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ABSTRACT

A parabolic system with nonlinear local or nonlocal interactions is considered,
with specific applications to the description of competition/combat situations.
Global existence and comparison results are proven under suitable assumptions
on the interaction terms. Comparisons with solutions of the “equivalent” ordinary
differential (space independent) model, that has been previously used in modelling
combat are of special interest. The stationary state of such a system — corresponding
to a stalemate — is also considered. Under certain conditions on the interaction,
domain size and boundary conditions, a uniqueness result is obtained for the
stationary state. A simple example shows that these conditions are sharp and
uniqueness may be lost when they are not fulfilled.






1. INTRODUCTION

Analytic models for combat (competition) originate in the seminal paper by
Lanchester [1] who described the dynamics of fighting troops on the battlefield by
simple ordinary differential equations. He proposed two sets of equations: the first
is based on an aimed fire model under which the rate of attrition on one side is
proportional to the number of troops on the other side:

= —d1v
dt d; >0 : (1.1)
—(-l}-)- = —dau
dt 2

The second is based on an area fire model of combat in which the rate of attrition
is proportional to the product of the number of troops on each side:

du c1uv

du__.

@ >0 (1.2)
—CE = —CaUV.

The coefficients d;, ¢; in (1.1), (1.2) are usually referred to as the aimed fire and area
fire attrition coefficient. Many variants of these models have been developed since,
some of them including the effects of smart weapons, guerilla fights, and stochastic
sources. For a good account of these aspects the interested reader is referred to the
monograph of Taylor[2]. One of the major drawbacks of the Lanchester equations is
that they do not account for spatial dependence, in the absence of which, advance,
retreat, maneuvers, deployment, etc., cannot be properly described.

.To correct — at least in part — this deficiency, an analytic description of
combat based on partial differential equations has been recently proposed.[3] The
n-dimensional version of these equations is

uy = Lyu — Fy(z,t,u,v)

(1.3)

ve = Lav — Fa(z,t,u,v),

where L, and L, are the nondegenerate second-order operators

n B )
Liw= Y aiy(z, oz, + 3 bz, thw,, i=1,2 (14)
Jr k=1 Jj=1
with
P4 P2 ip e o 2 , C_ 19
a]k""a’k]’ <V2|€I _Za]k’fjék._l-’fz ‘él 2--1,., (15)
Ik

In the evolution equations (1.3) the different terms have the following
interpretation:
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— the second-order terms describe (Fickian) diffusion that models the natural
tendency of any force to lose its initial configuration;

- the first-order terms describe the large-scale, ordered flow through advection
(convection) as opposed to the chaotic “flow” induced by the diffusion term and
accounting for small-scale movement;

- the functions F, F, contain local and nonlocal nonlinear interactions between
the opposing forces u and v as well as external sources. As an example, we can
consider:

Fi(z,t,u,v) = u(z, O)(~g1 + fru(z, £) + /ﬂ er(x —y)o(y, )dy) + div(z, ) — s, (16)

where giu represents resupply of the force u at the rate g > 0, fiu? (fi > 0)

models self-repressing effects due to crowding, saturation, confusion, u [ ¢;v and

div (di > 0) describe possible interactions between the forces, and e; > 0 is an

autonomous source. For ¢;(2z — y) = 8(z — y) we recapture Lanchester’s form.[1,2]
The system (1.3) has to be supplemented with boundary conditions (BC)

ay(z, t)u + Bz, t)% = hy(z,t), (z,t) € 00 x Ry
1.7)
a2($vt)v + ﬂ2($7t)"aa":)"{ = h2($at)

and initial conditions _
u(z,0) = uo(z) z € )

v(z,0) = vo()

Such systems, often called reaction-diffusion (RD) systems are of a very general
nature and appear quite naturally in biology and ecology [4], as well as in chemistry,
solid state physics, viscous fluid dynamics through porous media, etc. The study
of R-D systems from both theoretical, experimental and computational viewpoints
has already an impressive history and is steadily growing. Recent summaries of
rigorous results and methods can be found in the monographs of Fife [5] and Smoller
[6], where some of the applied aspects are also considered. For the computational
aspects, the monographs of Oran and Boris [7] is probably the most complete.

