

ORNL/TM- 1 1 125

Energy Division

A Z8 FORTH Assembler

for SMART HOUSE Prototyping

Reid Gryder

Date Published - August 1989

Prepared for the
Smart House Project

National Association of Home Builders
Research Foundation

NOTICE: This document contains information of
a preliminary nature. It is subject to
revision or correction and therefore does
not represent a final report.

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R21400

3 4 4 5 b 03133803 4

CONTENTS
Page

1 . INTRODUCTION . 1

2 . THE 28 MICROCONTROLLER HARDWARE ARCHITECTURE 4
2.1 THE 2 8 REGISTER FILE . 4
2.2 WORKING REGISTER CONCEPT . 4
2.3 2 8 ADDRESSING MODES . 5
2.4 PROCESSOR FLAGS . 6
2.5 2 8 INTERRUPT HANDLING . 7
2.6 28 OPERATIONS AND INSTRUCTIONS 8
2.7 WORD INSTRUCTIONS . 8
2.8 2 8 SYSTEM REGISTERS . 8

3 . THE FORTH ENVIRONMENT . 10
3.1 USE OF REGISTERS BY FORTH . 1 1
3.2 2 8 MEMORY ALLOCATION . 13
3.3 ASSEMBLY LANGUAGE INTERRUPT HANDLING ROUTINES 14

4 . WRITING AN ASSEMBLER PROGRAM . 17
4.1. CONDITION CODES . 18
4.2 CONDITIONAL AND FLOW CONTROL STATEMENTS 18
4.3 USING WORKING REGISTERS . 21

5 . EXAMPLES . 22
5.1 TIME OF DAY CLOCK . 22
5.2 SAVE AND RESTORE THE REGISTER POINTER 22
5.3 REPLACEMENT FOR LOOP . 23

6 . ERROR MESSAGES . 25

7 . CONCLUSIONS. 26

APPENDIX I . 28 INSTRUCTION MATRIX . 28

APPENDIX I1 . TABLE OF INSTRUCTIONS . 29

APPENDIX III.LISTING OF THE Z8/FA . 35

APPENDIX 1V.TIME-OF-DAY CLOCK PROGRAM LISTING 37

APPENDIX V . SAVE AND RESTORE WORKING REGISTER
PROGRAM LISTING . 38

iii

LIST OF TABLES AND FIGURES

Page

Table 1 . Addressing Modes 5 .
Table 2 . Processor Flags . 6
Table 4 . FORTH Use of Registers. 12
Table 5 . FORTH System Variables . 13
Table 6 . 28 Memory Allocation . 13
Table 7 . Condition Codes . 18
Table 8 . Error Messages . 25

Figure 1 . Assembly-Language Code for LOOPCODE 24

V

ACKNOWLEDGEMENTS

The author would like to acknowledge that this document was made possible by the
careful tutelage of Robert Edwards, and the continuing interest and assistance of Grimes
Slaughter of CONRAY, Inc.

v i i

ABSTRACT

This report presents an extension of the Zilog Z8/FORTH microcontroller system software
by defining FORTH words to implement a 28 assembler. The work was conducted for the
National Association of Home Builders’ Smart House Project, a cooperative research and
development effort involving American home builders and several major corporations that
provide products and services to the home building industry. The major goal of the
project is to help the participating companies use advanced technology in the
development of new residential products for communications, energy distribution, and
appliance control.

Use of a high-performance, easily-adaptable microcontroller such as the Zilog 28 can
facilitate the testing of Smart House product prototypes. The device can be used to
meet numerous sensing, tracking, and test-suite generation needs, and can provide an
important function in system testing by simulating the operation of associated Smart
House components.

The intent of this report is to provide the Smart House Project team with information
concerning the programming techniques needed for developing and testing Smart House
products. The material is technical in nature and assumes considerable experience in
microcontroller technology and microcomputer programming.

1. INTRODUCTION

This report presents the SMART HOUSE 28 FORTH Assembler (ZS/FA), a technique

extending Zilog Z8/FORTH microcontroller system software for use in rapid prototyping

by defining assembler language instructions representing native 2 8 microcontrolier

operations as FORTH words. Previous studies provided an analysis of the rapid-

prototyping potential of the Z8/FORTH microcontrolter (Edwards, Feb. 19871, and

techniques for optimizing the Zilog ZS/FORTH microcontroller for use in rapid-

prototyping (Edwards, Sept. 1987). This report documents the work which was performed

with the original 2 8 hardware and FORTH System. However, at this writing, improved

hardware and an optimized FORTH System are being prepared.

The techniques presented in this report were developed for the National Association of

Home Builders’ “Smart House Project,” a cooperative research and development effort

involving American home builders and a number of major corporations that provide

products and services to the home building industry. The Froject will help the

participating corporations use advanced technology in the development of new products

for communications, energy distribution, and appliance control. One of the Project’s

most important goals is to bring Smart House cabling, electrical control devices,

consumer appliances, and gas piping and control products into the market for homes

constructed in the 1990s.

Certain parts of the designs now used for home electrical and gas distribution systems

are as much as 100 years old. Utilities first piped gas to homes in the 1880s as a

substitute for oil lamps and candles. A few years later, electricity became available to

home owners as a replacement for gas lighting. The use of electricity for purposes other

than iliumination came after the turn of the century, motivated by a desire to use the

excess generating capacity produced during daylight hours. Today, the amount of energy

used for lighting is dwarfed by that required for heating and cooling. In spite of the

radical change in use patterns and the need for sophisticated control of technologically

advanced appliances, the basic energy distribution and control systems in homes have not

changed in several decades. As a result, the expectations of modern homeowners are not

being realized. By providing intelligent control and coordination services among

appfiances and the devices used to control their operation, the Smart House will make

possible functions that can now be accomplished only with difficulty or not at all. For

1

example, programmed control of heating, ventilating, and air conditioning (WVAC) units

and remote control of entertainment centers are difficult to accommodate in a

conventionally designed home, but are simple to support with the Smart House concept.

The Smart House design for power distribution will also establish a new

standard of safety in the home, primarily by incorporating closed-loop control of

electrical appliances. With this feature, branch circuits are de-energized except when

power is necessary to operate appliances. The device controlling an appliance (e.g., a

switch on a vacuum cleaner) must send an electronic message to the control before the

circuit leading to the appliance will initiate the flow of power. After the circuit is

powered, the control for the circuit requires a continuing "nominal-opcxation" signal from

the appliance in order to continue the supply of power. Closed-loop protection of

circuits in the Smart House can be thought of as the electrical equivalent of the

thermocouple protection device used in gas appliances.

The Smart House design must meet rigid requirements for reliability, installability, and

maintainability. As an example of the attention being focused on reliability, a leading

Smart House design proposal calls for several distributed controllers all wired together,

each with the ability to back up one another in case of failure, rather than

concentrating home control in one central computer.

Oak Ridge National Laboratory (ORNL) is helping NAHB by providing tec

evaluations of proposed Smart House designs, assistance with project management, advice

on facilities necessary for design evaluation, and development of prototype equipment for

system testing and integration. This report concerns OKNk experience with use of the

native 28 instructions in the Z8/FQR'TH microcontroller for the Smart House Project.

The information is intended to help Smart House Project participants with the use of the

microcontroller in the development and test of Smart House products.

In a report by R. G. Edwards on the Zilog/Z8 FORTH-based microcomputer, ORNL

determined that the relatively slow speed o f 28 FQR'T'H software (average execution rate

of 5000 FORTH instructions/second) may be a constraint that prohibits use of the

microcontroller in demanding rapid-prototyping situations (Edwards, Feb. 1987). Another

report (Edwards, Sept. 1987), compared the speed o f 28 FORTH with versions of FORTH

operating on other microcomputers, and presented techniques for improving the speed of

2

28 FORTH. In that report, Edwards gave examples of an optimized timing loop that used

assembly-language code to implement the function. Although the optimized 28 FORTH

bench mark is very fast, achieving rates as much as four times faster than FORTH on an

IBM PC, use of Z8/FORTH in this manner is not very different from simply coding in

native machine instructions to accomplish the function. Use of native machine code is

generally viewed with disdain because it defeats the transportability, commonality, and

readability advantages of FORTH. For certain real- time operations, however, execution

speed is of utmost importance and even when the original functionality is developed in

FORTH, the target system must be coded in optimal machine code for speed.

