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ABSTRACT 

This report studies and develops some aspects of the optimal control 
theory with the objective of evaluating benefits that the nuclear 
industry could obtain by applying advanced control techniques. 

First, the basic relationship between optimal control theory and closed- 
loop control design has been identified. As a result of this work, new 
algorithms have been developed for feedback implementations. 
applicability of these new algorithms to problems such as state 
estimation, filtering, model update, and model decoupling has been 
studied. In addition, new alternatives to control design that are not 
based on optimal control theory have been developed. 

The 

A broad range of application examples has been presented for several 
physical systems, including pressurized water nuclear reactors, boiling 
water nuclear reactors] steam generators] and robotics. 
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1. INTRODUCTION 

The instrumentat€on and control hardware for nuclear reactors has been 
developed based primarily on analog circuits, because digital 
instrumentation was not available when most nuclear reactors were built.. 
Control algorithms were designed to take into account the analog 
constraints, so that an impressive amount of creative effort had to be 
devoted to the design of the analog controllers. 
tools available to the designer, the results obtained were excellent, as 
the performance of these control algorithms has demonstrated for a long 
period of time. 

Given the limited 

Analog circuits are becoming obsolete; they are not the standard 
hardware used by the control systems industry anymore. Indeed, major 
vendors of  control hardware in the United States are not selling 
replacement analog systems or even spare parts for existing systems. 
Thus, the nuclear industry is now facing the challenge of having to move 
to digital-based hardware systems. 

Certainly, it is necessary to change the hardware, but the question that 
remains is: Do we also have to change the control algorithms? 

The introduction of fast and reliable microprocessors has opened the 
possibility of performing sophisticated on-line calculations. 
new tools available, it appears to be possible to improve the dynamic 
behavior of  nuclear reactors. Perhaps, by using more sophisticated 
control algorithms, nuclear reactors could be operated under more 
demanding conditions, or perhaps it will be possible to decrease costly 
downtime. 

With the 

This report assesses and develops these possibilities. 

1.1 MOTIVATION AND OBJECTIVES 

In the past three decades significant advances in control techniques 
have been introduced in many engineering fields. 
aerospace engineering has been very innovative in developing algorithms 
that emphasize the characteristics of adaptability and robustness in the 
control of nonlinear systems. On the other hand, mathematicians have 
introduced new powerful tools to analyze and study the dynamic behavior 
of  sophisticated systems. 

In particular, 

A f e w  of these advanced techniques have reached the nuclear engineering 
field. In the last few years, an important amount of  research time has 
been invested in analyzing how much improvement can be achieved by 
applying advanced control algorithms to nuclear reactors. This report 
intends to be a contribution to that effort. 

3 
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The objectives of  this report are to: 

1. assess optimal control theory as a tool for the development of 
closed-loop control algorithms; 

2. develop alternative formulations of  the optimal control theory for 
nonlinear systems suitable for on-line computer implementation; 

3 .  study the applicability of the above alternative formulations to 
plant-state estimation, filtering, model updating, and large-model 
decomposition and decoupling; 

4 .  implement the new techniques on a broad range of typical 
applications; and 

5 .  develop new alternatives to control design that are not based on 
optimal control theory. 

1.2 BACKGROUND 

The two most important control hardware vendors in the United States 
(Foxboro and Baley) have discontinued the production of analog devices 
Since the industry is having difficulties maintaining the existing 
systems, there is an ongoing effort to replace analog with digital 
controllers. 

The benefits of the new digital control devices over anal-og systems are 
expected to be: (1) easier implementation, (2) better display of 
information for the operator, and ( 3 )  easier maintenance. 

Yet, control strategies have not followed this renovative process. The 
algorithms implemented in the digital devices remain the same as those 
used in the analog systems. 
algorithms is that, i.n general, they appear to work well and, more 
importantly, they are well understood. 

The main reason for conserving the old 

Unfortunately, the above statement is not always true. The good safety 
record of the nuclear industry seems to be related more to the intrinsic 
stabili-ty of  nuclear reactors than to the performance of their control 
algorithms. 

For instance, the level control of steam generators at low power is 
generally transferred to manual operation because the present automatic 
control system becomes unstable and causes reactor trips due to primary 
system overcooling. Similarly, boiling water reactors (BWRs) are 
primarily used as base-load reactors because the control design cannot 
handle fast load changes. 

Since an increasing demand for better performing algorithms is expected 
in the next few years, there is a general interest in developing control 
algorithms that are able to perform over a wide range of operating 
conditions to avoid reactor trips. Thus, it is reasonable to predict 
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that an investment in advanced control techniques will pay off by a 
reduction of expensive downtime and increased availability. 

Control design can be classified into two major areas: closed-loop and 
open-loop designs. Closed-loop strategies introduce the control 
algorithm as a feedback to the system. Open-loop strategies are 
obtained off-line and then applied to the system. 
powerful, and it is important to understand their advantages and 
disadvantages. 

Both can be very 

Open-loop controls allow one to introduce sophisticated calculations 
that, in principle, can lead the system to optimal performance. 
Unfortunately, these calculations have to be performed based on an 
approximate model of the plant. If the plant behavior is perturbed, the 
results are not optimal; in some cases, results can be catastrophic. 

Feedback controllers are a dynamic part of the system and have the 
ability to adapt to unexpected perturbations. 
predicted if no fundamental changes in dynamic behavior occur. The 
disadvantage is that feedback controllers can use only past information 
from the plant; they will not take into account future events or 
expected demands, which are known in many cases. 

Stability can be 

The research on advanced control techniques for nuclear reactors started 
in the 1960s with the work of Rosztoczy.’ 
recently published work of Pontryagin,2 the Maximum Principle, to 
optimize control rod movement during transients in a simplified 
nonlinear nuclear core model. 
the associated two-point boundary value problem. 
the optimal control techniques and their applicability to nuclear 
reactors was done later by Mohler and Shen.3 In Europe, advanced 
controllers were designed and applied to nuclear reactors in the late 
1970s. 

This author applied the 

An analog computer was developed to solve 
A more global study of 

In past years, some isolated work has been performed in the United 
States. Now, a more coordinated effort is being made through the 
Advanced Controls Program (ACTO)’ at the Oak Ridge National Laboratory. 
This program represents a unique opportunity to study and analyze the 
benefits of advanced algorithms for the nuclear industry. This 
centralized and unified effort will allow to be conducted cutting edge 
research that cannot be afforded by any particular group alone. 
ACTO program can be the breakthrough point for the nuclear industry in 
the United States. 
operative capabilities. 

The 

Huge benefits can be obtained on safety and improved 

1 . 3  PREVIEW OF REPORT 

This report is organized as follows: 

Section 2 is devoted to the study of optimal control-based feedback 
controllers. 
series of examples, how the basic cost function minimization problem 

The purpose of this work is to show, by stepping through a 
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must be reformulated to obtain a closed-loop control strategy. 
Applications of closed-loop optimal control design proposed are: state 
estimation, parameter tracking, uncertainty tracking, and system 
decomposition. 

Section 3 presents a new formulation of a class of nonlinear optimal 
control problems in which system parameters change arbitrarily with 
t i m e .  A variational technique based on Pontryagin's Maximum Principle 
(PMP) is used to track the time-varying parameters of the system and to 
calculate the optimal control action. An application to a nonlinear 
nuclear reactor in which feedback coefficients and sensors time 
constants are varying is presented. 

Section 4 presents a new formulation of a class of nonlinear optimal 
control problems in which the measured signals are noisy and some system 
parameters change arbitrarily with time. The methodology is validated 
by an application to a nonlinear nuclear reactor model. 
reformulation of the variational technique as an initial value problem 
allows this microprocessor-based algorithm to perform on-line filtering, 
parameter tracking, and control. 

The 

Section 5 shows some applications of the techniques presented to reactor 
monitoring problems. First, a transient reactivity monitor is presented 
that was tested and validated with a dynamic model of the Advanced 
Neutron Source (ANS) reactor. Second, a state monitor for a pressurized 
water reactor (PWK) is presented that is able to estimate the state 
variables of the system by analyzing noise-corrupted signals from the 
plant. Both applications use techniques presented in previous chapters. 

Section 6 presents a comparison between the behavior of a BWR controlled 
with a standard proportional-integra1 (PI) controller and one controlled 
with a microprocessor-based optimal control algorithm. Both control 
algorithms are designed to make the BWR perform as a demand-following 
reactor. It is shorn how the PI controller fails to keep the system 
stable at low flow, while the optimal nonlinear control is able to keep 
the stability of the system at any flow, thus, improving the transient 
behavior. 

Section 7 presents an adaptive optimal control algorithm for uncertain 
nonlinear systems (for which the model is not completely known). It 
represents a novel. approach to the problem of decoupling a large system 
from a s e t  of simplified subsystems. 
Pontryagin's Maximum Principle is used to track the system's unknown 
terms, decouple the subsystem models, and calculate the optimal control. 
To validate the algorithm, a system representing a two-link mechanical 
manipulator is simulated. In the control model, the coupling and 
friction terms are unknown. The robotbs tasks are to follow a 
prescribed trajectory and to pick up an unknown mass. 
kinematics problem for the trajectory prescription in generalized 
coordinates is also solved by applying variational techniques. 

A variational technique based on 

The inverse 

Section 8 presents an application of the. Hamilton-Jacobi approach, 
presented in Sect. 2, to the mechanical manipulator problem, 
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Section 9 presents a new algorithm to control steam generator water 
levels that does not rely on feedwater flow measurements. At low power, 
the feedwater signal is biased; therefore, the classical three-element 
controller fails and forces the transfer to manual control to avoid a 
reactor trip due to unstable conditions in the steam generator. Manual 
operation has been shown not to be very effective; in fact, a large 
number of reactor trips occur under these conditions. The algorithm 
documented in this section is able to compensate for the shrink and 
swell phenomenon by modulating the level set point according to 
differential changes on the pressure signals. 
possible to keep a strong and dynamic automatic level controller from 
0 to 100% power. 

In this way, it is 

Finally, Sect. 10 summarizes the conclusions of this report. 

1.4 ORIGINAL CONTRIBUTIONS 

The original contributions presented are: 

1. the analysis of optimal control theory from the stability point of 
view and a study of the differences between open-loop and 
closed-loop implementation; 

2 .  development of two new algorithms (the adjoint technique and the 
adaptive linear control of nonlinear systems technique) that can be 
applied to nonlinear systems (based on optimal control theory and 
leading to closed-loop designs); 

3 .  the application of optimal control theory to parameter tracking, 
uncertainty tracking, model update, subsystem decoupling and 
decomposition, state estimation, and filtering; 

4 .  a new approach based on optimal control theory to the inverse 
kinematic problem of the mechanical manipulators; 

5. an alternative approach to the steam generator water level control 
problem; 

6. performance of an extensive computer validation of the proposed 
algorithms, including applications to PWRs, A N S ,  BWKs, steam 
generators, and mechanical manipulators. 



2. CLOSED-LOOP OPTIMAL CONTROL 

The earliest documented closed-loop control design was developed by 
Ktesibios in Alexandria in the third century BC. He built a water clock 
based on a constant flow from a regulating tank to a clock tank. 
level in Lhe clock tank indicated the time. To keep the water level in 
the regulating tank constant, Ktesibios introduced the first known float 
valve to control the flow of  water from the main source. A float valve 
acts as a feedback (closed-loop) control, If the water level goes down, 
it opens. If the level goes up, it closes. In spite of the simplicity 
of this design, it is extremely efficient. It seems almost impossible 
to design an equivalent open-loop control. 

The 

Modern control theory is based on the mathematical analysis of  dynamic 
systems. Closed-loop controllers are generally designed by analyzing 
the stabili-ty of the system via linear or nonlinear stability theory. 
In this section we study how variational techniques can help in this 
design. 