Apart from their ubiquity, the interest for R-D systems lies in their extremely
rich variety of responses, such as wave propagation, hysteresis, bifurcations, limit
cycles, catastrophe-like behavior, pattern formation and propagation, mode locking,
etc.

In the single equation case, when ajk, b;, F, a,3,h are time independent,
the system (1.3) (which reduces actually to one equation) generates a strongly
monotonic semigroup (flow) and its dynamics are “completely” determined by its
stationary states.[8] Although no e prieri indication is given about the number,
location, and basins of attraction of the fixed points, the result is important because
it reduces the study of the evolution equation to the study of its stationary solutions.
This result does not apply to typical combat situations where more than one force
is involved and one usually deals with time-dependent coefficients and data. As a
result, the battle outcome contains potentially elements of both predictability and

(1.8)
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uncertainty, order and chaos, stability and instability. The realization of any of
these situations depends on the type of interactions, range of parameters, strength
of coupling, boundary data, and size or even shape of the domain.

Assuming that by appropriate choice of the input parameters the system (1.3)-
(1.5) may be adapted to provide an accurate representation of (some kind of)
combat, we are interested here in studying its time-dependent and stationary
features and in giving them a military interpretation.

We shall make the following additional assumptions:[9]

i) Q is a smooth bounded domain;
ii) afj are Holder continuous functions of (z,t) in (£ x (0,7")) of orders a and
« / 2, respectively;
iii) b¥, ¢; are continous functions of (z,t) in (Q x (0, T)) and Hélder continuous
functions of z in Q;

iv) hq,aq, B; are continuous functions of (z,t) in (82 x (0,T));

V) g, vy are continuous functions of z in €

vi) F; are continuous functions of (z,t) in (Q x (0,T)) and Holder continuous

functions of z in Q. ,

Usually, we shall denote by Fi(z, t,u,v) a general interaction, including local and
nonlocal terms. Purely local interactions will be denoted by F; (x t,u(z,t), v(z,t)).
Section 2 is devoted to the general existence and comparison theory for such systems.
Solutions are constructed by a monotone iteration scheme using upper and lower
solutions. In Section 3 we compare the solution of the PDE competitive system with
the solutions of the corresponding Lanchester equations. In Section 4 we prove a
general theorem on the uniqueness of stationary states for the competitive PDE
system by using a generalized maximum principle. We show the uniqueness criteria
are sharp by constructing an example showing nonuniqueness.



2. EXISTENCE AND COMPARISON RESULTS

We shall study the classical solutions of the system (1.3)-(1.5) with the boundary
conditions (1.7)-(1.8). The system is assumed to satisfy the condition 1)-vi) in the
Introduction. Then, we can prove the following existence result:

Proposition 2.1

Suppose the following assumptions are true:

F; is increasing in the v position.
F; is increasing the u position.
There exists a constant M such that
Fy - Mu is decreasing in the u position.
Fy - Mv is decreasing in the v position.
There exists a constant C such that

P B

B N
N N’ N N’

| Fi(z,t,u1,0) — Fi(z,t,u2,0)|lc0 < Cllur — u2)loo (A.5)
| F2(z,t,0,v1) — Fa(x,t,0,v2)||c0 < Cllvr — v2]jco (A.6)
Fi(z,t,0,v) <0on$ forallv - (AT
Fy(z,t,u,0) <0on forall u (A.8)

o, B, hi 20, a; 4+ 5; >0 0n 02 x(0,T), t:=1,2 (A.9)
ug,v9 > 0 on (A.10)

Then there exists a classical solution to the system (1.3)-(1.5) with
boundary /initial conditions (1.7), (1.8).
Proof: We shall construct the solutions as limits of sequences {u"}, {v"}
obtained by iteration. These sequences will have lower bounds u = 0,v = 0 and
upper bounds 4, v, respectively. The upper bounds are solutions of the equations

Oy — Lo0 + F3(2,t,0,0) =0 on 2 x (0,T) (2.1)

s — Lhu + Fi(z,t,4,0) =0 on 2 x(0,7) (2.2)

satisfying the boundary conditions (1.7)-(1.8).[9,10 Ch. V, Th. 2.1]

Define u® = 0 and notice that by assumption (A7) and (2.1) (u°,°) is a
subsolution of (1.3)-(1.5).