This paper explores methods of increasing the speed of 28 FORTH by using 2 8 assembly

language without sacrificing the advantages of the FORTH language for rapid prototyping.

To provide for the fast execution of 28 machine instructions in a FORTH programming

environment, a SMART HOUSE 2 8 FORTH Assembler (Z8/FA) has been written in the

FORTH language. This Z8/FA defines a number of FORTH words which are somewhat

like assembler OP codes. These OP codes cause the machine code of the instruction to

be loaded into memory, and when the FORTH word is executed, control is passed to the

machine instructions generated by the assembler.

This document is intended to give the programmer who is already fluent in assembly

language, and who knows the 28 hardware, sufficient information about the peculiarities

of the Z8/FA to use it without a detailed knowledge of the FORTH language. A

knowledge of assembly language programming, and of the 218 hardware and instruction set

is assumed. By using the Z8/FA, one can produce assembly language programs which can

be executed in the FORTH environment.

3

To take advantage of the optimization techniques described in this report, it is necessary

to have a working knowledge of the 28 microcontroller hardware architecture. The

definitive reference on this subject is the Ziion 28 Microcomauter Technical Manual,

In the discussions which follow, address values, constants, and register numbers are in

hexadecimal. The mnemonic operation codes all end with a comma, and when used in

test, will. be written in BOLD FACE. For exaple, NOP, i s the code for the Z8 null

operation which does nothing. It is assumed that the 28 hardware consists of a

Micromint SBC11 stand-alone microcontroller containing a 2861 1 microcomputer with a

FORTH system in 4K bytes of piggy-back ROM, a Micromint SBC14 16K byte memory

expansion board at base address 4000, and a Micromint SBG33 memory expansion I1 board

based at address 8000. Also assumed is the presence of a 2K EPROM containing the

Program Editor described in a previous document (Edwards, Feb. 1987).

2.1 THE 28 REGISTER FILE

The Z8 Microcomputer is a Register File Machine. Iilrstead of having a single

accumulator in which operations are performed, an entire bank of 128 memory locations

can be used as accumulators. These are located in the register file, at addresses 00 to

FF. Each of these registers may be the operand of any of the 28 operation codes. Thus

each register may he used as an accumulator, or used as an index register. In addition,

a group of 16 registers can be allocated as "Working Registers" and thus accessed with

4-bit addresses and very fast instructions,

2.2 WORMING REGISTER CONCEPT

The 28 working registers are a very powerful feature which allows the 28 microcomputer

to perform certain operations very fast. The Working Register Pointer is located at FD,

and when set with an S P,' instruction, allows a group of 10 (hexadecimal, 16 decimal)

registers to be addressed with only four address bits. A special set of very fast

'The reader is reminded at this point that all Z 8 / F h instructions will end in a
comma.

4

instructions are available for the use of this feature. A lower case "r" in an address

mode name tells the Z8/FA to use these special instructions.

A form of indexing is available through the working register feature as well. If you use

the register designation "En" in a regular register address field, it signals the hardware

to use the left half of the working register pointer for the left half of the register

address and the "n" of the "En" for the right half of the register address. Thus these

instructions, like the working register instructions, can refer to different registers each

time they are executed, according to what value is stored in the working register

pointer.

The Z8/FA allows the use of the register names, "RO", "Rl", to "RF" to refer to working

registers in normal register instructions. Thus,

60 SRP, 93 64 RR u),

loads register 63 from register 44.

2.3 2 8 ADDRESSING MODES

The 2 8 microcomputer has several addressing modes. In coding for the Z$/FA, these

modes must be explicitly stated. Thus the "RR" in the previous example refers to

register- to-register addressing mode.

The complete list of addressing modes which can be used with the Z8/FA and the codes

for indicating them is given in Table 1.

Table 1. Addressing Modes

CODE

R
I R

rr
rIr
RR
RIR
R I M
I R I H

Addressing Mode

Register addressing
Indirect register addressing
Uorking register t o working register
Indirect working register to working register
Register t o register
Indirect register t o register
Imnediate to register
I d i a t e t o Indirect register

5

For example,

loads the content of register 7F in to register 10

odds the hex constant 7F in to register 10

increments the contents of register 7

increments the contents o f working register T

(note that because no addressing d e code was d e f i d for operating on a single
Marking register, a special Wcode (rIYC,B was created for the working register
increment instruction)

An earlier version of the pseudo-assembler incorrectly assigned the innemonic IRR for

RIR. Until such time as programs developed using the early version have been corrected,

mnemonics will be accepted.

2.4 PROCESSOR FLAGS

The 28 register at location FC is the flag register, and bits in this register are set and

cleared by certain CPU operations to indicate the status which results from that

operation. The flags are shown in table 2. Section 4.1 shows the names which the

Z8/FA has given to the various conditions indicated by these flags.

Table 2 . Processor Flags

Description B i t

User Flag 1 0
User F lag 2 1
Hal f Carry Flag 2

Overflow FLag 4
Sign FLag 5
Zero Flag 6
Carry F lag 7

6

2.5 28 INTERRUPT HANDLING

The Z8 supports six levels of vectored interrupts, IRQo through IRQS. The four Port 3

input lines (P30-P33) are used to obtain external interrupts. These external interrupts

are negative edge triggered. Serial In, Serial Out, and the two Counter/Timers are

available as internal interrupts.

The interrupt protocol is controlled by the Interrupt Priority Register (register file

location F9, Write Only), the Interrupt Mask Register (register file location FB,

Read/Write), and the Interrupt Request Register (register file location FA, Read/Write).

The Interrupt Priority Register (F9) separates the interrupts into three groups (A, 8, C)

of two. It sets the relative priority within the group and the relative priority sf the

groups.

The Interrupt Mask Register (FB) determines which interrupts are enabled. Bits 0-5

control whether the respective IRQs (set=enabled, cleared-disabled) result in transfer to

an interrupt routine when the corresponding interrupt occurs. Bit 7 is a global control

determining whether all interrupts are enabled (set) or disabled (reset). Bit 7 must be

set with an EI, instruction and cleared with a DI, instruction.

Bits 0-5 in the Interrupt Request Register (FA, Read/Write) are set by the respective

incoming interrupt signals. If interrupts are enabled (bit 7 of I 3 is set), and an

interrupt bit is set in FA, what happens is determined by corresponding bits in FB, the

Interrupt Mask Register, If the corresponding bit is set in FB, the following things

happen:

1)
2)
3)
4)

the Program Counter and the Flag Register are pushed onto the stack;
the corresponding bit in FA is cleared;
bit 7 in FB is cleared, disabling interrupts; and
an indirect Jump is taken using the address at the corresponding interrupt
vector location of program memory.

Memory locations 00-01, 02-03, ... OA-OB correspond to vectors for the respective 1RQs.

This address is the address of the interrupt service routine. The last instruction in the

interrupt service routine has to be an IRET, (return from interrupt). An E T , causes

the Flag Register and Program Counter to be popped from the stack, bit 7 of FHJ is set

enabling interrupts, and program execution to resume where it left off.

7

&e Section 3.3 for information on how to code interrupt handling routines.

2.6 Z8 OPERATIONS AND INSTRUCTIONS

Appendix A is a matrix of instructions showing the mnemonic and the address mode code

for each of the instructions. Appendix B is a list of all the instructions, showing which

are implemented, and giving a sample instruction together with the hex machine code

generated by the instruction.

2.7 WORD INSTRUCTIONS

Two Z8 instructions operate on a full 16-bit word instead of an $-bit single register.

