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ABSTRACT 

Although functions of interest are generally defined either on some subset of the Cartesian 

product of the reals or some discrete set, genetic optimizatian only directly addresses functions 

defined on diadic groups. As a result the success of genetic optimization relative to the 

original domain is often dependent on the chosen embedding and representation. This paper 

analyzes "ga hard and ga easy" functions, provides a constructive procedure (that does not 

use Walsh transforms) to generate hard problems, proves that no single representation is 

optimal for all functions, and introduces two classes of transformations to change selected 

hard functions into easy ones. Two procedures for representational change are suggested. 

vi i 
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1. IlWRODUCT1ON 

The genetic algorithm, a search technique motivated by the metaphor of biological 

evolution, strongly contrasts with classical optimization methods. The genetic algorithm can 

attempt to optimize complex, ill-structured systems; for example, multiobjective problems which 

are defined only by computer simulation models. To date, the genetic aigorithm has been 

successfully applied to diverse problems including, for example, VLSl design (Cohoon and 

Paris, 1987), network design (Davis and Coombs, 1987a, b, and Coombs and Davis, 1987), 

tuning of expert systems (Kuchinski, 1 985), image registration (Grefenstette and Fitzpatrick, 

1985), pipeline control (Goldberg, 1983, 1987a,b), information retrieval (Gordan, 1988), 

determination of internal parameters leading to nandominated solwtions in large, complex 

scheduling codes (Hilliard et. al., 19881, and two person games (Axelrod, 198'0a, b, 1987). 

Nonetheless, genetic algorithms have also had their setbacks and disappointments. They do 

not seem to have exhibited distinguished performance on traveling salesman problems (tiepins 

et a!., 1989), their convergence properties remain poorly understood, and genetic algorithm 

research continues to be primarily empirical. This paper provides a framework for grappling 

the disappointments and for studying genetic Optimization of complex systems, with 

particular emphasis on the role of change of representation. The importance of ai good choice 

of representation and the need for representationat change arises not only in genetic 

algorithms, but also in neural nets where the hidden layers are thought to adapt the 

respresentation (Baum and Wilczek, 1 988) and in artificial intelligence methods in general 

(Bietterich and Michalski, 1983; Rich, 1983). Amarel (1 968), Korf (I 9801, and Subramanim 

(1 989) have addressed representational issues. 
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The remainder of this paper first presents a brief overview of genetic algorithms: their 

historical development, the basic algorithm, and a brief discussion of factors that prevent 

genetic algorithms from converging to function optima. Attention is restricted to single 

objective, unconstrained problems. The role of embedding and representation is formally 

specified. Easy and hard functions are defined and procedures are specified to generate 

examples of such functians. A key result is that for any representation there exists a function 

and transformation such that the function in the original representation is hard (to optimize), 

but is easy in the transformed representation. "Easiness and hardness" are motivated in terms 

of polynomials, which in turn motivate a heuristic for transforming certain classes of hard 

functions into easy functions. The heuristic is illustrated with several small examples. 
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2 GENEnC ALGORITHM BASICS 

Genetic algorithms are general purpose optimization algorithms (somewhat akin to 

simulated annealing in that sense) developed by Holland (1975) and based on ideas of Bledsoe 

(1 961 1 and others. They were designed to search irregular, poorly characterized spaces. 

Holland’s hopes were to develop powerful, broadly applicable techniques able to handle a wide 

variety of problems; perhaps not necessarily generating an optimal to any one problem, but 

rather providing a means to attack problems that are resistant to other known techniques. 

Holland was inspired by the example of population genetics and placed emphasis on crossover 

rather than mutation as the primary genetic operator. Thus, genetic search proceeds over a 

number of generations, with each generation represented by a population of chromosomes. 

A criteria of “survival of the fittest“ provides the pressure for populations to deveiop increasingly 

fit individuals. 