We define iteratively u™,v™ as solutions of

uy — L™ + Mu™ + Fi(a,t, w7l vn~1) —~Mu*1=090

v} — Lav™ + Mv™ + Fy(z,t,u™ o™ 1) - Mo 1 =0

in  x (0,T)
satisfying boundary/initial conditions (1.7)-(1.8). Note u® < u! by assumptions
(A.72), (A.9), and (A.10) and v° = v! by cobstruction. Assuming v®~2 > v"~! and

=2 < 41 one obtains

v > v and u® <

4
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by using assumptions (A.1)-(A.4) and comparing RHS of the equations
ul — Lyu™ + Mu® = —Fi(z,t,u™ 0" ) + Mu™!
up™ — Lyu™ 4 Myt = —Fi(z,t, w2, ") - Mu™? (2.3)
vy — Lov™ + Mo™ = ——Fg(z,t,u"'l,v""l) + My"?
vl = L™ 4 Mo = —Fy(z, t,u™ " 0" ) 4 Mo

The sequences {u"},{v"”} are monotonically increasing and decreasing
respectively. The {v"} sequence is bounded below by zero by assumptions (A.8)-
(A.10). The {u"} sequence is bounded by the solution #. Since the RHS in
(2.3) converge, by standard regularity results the sequences {u"}, {v"} and their
derivatives converge to the solution (u,v) of the system (1.3)-(1.5).

This monotone scheme is similar to Sattinger[11] and Pao[12], but our analysis
includes both the construction of upper and lower solutions and @ prieri bounds on
solutions, which will be needed later.

Local existence can be obtained without assumptions (A.7), (A.8).

Now we have a comparison result:

Proposition 2.2.
Suppose there exists functions BB, 4,7, u,v satisfying
@y — Ly + Fy(x,t,@,0) 20, u, — Lyu+ Fi(z,t,4,0) <0
on ) x (0,T)
v, — Lov 4+ Fy(z,t,4,v) 0, 9y — Lyt + Fz(m,t,@, 5) >0
i +ﬂ1§% 2 hy, a1.@.+ﬁ1g% <h
on 89 x (0,T)
o+ fagh < b, axi+ Pag 2
u(z,0) < 4(z,0), v(z,0) <#(z,0) on .
Suppose for all u;, v;, ¢ = 1,2, satisfying
min(u, %) < u; < max(uy, i)
min(y, ) < v; < max(y, 9),

we have .
Fi(z,t,ui,v) < Fl(:c,t,u,',vi)

By(w,t,ui,v;) > Fo(z, t,uq,v;),
(A.1)-(A.4) hold for such u;,v;, and

I1#:(z,t, 1, 01) — (2, t,uz, 02)lloo S elfur — waloo + Jlor — v2lloo) (2.4)



Then,
u<a, v<ov on x(0,T).

Proof: The proof follows with arguments similar to the proof of the last proposition,
using the method of Fife [5,Thm. 5.1] with suitable modifications to handle the
nonlocal terms.

Remarks

1. Pao [12] obtained similar results with F' = F. The advantage of using F’s is
that one does not require F' to satisfy (2.4).
2. The strong maximum principle can be used to show

u<ton{)l or u=u on §

v<? on § or v=v on N

Also, if (A.5)-(A.9) hold, then the corresponding solutions are nonmnegative.
The original Lanchester model for aimed fire (system (1.1)) does not satisfy
(A.7)-(A.8). In this case, any comparison results hold only while the solution
remains nonnegative. A possibility to avoid this limitation is to replace the
constant attritions d; with sigmoidic functions, e.g. d;(-) = d;tanh(-/¢) such
that d; ~ constant for almost all v and d(0) = 0. This is in accordance
with Lanchester’s own observation that at low densities the aimed fire model
is not accurate any longer. Another possibility is to use, instead of equations,
variational inequalities in which additional constraints (e.g., u > 0,v > 0) can
be naturally included as obstacles.[13]
3. Similar existence and comparison results hold for elliptic problems.[11]