These instructions are INC

decrements a pair of bytes. These instructions require an even address, and modify that

location and the next location. The na es "WO", "W2", to "WE" have been given to the

words which represent the legal working register addresses for these instructions. For

example,

which increments a pair of bytes, and ~ which

will subtract one from the 16-bit value stored in working register pair 6 and 7.

2.8 28 SYSTEM REGISTERS

A listing of the 2% System Registers, together with the initial value loaded into them by

the Micromint 28 FORTH System, is given in Table 3. A revision of this document will

describe the changes which have been made to accommodate a new optimized FORTH

System now under development.

8

Table 3. 28 System Registers

.
Register Register Source Initial

kocation Name Table Value Description

FO
F 1
F2
F3
F4
F5
F4
F?
F8
F9
FA
FB
FC
FD
F E

FF

Serial I/O
Timer Mode
Counter/T imerl
Prescaler 1
Cmter/T imer2
Prescaler 0
Port 2 Mode
Port 3 Mode
Ports 0 & 1 Mode
tnterrupt Priority
Interrupt Request
Interrupt Mask
Conditions Flag
Register Pointer
Stack Pointer (W)
Stack Pointer (L)

B5
86

67
68
89
BA
66
BC
BD
BE
BF
co
c1
CZ

C3
c5

20
00
FO
03
01
27

FF
41

B2
28
10
00

00

50
IF

00

Initialized to blank
Disable both counters
Initialized to 240

Initiaiized to 1
Initialized for 9600 baud
11.0592 crystal
Initialized as input
Serial 110, Port2 Pull-ups on
Adr/data on 0/1, wait state on
3>5/4>1/2>0 A>C,B
Interrupt: serial output
Interrupts disabled
All f l a g s cleared
Register Group 50
FORTH stack from IF00 down

9

Very little of the FORTH environment needs to be understood by the assembler

programmer. FORTH i s a language which uses subroutines called "words." When a

"word" is defined, it is placed in a "dk t io~~a~y . " A "word" in the "dictionary" is executed

by typing its name on the keyboard, or by interpreting a program containing the word.

FORTH uses a "stack" to communicate between the "words."

The first rule o f programming for the FORTH 2% Prototyping Computer is,

"Never take anyone's woad for anythin P It is so easy to verify the behavior of a
particular word, and so difficult to adequately describe its behavior, that there is no

excuse for not verifying the behavior of any definition prior to incorporating it into your

own program. You will be wise to follow this rule for any code you develop, and code

you get from a friend or a book, and any code you €ind in this document. If you have

not personally verified its accuracy, don't use it!

The easiest and mast common mistake to make is to leave an extra word on the stack,

or to dispose of one which should have been left. The "stack effect" of a definition

should be well understood prior to using it.

FORTH programs are coded 011 pages called " " S C T ~ ~ P B S . " A simple editor that allows

modification of these "screens" is described by Edwards (Sept. $7).

a "screen" can be executed, the "screen" must be loaded (into the dictionary) with the

LSCR command, The end of a program must be marked with a FORTH "screen

terminator" word, ";S". All FORTH words must be preceded an followed by a space in

order for the FORTH interpreter to recognize them.

ef0re the words on

The FORTH word 'Y is used to define a iiew FORTH word. For instance, if we write a

screen whish says:

: FOO BRING COFFEE ; ;s
and LSCR that screen into the dictionary, we will have defined a FORTH word named

TOO" that when executed, will execute the FOR'I"H words "BRING" and "COFFEE". The

":" begins the definition, the name of the word being defined comes next, and the

definition is terminated by ";". Several such definitions could be on the screen before

the screen terminator ";S". In this example, the words "BRING" and "COFFEE" must have

been previously defined or an error will occur and "FOO" will not be defined.

Leo Brodie has written an excellent book on the FORTH language, Starting Forth, which

includes an example of a FORTH assembler for the 8080 processor. For this document,

only the features of the Micromint 28 FORTH system, together with the Editor described

in a previous ORNL report (Edwards, Feb. 19871, are assumed.

Some knowledge about the organization of the 28 FORTH software stored in the

microcomputer's internal ROM is required to understand this subject. A previous ORNL
report (Edwards, Sept. 1987) provides an overview of that structure, and provides a

complete listing of the Micromint 28 FORTH system in an Appendix.

FORTH has been described as a "write-only" language. This statement has its roots in

several aspects of the language. The use of a stack to communicate between routines

produces code which is not very readable, and the various manipulations of the stack

which are required to place the parameters in the proper order are often even more

confusing. One cannot pick up a FORTH program and start reading it from the middle.

The following hints may assist you in reading programs.

First, it is absolutely essential that you know the "stack effect" of every FORTH word.

That is, you must know what a FORTH word expects to find on the stack, and what

values it leaves on the stack. You cannot read a program without that information.

Second, the most useful tool in following the logic of a FORTH program is the "stack

trace." A stack trace is a chart where the content of the stack is noted before and

after execution of each word.

It is very dangerous to mess with FORTH's stack while in an assembly language program.

It is possible to PUSH, items temporarily onto the stack and POP, them back off before

leaving the assembly language program, but other use of the stack is not advised.

3.1 USE OF REGISTERS BY FORTH

When working in the FORTH environment, the assembly language programmer must be

aware of the registers available for use. Some of the registers contain FORTH systems

11

variables, and if those registers are used, the contents must be restored to their original

condition in order for FORTH to continue to operate. Tables 4 and 5 give the

definitions of the register file locations for system variables used by FORTH.

Table 4 . FORTH Use of Registers

Register F i l e Address Al location

oa - 03
04 - OF

04
06
08

OA
QC
OE

10 - 1F
20 - 2F
30 - 3F
40 - 4F
50 - 5F

52-53
40 - 6F
70 - 77
78 - 7F
80 - E F

F0 - FF

Ports 0 - 3

FORTH In ter rupt Vectors
Vector f o r Level 0 in ter rupt
Vector f o r level 1 in ter rupt
Vector f o r level 2 in ter rupt
Vector f o r Level 2 in ter rupt
Vector f o r level 4 in ter rupt
Vector f o r level 5 in ter rupt (11)

FORTH System Variables
FORTH System Variables
16 Available Bytes
16 Available Bytes
FORTH Working Registers
Not used by FORTH
16 Available Bytes
8 bytes used by FORTH Ed i to r
FORTH System VeriabLes
Vrite Only N m r y (

(wr i t ing t o these addresses has no
effect, a d reeding gives you the
address i t s e l f)
28 System Registers

12

Table 5. FORTH System Variables

FORTH
Register Variable Source I n i t i a t
Location Name Table Value De f in i t i on

10
12

14
16
18
1A
1c
1E
20
22
24
26

28
2A
2c
2E

78-79
7A-7B
7c-7D
7E - 7F

DPL
H

>IN
BLK
BASE
T I E
STATE
HLD
so
RO
WIDTH
UARNING
CONTEXT
CURRENT
VOCL I NK
FENCE

ooc5
OOC7

oocp
OOCB
OOCD
OOCF
OOD 1
0003
0005
OOD 7
0009
OODB
0000
ODD F
OOE 1
00E3

0000
1000

0000
0000
0010
0000
0000
ouoo
0000
0000
0003
0000
002c
002c
OF&
OFFF

Places t o r i g h t of dec point
Dict ionary Pointer

Buffer I&x Pointer
Mass Storage Hook
Current Nunber Base
Terminal Input Buffer Pointer
Zero i f EXEC, CO i f Conpiling
Pointer t o No. being converted
I n i t i a l Value o f Dstack
I n i t i a l Value of Rstack
Name Uidth in Dict ionary Entry
Zero o r address of error t rap
Link t o context vocabulary
Link t o current vocabulary
Pointer: Last Dict ionary Entry
Lowest address used i n FORGET

(beginning of R A W

Used f o r stack belancing
FORTH Rstack pointer
FORTH Ins t ruc t ion Pointer
FORTH Execution Vector

3.2 Z8 MEMORY ALLOCATlON

The addressable memory in the system we are describing is allocated as given
in Table 6 ,

Table 6. 28 Memory Al locat ion

0000 - DOFF
0000 - OFFF
1000 - 17FF
1800 - l F F F
2000 - 3FFF
l oo0 - 8777
6800 - FFFF

Register F i l e
FORTH System
Editor
Stacks & Temporary RAM
Non- existent
Dict ionary
Special Hardware

13

3.3 ASSEMBLY LANGUAGE INTERWBJPI’ PIANDLING ROUTINES

The ZS hardware support for interrupt handling is described in section 2.5. The

interrupt protocol i s controlled by the Interrupt Priority Register (FB), the Interrupt

Mask Register (FB), and the Interrupt Request Register (FA). The sequence of interrupt

initialization is rigidly prescribe

the interrupt control registers loaded in the order 1) the Interrupt Priority Register, 2)

the Interrupt Mask Register, and 3) the Interrupt Request Register. Before interrupts

are enabled with an EI, command, the address of a valid interrupt routine must be loaded

into the register pair corresponding to the vector for interrupts being enabled (see Table

ts must be disabled with a Dli, command and

4).

