) of the system (1.3)-(1.5). 

This monotone scheme is similar to Sattinger[ll] and Pao[l2], but our analysis 
includes both the construction of upper and lower solutions and a priori bounds on 
solutions, which will be needed later. 

The ( u n )  sequence is bounded by the solution ti. 

Local existence casl be obtained without assumptions (A.7), (A.8). 
Now we have a comparison result: 

Proposition 2.2. 

Suppose there exists functions PI, & ,  ii, e, g, 2 satisfying 

Gt - L1G + Fl(X,t,G,C) 2 0, 2t -Liz+ Pl(X,t,%,G) < 0 

Et - L22) + F2(z, t ,  G>V)  I 0, vt - Lza + &(5, t ,  E, a) >_ 0 

onS2 x (O,?") 

on dS2 x (0,T) 
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Then, 
-- u < u,  2 5 v on R x (0’2’). 

Proof The proof follows with arguments similar to the proof of the last proposition, 
using the method of Fife [5,Thm. 5.11 with suitable modifications to handle the 
nonlocal terms. 

Remarks 

1. I’m [12] obtained similar results with @ = F.  The advantage of using R’s is 

2. The strong maximum principle can be used to show 
that one does not require F to satisfy (2.4). 

I u < i i o n R  or g ~ u  on 52 
- v < V  on $2 or Q E E V  on SZ 

Also, if (A.5)-(A.9) hold, then the corresponding solutions are nonnegative. 
The original Lanchester model for aimed fire (system (1.1)) does not satisfy 
(A.7)-(A.8). In this case, any comparison results hold only while the solution 
remains nonnegative. A possibility to avoid this limitation is to replace the 
constant attritions d, with sigmoidic functions, e.g. & ( e )  = d, tanh(./e) such 
that dj M constant for almost all u and d(0) = 0. This is in accordance 
with Lanchester’s own observation that at low densities the aimed fire model 
is not accurate any longer. Another possibility is to use, instead of equations, 
variational inequalities in which additional constraints (e.g., u 2 0,v 2 0) can 
be naturally included as obstacles.[l3] 

3. Similar existence and comparison results hold for elliptic problems. [ll] 



3. COMPARISON WITH ODE SYSTEMS 

n o m  the proof of Proposition 2.1, we illustrated comparisons of the solution 
u , v  of (1.3)-(1.5), (1.7), (1.8) with the solutions of the system 

e,-1;1iZ+F1(z,t,21,0)=0 

vt - L2ij + Fz(z, t ,  0, v) = 0 
Q x (O,T) 

satisfying the boundary/initial conditions (1.7)-( 1.8). The principal importance of 
this result is restricted by the fact that obtaining the bounds ii, 6 may be sometimes 
a very hard task. (Of course, if cui > 0, large positive constants can serve as upper 
bounds.) Now we turn our attention to obtaining more specific comparison functions 
in particular cases; namely, we compare our solution to a solution of a related ODE 
system. 

Proposition 3.1 

Suppose u,v is a solution to (1.3)-(1.5) with F,, F2 given by 

Fl(2, t ,  U,2 ' )  = +, t )  

Fz(+ ,U ,v )  = +,t) 

Cl(a:  - Y)V(Y, t )d t  + f+, t ,  4% t ) ,  v(z, t ) )  

c2(z - Y)U(Y,t)dt + f2(5,t,u(5,t),v(2,t)), 
1 
J, 

and satisfying assumptions (A.l)-(A.4), (A.7)-(A.10), c1, c2 2 0. Suppose tt, 6 is a 
solution of the ODE system: 

-t u + c&6 + f l ( t ,  %,e)  = 0 

i& + c&6 + j2( t ,  T t , q  = 0 

on (0, T )  

with initial data satisfying 

Assume 
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and 

and 
N -  U > O , i j > O  on (0, T) .  

Using comparison result, Proposition 2.2, we conclude 

N -  u < u a n d v L i j .  

Re marks : 

If 
fl(., t ,  u, v) = -g1u + f lu2  + c1uv 

f2 ("1: ,  t , u ,v )  = -9221 + f2v2 4- c2 UT? 

and 

with constant coefficients, this comparison result can be found in Pao [12, Th. 
3.11. For solutions of ODE systems with other forms of fi's occurring in Lanchester 
models, see Taylor [2]. 
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This condition 
u(z,O) = uo(2) 2 g(0) > 0 

is too restrictive because it is natural to expect u o ( x )  to be zero for certain z values. 
Now we turn to a comparison result with the space integrated concentration of the 
forces involved. 