3. COMPARISON WITH ODE SYSTEMS

From the proof of Proposition 2.1, we illustrated comparisons of the solution
u,v of (1.3)-(1.5), (1.7), (1.8) with the solutions of the system

iy — L1+ Fi(z,t,a,0) =0
Qx(0,T)
By — Lo¥ + Fy(x,t,0,0) =0

satisfying the boundary/initial conditions (1.7)-(1.8). The principal importance of
this result is restricted by the fact that obtaining the bounds 4, ¥ may be sometimes
a very hard task. (Of course, if a; > 0, large positive constants can serve as upper
bounds.) Now we turn our attention to obtaining more specific comparison functions
in particular cases; namely, we compare our solution to a solution of a related ODE
system.

Proposition 3.1

Suppose u, v is a solution to (1.3)-(1.5) with Fy, F; given by

Fi(=, t,u,v) = u(z,?) /Q ai(e = y)oly, Odt + fila, t,ulz, £), v(z, 1))

Fy(z,t,u,v) = v(z,t) /Q ca(z — yhuly, t)dt + faolz,t,u(z,t),v(z, 1)),

and satisfying assumptions (A.1)-(A.4), (A.7)-(A.10), ¢1,¢2 > 0. Suppose u,? is a
solution of the ODE system:

u, + cfub + filt,x,9) =0
on (0,T)
by + cyud + folt,u,5) = 0
with initial data satisfying

0<u(0) < i%fU[)(x) and 5(0) > supve(z)
Q

and
i 2 sup/ ci(zy — y)dy and cs < inf/ cox — y)dy.
o Ja 2 Jo
Assume
At p,q) > filz,t,p,q)
on x(0,7) x Rt x R*
fZ(tap7 Q) S f2($,t,P, q)7
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f1(t,0,¢9) <0 on (0,T), forallg € R*

and _ _
[1£i(t, w1, v1) — filt, w2, v2)|loo < C([lur — uzlloo + |lv1 — v2|eo)
for all min(y,u) < u; < max(u,u)
i=1,2,

min(9, v) < v; < max(?d,v).

If

h1 2 a1u and ha < ag® on o0 x (0,T)
then
u<u and v <D
Proof:
Notice that u, o satisfy
u, — Ll% = .—CT%{; - fl(taga 5)

< 'ME(t)ﬁ(t) ‘/Q Cl(m - y)dy - fl(wa tu, ﬁ)

and .
'6t - Llﬁ = “C;yﬁ - fg(t,yl,{})
> ~u(®it) [ @~ vy — faa,t,,9)
Q
u . ov .
al%‘*‘ﬂléi = oy < hy and @y + 5—2*6';; = a0 2 hg
on 2 x (0,7),

and

u>0,9>0 on (0,T).

Using comparison result, Proposition 2.2, we conclude

y<uandv < 7.

Remarks:

If
fi(z,t,u,v) = —gru + fiu? + cquv
and
fa(z,t,u,v) = —gav + fov® + cp uv

with constant coeflicients, this comparison result can be found in Pao [12, Th.
3.1]. For solutions of ODE systems with other forms of f;’s occurring in Lanchester
models, see Taylor [2].



This condition
u(z,0) = ug(z) > u(0) >0
is too restrictive because it is natural to expect ug(z) to be zero for certain z values.
Now we turn to a comparison result with the space integrated concentration of the

forces involved.
To exemplify, we consider a different realization of the system (1.3)-(1.5), namely

Liu = Zk:(a}k(x,t)utj)zk + Z(b}u)x, (3.1)

Fi = u(z,t) /Q ez —yv(y, t)dy + dy(u)v (3.2)

Lav = Z(aﬁk(ﬂc, t)“:c,')n + Z(bgv)z,‘ (3.3)
ik J

Fa = v(z,1) [ eale = v)uly, Oy + da(o)u (3.4)

with
dl(O) = 0') ay, ﬂiahi Z 03 a; + ;Bi >0 (35)