The 28 supports six levels of vectored interrupts, IRQo through IRQ5. The interrupts are

in three groups (A, B, C) of two interrupt.. each. Group A is IWQ3 and IRQ5, grou

IRQO and IRQ2, and group C is IRQl and IRQ4. The Interrupt Priority Register sets the

relative priority within the group and the relative priority of the groups.

For example, in order to have IR

priority B > A > C, register F9 must be loaded with the value 3E.

> IRQ2, IRQ3 > IRQr, iRQ4 > IRQl, and Group

The Interrupt Mask Register (FB) determines w ich interrupts ace active. Bits 0-5

control whether the respective IRQs (set=acaive, resetrnonactive) result in transfer to an

interrupt routine w en an interrupt occurs. Bit ?’ is a global control for all interrupts.

Note, however, bit 7 i s not to be set or cleared by writing directly to register FB!

Interrupts must be enabled with an EI, command or disabled with a lXs command. EI,

and DB, do other things in addition to setting or resetting Bit 7.

For example, if you are using only IRQQ, the value 01 should be set in register FB,

and interrupts enable with an EB, command. Register FB will then contain the

value $1.

Bits 8-5 in the Interrupt Request Register (FA) are set by the respective incoming

interrupt signals. If interrupts are globally enabled, what happens when an interrupt bit

is set in FA is determined by corresponding bits in the Interrupt Mask Register (FB). If

the corresponding bit is set in FB, the hardware detects the interrupt and vectors to the

14

appropriate interrupt service routine. If the corresponding bit is FB is cleared, the

hardware takes no action.

Note well that bit 4 in FA, the Serial Output Complete interrupt, must newer be

cleared or the system will enter a tight loop waiting for it to be set, but it never

will be. FA is loaded with 10 Hex in the FORTH system initiation procedure.

The Interrupt Request Register (FA) permits using either polled or software interrupts.

To accomplish a software interrupt, a program sets a bit in (FA), and if the

corresponding bit is set in the Interrupt Mask Register (F'B), the hardware detects the

interrupt and vectors to the appropriate interrupt service routine.

For polled interrupts, the corresponding bits in the Interrupt Mask Register (FB) are

cleared to prevent the hardware from transferring to the interrupt service routine, and

the Interrupt Request Register (FA) is interrogated using a test-under-mask (TM,)
instruction. The software may take any action deemed appropriate.

Program memory locations 00-01, 02-03, ... OA-OB in the FORTH system EPROM

correspond to vectors for the respective I R Q . When an enabled interrupt request

occurs, the Program Counter and the Flag Register are pushed onto the stack. The

corresponding IRQ bit is reset in (FA), interrupts are disabled (Bit 7 in FB is cleared),

and an indirect Jump is taken using the address for the corresponding interrupt in the

EPROM memory. This address is the address of the interrupt service routine.

In order to be able to dynamically change the address of the interrupt handling routines,

the FORTH system EPROM has placed the address of special interrupt service routines in

the read-only program memory locations corresponding to the interrupt vector. These

special routines are nothing more than indirect jumps through a register file address.

The register file locations, which are easily modified, are used to vector to the starting

address of the actual interrupt service routine.

Since the register file addresses 00 to 03 correspond to the 28 hardware ports, these

cannot be used for the service routine addresses. Thus, the register pair 04-05 was

selected to contain the address of the IRQo interrupt service routine. Registers 06-07

I5

contain the address of the 1RQ1 service routine, and so on to register OE-OF for the

IRQ5 routine address.

'The last instruction in the interrupt service routine must be an I E T , (return from

interrupt). An NET, causes the Flag Register and Program Counter to be popped from

the stack, and program execution to resume where it left off. TRET, also re-enables

interrupts by setting bit 7 of the Interrupt Mask Register (FB).

Section 5.1 gives an example of a time-of-day clock using an internal timer and an

interrupt handling routine.

Interrupt handling routines gain control when a hardware interrupt occurs, which may

happen while a FORTH word is executing. Thus an interrupt routine must take care

either to not disturb the environment, or to save it and restore it prior to exiting.

Section 3.1 gives information about which registers are used by the Micromint 28 FORTH

System.

Execution speed. is usually very important in interrupt routines, Either the process

causing the interrupt must be handled promptly, or the event occurs so frequently that it

must be completely handled in a very short time in order to have any time for other

processing. 'Thus, interrupt routines are usually written in optimized assembly language,

Since execution speed in interrupt handling i s important, one should take advantage of

the machine instructions which are fastest. On the 28, this should include the working

register instructions, which require that the register pointer be set to a block of working

registers. Unfortunately, FORTH uses certain registers which the interrupt routine must

either save and restore, or not use (See Table 4). Also unfortunate is the fact that the

Set Register Pointer instruction is a unique instruction for each block o f registers, and

does not take an argument. This results in the situation that either the instruction must

be modified in line (a poor programming practice, especially in read only memories) or

the setting must be saved and tested to determine which of a set of instructions should

be executed in order to restore the previous condition. An example of the latter

technique i s included in Section 5.2.

4. WRITING AN ASSEMBLER PROGRAM

The implementation of the Z8/FA defines the FORTH word ":," (colon comma) to be

"define an assembly language program". Note that we have chosen to use a familiar term

'I:" (colon) with a 'I," (comma) following it. This convention will be used throughout the

Z8/FA. For example, "LD," will be a FORTH word which behaves like the ''LLI)" machine

OP code. The screen

:, Mb 30 SUP, 60 6F RR Lb, YOP, H I T , ;s
defines the FORTH uard bbFOObl t o be the instructions

3130 (SRP 30)

E b b 0 6 F (LD 60.6F)

FF (M O P)

3050 (JP 50)

in machine code. Note that all Z8/FA instructions have a "," (comma) after the

assembler OP codes, and also note that the parameter or argument to the OP code

precedes the OP code in the FORTH version rather than the conventional method of

following the OP code with the parameters. These conventions are followed throughout

the Z8/FA.

Also note in the previous example the "EXIT," instruction, which for the Micromint 28

FORTH System translates into a "JP 50" instruction. This is absolutely essential for any

assembler program to be executed as a FORTH word, because it is the way to re-enter

the FORTH environment. Forget to terminate your assembly language definition with

that command, and you can never get back to FORTH!

When an OP code has more than one argument, the destination (the one whose value is

changed) is always listed first. For example,

60 QF RR LD,

is the instruction to load the contents of register 6F into register 60. Only the content

of the first Z8/FA operand is changed by any Z 8 instruction.

Finally, notice that the address mode (if necessary) immediately precedes the OP code.

Appendix I shows the allowable address modes for each OP code.

17

4.1. CONDITION CODES

Logic and conditional jump instructions are controlled by the C, Z, S, and V flags. The

four-bit Condition Code names which have been defined to test for these flags are shown

in Table 7. Note that condition codes are always in lower case.