Although there are many possible variants of the basic genetic algorithm, the 

fundamental underlying mechanism operates on a population of individuals (chromosomes), is 

relatively standard, and consists of three operations: (1 ) evaluation of individual fitness, (2) 

formation of a gene pool, and (3) recombination and mutation. The individuals resulting from 

these three operations form the next generation% population. The process is iterated until the 

system ceases to improve. (Usually at this time, the population has converged to a few well 

performing individuals.) Generally, each individual in the population is represented by a fixed 

length binary string which encodes values for variables. The population size remains fixed from 

generation to generation and is typically between 50 and 200 individuals. Individuals contribute 

to the gene pool in proportion to their relative fitness (evaluation on the function being 

optimized) that is, well performing individuals contribute multiple copies, and poorly performing 
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individuals contribute few (if any) copies. (Typically, each individual contributes its allo 

integer number of copies. Whether or not an individual contributes an additional copy 

corresponding to the fractional part of its relative fitness is determined probabilistically -I see 

Baker 1987). The recombination operation is the crossover operator: The simplest variant 

selects hro parents at random from the gene pool as well as a crossover position within the 

binary encoding. The parents exchange 'Yails" (the portion of the string to the right of the 

crossover point) to generate two offspring. The subsequent population consists of the offspring 

so generated. Sometimes it is useful to generate only a fraction of the subsequent population 

by crossover. In these cases, the offspring (probabilistically) replace the poorest performing 

individuals in the prior population. A thorough introduction and overview to genetic algorithms 

and classifier systems is provided in Goldberg (198%) and public domain code is available 

from Grefenstette (1 984). 



5 

3. PERFORMANCE FAeTORS 

A variety of factors affect genetic algorithm performance. Conceptually, the most 

straightforward are the various parameter settings for population size, crossover rate, and 

mutation rate. The most systematic study of appropriate choices for these parameters was 

undertaken by DeJong (1975). Among his results he demonstrated that for the nonsmooth 

and multi-modal functions in his experiment, genetic algorithms were at least competitive with 

PRAXIS (Brent, 1971) and the Fletcher-Powell algorithm (Fletcher and Powell, 1963); Fletcher, 

1970; Huang, 1970). Grefenstette (1986) has investigated the use of a meta-level genetic 

algorithm for parameter settings. Goldberg (1 988a) has investigated population sizing. Other 

investigators have investigated dynamically chosen crossover positions and rates. For a survey 

af these results see Liepins and Hilliard (1989). 

The fundamental concept at the basis of most analysis of genetic algorithm performance 

is that of a schema (or hyperplane). Holland recognized that any algorithm that limits its 

information processing to one or two points is virtually doomed to failure on any space of 

sufficient cardinality. Fortunately, genetic algorithms can be shown to be more globally 

oriented. Consider a binary representation of length L. Each individual in a population belongs 

to ZLschemata. (Each is an exemplar of schemata). For example, let "*" be a "don't care" 

symbol, that is "*" matches either 0 or 1. Then the individual 01101 .... 111 belongs to the 

schema 0*1 O* ...* l*, the schema *I **I ...* 11, and 2L -2 other schemata. 

In some sense, schema can be considered to represent the "direction" of the genetic 

Given two conflicting schemata (the "*", s occur in common locati,ons and the search. 

schemata differ in at least one specific location), the genetic algorithm must determine how to 

allocate its search resources between the schemata. The genetic algorithm can be thought 
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to implicitly collect statistics about schemata utilities (fitness) in terms of the average fitness of 

their exemplars. Holland's (1 975) results regarding allocation of trials to k-armed bandit 

problems suggest that SO long as schemata utilities are correctly estimated, the genetic 

algorithm optimally allocates its resources. The selection of copies of individuals to the gene 

pool in direct proportion to their fitness biases the gene pool in the direction of the more 

favorably estimated schemata. In the early generations, a wide variety of schemata are 

represented in the gene pool, and the search is primarily a winnowing of low order schema 

(many "*"s -- high dimensional hyperplanes). Later generations show increased concurrence 

at individual bit positions, and the search proceeds among higher order schema. 