The conditions (3.5) allow us to use comparison methods, while the nonlocal
convolution-like interaction in the integral term is well suited for integral estimates.
Integrating over £} and using the divergence theorem we get

4 / u(z,t)dz :/ [al(z,t)Vu +31(x,t)u] - ids
dt Jo aQ

- //Cl(it”‘y)u(l',t)v(y,t)dxdy‘“/dl(u(x))v(x,t)dm (3.6)
Ja Ja a
%Lv(m,t)d:c = ‘/60 [ag(x,t)Vu + gz(x,t)u] . fids

_ /ﬂ /ﬂ ex(z — y)uly, (e, t)dedy — /Q da(v(2))u(z, )dz.

Here we de:note by a; the tensor (aj-k), 7,k = 1,...,n and by b; the vector (b;),
j=1,.n,1 =12
The boundary terms can be written as follows

/(a1Vu+51u)-ﬁds=/ (a1@+31-ﬁu)d5:
% N on

L7} A B - f b7 — MY s
/an [al " (b A )u] s fl(t)Jr/zm (b A ) * 3.7
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Similarly,

/(MVU+&@.mh:fxo+/'(&.ﬁm%“ﬂva. (3.7)
Y £ B2

The terms f; in (3.7)-(3.7') are (at least in principle) known nonnegative
functions. The known factors b; - 7 — 9—‘;’%—1 multiplying u,v, are nonnegative so

the signs of the integrals left in (3.7)-(3.7') can be controlled by hypotheses on b,
ag, Qg and ,Bi- :

In order to compare the solutions of the PDE system with the solutions of an
associated ODE (Lanchester) system, we define

Ut) = /s;u(m,t)daz | (3.8)
V(t)r:/Q'v(a:,t)da:
U(0) = ino(x)dw = Uy, V(0) = /Qvo(x)d:z: =V (3.9)

and assume there exist constants ¢;, &, d; such that

c; <e¢; <&, 0<d; <d.. (3.10)
and that . ayoy
by-n~— 3 >0
L ey (3.11)
by - 7~ <0

2
Then, taking into account (3.6)-(3.8) and (3.10) we get

d _

E[:; 2 h~alV -4V

v (3.12)
E" < f2 - QQUV

The estimates (3.12) lead to the following result.
Proposition 3.3

Suppose ((7, f/) is the solution of the system
(jt =f1 —Elﬁf/*—glv
Vi=fo—cUV
with . _
U(0) =U,, V(0) =V,
Then, under conditions (3.10), (3.11), the functions U(t), V(t) defined by (3.8),

(3.9) with, u,v solutions of the system (1.3) - (1.5) with the specifications (3.1) -
(3.5), satisfy the inequalities

U>U, v<V.



4. UNIQUENESS QUESTIONS
FOR STATIONARY STATES

In general, positive steady states of the model need not be unique. However,
under appropriate hypotheses, we can obtain a uniqueness result. This is significant
because the results of Pao[12] and Hirsch[8] then imply stability of the unique steady
state.

Proposition 4.1
Suppose that for : = 1,2 the eigenvalue problems

Lidi + Xp; =0 inQ,

ai(z)d: + ﬂi(ﬂi)%

where L; is defined in (1.3), admit first positive eigenvalues A} with positive
eigenfunctions ¢; on €, that Bi(z) > 0 or Bi(z) = 0 on 9N, and that the interaction
terms have the form

=0 ondQ,

Fi(z,u,v)=u /Q ci(z, y)v(y)dy + di(u)v — ex(z)

Fy(z,u,0) = v /Q ca(e, y)uly)dy + da(v)u — ea(x)

with ¢y, ¢3,dy,dy 2 0, with dy,d, differentiable and bounded below and d,d}, > 0.
If the model has a steady state u,v with 0 < v < Ky and 0 < v < K, the steady
state will be unique among steady states satisfying those bounds provided that we
can normalize ¢; and ¢, such that