Table 7. Condition Codes

CODE Uean i ng

carry
tU

2

nz
P l
mi

OY

nov
w
Qe
Lt

gt

u w
Le

u l t
ug t
ule

a L nays
ne

carry
no carry
zero
non zero
plus
minus
overf LQU

no overflou
q u a I

greater than or equaL
less than
greater than
Less than or equal
unsigned greater than or equal
unsigned Less than
unsigned greater than
unsigned Less than or equal
not equal
aliJays true

4.2 CONDITIONAL AND FLOW CONTROL STATEMENTS

The Z8/FA does not have any way of defining a label which can be used in an assembler

instruction. Consequently, the Jump instructions, both to absolute and relative addresses,

have no meaning. There are, however, some FOR'TI-I-like assembler words which compile

to these instructions, Among these are the

DO, L O W ,
I F , ELSE. THEM,
BEGIM, UNTIL,
BEGIN, WHILE, REPEAT, and
BEGIN, AGAIN,

logic structures.

18

Structured Logic Control Commands are implemented in the ZS/FA in a manner very

similar to the way FORTH implements branching and nesting. These logic commands

allow the user to create loops and conditional branches in a fully structured way without

having to use jump instructions.

4.2.1 D0.andLOQ. P In s truction s

DO, and LOOP, are assembly language commands which allow you to create a set of

instructions which is executed repeatedly. The primary difference between these

assembly language commands and the corresponding FORTH commands is that the

assembler requires that you set up your loop index, counter and comparison logic

yourself. By executing an instruction which causes the Z8 flags to be set, you simulate

the effects of a FORTH DO loop. For example,

RO 7 LDIM, DO, . . . RO R DEC, LOOP, . . .
will execute the instructions with RO containing first a seven, then a six, and so on.

The last pass through the loop will occur when RO contains a one, because when RO is

decremented to zero, the LOOP, instruction will not branch back for another loop.

DO, and LOOP, are normally used with a counter of some variety. However the

instructions between the DO, and the LOOP, will continue to be executed until the ZERO

flag in the flags register is set when the LOOP, is encountered.

4.2.2 cc IF. IELSE.1 THEN. Instructions

The IF, ELSE, THEN, construct differs from FORTH in that you must specify a condition

code prior to the IF, command, and this condition code, together with the status of the

flags register determine which branch is taken.

The IF, instruction must be preceded by a condition. The IFs instruction looks at the

flags register. If the condition specified before the IF, is true, the instructions

following the IF, statement are executed next. If the condition is not true, then the

instructions following the corresponding ELSE, (if any) are executed. In either case, the

next instructions are taken from behind the corresponding THEN, statement.

19

4.2.3 BEGIN. cc WNT’IL. Instruction$

The BEGIN, . . . cc UNTIL, instruction pair is used to bracket a group of instructions

which will be executed repeatedly until the condition prescribed by the condition code

preceding the UEaTIE, is true when the UNTIL, is encountered. As long as RO and R1
have the same value, the instruction in the following loop will continue to be executed.

This pair of instructions defines a loop which continues forever, unless you have

provided for some other exit.

BEGIN, (. . .) AGAIN,

executes the instructions between the BEGIN, and the AGAIN, repeatedly.

4.2.5 BEGW. cc WHILE. REPEAT. Instructions

These instructions define a loop which i s executed repeatedly until the specified

condition code is false when the WHILE, is encountered. For example,

BEGIN, (. . .) FO 1IB PUM CP, ne WHlLE, (. . .) REPEAT, (- . .)
executes the code after BEGIN,. If the content of FO (the serial input buffer) is not 18

(escape), the code between E, and REPEAT, i s executed and it branches back to

BEGIN,; if the serial input buffer contains an escape, execution resumes with the code

after REPEAT,.

4.2.6 Additional Logic Instructions

All of the above instructions are implemented as lower-case BP-codes as well as those

described above (e.g., Begin, again, are functionally the same as BEGIN, AGAIN,). The

effect of the lower-case version is identical with the upper-case version, with the

exception that a Jump-relative (ccB) instruction is generated instead of a Jump-direct

(ccD) instruction. These instructions take less space and execute faster than their

upper-case equivalent.

20

Since all the lower-case logic instructions use a Jump-Relative (ccB) instruction, it is

important to be sure that the distance between the jump instruction and the point it is

supposed to reach is less than 127 bytes. The ZS/FA does not warn you if this limit is

exceeded. It happily generates code to branch to some very unexpected location.

4.2.7 EXIT. Instruction

The EXIT, instruction is provided as a means of returning from an assembly language

subroutine to the FORTH program which called it. In this version of the assembler,

EXIT, is equivalent to an indirect jump to the address in register pair 50-51, which is

where the Micromint version of the FORTH system keeps the address of the routine to

process the next word (Micromint 1984).

4.3 USING WORKING REGISTERS

An assembly language routine may have several reasons for setting the register pointer.

First, if very fast access to the 28 ports is required, the 00 SRP, instruction can be

used to provide access to the ports with working register instructions.

Other likely values for the register pointer are 30, 40, and 60 because at each of these

locations is a block of 10 hexadecimal (16 decimal) registers which are not used by the

FORTH system.

Finally, it should be possible to use the instruction 'FO SRP,' to set the register pointer

to access the system registers stored at FO-FF. This would enable very fast

initialization of the Z8 system registers. Note that any value between 80 and EO would

not make sense for a register pointer, because these register file locations are not

implemented for the 28.

The FORTH system uses working registers when interpreting FORTH words. Thus any

assembly language routine which uses working registers must restore the register pointer

to the value it was upon entry before exiting to FORTH or dismissing the interrupt. A

routine to perform this function is described in section 5.2.

21

5.1 TIME OF DAY CLOCK

An example of a time-of-day clock running on Timer T1 and IRQ5 is given in the

appendix. This example keeps the hours in register 33, minutes in 32 and seconds in 31

Register 30 is used to count up to one second. Two FORTH words are defined by this

example. SETTIME takes three parameters following the word. The parameters are

Hours, Minutes and Seconds in decimal, and the clock is set to that time. The word

TIME requires no arguments, and prints the current value of the clock.

SETTIHE 8 15 0 sets the clock t o 8 ~ 1 5 . Five seconds la te r , the cornnand
TIME causes the printout

T i m e i s 8:15:5

The listing of the programs is given in appendix IV

5.2 SAVE AND RESTORE THE REGISTER POINTER

The instruction 50 SRP, is used to set the register pointer to access the registers 50 to

5F. FORTH uses 50-5F as working registers in almost all cases. When the FORTH

<BUILD DOES> structure is used, working registers are set to 70-7F. Thus any assembly

language routine which uses working registers must restore the register pointer to the

value it was upon entry before exiting to FORTH or dismissing the interrupt. Following

is an example of how you invoke a routine to perform this function. The routine

requires that you push the current value of the working register pointer onto the stack.

When you wish the register pointer restored to its previous value, pop the old value into

register 6E and call the routine.

:, SAWE.-BEGISTER_BOINTER-EX~MP~~
FD R PUSH, nn SRP,

Use Working Registers nn Here

bE POP, RST CALL, E X I T , (or IRET,)

This example also demonstrates the use of the CALL, and RET, instructions. Appendix V

contains a listing o f the RST routine.

22

5.3 REPLACEMENT FOR LOOP

Edwards (Sept. 1987) examined the code used by 2 8 FORTH for loop control, and showed

the criticality of the auxiliary assembly-language routine used to implement the FORTH

word LOOP. In that document, Edwards proposed a replacement FORTH word LOOPCODE

for the assembly language code required to execute the FORTH word LOOIP. Edwards

constructed a new FORTH definition to link to the new assembly language routine

LOOPCODE. This definition of LOOP was identical to the original except for linkage to

the optimized routine LOOPCODE rather than the code for LOOP stored in internal ROM.
Edwards found the redefined word LOOP to be 3.8 times faster, but it occupies about 30

bytes more than the definition provided in ZS FORTH internal ROM. The Z8/FA code

for Edwards’ LOOPCODE is shown in Figure 1.