The calculus of variations was initiated by the Bernoulli brothers in 
the 17th century with the study of the brachistochrone problem. 
then it has become a powerful tool in almost all scientific domains, but 
the application of variational techniques to control design is a 
relatively recent development. The optimal control theory was 
introduced independently by Pontryagin and Bellman in the 1960s. 

Since 

The basic optimal control theory leads to open-loop implementations. 
Unfortunately, dynamic systems are subject to random perturbations; 
therefore, closed-loop formulations are more robust because they can 
adjust to unanticipated events. 

2.1 OPTIMAL CONTROL 

This section formulates a continuous-time optimal control problem and 
develops the associated Pontryagin's Maximum Principle. Many books and 
articles have been published on this subject since the original work o f  
Pontryagin. This section follows the formulation presented by 
Luenberger. 6 

2.1.1 General Structure of  an Optimal Control Problem 

The basic optimal control problem is defined by: 

1. a dynamic system (plant) for which input functions can be specified 
(controls), and 

2. a cost function whose value depends on the system's dynamic behavior 
and, i.n some sense, defines and measures the quality of that 
behavior. 

8 
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For example, the dynamic system might be a nuclear reactor core with an 
input function corresponding to the reactivity rod control. The cost 
function can then be defined as the error between the actual neutron 
density and the set point for the reactor. 

The optimal control theory goal is to determine which are the input 
functions that minimize the value of the cost function. In our example, 
the goal would be to obtain a control rod reactivity strategy that 
minimizes the error between the set point for the reactor and the actual 
neutron density. 

2.1.2 The Maximum Principle 

The publication by Pontryagin of his Maximum Principle has been one of 
the most important events in the development of the control theory. 
Pontryagin applied the calculus of variations to the problem of finding 
the input functions that maximize (or minimize) the cost function. 

Given a dynamic system, 

dx/dt = f(x,u) , (2-1) 

where x represents the state variable, u the input function (control), 
and a cost function (to be minimized) is defined as 

tf 

J = V(X,U) dt . 
0 

Poncryagin's Maximum Principle can be stated as follows: 

Theorem (Maximum Principle). Suppose u(t)~U and x(t) represent the 
optimal control and state trajectory for the optimal control problem. 
Then there is an adjoint trajectory w(t) such that ~ ( t ) ,  ~ ( t ) ,  and w ( t )  
together satisfy 

dx/dt - f(x,u) (system) ; (2-3a) 

x ( 0 )  = x, (state condition) ; (2-3b) 

- dwT/d t  H,(w,x,u) (adjoint) ; ( 2 - 3 ~ )  

w(tf) = 0 (adjoint final condition) ; (2-3d) 

and for all t and all v E U ,  

H(w,x,v) < H(w,x,u) (maximum condition) (2-3e) 

where H is the Hamiltonian 

H(w,x,u) = wTf(x ,u)  + V(X,U) . (2-3f) 
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Condition (2-3e), the maximum condition, means that the derivatives of H 
with respect to each component of u must vanish, and, if the objective 
is to minimize the c o s t  function, then condition (2-3e) must be 
interpreted as a minimum condition. A detailed proof of this theorem 
can be found in ref. 2. 

2.2 CLOSED-LOOP OPTIMAL CONTROL: LINEAR SYSTEMS 

Control designers feel comfortable with closed-loop implementations; 
that is, the algorithm obtains the input function (control) as a 
function of the state variables of the system. The reason is clear, 
since under these conditions the stability of the control algorithm can 
be studied and predicted. 

2.2.1 The Regulator Problem 

To simplify notation and make this section easier to understand, we will 
use a one-dimensional example. 

Let us assume that the system we want to control can be represented by 
the differential equation, 

dx/dt = a~ + u , (2-4) 

where x is the state variable and 11 i.s the control. This system has an 
equilibrium at x = 0 and u = 0 .  

Our goal is to regulate this system around its equilibrium, that is, to 
design a control algorithm that, if the system equilibrium is perturbed, 
will place the system back in the equilibrium position. This goal can 
be represented by defining the function V(x,u) as 

V(X,U) = 1/2 2Q + 1 /2  u'R , ( 2 - 5 )  

where Q and R are weights. 

Now we can apply the Maximum Principle. 
Hami 1 to tiian , 

First we construct the 

H(x,w,u) = w ( ~ x + u )  + 1/2 x'Q + 1/2 u'R , 

the adjoint equation ( - -dw/d t  = H,) is given by 

dw/dt = -aw - XQ , ( 2 - 7 )  

and u is obtained by demanding H ,  = 0 ,  which results in 

u = -w/R . ( 2 - 8 )  

Substituting Eq. (2-8) into the model, we obtain this set of equations: 

dx/dt = ax - w/R ; (2-9a)  
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dw/dt = -aw - XQ . (2-9b) 

Equation (2-9) represents the system's dynamic behavior under the action 
of the optimal control. 

Let us now assume that the system has been perturbed from equilibrium. 
We want to know whether both equations together [Eqs. (2-9a) and (2-9b)l 
are stable, that is, whether they return the system to equilibrium 
following a small perturbation. 

We have chosen a linear example because its stability is easier to 
study. First, we realize that x = 0 and w = 0 is still an equilibrium 
point because it makes the derivatives zero. Then, we have to analyze 
whether the eigenvalues of the system have negative real parts. 
characteristic equation of this system can be written as 

The 

s2 - a2 - Q / R  = o . 
Since Q and R are positive, there is always a positive eigenvalue; 
therefore, an asymptotically stable equilibrium state cannot be reached 
in general. 

This example gives a heuristic understanding of why optimal control 
techniques are not suitable for feedback (closed-loop) applications. We 
can only expect to find a good initial condition for adjoint w ( 0 )  that 
will place the system in the target state at a given final time. But, 
because of the intrinsic instability, we cannot expect to keep the 
system in that target state. 

2.2.2 The Linear-Quadratic Algorithm 

The linear-quadratic (LQ) algorithm was developed by Kalman,7 and it has 
been widely used by the control designers mainly because it allows 
closed-loop implementations. LQ can be applied only to problems in 
which the dynamic system is  linear and the cost function is quadratic. 
In this section the basic formulation of the problem is studied and 
analyzed. 

2.2.2.1 The LQ Algorithm 

The LQ algorithm is based on the idea that, since the system represented 
by Eq. (2-9) is linear, both x(t) and w ( t >  depend linearly on xo; 
therefore, w(t) should depend linearly on x(t). Accordingly, we try a 
solution for Eq. (2-9) of the form, 

where P ( t )  represents the linear relation between the state and the 
adjoint variables. Taking the derivative of Eq. (2-10) and introducing 
the result in Eq. (2-9), we obtain the condition, 

0 = [dP(t)/dt + 2aP(t) - P2(t)/R + Q]x(t) , (2-11) 
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which will be satisfied for any ~ ( t )  if P(t) is chosen as a solution o f  
the Riccati equation, 

-dP/dt = 2aP - P2/R + Q . (2-12) 

From the boundary condition w(tf) - 0 ,  we derive P(tf) = 0, a final 
condition. We must, however, solve this equation by integrating 
backwards in time from t == tf. 

2.2.2.2 The Feedback Solution 

Now, considering tf very large, we can assume that E q .  (2-12) may have 
reached an equilibrium near t = 0 ( w e  recall that here time is 
incremented backwards). Thus, P(t) may be approximated by its 
equilibrium value, P. Under this approximation and from E q .  (2-8) we 
obtain 

which gives the control input with a time-invariant feedback structure. 
With this approximation, the optimal system is dynamically represented 
by 

dx/dt = ax - (P/R)x . (2-lh) 

Let us analyze the steady state solutions of the Ricatti equation. From 
Eq. (2-12) we obtain 

P = R[a 2 (a2 + Q / R ) $ ]  , ( 2 - 1 5 )  

which leads to a dynamic system, 

dx/dt = [+ (a2  + Q/R)']x . (2-16) 

Equation (2-15) has two solutions. By choosing the value of P that 
leads to a negative eigenvalue, we obtain a stable closed-loop 
formulation. 

By numerical calculations, we have checked that the stable solution 
corresponds to the value of P obtained by integrating backwards 
E q .  (2-12) with final condi-tion P(t,) = 0 .  But the T& approach will 
lead only to a stable closed-loop implementation if we keep P constant 
a l l  the time. In fact, if we try to solve E q .  (2-12) forward in time, 
the system again becomes unstable. 

2.2,2.3 The Dual LQ Algorithm 

It is interesting to note that the steady state Riccati algebraic 
equation not only represents the equilibrium points of Eq. (2-12), but 
also the equilibrium points of the time-reversed equation, 

d P / d t  2aP - P2/R + Q , (2-17) 
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which can be derived from the dual system, 

dx/dt = -ax + w/R ; ( 2 - 18 . a) 

dw/dt - aw + XQ . ( 2 - 1 8  .b) 

The dual system is obtained by integrating backwards in time the cost 
function, or more easily, by applying two transformations: map t into 
-t, and then map -t into -t + t,. 

Equation (2-17) must be solved forward in time and with initial 
condition P ( 0 )  = 0, and it reaches the steady state solution that makes 
the system stable. The simultaneous solution of Eqs. (2 -14 )  and (2 -17 )  
forward in time leads to a stable system with a closed-loop control. 

2 .2 .3  The Hamilton-Jacobi Eauation 

Let us now study the dynamic behavior of the cost function. First 
we define a dynamic cost function as 

t 

J(t) = J V ( X , U )  dT . 
0 

(2 -19 )  

Taking the total derivative of J(t) with respect to t, 

J, - -[ J,dx/dt - V ( X , U ) ]  , (2 -20 )  

and defining the Hamiltonian as 

H(J,,x,u) = J , d x / d t  - V(X,U) , (2-21)  

we obtain 

Jt -H(J,,x,u) . (2 -22 )  

Equation ( 2 - 2 2 )  is known as the Hamilton-Jacobi equation in classical 
mechanics. To minimize the temporal evolution of J(t), we have to 
select u (the control) such that it both minimizes the Hamiltonian and 
keeps the value of the Hamiltonian constant and equal to zero during the 
evolution of the system. 

Returning to the linear example used before, we first construct the 
Hamiltonian as 

H = Jx(ax+u) - 1/2 2Q - 1/2 u2R . (2 -23 )  

Second, w e  choose u such that it minimizes H; that is, 

H,-0 , 

u - J,/R . ( 2 - 2 4 )  
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Finally, we substitute Eq. (2-24) in E q .  (2-23) and demand that H = 0. 

o = J , ~ X  -+ 1/2 ( J , ) ~ / R  - 112 X ~ Q  . ( 2 - 2 5 )  

Assuming now that the solution o f  this partial differential equation is 
of the form, 

J = -1/2 PX2 , 

it follows that 

x2(-2aP + P2/R - Q) = 0 . 

(2-26) 

(2-27) 

Equation ( 2 - 2 7 )  leads to a solution that is equivalent to the LQ 
algorithm. Given a state, x, Eq. (2-24) returns the optimal control 
that should be applied to the system. We have not specified a final 
time; therefore, this optimal closed-loop formulation of the control 
problem will be asymptotically stable. 

It is important to note that the right-hand side of Eq. ( 2 - 2 6 )  is the 
first term o f  the Taylor series expansion of the solution. 
linear example with a quadratic cost function, the second term of the 
expansion leads to the exact solution o f  the problem (note that second 
order in J means first order in the expansion of the partial of J with 
respect to x). In  general, it will be necessary to add more terms to 
the expansion to solve nonlinear problems. 