In terms of schema-based analysis, genetic algorithms can fail to converge to function 

optima for at least one of three reasons: 

1. Schemata utilities (the average fitness of the schema exemplars) cannot be reliably 
estimated by the genetic algorithm. In other words, the sampling error is too large. 

2. Schemata utilities can be accurately estimated, but "point" in the "wrong direction." 

3. Schemata utilities can be accurately estimated and "point" in the "right direction," 
but crossover destroys the individuals representing these schemata. 

The third failure mode is partially addressed by the schema theorem (Holland, 1975) which 

provides a lower bound to the growth of the expected number of schema representatives: Let 

H be a schema. The defining length of d(H) of H is distance between the first and last specific 

string position, for example 1 O**l *** has defining length 4. The order o(H) of H is the number 

of specific bits in H; for example, the previous schemata H has order 3. Let m(H,t) be the 

number of exemplars of schema H in the population at time t. Let f(H) be the estimated 

schema fitness and f the average fitness of the population (at time t). Let p, and p, be the 
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crossover probability and mutation probability, respectiveby. Then m(H,t+l) is at least the 

number of exemplars from H in the previous generation that survive crossover and mutation: 

m(H,t+l) 2 rn(H,t) fo [1-p, c&iJ (1-p,)”’”’ 
f e-1 

Clearly, the schema theorem understates the number of expected representatives; it does not 

account for influx, which at times can be substantial (Goldberg 1989a). 

The second failure mode has been investigated by Goldberg (1 988b, 1989b), Goldberg 

Goldberg (1 989a) constructed a and Bridges (1 988), Bethke (1 980) and Holland (1 989). 

minimal deceptive problem (MDP) and solved a system of difference equations to show 

(somewhat unexpectedly) that the genetic algorithm was able to solve the problem except in 

certain configurations. Goldberg and Bridges (1 988) considered idealized reordering operators 

on the minimal deceptive problem; their emphasis was on the prevention of schemata 

disruption. The Goldberg (1 988b and 1989b) and Bethke (1 980) studies of deceptiveness used 

Walsh transforms. (VValsh transforms can be viewed as the group characters to the domain 

of the function, the diadic group). Bethke’s primary results were first, that functions whose kth 

derivatives are appropriately bounded by certain Walsh transforms would not result in deceptive 

schemata. Second, he was able to specify a construction that would result in partially 

deceptive schemata. Goldberg (1 989b) constructed a function defined on bit strings of length 

three that is fully deceptive. He also showed that for linear functions, favorable schemata 

would not be disrupted by crossover. Bethke’s (1980) and Goldberg’s (1988b and 1989b) 

studies could be characterized as static analyses; analyses that do not reflect the changing 

genetic populations, and hence, do not address the first failure mode. Holland (1989) has 

introduced a dynamic counterpart to the Walsh transform to study deceptiveness as it evolves. 
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In contrastt, the analysis of this study does not use Walsh transforms. Instead the analysis is 