28
Code
-.-.

3170

4C70

C34A
C36A
C3LA
C23A
AOEO
223 1
3220

7818

80EA
80EA
D21A
80EA
DZOA
c20c

AOEC
C P l C
80EC
020 1
12CO
3050

AOEC
AOEC
AOEA
3050

Z W F A
A s s d L y
Language

:, LOOPCODE
70 SRP,
R4 70 LDIM,
R4 UA LDCI,
R 4 UA LDCI,
R4 UA LDCI,
R3 UA LDCI,
WO R INCU,
R3 R1 rr SUB,
R2 RO rr SBC,
ge i f ,
UA R DECU,
UA R DECU,
UA R1 STC,
UA R DECU,
UA RO STC,
RO UC LDC,
UC R INCW,
R1 UC LOC,
UC R DECU,
RD R1 rr ADD,
RC RO rr ADC,
EXIT,

. _ _ _ _ _ _ _ _ _ _ _ _ _ _

then,
UC R INCW,
UC R INCU,
UA R INCU,
EXIT,

Comnents ----.-----_-________.----.--.--.-------

Use R e g i s t e r f i l e locations 70-74

L o a d index t o UO from RSTACK

Load l i m i t t o U2 f r o m RSTACK

Increment index
S u b t r a c t index from L I M I T

E x i t Loop i f updated INDEX exceeds L I M I T
P o i n t back t o INDEX on RSTACK

Push updated INDEX back on RSTACK

Move IP a d j u s t m e n t t o UO

P o i n t back t o high byte of a d j u s t m e n t
A d d adjustmnt t o IP

LOOP E X I T
S k i p over I P adjustment

P o i n t RSTACK back t o tow byte o f INDEX

23

Figure 1. Assrmbly-Language Code f o r LOOPCODE

For comparison, Edwards’ definition of the FORTH word LOOPCODE was:

CREATE LOBPCOaE SHUOGE 3170 , 4670 , C34A , C34A , t34A , C23A , AOEO , 2231 , 3220
, 7818 , MEA I MEA , D21A I 8aEA , D20A , CZOC , AOEC , C21C , BQEC , O2D1 , 12CO
, 3050 , AOEC AOEC , AOEA , 3050 ~

24

6. ERRORNESSAGES

The Z8/FA has only one error message,

ERROR # chex numberr

The meaning of the hex number is shown in Table 8:

Table 8. Error Messages

VALUE -
4

MEAN I NG

Inva l id address mode code used with an
instruction which requires en R or IR address
mode.

Invalid address mode code for an instruct ion
referencing two registers.

Invalid address mode code for an LD, instruction.

25

This report has presented a FORTH Assembler for the 2 8 microcomputer to facilitate

program development for SMART HOUSE rapid prototyping. The 28 FORTH system

provides the capability to develop features and immediately see the results of the

development. If the results are unsatisfactory, another approach may be tried without

the penalty of a delay imposed by a "batch mode" system. This means that many

different options may be tried, and only those which are desirable are kept. This is the

essence of rapid prototyping.

In applications like those present in the SMART HOUSE, it is frequently desirable to

improve the performance of FORTH words or interrupt service routines by coding them

in the native machine code o f the processor being used. This can be accomplished by

maintaining the actual binary codes for the instructions, but that is a difficult process.

Lack of a good "binary editor" makes the process, for all practical purposes, impossible.

Code written in a mnemonic assembly language is easier to understand and modify than

code written in binary or hexadecimal. By defining mnemonic FORTH words to represent

the features of the 28 processor, one can make the features of the processor available to

a programmer through a text file which can be maintained with any good text editor.

The 28 FQR'T'H Assembler presented here has proven useful in improving the performance

and functionality of prototypes of SMART HOUSE functions. It makes possible extremely

rapid execution rates through replacement of entire groups of FORTH words with

optimized machine code, and it enables the programmer to substantially improve execution

speed of interrupt service routines while maintaining the readability of the program.

26

REFERENCES

Edwards, R., Evaluation of a Single Board Microcomputer Suitable for Ra,pid Prototyping,
ORNL/TM- 10361, Oak Ridge National Laboratory, February 1987.

Edwards, R., Optimizing the Zilog FORTH Microcontroller for Rapid Prototyping,
ORNL/TM- 10463, Oak Ridge National Laboratory, September 1987.

28 Microcomputer Technical Reference Manual, Zilog Inc., 1984.

Brodie, L., Starting FORTH, Prentice-Hall, Englewood Cliffs, N.J., 1981.

Micromint 28 FORTH Reference Manual, Micromint Tnc., 1984.

27

A
P

P
E

N
D

IC
E

S

A
P

P
E

N
D

IX
 I. 2

8
 IN

ST
R

U
C

T
IO

N
 M

A
T

R
IX

a
X

u
a

CL
a
-

u
(
Y

n
u

u
p
:

L

a
-

U
L

28

APPENDIX 11. TABLE OF INSTRUCTIONS

Nex Dest i - Sample Machine
Code nation Source Instruction Code

00
01
02
03
04
05
06

07

10
1 1
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

R
IR
r
r
R
R
R
IR

R
IR
r
r
R
R
R
IR

R
IR

r
r
R
R
R

IR

(FD)
r
r
R
R
R

I R

r
Ir
R
IR
I M

I H

r
Ir

R
1R
IM
IM

r
Ir
R

IR
IM
I M

R
R
r

Ir
R

I R
IM
It4

60 R DEC,
6 1 IR DEC,
R2 R3 rr ADD,
R 4 R5 rIr ADO,
66 67 RR ADO,
68 69 RIR ADD,
6A 01 RIM ADD,

68 02 IRIM ADD,

bo R RLC,
61 I R RLC,
R2 R 3 rr ADC,
R4 R5 r l r ADC,
66 67 RR ADC,
68 69 RIR ADC,
6A 01 R I M ADC,
68 02 IRIM ADC,

60 R INC,
61 IR IWC,
R2 R3 rr SUB,
R4 R 5 r l r SUB,
66 67 RR SUB,
68 69 RIR SUB,
6A 01 R I M SUB,
66 02 [RIM SUB.

50 JP,
60 SRP ,
R2 R3 rr SBC,
R4 R5 r lr SBC,
66 67 RR SBC,
68 69 R I R SBC,
6A 01 RIM SBC,
68 02 IRIM SBC,

00 60
01 61
02 23

04 67 66
05 69 68
06 6A 01
07 68 02

10 60
1 1 61
12 23
13 45
14 67 66
15 69 68
16 6A 01
17 6B 02

20 60
21 61
22 23
23 45
24 67 66
25 69 68
26 6A 01
27 68 02

a3 45

30 50
31 60
32 23
33 4s
36 67 66
35 69 68
36 6A 01
37 BB 02

29

Hex D e s t i - Sarrple Mach i rw
Code nation Source Instruction Code

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61
62
63
Q4
65
66
67

70
79
72
73
74
75

76
77

R
I R
r r
r I r
R R
R I R
R I M

I R lkl

R (stack)
I R (stack)
r r
r I r
R R
R I R
R IM

IR I M

R
I R
r r
r I r
R R
R 1R
R IW

I R I M

(s t a c k) R
(stack) I R

r r
r I r
R R
R I R
R I M

I R IM

60 R DA,
61 I R DA,
R 2 R3 rr OR,
R4 R5 rIr OR,
66 67 RR OR,
68 69 R I R OR,
6 A 01 R I M OR,
6B 02 I R I M OR,

60 R POP,
61 I R POP,
RZ R3 rr AMO,
R 4 R5 rIr AND,
66 67 R R AND,
68 69 R I R AND,
QA 01 R I M AWD,
68 02 I R I M AND,

60 R COH,
61 I R CW,
R2 R 3 rr TCH,
R4 6t5 r l r TCM,
66 67 RR TCM,
68 69 R I R TCH,
68 01 R I M TCM,
6B 02 !RIM TGH,

60 R PUSH,
61 I R PUSH,
R 2 R3 rr TM,
R4 R5 r l r TM,
66 67 RR TH,
68 69 R I R TM,
6A 01 R I M TM,
68 02 I R l M TM,

40 60
41 61
42 23
43 45
44 67 66
45 69 68
46 bA 01
47 68 02

50 60
51 61
52 23
53 45
54 67 66
55 69 58
56 6A 01
57 65 02

60 60
61 61
62 23
63 65
64 67 M
65 69 68
66 6A 01
67 65 02

70 60
71 61
72 23
73 45
74 67 66
75 69 68
74 6A 01
77 68 02

Hex Desti- Sample Machine
C o d e nation Source Instruction Code

80
81
82
83
84

85
86
a7

90
91
92
93
94
95
96
97

A0
A I
A 2
A3
A4
A5
A 6
A7

BO
81
82

83
84

65
86
87

R 60
I R 61
(Not Inplementedl
(Not Inplemented)
(I nva 1 id)
(Invat id)
(Inva I id)
(Invalid)