In this 

2 . 3  CLOSED-LOOP OPTIMAL CONTROL: NONLINEAR SYSTEMS 

Models of realistic systems are seldom linear. Unfortunately, it is 
always more difficult to deal with nonlinear models, and the simplicity 
in the control design is lost. In this section we will present some 
techniques to solve nonlinear control problems. Again, our goal is to 
be able to design a stable closed-loop control. It will be seen that 
there is not a general algorithm to solve the problem. For each control 
case, the control designer will have to exercise his own creativity. 

As sliown in the previous section, the most clear and meaningful way of 
dealing with optimal control problems is the Hamilton-Jacobi equation. 
In many cases it will be necessary to solve this equation by expanding 
the solution in a Taylor series. In general, this will lead to an 
almost impossible analytic task. We are going to show how in some cases 
this work can be simplified by redefining the cost function. There will 
not be a general rule for doing this, and here is where the control 
designer will have a major role to play, Again, to simplify notation 
and make this section easier to understand, we w i l l  use an example. 

2.3.1 The Hamilton-Jacobi Euuation 

L e t  us suppose that we want to design a control algorithm for the 
following nonlinear problem, 
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dx/dt = ax2 + u . (2 -28 )  

First we realize that the linearization technique will fail. If this 
model is linearized around x = 0 ,  all the information about the dynamics 
of the system is lost; therefore, it is necessary to deal directly with 
the nonlinear model. 

2 . 3 . 1 . 1  Cost Function Transformation Approach 

If we now write the cost function in the standard quadratic form (see 
linear example), the solution of the Hamilton-Jacobi equation will 
demand more than one term in the Taylor series expansion. To see if we 
are able to rewrite the cost function in a way that simplifies the 
solution, we try: 

V(x,u) - 1/2 x?Q + 1/2  ( u  + ax2)2R . (2 -29 )  

The related Hamiltonian [see E q .  ( 2 - 2 3 ) ]  will be 

H = w(ax2 + u )  - 1/2  2 Q  - 1/2  (u + a2)’R , (2-30) 

where for simplicity we use the notation w - J,. We choose u such that 
this Hamiltonian is minimized; that is, H, - 0. Therefore, 

u - w / R - &  . (2-31) 

Introducing E q .  (2-31) into Eq. (2 -30 )  and demanding that H - 0, we get 
0 = $/2R - 1/2 x’Q . (2-32)  

Let us try a solution of the form 

w = P x  , (2 -33 )  

which leads to 

0 - (P2/R - Q)x2  . (2 -34 )  

We have found a solution for P that is independent of x; therefore, we 
can develop a closed-loop implementation in this case of 

u = -ax2 -(Q/R)~x/R , (2 -35 )  

and 

dx/dt - -(Q/R>‘x/R . (2-36) 

Because Q and R are defined to be positive, this will always be a stable 
closed-loop implementation. 

This example shows how a transformation in the cost function can 
simplify the analytical calculations and lead to a solution. 
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2.3.1.2 Direct Solution by Series Expansion 

Because of the simplicity of this example, we can now try to solve it 
directly by applying a second-order expansion. 
us some idea of how difficult the problem can be. 

This process will give 

First, we write again the cost function, but this time we use the 
standard form, 

V(X,U) - 1 / 2  $0 f 1 / 2  u’R . 
The Hamiltonian will be 

H, - 0 and H - 0 lead to 
u = w/R 

( 2 - 3 7 )  

( 2 - 3 8 )  

( 2 - 3 9 )  

and 

0 = wax + w2/2R - 1/2 x2Q . ( 2  - 4 0 )  

We now t r y  a second-order expansion, 

w = Px + zx2 . (2 -41) 

Introducing E q .  (2-41) into Eq. ( 2 - 4 0 )  and simplifying gets 

0 = (P2/K - Q)x’ , (2 -42) 

0 = ( a  + Z / R ) P X ~  . ( 2 - 4 3 )  

The coefficient of x4 is not analyzed because it is expected to have 
contributions from higher expansion terms. 
E q s .  (2-42) and ( 2 - 4 3 )  lead to 

The solutions for 

u = -ax2 - (Q/R)%/K , (2-44) 

which is equivalent to the solution that we get by minimizing the 
simplified cost function. 

In this special case we can expect that higher order expansions will 
lead to the same solution; therefore, we can stop our study at the 
second order. But in general, it will be very difficult to decide where 
to stop. 

2.3.2 Adaptive Linear Control of Nonlinear Svstems 

Sometimes dealing directly with nonlinear systems demands too much 
analytic work. In these cases, control designers are tempted to 
linearize the system and simplify the problem. In this section we 
present a technique to update the linearized control. 
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In Sect. 2.2.3, we have shown that dual Eq. (2-17) leads to the 
steady state solution of the equation forward in time. We have seen 
that this solution is the one that gives stability in the closed-loop 
applications. 
an adaptive linear control for a nonlinear system. Again, we use an 
example to show the methodology. It is important: to know that this is a 
heuristic approach, and it will be difficult to guarantee the stability 
of the final design. 

Returning to our nonlinear model, we linearize around x , :  

We can use this property of the dual equation to obtain 

d x / d t  - (~x,)x + u . (2-45) 

Note that this linearization is not a Taylor series expansion. It will 
be seen later that it works better. Again, the designer has to decide 
what to do. 

Dual LQ E q .  (2-17) in this case will be 

dP/dt = 2(ax,)P - P2/R + Q , (2-46) 

and the optimal control is given by 
* 

u - -Px/R . ( 2 - 4 7 )  

The adaptive linear control algorithm can be achieved by updating the 
value of  x,: 

d x / d t  - ax2 - Px/R , ( 2 - 4 8 )  

and 

d P / d t  - 2axP - P2/R + Q . (2  -49)  

Let us see how this formulation works. The initial condition for 
E q .  ( 2 - 4 9 )  is the steady state value of P evaluated at the initial value 
of x. We can expect that if x is perturbed, E q .  (2-49) will evolve to 
the steady state solution again (updating the value of P). 

We have checked by computer simulation that this particular case works. 
In order to perform an analytic study of this problem, we have to 
simplify it. Let us assume that Eq. (2-49) reaches the steady state 
fast enough to assume that the value of P is always the steady state 
solution. Then, 

P 5 -axR - R [ ( ~ x ) ~  + Q/R]% . ( 2 - 5 0 )  

The system evolves with time as 

d x / d t  = - [(ax)2 + Q/R]% , (2 -51 )  

which is a stable solution. 
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2 . 3 . 3  The Dual Adjoint Technique 

We have seen that applying the dual LQ equation to the system gets a 
stable closed-loop control. The dual equation is obtained by 
integrating the cost function backwards. 
though we were applying the backward-in-time solution for the control 
problem to the forward-in-time model of the plant. This interpretation 
leads to the dual adjoint technique. In this case, we calculate the 
value of the control by integrating the adjoint backwards in time and 
applying the result to the forward-in-time system. Again, this is an 
intuitive approach, and we cannot find any reason to justify it. In 
fact, it will be shown that this methodology will work only if the 
system is stable, 

We can interpret this as 

Let us study the dual adjoint approach by applying it to the linear 
example. The model and the dual adjoint will be 

dx/dt = ax - w/R , ( 2  - 5 2 a )  

dw/dt = aw + XQ . (2 - 52b) 

The eigenvalues of this system are 

s = a T i (Q/R>'  . ( 2 - 5 3 )  

Therefore, the dual adjoint technique leads to a stable implementation 
only if the system is stable. 

Even if the system is stable, we cannot say that the solution will be 
optimal. In fact, this algorithm acts as a second-order filter with the 
break frequencies of the original system. If the break frequencies are 
negative, the filter will move the system back to equilibrium. 

The main advantage of this technique is that, if it works, the control 
algorithm is extremely easy to design. This simplicity must be taken 
into account when we have a multiple-input multiple-output nonlinear 
problem for which solving the Hamilton-Jacobi equation directly can be 
extremely difficult: ~ 

2 . 4  APPLICATIONS 

In this section, some applications o f  optimal control theory are 
presented. We will show what kind of cost functions need to be 
minimized in each case. The particular solution for the minimization 
problem wi1.l depend on the specific case, and any o f  the previously 
shown techniques could be used. 

2 . 4 . 1  State Estimation: Filtering 

In this section the optimal control methodology is applied to the 
problem of estimating the actual state of the plant from detector 
signals that are perturbed with additive noise. 
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We define 

s - Y d + ' I  (2-54) 

as the set of signals coming from the plant detectors, where yd 
represents the detector state variables, and represents an additive 
noise with zero mean. 

We also define x as the estimated plant state. The dynamic estimation 
of x can be obtained from 

d x / d t  = G(x,u) + v , (2-55) 

where G is an approximated model of the plant (predictor) and v is the 
dynamic correction (corrector) that can be obtained by minimizing the 
cost function, 

(2 -56)  

2 . 4 . 2  Parameter Tracking 

This section shows how the optimal control methodology can be used to 
update the plant time-varying parameters. 

We assume that there is a set of  parameters, a ,  that can change 
arbitrarily with time. 
otherwise, we cannot guarantee that the calculated control will be 
optimal. 
again the optimal control techniques. 
magnitude of a will minimize the cost function, 

Our control model has to be updated on-line, 

The updating of the control model can be achieved by applying 
In this case, we assume that the 

( 2 - 5 7 )  

where m represents the control model state variables. 

2 . 4 . 3  Uncertainty Trackin8 

Models of  realistic systems are seldom completely known. The 
variational techniques that we have presented can also  be used to track 
the unknown (uncertain) part of the model. 

The formulation is similar to the one for parameter tracking. We want 
to find which are the optimal values f o r  the uncertainty, p ,  that make 
the approximated model of the plant match the signals coming from the 
detectors; that is, we want to minimize the cost €unction, 
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( 2 - 5 8 )  

2 .4 .4  Svstem Decomposition 

Often the plant's dynamic model involves a large number of differential 
equations. In this case, it may be convenient to decompose the large 
model into a set of decoupled subsystems. The uncertainty tracking 
method can be used to achieve an efficient decomposition without losing 
too much information. 

Let us assume chat 

dx/dt - F(x,u) ( 2 - 5 9 )  

represents the mathematical model of the plant that we wish to control, 
where vector x represents the n state variables and u represents the m 
controls. Let 

( 2 - 6 0 )  

represent a s e t  of k subsystems formulated in such a way that they are 
uncoupled. To guarantee that this set of subsystems represents the 
whole system, we introduce the unknown set of functions, pi, whose 
values at time t can be ohtained by the optimal matching of  the signals 
coming from the detectors, with the values €or the state variables given 
by the numerical integration of the subsystem's mathematical models. 
Actually, this problem can be formulated as an optimal control problem. 
We want to know what the values are of controls (unknown function p) 
that make the subsystems follow the demand (detector signals). 

2 . 5  SUMMARY 

In Sect. 2 we reviewed the applications of optimal control theory to 
feedback control design. It has been seen that Pontryagin's Maximum 
Principle leads to open-loop strategies. In some cases, a closed-loop 
implementation can be achieved by solving directly the so-called 
EIarnilton-Jacohi equation. This approach is relatively easy to implement 
for linear cases. Unfortunately, more analytic work is necessary in the 
nonlinear case. 
choosing an "ad hoc" cost function. In general, the solution of the 
Hamilton-Jacobi equation will be extremely difficult. In this section, 
some new alternative approaches have been presented. Finally, some of 
the many applications of  closed-loop optsimal control have been shown, 
such as filtering, model update and decomposition, and control. 