Ai > sup(K; f[cl(m,y)¢2(y)/¢1(m)]dy)+ sup dj(w) (4.1)
zel? Q 0<w< K,y
and
N> sup(Ks [ [eales )i ()/da(@ldy) + sup dw). (4.2)
reQ Q 0<w<K,y

Remarks: The bounds K, and K; may be established for all positive steady
state solutions, yielding global uniqueness provided we assume d1(0) = d2(0) = 0.
Indeed, by comparing the steady state system with the linear system

Liueey(z) =0
Lyv —e(z) =0

with the same boundary conditions we obtain the result via the maximum principle
since the interaction terms are nonnegative. The kernels ¢; and ¢; may be taken to
be positive multiples of delta distributions. In the case ¢; = ¢y = 0, dy, d constant,
the example below shows that conditions (4.1) and (4.2) are sharp.

11
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Proof:
Suppose that uv; and up, vo are steady state solution pairs. Let p = u; — ug
and ¢ = v; — vy. Then p and ¢ satisfy the system

0=Lip—p /Q e1(2, y)o1 (v)dy — s /Q ex(z, )a(v)dy

— dy(u™)v1p — di(u2)q

(4.3)

0= Lag— g [ ea(auoauly =1 [ eale,p)p(w)y

— dy(v*)uzq — da(v1)p

for some u*, v* with u*(z) between u;(z) and uy(z) and v*(z) between v;(z) and
ve(z) for each z, and with p,q satisfying the homogeneous boundary conditions
ai1p+ $18p/0n = 0, azq + B20¢/0n = 0. We would like to conclude that p=¢ =0
to establish uniqueness. To do so, we will transform the system (4.3), (4.4) into
one where we may apply the maximum principle. The transformation is related to
the generalized maximum principle discussed by Protter and Weinberger[14]; some
similar ideas are used in [15]. First, we replace ¢ with r = —g, leading to the system

(4.4)

0=Lip—p [/ﬂ c(z, y)vi(y)dy + d'i(U*)vl] ws)
4.5

g /9 er(2, y)r(y)dy + dy (ug)r

0Ly [ / cz(x,y)uz(y)dy+d;(v*)u2] o)
4.6

+ vy /Q ca(z, y)p(y)dy + da(v1)p

Next, we introduce new variables p and 7. In the case of mixed boundary conditions,
we have ¢; and ¢, strictly positive on 2, and set § = p/¢1, 7 = r/¢o. In the case of
Dirichlet conditions, we must take a domain Q' with Q < Q', but with Q' sufficiently
close to Q that the first eigenvalues for the Dirichlet problems for L; and L, on '
still satisfy (4.1) and (4.2). A calculation shows that p and 7 satisfy

L1p+ pLa(41)/ b1 = La(p)/ 1 (4.7)
Lof + FLo(p2)/ b2 = La(r)/ b2 (4.8)

where

clw = Z a;'clwz.'z,' + Z(b;c +2 Z aild’n/‘ﬁ)wtk
k£ k £

for ¢ = 1,2. Also, if 5, = 0 then p still satisfies p = 0 on 98; if B, > 0, then
9p/0n = —(p/Br1é)[a1é1 + B10¢1/0n] = 0 on 0N, since ¢, is chosen to satisfy

the homogeneous boundary conditions. Similarly, 7 satisfies either homogeneous
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Dirichlet or Neumann boundary conditions. Finally, we have L;¢; = —Al¢; for i =
1,2. (In the case of Dirichlet boundary conditions, A} will be the first eigenvalue on
Q' rather than Q; but recall that Q' was chosen so that (4.1) and (4.2) still hold.)
Hence, (4.5), (4.6), (4.7), and (4.8) imply that p, ¥ satisfy

0= L1p—Nj—p [ [ @@+ di(u*)vl] ”