R 60
I R 61
(Not Implemented)
(Not Implemented)
(Inva 1 id)
(lnval id)
(I nva 1 id)
(I nva 1 id)

R
I R
r r
r I r
R R
R I R
R IM

I R I M

R
I R
r r
r Ir
R R
R I R
R IM

I R I H

60
61

R DECU,
I R DECU,

R RL,
I R RL,

R INCU,
I R INCU,

RZ R 3 rr CP,
R 4 R 5 rlr CP,
66 67 RR CP,
68 69 R I R CP,
6A 01 R I M CP,
68 02 I R I H CP,

60 R CLR,
61 I R CLR,
RZ R3 r r XOR,
R 4 R 5 r l r XOR,
66 67 RR XOR,
68 69 R I R XOR,
6A 01 RIM XOR,
.SI a2 IRIM XOR,

8060
81 61

90 60
91 61

A0 60
A 1 61
AZ 23
A3 45
A 4 67 66
k5 69 68
A 6 6A 01
A 7 be 02

BO 60
B1 61
82 23
83 45
84 67 66
B5 69 68
06 6A 01
B? 58 Or?

31

Hex
C o d e

co
C1

c2
C3
c4
c 5
C6

c7

DO
D 1

D2
03
04
D5
D4

D7

EO
E l
E2
€3
E4
E5
E6
E7

FO
F1
F2
F3
F4
F5
F6
F7

Dest i - Sample Machine
nat ion Source Ins t ruc t ion Code

R 40 R RRC, CO 60
I R 61 IR RRC, C1 61
r Irr R 2 W4 LDC , c2 24

Ir Irr R3 W6 LDCI, C3 36
(Inva l id)
(I nva 1 id)
(I nval id)
r Rx R8 60 R9 LDX, c7 89 60

(R 9 i s the index reg is ter i n th is e x a v l e)

R
I R
r Irr

Ir Irr

(Inva l id)
l W

A(1M)
(XX xx

R x r

60 R SRA, DO 60
61 I R SRA, D 1 61

R2 v4 STC, D2 42
R3 W6 STCI, 03 63
47 c u a , D4 67

' NAME CALL, D6 xx xx
represents the address of NAME)
40 R8 R9 STX, D 7 89 40

R 60 R RR, EO 60

(I nval id)
r I r R4 R5 rIr LD, E3 45

R R 66 67 RR LD, E4 67 44
R I R 68 69 I R R LD, E5 69 68
R I M 6A 01 R I M LD, E4 6 A 01

I R In 6B 02 I R I M LD, E7 68 02

I R 61 I R R R , E l 61

R 60 R SWAP, F O 60

IR 61 I R SUAP, F 1 61
(I nva l i d)

I r r R2 R3 Irr STR, F3 23
(I nva I id)

I R R 64 65 I R R STR, F5 65 64

(Inva l id)
(Inva l id)

32

Hex Desti- Sample Machine
C o d e nation Source Instruction Cade

r8
r9

r A
rB
r C
rD
rE

OF
1F
2F
3F
4F
5F
6F
7F
8 F
9 F
AF
8 F
CF
D F
E F
FF

r R RC 6D
R r M RF

(Not implemented)
(See Logic C o d e s)

(See Logic Codes)
r IH RO FF

r RO

(Invalid)
(1 nval id)
(1 nva I id)
(Invalid)
(lnval id)
(I nva L id)
(Inva 1 id)
(Invalid)

< F B I
(FB)

(rStack)
(r S tac k)

(FC)
(FC)
(FC)

LDUR,
STUR,

LDIW,

rIUC,

D I ,
E I ,

RET,
IRET,
RCF ,
SCF,
CCF,

IJW,

C 8 60
F 9 6E

OC FF

OE

8F
9F
A F
BF
CF
DF
E F
FF

Explanation of codes used in source and destination field.

Code Meaning

r
R
1M
Ir
IR
IW
Irr
xR

xx xx
(stack)
(rStack)

Working Register
Register
Immediate
Indirect reference through a working register
Indirect reference through a register
Indirect to external memory through a register pair
Indirect to external memory through a working register pair
Refers to a register displaced from register R by the content of working
register x
Is used for an instruction which i s intended to modify bits of a system
register. Many instructions result in the bits of the flag register being
modified.
Refers to an address which is compiled into the code.
Refers to the stack.
Refers to the return address stack.

The content of the source field of an instructions is never changed. Those instructions
which have a destination field have the capability to change the content of the
destination field.

33

Sone instructions can modify the content of the register used €or indirect addressing
(e.g. LDCI, S K I ,) . Any instruction for which a stack is mentioned modifies that stack.

34

APPENDIX EII. LISTING OF THE Z8/FA

: ERR .'I ERROR # 'I H. QUIT ;
: ?ERR SUAP I F ERR ELSE DROP THEN ;

\ Def in ing Words
: I N SWAP 10 u* DROP FO AND SWAP OF AND OR ;
: MO <BUILDS C, DOES, Ci3 C, ;
: M 1 <BUILDS C, DOES, C@ OVER DUP 7 > OVER 2 < Qi7 5 ?ERR OR C, DUP 5 >
DROP SWAP CC, ELSE 3 > I F CC, ELSE IN 6, THEN THEN ;
: N I <BUILDS C . DOES> Ca OVER 1 > 4 ?ERR OR CC, ;
: 01 <BUILDS C, DOES, C;a C, I N C, ;
: of <:BUILDS C, DOES* C a C, SWAP I N C, ;
: P I <BUlLDS C, DOES> C@ CC, ;
\ A d d r e s s Mode Names

: cc, c, c, ;

I F

0 KO)(R 1 KON I R 2 KON rr 3 KON rIr 3 KON Irr
4 KON RR 5 KON IRR 5 KON R I R 6 YON R I M 7 KON I R I H
\ R e g i s t e r Names
EO KDU RO E l KON R 1 E 2 KON R 2 E 3 KON R3 E 4 KON Rb E5 KON R 5
E 6 KON R6 E7 KON R7 E8 KON R 8 E 9 KON R 9 EA KON RA EB KON RB
EC KON RC ED KON RD EE KO# RE EF KON RF EO KON UO EZ KON U2
E4 KON Ub E 6 KON U6 E8 YON US EA KON WA EC KON UG EE KON WE

\ OP Codes
8F MO D I , 9 F MO EI, AF MO RET, 3F HO IRET, CF MO RCF, DF MO SCF, EF MO
CCF, F F MO NOP, 30 P I JP, 31 P 1 SRP, 00 Ml ADD, 10 M I ADC, 20 MI SUB, 30
MI SBC, 40 MI OR, 50 M I AND, MI M I TCM, 70 nl TM, AD HI CP, BO HI XOR,
00 N 1 DEC, 10 N 1 RLC, 20 N1 INC, 40 N1 DA, 50 1111 POP, 60 N1 COM, 70 N1
PUSH, 80 N 1 DECU, 90 N1 RL, A 0 N 1 INCW, BO N 1 CLR, CO N1 RRC, D o N1 SRA, EO
N1 RR, FO N 1 SUAP, C2 01 LDC, 02 01 STC, C3 01 LOCI, D3 01 STCI,
: LD, DUP 7 > OVER 3