Some simplification can be obtained in these cases by 



3 .  OPTIMAL PARAMETER TRACKING AND CONTROL OF NONLINEAR SYSTEMS 
WITH TIME-VARYING PARAMETERS 

The practical applications of Pontryagin’s Maximum Principle-based 
control algorithms have been hindered by the fact that drastic 
simplifications must be done to obtain on-line solutions. For example, 
the LQ algorithm, the most popular and perhaps the only one that to date 
allows on-line solutions, requires the use of linearized models and 
assumes that the relation [Eq. (2-lo)] between system and adjoint 
equations is time-independent. Unfortunately, these conditions do not 
apply to the most common case, a nonlinear system with time-varying 
parameters. 

The ideal demand-following adaptive control should: 

1. provide an optimal control philosophy; 

2. provide parameter tracking so that the plant model reproduces the 
signals coming from the actual plant sensors at any time; 

3 .  provide control flexibility, in the sense that the control 
limitations and possible failures are taken into account; 

4 .  compensate for sensor delays and possible degradation; and 

5. handle directly the nonlinear model, thus making it possible to 
apply the algorithm under any plant conditions. 

In principle, all these requirements can be satisfied by applying PMP to 
a nonlinear model of the plant. 
connection with the numerical solution of  the resulting two-point 
boundary value problem (TPBVP). 

The following sections present a new approach to the PMP formulation 
that allows on-line solutions by recasting the TPBVP into an initial 
value problem. 

The major practical problem arises in 

3.1 REFOWLATION OF THE OPTIMAL CONTROL PROBLEM 

This section shows how the free terminal time (FTT) optimal control 
problem can be reformulated as the solution of differential equations 
with a set of initial conditions, instead of the classical TPBVP. 

Let 

be a nonlinear system, where y represents the state variables and u the 
controls. The FTT problem is formulated as the minimization of the 
extended cost €unction, 

2 1  
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tf 

J *-= J [H(y,w,u) - wTdy/dt]dt , 
to 

( 3 - 2 )  

where w is a set of Lagrange multipliers (adjoints or momenta), H 
represents the Hamiltonian, defined as H = w'dy/dt + V(y,u), and V can 
be interpreted as the potential that will force the system to move along 
the desired trajectory. We assume that H is time-invariant, y(t0) and 
y ( t : f )  are given, and the system is in steady state at t = to. Because 
of the symmetry of the problem, the minimization of the cost function 
can be done backwards. 
and after performing the equivalent steps to the PMP, the following 
inverted Hamilton equations are obtained: 

After a time inversion of the expression for J ,  

dyi/dt = -dH/dWi , ( 3 - 3 )  

and the conditions, 

dH/dui = 0 , (3-5) 

If stxacly state conditions are assumed at t = to, and dV/dui  is 
different from zero, then, the initial conditions f o r  w can be found. 
Moreover, because the state variables are time-reversal invariant and 
the controls are only functions o f  y and w, the first Hamiltonian 
equation can be solved forward instead of backwards, as the result o f  
the variations impl-ies. Then, under these special conditions, the FTT 
problem can be solved forward in time a s  the solution o f  differential 
equations with initial conditions. Notice that condition ( 3 - 6 )  will 
constrain the algorithm to demand-following or regulation problems, (the 
ones in which we are interested), and perhaps the only ones that need 
on-line solutions. 

3 . 2  PARAMETER TRACKING AND CONTROL 

As s ta ted  before, our goal is to develop an algorithm that must be able 
to update the model by tracking the time-varying parameters while it is 
calculating the optimal control. 

Let 

d y / d t  = E'(y,t,b,a' ,u) ( 3 - 7 )  

be a nonlinear system where y represents the state variables and signals 
from the plant, t the time, b the fixed parameters, a' the time-varying 
parameters, and u the controls. 
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Let 

dx/dt - F(x,t,b,a,,u) ( 3 - 8 )  

be the system and detector model, where the a. parameter set corresponds 
to a given steady state. 
invalidating the optimal controls calculated using this model; thus, it 
is necessary to track the parameters. The approach taken in this work 
has been to realize that the time-varying parameters can be considered 
as the set a that minimizes the difference between sy and s, (where s 
means the subset of y or x representing the signals). Therefore, the 
parameters can be obtained by forcing the system to move through the 
potential Vp, defined as, 

The set of parameters a may vary with time, 

where Q and R are weight matrices, a, the steady-state parameter values, 
and + represents the transpose. 

Following the algorithm developed in Sect. 3 . 1 ,  we can now construct the 
Hamiltonian and obtain the inverted Hamilton equations for the momenta 
(w) and the condition for the time-varying parameters: 

Hp = w+dx/dt + Vp , ( 3 - 1 0 )  

d w J d t  = dHp/dxi , ( 3 - 1 1 )  

dHp/dai = 0 . ( 3 - 1 2 )  

Equations ( 3 - 1 1 )  and ( 3 - 8 ) ,  in which a, is updated with the a obtained 
from Eq. (3-12), represent a mathematical model of the system that is 
able to update the time-varying parameters during the transient. The 
initial conditions for x are known, and the initial conditions for w can 
be obtained assuming Vp - 0 and d x / d t  - 0 at t = 0. 
assumptions support fundamental condition ( 3 - 6 ) .  

Notice that these 

Now, the updated model can be controlled by forcing it to move under the 
potential, defined as 

V, - (d-sd,)+L(d-sd,) + (u-u~)+M(u-u~) , ( 3 - 1 3 )  

where d is a given demand for a state variables subset, sd,, and ua is 
the steady state value for the controls. Again, following the formalism 
presented in Sect. 3 . 1 ,  we can obtain the momenta and conditions 
associated with the control problem and, again assuming V, - 0 at t - 0, 
the initial conditions. 

3 . 3  APPLICATION TO A NONLINEAR NUCLEAR REACTOR 

The algorithm presented in this report has been applied to a nonlinear 
reactor model. The plant was simulated with a four-dimensional model 
and three detectors. During the transient, the feedback coefficient due 
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to the coolant temperature, the fuel temperature detector time constant, 
and coolant temperature detector time constant were time-dependent. The 
plant was forced to follow demands in neutron density and outlet coolant 
temperature by adjusting two control inputs: (1) reactivity, which was 
constrained to a given value, and (2) inlet coolant temperature. 

The time-varying parameters were changing drastically during the 
transient, transforming the system's dynamics; therefore, it was 
necessary to track them. Figure 3.1 shows how the parameters that were 
obtained using our algorithm match the actual parameter values. 

Figure 3.2 shows the controls that are necessary to follow the 
transient. Notice that the sinusoidal form of Fig. 3.2a is due to the 
sinusoidal change in coolant feedback coefficient. Figures 3.2a and 
3.2b show how our algorithm allows both controls to interact: when ul 
reaches the maximum, u2 carries all the work without discontinuities. 

Figure 3 . 3  shows how demands in both neutron density and outlet coolant 
temperature were followed by the plant in spite of  parameter changes and 
constraints in the controls. 

Finally, F i g .  3 . 4  shows how the algorithm matches the actual values for 
(a) coolant and (b) fuel temperatures at any time by correcting for the 
delays introduced by the detection process. 

An optima1 parameter tracking and control algorithm has been developed 
that allows us to find on-line solutions for demand-following problems 
f o r  cases in which nonlinearities and time-varying parameters 
invalidated other known algorithms. A crucial result has been the 
recasting of Pontryagin's Maximum Principle technique for nonlinear 
systems as the solution o f  differential equations with initial 
conditions. 
nuclear reactor model. Using the plant sensor signals, the parameters 
were updated during the transient, allowing the calculation of the 
optimal control strategy. 

The algorithm has been successfully applied to a nonlinear 
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4 .  OPTIMAL FILTERING, PARAMETER TRACKING, AND CONTROL OF 
NONLINEAR NUCLEAR REACTORS 

The availability of fast and reliable microprocessors has opened the 
possibility of performing on-line numerical calculations to improve and 
optimize the way nuclear reactors are controlled. In particular, there 
is an increased interest' in improving the robustness of control 
algorithms when system behavior is affected by nonlinearities, unknown 
time-varying parameters, and noisy signals. 

The following sections present a new microprocessor-based algorithm that 
is able to perform on-line filtering, parameter tracking, and control of 
a nonlinear nuclear reactor. A variational technique based on 
Pontryagin's Maximum Principle is used to estimate the system's state 
and parameters and to calculate the optimal control. 

Three simultaneous optimizations are performed: 

1. The estimate of the state variables is determined by the optimal 
matching of  the noisy plant signals to the model. 

2.  The time-varying parameter is obtained by matching the filtered 
estimate to the control model. 

3 .  The optimal controls are obtained by matching a set of prescribed 
demands. 

To validate the algorithm, a nonlinear nuclear reactor was simulated in 
which the coolant feedback coefficient was an unknown time-varying 
parameter and the signals from the plant had additive noise. The plant 
was forced to follow demands in neutron density and outlet coolant 
temperature by adjusting two controls: (1) ul, reactivity, which was  
constrained to a given set of values; and (2) u2 ,  inlet coolant 
temperature. 

4.1 REFORCllITLATION OF THE OPTIMAL CONTROL PROBLEM 

This section reviews the reformulation of  the FTT optimal control 
problem. 

Let 

represent the plant model, where y is the state variables and u the 
controls. Our goal is to find u(t) such that the system will follow a 
given set of demands, d ,  in the sense that the cost function, defined as 
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is minimized. Q and R are weight matrices, whi.ch are allowed to change 
with time. Xnitial state y(o)  and final state B y ( t . f )  are known, but tf 
is free, 

It has been shown (see Sect. 3) that, if the system i.s in equilibrium at 
t = o and d is a well-behaved function, the minimization problem is 
equivalent t o  the system: 

dw/dt = ( d F / d ~ ) ~ w  - (dH/dy)Q(d--H(y)) , (4-4) 

u = P W T ( d F / d U )  , (4-5) 

y(o)=yo , w(o)-o , (4-6) 

where w is the set of Lagrange multipliers or adjoints. The above 
reformulation of  PMP can be achieved by integrating backwards the cost 
function, and the initial conditions are known only i f  the initial 
estate is in equil.ibrium. Under these special conditions, the 
calculation of the optimal control can he easily executed on-line in a 
microprocessor, because the classical TPBVP has been recast as an 
initial value problem. 

4 . 2  STATE ESTIMATION: FILTERING 

In this section the optimal. control reformulation is applied to the 
problem of estimating the actual state of the plant from detector 
signals that are corrupted with additive noise. 

Assuming that E q .  (4-1) represents a mathematical description of our 
system, define 

as the set of  signals coming from the plant detectors, where Yd 

represents the detectors state variables and q represents an additive 
noise with zero mean. 

L e t  us define x as the estimated plant state. The dynamic estimation of 
x can be obtained from 

where G is an approximated model of the plant (predi-ctor) and v is the 
dynamic correction (corrector) that can be obtained from the 
minimization of the cost function, 
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( 4 - 9 )  

4.3 PARAMETER TRACKING 

This section shows how the reformulation of the optimal control problem 
can be used to update the plant time-varying parameters. 

Assume that there is a set of parameters, a, which can change 
arbitrarily with time. 
otherwise, we cannot guarantee that the calculated control will be 
optimal, 
the reformulation of the optimal control problem presented in Sect. 4 . 2 .  
In this case we assume that the magnitude of a will be such as to 
minimize the cost function, 

Our control model needs to be updated on-line, 

The updating of the control model can be achieved by applying 

(4-10) 

where m represents the control model state variables. 