To exemplify, we consider a different realization of the system (1.3)-(1.5), namely 

The conditions (3.5) allow us to use comparison methods, while the nonlocal 
convolution-like interaction in the integral term is well suited for integral estimates. 
Integrating over R and using the divergence theorem we get 

Here we denote by ai the tensor (a:k), j ,  k = 1, ..., n and by hi -4 the vector (bf),  

j = 1 ,  ... n , i =  1,2. 
The boundary terms can be written as follows 
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Similarly, 

The terms fi in (3.7)-(3.7') are (at least in principle) known nonnegative 
functions. The known factors bi - n" - aiQi multiplying u,v ,  are nonnegative so 

the signs of the integrals left in (3.7)-(3.7') can be controlled by hypotheses on &, 
In order to compare the solutions of the PDE system with the solutions of an 

4 

Pi 

ai, and pi. 

associated QDE (Lanchester) system, we define 
r 

U ( t )  = J, u(z,  t ) d s  

V ( t )  = v(z,t)dz 

and assume there exist constants ci ,  E * ,  dj such that 

and that 

--I C .  < - ci 5 C;, 0 5 d; 5 d; .  

d a101 
b l - n - - -  2 0  
-d 

PI 

Then, taking into account (3.6)-(3.8) and (3.10) we get 

dU 
dt - 
dV 
dt -- 

- > f i  - e,UV - CtlV 

- < fa -G2,UV 

(3.10) 

(3.11) 

(3.12) 

The estimates (3.12) lead to the following result. 

Proposition 3.3 

Suppose (0, v )  is the solution of the system 

= f1 - EIOV - &V 
G = f 2  - c $ w  

O(0) = VO) V(0)  = v, 
with 

Then, under conditions (3.10), (3.11), the functions U(t), V(t) defined by (3.8), 
(3.9) with, u ,v  solutions of the system (1.3) - (1.5) with the specifications (3.1) - 
(3.5), satisfy the inequalities 

u 2 0 ,  v s v .  



4. UNIQUENESS QUESTIONS 
FOR STATIONARY STATES 

In general, positive steady states of the model need not be unique. However, 
under appropriate hypotheses, we can obtain a uniqueness result, This is significant 
because the results of Pao[lZ] and Hirsch[8] then imply stability of the unique steady 
state. 

Proposition 4.1 

Suppose that for i = 1,2 the eigenvalue problems 

~ i $ i  + ~ ~ 4 ;  = o in R, 

where Li is defined in (1.3)) admit first positive eigenvalues Xf with positive 
eigenfunctions #; on 52, that &(z) > 0 or ,8i(s) 3 0 on dR, and that the interaction 
terms have the form 

~i(z, u ,  = u cl(3, y>v(y>~ky + d1(u)v - er(s> 

FZ(5, u,  = J, c2(3 ,  Y)u(Y)dY + d2(v)u - e2(4 
with cy, c2, dl, d2 2 0, with d l ,  d2 differentiable and bounded below and d', , db 2 0. 
If the model has a steady state u,v with 0 5 u 5 K1 and 0 5 v 5 JC2, the steady 
state will be unique among steady states satisfying those bounds provided that we 
can normalize 41 and 4 2  such that 

Remarks: The bounds K1 mid I'i may be established for &l positive steady 
state solutions, yielding global uniqueness provided we assume d l ( 0 )  = &(0) = 0. 
Indeed, by comparing the steady state system with the linear system 

L~u+ q ( z >  = O 

L2v - e 2 ( x )  = 0 

with the same boundary conditions we obtain the result via the maximum principle 
since the interaction terms are nonnegative. The kernels c1 and c2 may be taken to 
be positive multiples of delta distributions. In the case c1 E c2 s 0, d l ,  d2 constant, 
the example below shows that conditions (4.1) and (4.2) are sharp. 

11 
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Proof 

and q = v1 - v2. Then p and q satisfy the systeni 
Suppose that u l q  and u2,02 are steady state solution pairs. Let p = u1 - u2 

- 4("*)U2Q - d2(01)P 

for some u*, v* with u*(z )  between ul(.z') and uz(z) and v*(x) between ,u1(z) and 
w2(z) for each z, and with p,q satisfying the homogeneous boundary conditions 
a l p  + pl8p/8n = 0, a2q  + @28q/an = 0. We would like to conclude that p z q G 0 
to establish uniqueness. To do so, we will transform the system (4.3), (4.4) into 
one where we may apply the maximum principle. The transformation is related to 
the generalized maximum principle discussed by Protter and Weinberger [ 141; some 
similar ideas are used in [15]. First, we replace q with r = --q, leading to the system 

Next, we introduce new variables $ and F. In the case of mixed boundary conditions, 
we have #I and 4 2  strictly positive on a, and set $ = P / # ~ ,  r" = T / # ~ .  In the case of 
Dirichlet conditions, we must take a domain R' with 5 R', but with CY sufficiently 
close to R that the first eigenvalues for the Dirichlet problems for L1 and L2 on Of 
still satisfy (4.1) and (4.2). A calculation shows that fi and r" satisfy 

Llii + fi~1(41)/41 = .r;2(P)/#l 

&?r" + FL2(42) /#2  = J 5 2 ( r ) / # 2  

(4.7) 