: LDWR, SWAP 08 I N CC, ;
: STUR, 09 I N CC, ;
: LDIH, SWAP OC I N CC, ;
: r l N C , OE IN C, ;
: CALL, D6 C, , ;
: CALL@, D4 CC, ;
: LDX, C7 C, ROT SWAP I N CC, ;
: STX, D7 C, I N CC, ;
\ C o n d i t i o n Code Names

OR 7 ?ERR DUP EO OR C, DUP 5 > I F OROP
SUAP CC, ELSE 3 > I F CC, ELSE I N C, THEN THEN ;

F KON c a r r y 7 KON nc E KO)(z 6 KON nz 5 KON pL 0 KON m i
C KON ov 4 KOU nov E KON eq 1 KON ge 9 KON I t 2 KON g t

A KON le 7 KON uge F KON utt 3 KON ugt 6 KON ule 6 KON ne
8 KON never 0 KOW atnays
: CHO C, HERE 0 ;, CREATE SMUDGE HERE 2 + , ;
: CHI C, HERE 1+ - C, ;

35

......

/ L o g i c and Flaw C o n t r o l
: do, HERE ;
: begin, HERE ;
: DO, HERE ;
: BEGIN, HERE ;
: Loop, EB CH1 ,
: LWP, ED C, .- ;
: i f , OB I M CHO c, ;
: I F , OD I N CHO I ,

: then, HERE OVER 1+ - SWAP C! ;
: THEY, HERE SWAP ! ;
: else, 88 CHO C, SUAP then, ;
: ELSE, CHO , SWAP THEN, ;
: until, OB IN CHI I

T I L , OD IN C, ;
: while, i f , ;
: WHILE, I F , ;
: repeat, 8B 6 , SWAP HERE 1+ - C, then, ;
: REPEAT, 130 C, SUAP , HERE SMAP ! ;
: again, 88 CH1

: E X I T , 3050 , ;

36

APPENDIX 1V. TIME-OF-DAY CLOCK PROGRAM LISTING
L

:, TIME-OF-DAY \ I f the t imer has in ter rupted
68 R INC, \ increment the f rac t i ons o f a second
68 55 R I M CP, \ and see i f i t has reached the l i m i t .
eq IF, \ I f so,

68 0 RIM LD, \ c lea r i t and
69 R INC, \ increment seconds. D i d the MPaber
69 3C RKM CP, \ of seconds reech 607
eq I F , \ I f so,

69 0 R I M LD, \ c lear seconds and
6 A R INC, \ increment minutes. Did the nunber
6A 3C R I M CP, \ of minutes reach 60?

6A 0 R I M LD, \ c lea r minutes and
66 R INC, \ increment hours.

eq IF, \ I f so,

THEN,
THEN,

THEN,
I RET, \ Return t o the p o i n t o f i n te r rup t i on .

: DECIMAL A 18 ! ; : HEX 10 18 1 ;

:, DI D I , EXIT,
: #O DECIMAL 20 WORD NUMBER DROP HEX ; : SD. S->D D. ;

:, E1 FA 10 RIM AID, € 1 , E X I T ,

: 1 - I N I T \ Timer I n i t i a l i z a t i o n
D I \ Disable I n te r rup ts
FF F3 C! \ Load m a x i m value in TI Prescaler
00 F2 C! \ Clear TI timer reg is te r
F1 GI OC OR F 1 C! \ Load TI and Enable Count

00 68 ! 00 6 A ! \ Clear reg i s te rs used f o r clock
1E F9 C! \ Set In te r rup t P r i o r i t i e s
F8 c@ 20 OR FB C! \ Set enable b i t f o r IRQ5

TIME-OF-DAY E ! \ P u t address of rou t i ne in IRQ5 vector

\ But don't enable i n te r rup ts yet. . .
: SETTIME

T - I N I T \ I n i t i a l i z e T i m e r
#D 68 C! \ Input Hours
m 6A C! \ Input Minutes
fi9 69 C ? \ Input Seconds
0 68 C! \ Clear f rac t i ons of a second
E1 ; \ Enable i n te r rup ts t o s t a r t the clock

: TIME \ Display current t ime
DEC SPACE 66 C@ SD. .'I :" 6 A C@ SD. .I' :Ir 69 Ca SD. CR REX ;

37

APPENDIX V. SAVE AND RESTORE WQRKiNG REGISTER PROGRAM LISTING

:, RST
6E FO R I M AND,

6E 00 R I M CP, eq I F , 09 SRP, THEM,
6E 10 RIM CP, eq If, 10 SRP, THEN,
6E 20 RW EP, eq I F , 20 SRP, THEN,
6E 30 R I M CP, eq I F , 30 SRP, THEN,
6E 40 R I M CP, eq I F , 40 SRP, THEN,
SE 50 RIM CP, eq I F , 50 SRP, THEN,
6E bo R I M CP, eq I F , 60 SRP, THEN,
M 70 R I M CP, eq I F , 70 SRP, THEN,
bE FO RIM CB, eq I F , FO SRP, THEN, RET,

\ Restore Working Register Pointer
\ t o Value Saved in Register 6E

Linkage Example

(. . . I
FD R PUSH,

x x SRP,
(. . .)

bE R POP,
' RST CALL,

(. . . I

\ Or ig ina l reg i s te r po inter has unknown value.
\ Save o r i g i n a l reg i s te r po inter value,
\ Y o u may change the reg i s te r po inter here,
\ but the stack must remain blanced.
\ P u t saved value i n reg i s te r 6E.
\ Call rout ine t o restore reg i s te r pointer.
\ Register po inter i s restored t o o r i g i n a l value.

38

ORNL/TM- 108 18

INTERNAL DISTRIBUTION LIST

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

W. Fulkerson
R. T. Goeltz
J. 0. Kolb
Russell Lee
V. C. Mei
George T. Privon
P. M. Spears
D. P. Vogt
R. G. Edwards
Steve Wallace
T. J. Wilbanks
Teresa G. Yow
D. E. Reichle
Eleanor Rogers

15. Central Research. Library
16. Document Reference Section

20. Laboratory Record-RC
21. R. B. Honea
22. ORNL Patent Office
23. R. B. Shelton
24. Reid Gryder

17- 19. Laboratory Records

EXTERNAL DlSTRlBUTION LIST

25. Office of Assistant Manager for Energy Research and Development, Department of
Energy, Oak Ridge Operations Office, Oak Ridge, TN 37831.

26-35. Office of Scientific and Technical Information, P. 0. Box 62, Oak Ridge, TN
37831.

36. R. L. Perrine, Professor, Engineering & Applied Sciences, Civil Engineering
Department, Engineering I. Room 2066, University of California, Los Angeles, Ca
90024.

37. D. E. ~ o ~ K ~ ~ ~ ~ , Yrofessor of Sociology, Michigan State Wniversity, 201 Berkey
Hall, East Lansing, MI 48824-1 11 1.

38, ruce Buchanan, Department of Computer Science, Alumni Wall, Rm. 318,
University of Pittsburgh, Pittsburgh, PA 15260.

39. J. J. Cuttica, Vice President of Research & ~ v e ~ o ~ ~ ~ ~ ~ , Gas Research and
Development, Mawr Avenue, Chicago, IL 6063 1.

40. Grimes Slaughter, Conray, Inc., 249 N. Purdue Ave., Apt. 211, Oak Ridge, TN
37830.

41 -46. Charlie Adkins, Smart House Development Venture, Inc., 400 Prince Georges
Center Blvd. Upper Marlboro, MI) 20772-873 1.

47. Martin Williams, Professor, Department of Economics, Northern Illinois University,
Dekalb, 1E 601 15.

39