4.4 OPTIMAL CONTROL 

At this point, our algorithm is able to estimate the actual state 
variables and the time-varying parameter magnitude; therefore, we have 
an adaptive model to which again we can apply the reformulated optimal 
control problem to obtain the controls necessary to follow the demands. 
Now we have to minimize the cost function, defined as 

tf 

JC = I [d-Hm]TQ,[d-Hm] + uTR,u)dt . 
0 

(4-11) 

4 . 5  THE ALGORITHM 

As stated before, our goal is to develop an algorithm that is able to 
update the control model by estimating the state variables and time- 
varying parameters while calculating the optimal control. 
objective is achieved by minimizing the three cost functions, JF 
[Eq. (4-9)], J p  [ E q .  (4-lo)], and J ,  [ E q .  (4-l1)], independently and 
simultaneously. The set of equations to solve can be summarized as 
follows : 

This 

d x / d t  = G(x,a,u) + v , ( 4 - 1 2 )  

dm/dt = G(m,a,u) , (4-13) 
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dw,/dt = (dG/dm)'wP - Qp(x--m) , (4-15) 

&,/dt = (dG/dX)Twc - (dH(m)/dm)Q,(d-H(m)) , (4 -16)  

v = (R,)-bfT(dG/dV) , (4-17) 

a = (%)-'w,'(dG/da) , (4-18) 

u = (R,)-'w~~(~G/~v) , (4 -19)  

Wf(0) = wp(0) = w,(o) = 0 . (4-21) 

Equations (4-12) to (4-16) can be solved simultaneously with the initial 
conditions given by Eqs. ( 4 - 2 0 )  and (4-21) by using any standard 
differential equation solver. Equations (4-17) to (4 -19 )  return the 
filter corrector, v, the unknown parameters, a, and the optimal 
controls, u. 

4.6 APPLICATION TO A NONLINEAR NUCLEAR REACTOR 

The algorithm presented in this section has been applied to a nonlinear 
reactor model. The plant was simulated with a four-dimensional model 
and three detectors. During the transient, the feedback coefficient due 
to the coolant temperature was changing sinusoidally with time. The 
signals corning from the simulated plant were corrupted with additive 
noise. The plant was forced to follow demands in neutron density and 
outlet coolant temperature by adjusting two control inputs : 
(1) react.i.vity, which was constrained to a given value, and (2) inlet 
coolant temperature. 

Figure 4.1 shows how both demands in power and outlet coolant 
temperature were followed by the plant despite the parameter changes and 
constraints in the controls. Figure h.2 shows how the algorithm was 
able to update the coolant temperature feedback parameter during the 
transfent. Figure 4.3 shows the controls that were necessary to follow 
the transient. Finally, Fig. 4.4 shows how the variational filter 
eliminates the additive noise from the plant signals. 

4 .7  CONCLUSIONS 

A n  optirnal filtering, parameter tracking, and control algorithm has been 
developed that allows one to find on-line solutions for demand-following 
problems in the cases in which noisy signals, nonlinearities, and time- 
varying parameters invalidate other known algorithms. A n  important 
result has been the recasting of Pontryagin' s Maximum Principle 
technique f o r  nonlinear systems as the solution to differential 
equations with initi-a1 conditions, The algorithm has been applied 
successfully to a nonlinear nuclear reactor model. Using plant sensor 
signals, a l l  the state variables were estimated, and the time-varying 
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Fig.  4.1. Power and 
o u t l e t  coolant  temperature 
demand following. (a) Demand 
on power ( s o l i d  l i n e )  and 
p l a n t  power ( c i r c l e s )  vs time, 
and (b) demand on hot  l e g  
temperature ( s o l i d  l i n e )  and 
p l a n t  ho t  l e g  temperature 
( c i r c l e s )  vs t ime. 

Fig.  4 . 2 .  Time-varying 
parameter update. P lan t  
coolant  feedback c o e f f i c i e n t  
( s o l i d  l i n e )  and algorithm 
est imate  ( c i r c l e s )  vs time. 
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Fig. [+.4.  Optimal 
f i l t e r i n g :  (a)  coolant 
temperature de tec tor  s igna l  
( s o l i d  l i n e )  and algorithm 
f i l t e r e d  est imates  ( c i r c l e s )  
vs t i m e ,  and (b) fuel 
temperature de tec tor  s igna l  
( s o l i d  l i n e )  and algorithm 
f i l t e r e d  est imates  ( c i r c l e s )  
v s  t i m e .  

1.0 

paramer;er w a s  updated during the t r a n s i e n t ,  allowing an adaptive optimal 
cont ro l  ca l cu la t ion .  
optimal cont ro l  problem provides a su i t ab le  methodology f o r  on - l ine ,  
microprocessor-based appl ica t ions .  

We can conclude t h a t  t h i s  new formulation of the 



5. REACTOR MONITORING APPLICATIONS 

5.1 TRANSIENT REACTIVITY MONITOR 

This section presents a technique to estimate excess reactivity values 
during transient conditions, which can be used to determine time- 
dependent reactivity coefficients. The present technique is based on 
optimal control theory. A control strategy is set up to minimize the 
difference between the measured neutron flux and a mathematical model of 
the reactor dynamics. The control variable is the parameter to be 
determined which, in this case, corresponds to the excess reactivity. 
The optimal control equations have been solved and applied to several 
example cases. Excellent agreement is obtained between estimated and 
actual transient reactivity values. 

5.1.1 Background 

Reactivity feedback coefficients are customarily evaluated using 
detailed neutronic codes, and the calculated values are verified a 
posteriori against results of steady state experiments .’ In those 
experiments, the neutron flux is increased, then the reactor is allowed 
to stabilize, and the excess reactivity is estimated. from the new 
control rod position. In general, though, reactivity coefficients are 
time-dependent because of fuel expansion effects that produce geometry 
changes. In those cases, the steady state coefficients might not 
represent accurately the prompt coefficients; indeed, they might even 
have different signs. 

5.1 .2  Theory 

The approach taken in this implementation is to apply an optimal control 
technique to determine excess reactivity values during transients. To 
this end, a control strategy is set up to minimize the difference 
between the measured neutron flux and a mathematical model of the 
reactor dynamics. The control variable is the parameter to be 
determined that, in this case, corresponds to p ,  the excess reactivity. 
Mathematically, we attempt to minimize the following functional: 

tf 

J = J [(n,-n)’q + p’]d t  , 
0 

(5-1) 

where Q is an adjustable weighing factor, n, is the measured neutron 
flux, and n i s  the neutron flux predicted by a reactor dynamic model, 
expressed as 

where x is the vector of state variables, including n, and F is a vector 
function describing the reactor dynamics, 
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The optimal value of p that minimizes the above cost function can be 
readily obtained by the introduction of state variable adjoints, w, that 
are glven by the following relations: 

with boundary conditions 

w ( 0 )  = 0 . 
( 5 - 5 )  

(5-6) 

5.1.3 Application 

To illus2:rate this technique, we have applied it to a dynamic model of 
the A N S  reactor." This model includes a point kinetics representation 
of the neutron field with thermohydraulic feedback that is composed of 
fuel, core coolant, the in-vessel bypass region, and the reflector 
region. 

Using the above model as a reference reactor, transients have been 
performed by moving control rods under several reactivity coefficients 
assumptions. These transients have been analyzed using the technique 
outlined i.n the previous equations to obtain the transient reactivity. 
To this end, a reduced model was used that consisted only of a one- 
delayed-group point kinetics model, without any explicit representation 
of  the feedback terms. 

That is, the reference model used to estimate the transient reactivity 
can be expressed as 

d x / d t  = F(x,p) , ( 5 - 7 )  

where n is the neutron flux, c is the delayed neutron precursor 
concentration, and F(x,p) is the standard point kinetics representation 
wi.th a single group of delayed neutrons. 

5.1.4 Resul-ts 

Figure 5.1 presents a typical result of these analyses. This figure 
shows the transient reactivity estimated from the present techni-que 
along with the reactivity from the reference model. Superimposed on the 
same figure are the estimated feedback reactivity and the actual control 
rod reaccivity used f o r  the transient. This particular transient (a 
sinusoidal, followed by a constant, followed by a ramp in reactivity) 
highlights the fact that the present technique is able to extract the 
transient reactivity from the measured neutron flux, even under extreme 
and unusual conditions. 
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Fig. 5.1. The estimated transient reactivity (crosses) shows 
excellent agreement with the actual transient reactivity (solid line). 

5 . 2  STATE ESTIMATOR FOR PWR 

This section documents an algorithm designed to estimate the state 
variables of nonlinear dynamical systems. 
on measurements of detector signals that are in general corrupted by 
additive noise, and it attempts to estimate the actual value of the 
state variables based on a model representation. 

The present algorithm relies 

5.2.1 Background 

Optimal control algorithms require the knowledge of many of the system 
state variables. In practical cases, only a subset of these variables 
is measured, and values of this subset are not well known because of 
noise contamination. 
state variables is known as Kalman filtering that is based on linearized 
models and, thus, it may fail under special conditions when 
nonlinearities are dominant. 

A common technique used for estimating unmeasured 
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5 . 2 . 2  Theory 

The goal o f  the present algorithm is to update an estimate, y, of the 
vector of  state variables, x, when only a subset of  signals, s ,  from the 
plant is measured. 
contaminated by noise. The detection process can be described 
mathematically as s = G(x) i- 9 ,  where q is a vector of additive noises 
and G(x) is a general vector function relating the measured signals wit:h 
the actual plant variables. The state estimates are assumed 
to satisfy the fallowing relation, 

In addition, the measured signals are allowed to be 

d y / d t  = f ( y )  i- e , ( 5 - 9 )  

where f ( y )  is an approximate plant model that acts as a predictor of  the 
next estimate arid e acts a5 the corrector. The present algorithm 
calculates e based on the PMP by minimizing the cost function, 

tf 
J = [(s-G(x))TQ(s-G(x)) + eTRe] d t  , 

0 

(5-10) 

where Q and R are weight matrices 

Followbng the dual adjoint technique (see Sect. 2 ) ,  this minimization 
results in the following equations f o r  the adjoints w and e : 

= (df/d~)~w - Q(s-G(y)) (dG/d~) , (5-10) 

e = -R-& , (5-11) 

5.2.3 Validation 

An example of application of the present technique has been produced 
using a nonlinear model of a PWR, which includes a point kinetics 
representation o f  the neutron field, a single-node representation of the 
fuel and coolant: dynamics, and reactivity feedback. The detection 
process  is modeled, including detector time delays. A transient was 
induced in the plant modcl by ramping the inlet coolant temperature, and 
detection noise was added to the measured signals (power and fuel and 
coolant temperatures). Figure 5.2 shows the results of the filtering 
algorithm, which is a comparison between the detector responses with and 
wi-thout noise (solid lines) and the signal estimated by the present 
algorithm (dots). Satisfactory agreement is found between the estimated 
and actual transients despite the presence of a significant amount of 
measurement noise. Figure 5 . 3  shows how the present algorithm is able 
to update the unmeasured state variables. 

5 . 2 . 4  Summary 

A successful algorithm has been proposed f o r  the estimation of 
unmeasured s ta te  variables based on the values of some observed 
variables that are contaminated by noise and detector time delays 



37 

s 
1 

n 

0.0 =.a ao 80.0 KLD 100.0 
T I E  l a )  

Fig. 5.2. Comparison of 
the detector responses with and 
without noise (solid lines) 
with the signal estimated by 
the present algorithm (dots). 

b-------l 

1 0.0 Zl.0 no 80.0 d.D IM.0 
T I E  i o 1  

Fig. 5.3. Comparison of 
the unmeasured state variables 
estimated by the algorithm 
(dots) and their actual plant 
value (solid line). 