(4.8) 
where 

k , e  k e 

for i = 1,2. Also, if p1 = 0 then fi still satisfies $ = 0 on 8R2; if p1 > 0,  then 
8F/arj = -(p/P1#l)[al#l + /31&$1/an] = 0 on- 82, since #1 i s  chosen to satisfy 
the homogeneous boundary conditions. Similarly, r" satisfies either homogeneous 
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Dirichlet or Neumann boundary conditions. Finally, we have Liq$ = -Aiq5i for i = 
1,2. (In the case of Dirichlet boundary conditions, X i  will be the first eigenvalue on 
Q' rather than a; but recall that $2' was chosen so that (4.1) and (4.2) still hold.) 
Hence, (4.5), (4.6), (4.7), and (4.8) imply that j, r" satisfy 

I (4.10) 
0 = Lzr" - x;e - f c~(s,y)u&)dy + $(O*)U2 [b 

+ ( + w 4 2 ( 4 )  c 2 ( 5 ,  Y ) + l ( Y ) f i ( Y ) 4 /  + d 2 ( 4 f i ,  

along with homogeneous boundary conditions of Dirichlet or Neunnann ty e. 
Suppose that f i  has a positive maximum f i ~  greater than or equal to that o P r". 
(The cases where r" is assumed to have a positive maximum larger than that of p" or 
where 6 or ? is assumed to have a negative minimum me treated analgously, with 
cases involving ? using (4.2) instead of (4.1).) If the maximum i ; ~  i s  attained at 
xo E J z ,  then the maximum principle and the signs of the interaction terms in (4.9) 
imply 

which contradicts (4.1). In the case of Dirichlet boundary conditions, no positive 
maximum can occur on the boundary. In the case of Neumann boundary conditions, 
if jj(x0) = f i ~  for some 50 E do, we observe that from the last computation, 
continuity, and hypothesis (4.1), we must have Llfi 2 0 in a neighborhood of xo 
in a. Since dS1 is assumed to be smooth, there is an open ball B C Q with 
8B n XI= (50)  such that Lli; 2 0 on B .  If F ( x )  = FM €or some x E B, then since 
B C $2, we again have 13 5 F M ,  which yields a contradiction as before. If 9 < @M 

on B, then the Hopf maximum principle implies ajj/dn > 0 at $0, contradicting 
the Neumann boundary condition. (This argument is similar to that given in the 
discussion of maximum principles €or weakly coupled parabolic systems in [14].) 
Hence, fi cannot have a positive maximum greater than or equal to that of F. 

A similar analysis using (4.2) shows that r" cannot have a positive maximum 
greater than that of p"; the case of negative minima can also be treated in this way. 
It follows that i; E r" = 0, which implies 211 u2, 01 E 02, which implies uniqueness. 

Note that (4.1) and (4.2) exhibit the interplay of the local and nonlocal 
interaction terms and of the diffiision coefficient, domain size and boundary 
conditions which are hidden in X i  and A;. We shall show concretely in the following 
example how uniqueness is lost when assumptions (4.1) and (4.2) are violated. 
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Example 

special system 
In order to easily carry out the analytic calculations, we consider the rather 

ux, + gu - dv = 0 x E ( -L ,L )  (4.11) 

vxz  + gv - du = 0 

(4.12) 

We observe that the system admits the solution u(z)  = v(z). By inspection, 

U(X) = Acosh J;Ei-s 2 
is a solution. The BC (4.12) require 

A cosh J G L  + yd&'A sinh J G L  = h 

which determines A 

A = h(cosh d G L  + y d G s i n h  J G L ) I 1 .  

In order to study the influence of g ,  d, L,  y on the uniqueness of the stationary 
state, we try to find another solution. This can be done if there exist p 
v1 - 'u2 not identically zero such that 

u1 -u2, q 

(4.13) 

(4.14) 

We try a solution p ( x )  = - q ( x )  = A'cos/?'x. Equation (4.13) gives p' = d m .  
The BC (4.14) require 

P+Y- a P  I f L = = Q + Y - - -  a¶ I f L = O  

dn  dn  

A'( cos d d x L  - 7 Jd-tg sin . \ / G L )  = 0 

Nonuniqueness (A' # 0) is obtained if 

(4.15) 

For fixed y and L,  the equality (4.15) is satisfied only if d + g equals the first 
eigenvalue of the eigenvalue problem 

P x x  + XP = 0 

Suppose we have 
P x ,  + ( d  + S ) P  = P r x  - (d  + g)q = 0 
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and 
d + g  < X i .  

Then (4.13), (4.14) are not satisfied unless A' = 0, Le., d+g < A, implies uniqueness. 
We note that the example above fits into the more general case discussed in 

Proposition 4.1 if we take c1 = c2 = el = e2 = 0 and replace A 1  by X p  - g.  Then, 
the condition (4.1)-(4.2) for uniqueness reads 

A:-g=A:-g>d.  

The calculation above shows that uniqueness is indeed lost for A: = A; = d + g ,  
implying that conditions (4.1)-(4.2) axe sharp. 
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