e in the original space, rather than the transform space. 

~~~~~u~~ some of the results in Goldberg (198 a) could be extended to shed light on 

this issue, the first failure mode has gone virtually unstudied. In addition, re 

changes provide no assistance in addressin this failure mode, One of the few potential 

recourses in this case is to increase the papulation size. 

On the other hand, representational changes can help address both the second and 

third failure modes. Historically, representational changes (through inversion) were entertained 

primarily to help prevent disruption due to crossover. Eady studies of inversion were done by 

7), Cavicchio (1970) and Frantn (1972). Holland (1975) discusses inversion as a 

basic genetic operator. Mare recently, Whitley (1 987’) reported encouraging results with the 

use of the inversion operator. Shaefer (1985 and 1987) has broken with tradition and has 

i n ~ ~ r ~ ~ r ~ t ~ ~  central dynamic control of embedding through change of resolution, centering and 

awing. The techniques for representational change advocated in this paper are thought 

to be new and the emphasis on representational change to transform hard functions into easy 

functions is als thought to be new. 
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4. OrnMLZATION DOMAIN 

In spite of genetic algorithm success with a variety of problems, understanding of their 

success and limitations remains primarily at the empirical level. A failure to clearly delineate 

and separate distinct problem components may be partially to blame for the slow theoretical 

progress in this area. Conventionally, genetic algorithms operate directly on functions defined 

on the diadic group, the n-fold Cartesian product of the integers modulo two. Empirically, it 

has been found that genetic algorithms operate most successfully on bit strings of modest 

length, say no longer than length 30-50. Rarely, however, is the original function of interest 

defined on this space. Instead, the original function is defined on some (subset of) Cartesian 

product of the reals, or on a discrete space. It becomes necessary to select a sample of 

points from the original domain and map them into the diadic group.' This is illustrated in 

Figure 1 where! the image of the embedding d is the sample set of points selected, and the 

map i is the representation of the sample set in the diadic group. Generally, the map d is 

injective and i is bijective. Let f be the original function to be optimized, f, its restriction to D, 

and f, its representation in n{O,l). These are defined SO that the commutativity relations 

f(d(x)) = fd(x) = fi(i(x)) 

obtain. Let f* be the optimum of the original function f on the domain S. The objective of 

genetic optimization is to find a near optimum f,f to the function f, defined on n(0,l) such that 

f* and f, * differ ( I f *  - f ,*l)  only by an acceptable amount. 

'A function defined on a domain of interest with cardinality not a power of 2, can be extended 
to a domain of the required cardinality. Set f(x)=L, where I is some suboptimal value. 
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s 
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R 

Figure 1. Explicit Embedding and Representation 
of a Function to be Optimized by Genetic Methods 

Far practical purposes, the original function domain can be considered to be one of the 

1. R" for n large, say n> 50. 
2. A compact subset of R" for n large. 
3. R" for n small, say n< 50. 
4. A compact subset of R" for n small. 
5. A discrete set G with iarge cardinali 
6. A discrete set G with small cardinalityy. 

say I G l  > 2=. 

imensionality can be reduced, cases 1 and 2 cannot be handled by conventional 

genetic algorithms on present day serial computing machines; the bit string representations 

of points are overly long. Genetic approaches to problems on these domains almost certainly 

will need to be based on variants of some of the real valued genetic operators such as "creep" 

developed by Davis and Coombs (1 987a,b) and Coombs and Davis (1 987). Without certain 

smoothness assumptions or bounding of the location of the optimum (optima), case 3. is 
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intractable also. For purposes of this characterization, the domain of case 4. can be 

considered to be a compact subset of the reals. Shaefer (1985 and 1987) has developed 

adaptive embeddings that dynamically modify centering and resolution for compact subsets of 

the reals. Case 5. is an extremely difficult case for which the author knows of no relevant 

results or research. Case 6. is the fundamental case that needs to be understood. In this 

case the domain S can be identified with the set D (the embedding d is trivially a bijection), 

and the issue is to determine an appropriate representation i that leads to a genetic solution. 
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5. EXISTENCE RESULTS 

Presented in this section are examples that essentially show the following: For a discrete 

space D (of small cardinality) there exist functions that cannot be (genetically) optimized in any 