6 .  A COMPARISON BETWEEN OPTIMAL CONTROL AND PI CONTROL: 
BWR POWER CONTROL DESIGN 

6.1 THE BWR MODEL 

The dynamic behavior of  a BWR can be represented by the following model: 

d P / d t  = P ( p + a T - - & ) / A  + XC ; (6-1) 

d T / d t  2 a,(P--Po) - a,T ; (6-3) 

Po = 0 . 6  +- (0.4/0.6)(U-0.4) ; (6-5) 

7 = 0.65/(1 ; (6-7) 

where P represents the reactor power, C the delayed neutron precursor 
concentration, T the fuel temperature, and p the void fraction feedback. 
The core flow is represented by U (control). It has been shown'' that 
izhis simplified model is able to emulate fairly accurately the nonlinear 
behavior of a BWR. 

6.2 PI CONTROL DESIGN 

The PI control is designed in the standard fashion, 

where U p  is the proportional part given by 

and Ui is the integral p a r t  given by 

dU, /d t  = ( D - P ) k  , (6-10)  

where D represents the demand and q and k are the gain constants. The 
weights q and k are calculated such that they guarantee the stability of 
the system; that is, all the real parts of the system's eigenvalues are 
negative. Unfortunately, it i s  necessary to linearize the model to 
perform the stability analysis, and the optimal gains are not always 
obvious ~ 

Figure 6.1 presents the reactor response to a ramp demand in power from 
100% to 60% (that should correspond t o  a change in flow from 100% to 
40%)  when the reactor is controlled using a PI technique. In this case, 
the linearization necessary for the PI design was performed at 100% 
power. The values for the gains that make the system stable at: this 
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Fig. 6 . 1 .  Reactor response to a power ramp demand from 100% to 
60%, with power controlled by a PI technique. Flow is the controlled 
variable: (a) power and (b) required flow control, 

power were calculated. A s  Fig. 6.1 shows, these gains are able to 
stabilize the system at 100% power and to make the power follow the 
imposed demand, but we can see that at the end of the transient the 
system becomes unstable. One of the system's eigenvalues has become 
positive, A divergent oscillatory behavior can be seen from the figure. 

6 . 3  OPTIMAL CONTROL DESIGN 

In our design we are going to assume that a part of the BWR model is 
known. In particular, we assume that we have a dynamic model for the 
power, precursors, and temperature of the fuel. The void fraction 
feedback dynamic is unknown to the control system designer. We also 
assume that a plant power signal is available. 

The knowledge of the state variables is fundamental to design and 
optimal control; therefore, our first goal is to obtain the unknown 
variables, the void fraction feedback, and fuel temperature. This goal 
can be achieved by applying optimal control theory (see Sect. 2) to the 
so-called state estimation problem. The idea is to find the optimal 
value of p that; minimizes, in the least-squares sense, the error between 
the measured power signal and our control model. 

Once we have obtained the unknown variable, the optimal control can be 
calculated following the same technique: We want to obtain the best U 
that minimizes the error between the demand and the control model. 

To improve the stability of the control algorithm, we have also included 
in the minimization the error between the derivative of the demand and 
the derivative of the state variables. 
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Figure 6.2 resumes the computer simulation r e su l t s :  (a) shows how the 
control algorithm i.s able to follow the demand and to stabilize the 
system at any power, (b) shows how the algorithm is able to track the 
unknowm variable (void fraction feedback), and (c) shows the control 
action given by the algorithm. 
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Fig. 6.2. Reactor response 

to a power ramp demand from 100% 
to GO%. Power is controlled by 
the optimal control technique 
with the flow being the 
controlled variable: (a) power, 
(b) void reactivity feedback, 
actual (solid line) and estimated 
(circles), and (c)  the required 
flow control. 



7. OPTIMAL CONTROL OF UNCERTAIN NONLINW SYSTEMS: 
AN APPLICATION TO A TWO-LINK ROBOTIC ARM 

The availability of fast and reliable microprocessors has opened the 
possibility of performing on-line numerical calculations to improve and 
optimize the manner in which mechanical manipulators are controlled. In 
particular, there is a general interest (see ref. 8 )  in increasing the 
robustness of control algorithms when system behavior is affected by 
nonlinearities, or when a relevant part of  the system dynamic is unknown 
a priori for the control designer. 

This section presents a new microprocessor-based algorithm that is able 
to perform uncertainty-tracking and control the mechanical manipulator. 
A variational technique based on Pontryagin's Maximum Principle is used 
to update and decompose the control model and to calculate the optimal 
control. 

Three simultaneous optimizations are performed: (1) The trajectory in 
generalized coordinates is obtained by matching the kinematic model of 
the arm to the prescribed trajectory in Cartesian coordinates. (2) The 
model's unknown terms are obtained by matching the signals from the 
arm's detectors to the control model. (3) The optimal controls are 
obtained by matching the trajectory in generalized coordinates to the 
updated dynamic model. 

To validate the algorithm, a system representing a two-link robotic arm 
was simulated. In the control model the coupling and friction terms 
were unknown. The robot was forced to follow a prescribed trajectory 
and to pick up an unknown mass. 

7.1 THE DUAL ADJOINT TECHNIQUE 

This section reviews the reformulation of the FTT optimal control 
problem presented in Sect. 2. 

Let 

represent the plant model, where y is the state variables and u the 
controls. Our goal is to find u(t> such that the system will follow a 
given set of demands, d ,  in the sense that the cost function defined as 

( 7 - 2 )  

is minimized. 
with time. The initial state y(o> and final state H(y(tf)) are known, 
but tf is free. 

Q and R are weight matrices, which are allowed to change 
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If the system is in equilibrium at t - 0 and d is a well behaved 
function, the minimization problem is equivalent to the solution of the 
following set of  equations: 

y(0) = yo ; w ( 0 )  = a , (7-6)  

where w i s  the set of  Lagrange multipliers os adjoints. The above 
~eformi.11at:i~t-i of PMP can be achieved by integrating backwards the cost 
function, and the initial conditions are known only if the initial 
estate is in equilibrium. Under this special condition the calculation 
of the optimal control can be easily executed on-line, in a 
microprocessor, because the classical TPBVP is recast into an initial 
value problem. 

7 . 2  TRAJECTORY PRESCRIPTION 

This section shows how the arm angular velocities, d ,  which locate the 
end-effector on the trajectory, can be obtained by applying the 
reformulated optimal control problem. 

Let tra(e) be a parametric representation of the trajectory in Cartesian 
coordinates, F i r s t  we map the real time t into the parameter e by 
apply in,g 

e = 1/2[1-cos(7rt/tf)] . ( 7 - 7 )  

Psy the choice o f  this mapping we obtain directly the steady state 
initial arid final conditions. Now we can calculate the angular 
velocities by minimizing the cost function, 

( 7 - 8 )  

where @(d) represents the transformation from generalized, d ,  t o  
Cartesian coordinates. 

7.3 UNCERTAINTY TRACKING 

This section shows how the reformulation o f  the optimal control problem 
can be used to update the system’s unknown terms. 

Assume that there is a set of unknown terms, a ,  which can change 
arbitrarily with time. 
otherwise we cannot guarantee that the calculated control will be 

Our control model needs to be updated on-line, 
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optimal. 
the reformulation of the optimal control problem. 
assume that the magnitude of the unknown terms, a, will be such that the 
cost function, 

The updating of the control model can be achieved by applying 
In this case, we 

is a minimum, where m represents the control model state variables and x 
the detector signals. 

7.4 SYSTEM DECQUPLING AND DECOMPOSITION 

Often the plant's dynamic model. involves a large number of  differential 
equations. In this case, it may be convenient to decompose the large 
model into a set of decoupled subsystems. The uncertainty tracking 
method can be used to achieve an efficient decomposition without losing 
too much information. 

Let us assume that 

dx/dt - F(x,u) (7-10) 

represents the mathematical model of the plant that we wish to control, 
where the vector x represents the n state variables and u represents the 
m controls, Let 

represent a set of k subsystems formulated in such a way that they are 
uncoupled. To guarantee that this set of subsystems represents the 
whole system, we introduce the unknown set of functions, pi ,  whose 
values at time c can be obtained by the optimal matching of the signals 
coming from the detectors, with the values for the state variables given 
by the numerical integration of the subsystem's mathematical models. 
Actually, this problem can be formulated as an optimal control problem. 
We want to know which are the values of controls (unknown function p} 
that make the subsystems follow the demand (detector signals}. 

7.5 OPTIMAL CONTROL 

A t  this point, our algorithm is able to update the control model; 
therefore, we have an adaptive model to which we can apply the 
reformulated optimal control problem to obtain the controls necessary to 
follow the demands. Now, to implement the demand-following 
capabilities, we have to minimize the cost function, defined as 

Jc = if { [d-m]TQ,[d-m] + uTR,u)dt . 
0 

(7 -12)  
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7 . 6  APPLICATION TO A ROBOTIC ARM 

To validate tihe algorithm, a computer simulation of a two-link robotic 
arm was developed which included the friction terms. The control 
problem is to determine the set of  torques to be supplied to the arm so  
that its end-effector moves along a prescribed trajectory (the 
trajectory i s  given in Cartesian coordinates). In the control model, 
the coupling and friction terms are considered unknown; therefore, it is 
necessary to update their values during the transient. Moreover, the 
a r m  m u s t  pick up an object whose weight is changing with time. 

Figure 7.1 shows the motion o f  the robotic arm along the trajectory. 
The arm's tasks are to follow the given trajectory (discrete line marked 
with the symbol -E> and tx  pick up the unknown time-varying mass 
(graphically represented by a black disk). 

7 . 7  CONCLUSIONS 

This section presents a novel algorithm for the control of  mechanical 
inanipulators based on optimal control theory. 

This new algorithm provides a suitable methodology for control problem 
in which only a part of the dynamic model. of the robo t  is available to 
the  designer. We have shown that this method can be applied to 
(I) transform coordinates, (2) update and decoupl-e the control model, 
and ( 3 )  obtain the control inputs. The algorithm has been validated 
wieh a computer simulation o f  a two-link robotic arm. 
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Fig. 7.1. Motion of the robotic arm along the 
trajectory. 
trajectory (discrete line marked with the symbol +) 
and to pick up the unknown time-varying mass 
(graphically represented by a black disk). 

The arm task is to follow the given 



8. THE MILTON- JACOBI APPROACH 

We have seen in previous sections how easy it is to implement the so-  
called dual adjoint technique. Unfortunately, this is not an optimal 
solution to the problem, and, as shown in Sect, 2, it will not work for 
unstable systems in general. In this section the more powerful 
Hamilton-Jacobi approach is used. To illustrate the technique, a 
mechani-cal manipul.ator control is designed. 

8.1 T I E  KA%IIILTON- JACOBI EQUATION 

This section reviews the formulation of the Hamilton-Jacobi approach to 
opti ioal  control presented in Sect. 2. 

Let us study the dynamic behavior of the cost: function. 
a dynamic cost function as 

First we define 

t 

J(t) = V(X,U) d~ . 
0 

Taking the total derivative of J(t) with respect to t ,  

J ,  = -[J,dx/dt - V(X,U)] , 

and defining the Hamiltonian as 

X(J,,X,U) J , d x / d t  - V(X,U) , 

we. obtain 

J ,  = -H( .Jx ,x ,u )  . (8-4) 

Equation ( 8 - 4 )  i s  known as the Hamilton-Jacobi equation in classical 
mechanics. To minimFze the temporal evolution of S(t) , we need to 
select ~2 (the control) such that it minimizes the Hamiltonian. Also, we 
need to keep the value o f  the Hamiltonian constant and equal to zero 
during the evolution o f  the system. 

'The solution of the Hamilton-Jacobi equation can be really difficult, 
especially f o r  multidimensional nonlinear systems. A s  shown in Sect. 2, 
some simplification can be obtained by transforming the cost function. 