F (uale)/1(2)) [ (o, 0)820)F )y + da ua)f

0= Lof — A3F —r [/Q coz, y)ua(y)dy + d'z(v*)ug] w10)
4.1

T (01(2) /() /Q ex(, V) )F(v)dy + da(v)p,

along with homogeneous boundary conditions of Dirichlet or Neumann type.
Suppose that p has a positive maximum pps greater than or equal to that of 7.
(The cases where 7 is assumed to have a positive maximum larger than that of p or
where p or 7 is assumed to have a negative minimum are treated analgously, with
cases involving 7 using (4.2) instead of (4.1).) I the maximum pps is attained at
xp € §2, then the maximum principle and the signs of the interaction terms in (4.9)

imply

0 < =L1p lao £ ~APar + (u2(20)/$1(20)) /ﬂ c1(zo, y)$2()(y)dy + da (u2)F(z0)

<pm [_,\} + sup (Kl/[Cl(z,y)¢z(y)/¢1(m)]dy) + sup dl(w)] )
xel2 Q

0SwsKy

which contradicts (4.1). In the case of Dirichlet boundary conditions, no positive

maximum can occur on the boundary. In the case of Neumann boundary conditions,
if p(zg) = Pum for some zo € O, we observe that from the last computation,
continuity, and hypothesis (4.1), we must have £;$ > 0 in a neighborhood of z,
in . Since 09 is assumed to be smooth, there is an open ball B C  with
OB N OQ = {4} such that £, > 0 on B. I p(z) = pas for some = € B, then since
B C Q, we again have p = pps, which yields a contradiction as before. If § < pys
on B, then the Hopf maximum principle implies 05/3n > 0 at x4, contradicting
the Neumann boundary condition. (This argument is similar to that given in the
discussion of maximum principles for weakly coupled parabolic systems in [14].)
Hence, p cannot have a positive maximum greater than or equal to that of 7.

A similar analysis using (4.2) shows that 7 cannot have a positive maximum
greater than that of p; the case of negative minima can also be treated in this way.
It follows that p = 7 = 0, which implies 4y = uq, vy = vy, which implies uniqueness.

Note that (4.1) and (4.2) exhibit the interplay of the local and nonlocal
interaction terms and of the diffusion coefficient, domain size and boundary
conditions which are hidden in A} and A\2. We shall show concretely in the following
example how uniqueness is lost when assumptions (4.1) and (4.2) are violated.
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Example

In order to easily carry out the analytic calculations, we consider the rather
special system
Ugr +gu—dv =0 z € (—L,L) (411)

Vgr + g —du =0
u+7g |+L= v+7g l+2= h- (4.12)
We observe that the system admits the solution u(z) = v(z). By inspection,
u(x) = Acosh m T |
is a solution. The BC (4.12) require
A cosh ﬁtz;L + 7\/11—:311 sinh \/53-:313 =h
which determines A |
A = h(cosh \/d — gL + v\/d — gsinh \/d — gL)™*.

In order to study the influence of ¢,d, L,y on the uniqueness of the stationary

state, we try to find another solution. This can be done if there exist p = uy—uq,q =

v1 — v2 not identically zero such that

413
sz+gqmdp:0 ( )

Op 0q
P+’)’5— lir= q+’76 |42=10 (4.14)

We try a solution p(z) = —g(z) = A'cos f'z. Equation (4.13) gives 5’ = Vg +d.
The BC (4.14) require

A'(cosv/d+ gL —y\/d+ gsin\/d+ gL) =0
Nonuniqueness (A’ # 0) is obtained if

d+ g =cot+/d+gL. (4.15)

For fixed v and L, the equality (4.15) is satisfied only if d + g equals the first
eigenvalue of the eigenvalue problem

Pz + ’\p =0
a -
P+’Y“‘ap 4= 10
Tt

Suppose we have .
Prz+(d+g)p=psz —(d+9g)g =0
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and
d+g < A

Then (4.13), (4.14) are not satisfied unless A’ = 0, i.e., d4+g < ), implies uniqueness.

We note that the example above fits into the more general case discussed in
Proposition 4.1 if we take ¢; = ¢; = €; = e3 = 0 and replace Ay by A\; — g. Then,
the condition (4.1)-(4.2) for uniqueness reads

AN og=X_g>d

The calculation above shows that uniqueness is indeed lost for A} =N =d+yg,
implying that conditions (4.1)-(4.2) are sharp.
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