8.2 APPLICATION TO A MECHANICAL MANIPULATOR 

This section presents in detail the design process of a closed-loop 
control algorithm for a mechanical manipulator. First, a model of the 
mechanical arm is developed using the Lagrange theory. Second, the 
control algorithm is designed using the Hamilton-Jacobi approach. TWO 
different formulations for the cost function are solved and compared. 
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Because of the simplicity of this model, all calculations are made 
analytically. 

8.2.1 The Model 

The most powerful way of developing a dynamic model for a mechanical 
manipulator is to obtain the Lagrange-Euler equations in generalized 
coordinates. 

Let us consider a one-link manipulator. For simplicity, we have assumed 
that all mass, m, is concentrated in the end-effector. The easiest 
approach to writing the Lagrangian in generalized coordinates (in this 
case polar coordinates) is to write it first in Cartesian form and then 
transform it to polar. In our case, the Lagrangian is 

The coordinates transformation is given by 

x = rsin(8) , ( 8 - 6 )  

y = -rcos(8) ; ( 8 - 7 )  

therefore, 

v, = -rcos(6)dO/dt , (8 -8 )  

vy = rsin(l)ds/dt , ( 8 - 9 )  

After elementary algebraic manipulation, we can obtain the Lagrangian in 
polar coordinates as 

L - 1/2m(rdd/dt)’ +- mgrcos(0) . (8-10) 

The Lagrange equation is formulated as 

(8-11) 

where T represents the torque. Intraducing Eq. (8-10) into E q .  (8-11) 
leads to the dynamic equation f o r  the mechanical manipulator: 

d28/dt2 = -(g/r)sin(O) + T/mr2 . ( 8 - 1 2 )  

Defining 

X , = B  , 

X Z  - dB/d t  , 
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E q .  (8-12) can be written in state space form as 

dx2/dt = -alsin(xl) + azT . (8-14) 

8.2.2 The Hamilton-Jacobi Eouation 

Oui: goal. now is to design a feedback control algorithm to regulate the 
robotic arm around a given position. Following the prescriptions from 
Sect, 8.1, first we. define a cost function, then solve the associated 
Hami 1 to [I - J acob i e quat i on. 

The efficiency of the final design depends fundamentally on the 
selec'lion of the cost function. On the other hand, the analytic 
solution o f  the problem can be simplified by selecting an adequate cost 
function also. In this section we will show how two different cost 
functions lead to different results. 

We first try a cost function that minimizes the position error and the 
acceleration. For simplicity we will assume that the desired position 
is x, = 8 ,  Then, 

tf 

J ,  = J [1./2 (x,)'Q + 1/2 (d~2/dt)~R]dt . 
0 

T h e  associated Hamiltonian will be 

The optimal control must satisfy H, = 0 ;  therefore, 

wza2 J- a2(-alsin(xl)tazT)R = 0 . 
Using E q .  (8-17) and demanding H, = 0, it follows that 

0 = w1x2 - (w2)'/2R -E 1/2 (x1)2Q . 

(8-15) 

(8-16) 

(8-17) 

(8-18) 

Our goal is to obtain a solution that is independent of x, or x2. 
Consider: 

w1 = P l l X ,  + PlZX.2 ; (8-19a) 

wz = PlZX, + P22X2 (8 - 19b) 

By introducing E q .  (8-19) into E q .  (8-18) and performing some algebraic 
operations, we obtain: 
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We can now find a solution for Eq.  (8-20) that is independent of the 
state (xl or x2). Again, some algebraic manipulations lead to 

(8  - 21~) 

which is the only real solution of E q .  (8-20). 

From Eq. (8-17), we can obtain the optimal control as a function of x1 
and w2. The quantity w2 can be expressed now as a function of x, and x2 
using Eqs. (8-19) and ( 8 - 2 1 ) .  The optimal control can be, in this way, 
expressed in a closed-loop form as 

Introducing optimal control into our model, we can perform stability 
analysis. The reader can easily check that this optimal control 
strategy is stable for any value of Q and R ,  but the system eigenvalues 
may have an imaginary part, depending on the gains we choose. To avoid 
this problem, we need to come back to the original cost function and 
reconsider our original formulation. 

Considering the cost function, we realize that the velocity has not been 
minimized. 
requirement; that is, we try a cost function that minimizes the positlion 
error, the velocity error, and the acceleration. For simplicity we will 
assume that the desired position is x, = 0 and the desired velocity is 
x2 = 0. Then, 

Now we solve again the problem by introducing this extra 

T 
Ji = s [1/2 + 1/2 (x2)'Q2 + 1 / 2  (dx,/d~)~R]dt , (8-23) 

0 

and the associated Hamiltonian will be 

H, = wlx2 + w,(-a,sin(x,)+a,T') 
+ 1/2 ( X , ) ~ Q ~  + 1/2 (x2)'Q2 + 1/2 (-a,sin(x,)+a2T>2R . (8-24) 

The optimal control must satisfy H, = 0; therefore, 

w2a2 + a2(-alsin(xl)+a2T)R = 0 . ( 8 - 2 5 )  

Using E q .  (8-25) and demanding that H, = 0, it follows that 

0 - w,xz - (w2)2/2R 4- 1/2 (X1)2Q, + 1/2 (x2)kQz . ( 8 - 2 6 )  
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Trying as before: 

w1 = PllXl + PlZXZ 9 (8- 27a) 

w2 = P12X1 + P22X2 * (8-27b) 

By introducing E q .  (8-27) into Eq. (8-26) and making some algebraic 

and 

(8 - 28a) 

(8-28b) 

, (8 - 28~) 

(8-29a) 

(8 - 29b) 

(8-29~) 

Now we have more freedom 
to adjust the eigenvalues in the desired position. 

Finally, if we choose to minimize the velocity and the acceleration, 
then, for any value of Q and R, the eigenvalues are imaginary. 

8.3 CONCLUSIONS 

I n  this section, we have presented a detailed example of solving the 
Hamilton- Jacob i equation. 

The fundamental. advantages of  this approach are that: (1) the system is 
stable for any selection of weights, and (2) the final implementation 
can be done using standard proportional integral-differentia1 (PID) 
boxes and function generators. No differential equations are needed. 

The  main disadvantage of t h i s  approach is the substantial analytic work 
required when the systems are nonlinear. Some simplification can be 
obtained by redefining the cost function. 

If the system is linear and our goal is to design a steady state 
regulator, then the Hamilton- Jacobi approach reduces to the well-known 
LQ algori t h n .  



9. A NEW APPROACH TO CONTROL THE WATER LEVEL 
OF U-TUBE STEAM GENERATORS 

Automatic water level control in steam generators is currently achieved 
via the three-element controller. This algorithm is based on the 
measurements of level, steam flow, and feedwater flow. Unfortunately, 
at low power the feedwater flow signal is highly unreliable, forcing the 
transfer to manual control. A large number of reactor trips occur under 
these conditions. The nuclear industry has shown a concern for this 
problem. 

In this section, an alternative automatic control algorithm is proposed 
and validated. 
Instead, it uses the pressure measurement in the steam header. A level 
set point modulation is introduced that allows the algorithm to 
compensate for the shrink and swell phenomena. The standard A - P  
algorithm to control feedwater pump speed has been also modified to 
achieve greater performance and integration. 

The new algorithm does not rely on flow signals. 

9.1 STEAM GENERATOR DYNAMICS 

The U-tube steam generator ( S G )  dynamics is very attractive from the 
mathematical point of view, but it is a nightmare for the plant 
operator. The SG dynamic behavior is characterized by strong 
nonlinearities at low power and by the so-called "nonminimum phase" 
problem. Both effects need to be compensated by the control designer 

Perturbations in pressure or enthalpy can put the water level and the 
water inventory in the SG out of phase for large periods (10 to 100 s ) .  
This might mean that for several seconds the amount of water introduced 
into the system is more than the amount of steam leaving it, and the 
level may be decreasing instead of increasing. 
dramatically the controllability of the system and must be taken into 
account. 

This change can affect 

Out-of-phase perturbations can be introduced by changes in (1) steam 
flow, (2)  primary enthalpy, or ( 3 )  feedwater enthalpy. These phenomena 
are called nonminimum phase or shrink and swell problems. 

On the other hand, the strong nonlinearities present in the system can 
also affect our design. If the system is linearized, one can get the 
impression of having a stable model. 
actually, only under small perturbations. A large perturbation will 
make it unstable. This effect is more evident at low power, and it 
seems to be the most important source of failure in control designs, 

The system can be stable, 

51 
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9 . 2  EXISTING CONTROLLERS 

This section reviews control options available to date to the nuclear 
industry. 

9.2.1 One - Element Controller 
A minimization of the level error using a standard PID box leads to the 
one-element controller. Because of the out-of-phase period, this design 
can l e n d  to instabilities. 

Based on this approach, some naive designs have been proposed for low- 
power operation. These designs calculate the gains for the PID level 
contiroller based on a linearized model. The linearized model may give 
the (wrong) impression of  a stable system. Even if this were true, the 
PID gains would be so small that the system would respond too slowly to 
the usual power ramps. 

9.2.2 Ebree-Element Controller 

Figure 9.1 shows a block diagram of a three-element controller. Now, 
not only the level error i s  minimized, but also the difference between 
the steam and feedwater flows. In this way, the out-of-phase periods 
are, in some way, compensated. This design is highly effective. 
Unfortunately, at low power the feedwater flow signal is unreliable; 
eherefore, the three-element controller cannot be used. 

9.2.3 The Belgian Level Controller 

Belgian nuclear power plants use an automatic feedwater control that can 
perform under any operating condi.tions.’’ 
three-element design that includes a shrink and swell compensator, At 
low power, the feedwater flow becomes unreliable. The Belgian design 
solves this problem by using a one-element controller with a new shrink 
and swell compensator. 

It is based on an adaptive 

The compensators for low power and for full power are different. At 
full power the steam flow signal is used, and at low power the wide 
range level signal is used. We have been unable t o  get detailed 
information on how the signals really wark, but the operational 
experience seems to be satisfactory. 

9.3 LEVEL SET POINT MODULATION 

This section presents a novel algorithm to control the water level 
automatically under any operating conditions. The algorithm is based on 
the one-element controller, but it uses a level set point modulation 
technique to compensate for out-of-phase phenomena. 

First, the model used to perform the steam generator simulation is 
presented. Then,  he SG dynamics under the act:i.on of the one-element 
controller is studied. It is shown how the gains needed to follow the 



53 

Minimizes level error and 
flow difference 

diff flow 

actuator 4 

--I_ 

level - 

Fig. 9.1. Diagram of a three-element controller. 

standard power ramps are too big and can make the system unstable at low 
power. Finally, a level set modulation technique able to compensate for 
the nominimum phase phenomenon is formulated and validated. 

9.3.1 Steam Generator Model 

The MMS library13 has been used to develop the SG model. 
used represent the 

The modules 

1. feedwater pump (including turbine and turbine valve), 
2. main feedwater valve and actuator, 
3 .  U-tube steam generator, and 
4 .  connectors and pipes. 

The parameters used for this model are taken from a Combustion 
Engineering PWR (Arkansas Nuclear One). 

Figure 9.2 gives a graphical representation of the level scales in this 
SG. 

9 . 3 . 2  One-Element Controller Dvnamics 

Using the standard PID boxes of the MMS library, a one-element 
controller was added to the model. 
simulated. 

A power ramp of 0.05%/s was 

The PID box was adjusted to keep the level near the set point during the 
transient. Figure 9 . 3  graphically represents the results. 

To keep the level error small, it was necessary to have strong gains. 
The power ramp used is the one required by the nuclear industry for its 
level control algorithms. 
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Fig .  9 . 3 .  S t e a m  generator  response to a power ramp. 
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A strong gain keeps the level near the set point, but it also can make 
the system unstable. Figure 9 . 4  shows the results of a step change in 
steam flow at 100% power. If the steam flow is reduced, the pressure of 
the steam increases, inducing a contraction of the steam bubbles in the 
water. The level controller is acting in the opposite direction. The 
feedwater flow is increasing when the steam flow has been reduced for a 
period of about 30 s .  
overshoot. 

Thls out-of-phase period will produce a large 

The results are catastrophic at low power. Figure 9 . 5  presents a 
simulation of a step change in steam flow at 25% power. 
time the step is smaller in absolute value, the system becomes unstable. 
Moreover, the instability has a nonlinear nature. The linearization 
around the set point, however, will make us believe that the system was 
stable. 

Although this 

9 . 3 . 3  Level Set Point Modulation 

We have seen that the gains necessary to follow a power ramp are too 
large and that the SG may become instable. 
induced by the out-of-phase phenomenon. The level can be decreasing 
while the water inventory is increasing. It is necessary to compensate 
in some way the level controller if a large perturbation is introduced 
into the system. 

This instability is mainly 

We have introduced a level set modulation technique to avoid these 
problems. We define L s e t o  as the desired level set point. In our 
algorithm, the actual level set point sent to the one-element controller 
will be Lset, defined as: 

Lset - Lseto  f Lp , 

where Lp is a modulated correction factor that we obtain from 

d L p / d t  = -Lp/rp - 

(9-1) 

( 9 - 2 )  

where P is the pressure signal, and Kp and r p  are positive gains to be 
adjusted by the control designer. 

9 . 3 . 4  Simulation Results 

The level set modulation technique was implemented on the MMS steam 
generator model. 
controller. The pressure signal was filtered before taking the 
numerical derivative. 
limiter, because we are interested only in compensating for large 
perturbations. 

A standard PID box was used for the one-element 

The derivative was filtered again through a band 

Figure 9 . 6  graphically displays the simulation results at 100% power. 
Figure 9 . 7  compares the dynamic behavior of the system (1) without level 
modulation and (2) with level modulation. 
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Fig. 9.6. Steam generator level response to a steam 
flow step perturbation: 100% power, level modulation on. 
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Fig. 9.7. Comparison steam generator response, 100% power: 
(a) level modulation off and (b) level modulation on. 
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The effect o f  the compensation is more dramatic at low power. 
Figure 9.8 presents the simulation results at 25% power, and Fig. 9.9 
compares them with the ones obtained without modulation. 

9.4 PUMP SPEED CONTROLLER 

The pump speed is controlled using the A-P algorithm. The idea is to 
operate the pump in such a way that the diEference in pressure between 
the steam header and the pump exit is almost constant. The problem in 
t h i s  design will be that the pump speed controller does not use the 
level. error information; therefore, in some special scenarios, it can 
act against: the level controller. 

In our design, we have changed the control concept for the pumps. Two 
factors will contribute to the controller, (1) a valve set program and 
(2) the level error. 

Figure 9.10 is a diagram of the valve set program. Given a steam flow 
signal (a power signal could also be used), a function generator returns 
the optimal valve position. This function generator has been designed 
off-line so as to optimize the position of the valve to ensure a nice 
difference of  pressure and a safe controllability margin. 

The optimal valve position signal is then filtered to introduce a delay 
(in this design, the delay was 30 s ) .  T h i s  delay must be introduced to 
avoid abrupt reactions on the contro1.Ler. 

The filter signal is then added to the one-element controller signal and 
sent to the feedwater valve. Simultaneously, the error between the 
actual position of the feedwater valve and the desired position is added 
to t h e  one-element con[-roller signal and sent to an integral box that 
actuates the pump valve. 

Figure 9.11 gives the diagram f o r  the integrated control algorithm: 
level modulator, one-element controller, and valva set program. 

Figure 9.12 shows the positions of the feedwater and p ~ ~ p  valves during 
the simulatzed 100% power transient. The behavior of the integrated 
controller is clear. The fast proportional informati-on is sent t:o the 
feedwater valve, while the pump valve executes a slow integral. movement 
to correct f o r  steady state errors and to make the feedwater valve move 
t o  the optimal p o s i t i o n .  

9 . 5  FVTURE WORM 

The algorithm presented in this chapter is ready to be implemented in 
any operating steam generator. The design was based on the capabilities 
of the Foxboro hardware and, therefore, no new hardware development will 
be necessary. 
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We think that the capabilities of the algorithm could be enhanced by 
taking into account feedwater and primary enthalpy perturbations. Both 
perturbations introduce an out-of-phase period into the system that can 
be compensated by using again the level modulation technique. Let Lp, 
Ltp, and Ltf represent the modulated corrections for pressure, primary 
temperatureland feedwater temperature. The modulated level set point 
signal sent to the one-element controller will be given by 

L s e t  = L s e t o  + Lp f Ltp + Ltf , (9-3) 

dLp/dt = -Lp/rp - K,(dP/dt) , ( 9 - 4 )  

dLtp/dt  = -Ltp/7tp + Ktp(dTp/dt) 1 (9-5) 

where Tp and T, represent the primary and secondary temperature signals. 

On the other hand, it will also be interesting to study the effects 
induced by the coupling of more than one steam generator connected to 
the same feedwater line. In this case, perhaps the original A-P 
controller will perform better than the proposed valve set program 
because, by keeping the pressure difference constant, it will be 
possible to minimize the coupling effects. 



62 

Finally, better simulation o f  real low power is needed. The MMS model 
used in this work failed at very low power. 
t:he extended range modules of the MMS library. 

It will be necessary to use 

9 . 6  SUMMARY 

I n  this section, an alternative automatic control algorithm has been 
proposed. The new algorithm does not rely on flow signals. Instead, it 
uses C h e  pressure measurement in the steam header. A level set point 
modulation is  introduced that allows the algorithm to compensate f o r  the 
shrink and swe1.1 phenomenon. 
feedwater pump speed has also been modified to achieve greater 
performance and integration. 

The standard A-P algorithm to control 

The algorithm has been validated using a detailed U-tube steam generator 
model based on the MMS library. 



10.  CONCLUSIONS 

This report has studied, developed, and validated advanced control 
techniques for nuclear reactors and mechanical manipulators. 

The nuclear industry is now in the process of moving to digital 
hardware. Because of this unique opportunity to update the actual 
control algorithms, there is a generalized interest in knowing the 
benefits of  applying new advanced control techniques to nuclear plants. 
The research presented in this report is a contribution to that 
knowledge. 

The optimal control theory has been analyzed from a stability point of 
view. 
leads to open-loop strategies, and that the alternative formulation 
which leads to stable closed-loop implementations, the so-called LQ 
algorithm, can be applied only to linear systems. 

It has been found that the classical formulation of Pontryagin 

Unfortunately, real-life systems are seldom linear, and if linear, 
rarely exact models of the plants available. 
model, a large number of  differential equations would be involved, 
making the computation of  advanced control strategies impossible. The 
main effort of this report has been to develop the necessary theory to 
simplify all these problems. 

Even if we had an exact 

First, the basic relationship between Pontryagin’s optimal control 
theory and the alternative Kalman’s LQ algorithm has been identified 

Based on this study, new algorithms have been proposed that are able to 
deal directly with nonlinear models, to track time-varying parameters or 
uncertainties, to decompose large models into a set of decoupled 
submodels, and to handle noisy signals. 

These new techniques have been validated with a large number of 
examples. Applications to PWRs, BWRs, ANS, steam generators, and 
mechanical manipulators have been simulated in digital computers, and 
the results have been published in nine peer-reviewed 
papers ~14,15,16,17,18.19.20,21,22 

10.1 ACCOMPLISHMENTS 

The main accomplishments of this research can be summarized as follows. 

10.1.1 Closed-Loop Ootimal Control 

In Sect. 2,  the basic relationship between optimal control theory and 
closed-loop control design is identified. 
been to show how the basic cost function minimization problem must be 
reformulated to obtain a closed-loop control strategy. New approaches 
to this problem that are able to handle directly nonlinear models have 
been developed. 

The purpose of this work has 

Some new applications of the closed-loop optimal 
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control theory have been proposed: state estimation, parameter tracking, 
uncertainty tracking, and system decomposition. 

10.1 .2  Parameter Tracking 

Section 3 presents a new formulation of  a class of nonlinear optimal 
control problems in which system parameters change arbitrarily with 
time. The methodology has been validated with a PWR model. 

10.1.3 State Estimation and Filtering 

Section 4 presents a new formulation o f  a class of  nonlinear optimal 
control problems in which system signals are noisy and some system 
parameters change arbitrarily with time. T h e  methodology has been 
validated with an application to a nonlinear PWR model. 

10.1.4 Plant Monitoring, 

Section 5 shows some applications of the techniques presented in this 
report to the reactor monitoring problem. First, a transient reactivity 
monitor has been presented, which was tested and validated with a 
dynamic model of the A N S .  Second, a state monitor for a P 
presented that is able to estimate the state variables of the system by 
analyzing the noise-corrupted signals from the plant. Both applications 
use techniques presented in previous sections. 

10.1.5 Compari-son of  PI and Optimal Corntrollers 

Section 6 presents a comparison of  the behavior of a RWR controlled with 
a standard PI. controller and a B 
based optimal control algorithm. 

controlled with a microprocessor- 

10.1. ~ 6 mrtiinty Tracking and Large Svs tern Decoupling 

Section 7 presents an adaptive optimal control algorithm for uncertain 
nonlimear systems. It represents  a novel approach to the problem o f  
decoupling a large system into a set of simplified subsystems. 
variational technique based on Pontryagin’ s Maximum Principle has been 
used to track the system’s unknown terms, decouple t:hc subsystem models, 
and calculate the optimal. control. To validate the algorithm, a system 
representing a two-link mechanical manipulator was simulated. The 
inverse kinematics problem €or the trajectory prescription in 
generalized coordinates w a s  also solved by applying optimal control 
techniques. 

A 

10.1.7 Applicability of the Hamilton-Jacobi ALproach 

Section 8 presents an application of the Hamilton-Jacobi approach to the 
mechanical manipulator problem. 
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10.1.8 Demand Modulation: SG Automatic Level Control 

Section 9 presents a new algorithm to control steam generator water 
level that does not rely on feedwater flow measurements. 
the feedwater signal is biased; therefore, the classic three-element 
controller fails, forcing the transfer to manual operation. Manual 
operation has not been very effective; in fact, a substantial number of 
reactor trips occur under low-power manual operation. 
presented was able to compensate for the shrink and swell phenomenon by 
modulating the level set point according to differential changes on the 
pressure signals. In this manner, it was possible to keep a strong and 
dynamic automatic level controller from 0% to 100% power. 

At low power, 

The new algorithm 

10.2 COMMENTS ABOUT SOME ALTERNATIVE APPROACHES 

This report has been oriented to the study of the applicability of 
variational techniques to the advanced control design problem. 
Unfortunately, other powerful approaches, such as adaptive PID, self- 
tuning control, and robust control, have not been analyzed. These 
algorithms might be really efficient. 
easier to implement. It is important to understand that the main 
objective of advanced control algorithms is to improve the ratio between 
benefits and cost for the nuclear industry; therefore, the 
implementation cost should be taken into account when new algorithms are 
proposed. 

They have the advantage of being 

On the other hand, simplicity can increase reliability. Each day, more 
powerful computers are becoming available. 
computers able to perform computations at rates faster than 8 MIPS (mega 
instructions per second) and 2 MFLOPS (mega floating point calculations 
per second). These rates can lead us to the conclusion that we can 
create very sophisticated algorithms working in real time. 

There are now personal 

But, by increasing the necessary computational steps, we also increase 
the failure rate. Given the large safety margin required for nuclear 
reactors and the huge cost of downtime, simplicity should have an 
important weight factor in our future decisions. 
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