representation. Other functions can be optimized in some representations and not others. 

Finally, a construction is given that suggests that for any representation i, a function f can be 

constructed such that its representation f, cannot be optimized, but some other representation 

fi can. These results underscore the need to choose a representation specific to the function 

being optimized. 

Because of the stochastic nature of the genetic algorithm and many possible variants 

of its internal mechanisms, precise statements addressing convergence must explicitly specify 

the mechanisms and be given in probabilistic terms. For purposes of this exposition, such 

rigor will be foregone, and convergence will be loosely defined to mean "convergence most of 

the time with reasonable amount of work" (reasonable population sizes and a reasonable 

number of generations). 

Example 1. Consider a function f which is identically constant at all points except one, 

which is the optimum. For sufficiently large cardinality spaces, and any representation, the 

function f cannot be optimized in a polynomial number (in the string length L) of genetic 

operations (crossover and mutation). This observation is intuitively plausible since the 

maximum number of distinct strings that will be obsewed after poiynomially many genetic 

operations remains polynomial, and the total number of strings is exponential. (Any search of 

such a function is essentially a random search.) The observation is empirically true whenever 

the bit strings are of nontrivial length. (This example can be generalized. The weakest 
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generalization is that 8 function f is not genetically optimizable if it is constant off a "small" set, 

where "small" is a fundion of population size and string length.) 

This example also serves to highlight the difference between estimable infor 

perfect information. The function f with a single spike at the origin has identical, positive Walsh 

coefficients at all points. For competitive schemata, positive Walsh coefficients indicate that 

schemata with zeros have higher utility than their competitors (Bethke, 1980). Thus, f is a 

' q h ~ o r ~ t i c a ? ~ ~  easy" function, but one for which empirical estimates of schema utility generally 

fail to approximate the theoretical utili I/ Unless explicitly stated otherwise, the remainder of 

this paper implicitly assumes that genetic sampling produces adequate estimates. 

Example 2. Consider the minimal deceptive function (MDP), type II (Goldberg, 1989a). 

The simplest version of this problem is a two bit problem: f(00)=0.9, f(01)=0.8, f(l0)=0.6, and 

f ( l 1 ) = 1  .O. For certain initial populations pop(0) (with the four strings unequally represented, 

represented with some positive frequency), the optimum (1 1) is unstable in the sense 

that the probability that the string (1 1) is represented in future populations goes to zero as the 

population index j goes to infinity. In other words, for sufficiently large j ,  the probability that 

the string (1 1) will be represented in pop(j) is arbitrarily small. In fact, empirical studies suggest 

that this loss of the optimal string occurs as early as the tenth generation (Goldberg 1989a). 

However, a simple affine transformation T will transform the MDP type II into a stable problem: 

Let M be a 2x2 zero-one invertible matrix with determinant minus one defined by 
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Define T by T(x) = [ ( l l )  + Mx], all operations modulo 2. Let g(x)=f(T(x:l). Then g( ) 

can be determined to be given as g(M)=l ,  g(O1)=0.9, g(10)=0.8, and g{l1)=0.6. (For 

example, g(Q1)= f [ (11)+M { )] = f [ ( l l )+ ( l l ) ]  = f(OO)==0.9. 

Although this problem has been explicitly discussed from the perspective of instability, 

an extension of the analysis to schemata suggests that affine transformations can transform 

certain non-optimizable functions into optimizable functions. 

Example 3. A Hamming cliff problem is one for which the optimum (optima) is (are) 

approached from one side by an increasing number of ones, and from the other side by a 

decreasing number of ones. Formally, let the distance measure I IH  be the Hamming distance. 

For a Hamming cliff problem there exist two near optima x, and ~2 such that Ix,-&/~ is large. 

An illustration is the function f defined by f(OOO)=f(001)=f(Q10)=f(101)=1(1 1Q)=f(l11)=Ol and 

f(01 1)=f(lOO)=1. Hamming cliff problems often seem to be optimirable by genetic algorithms, 

but the populations are frequently unstable insofar as the relative frequency of any string varies 

appreciably across the populations and that crossing two "complementary" optima yields - 

nonoptimal points (even in later populations, unless genetic drift has taken place). Again, a 

simple transformation serves to transform the illustrated order three Hamming cliff problem into 

a stable problem. Let M be a zero-one, 3x3 matrix with determinant one defined by 

1 0 0 

M =  1 1 0 

1 0 1 

Then the function g defined by g{x) = f (M (x)) (all operations modulo 2) is stable and can 

be seen to be defined by g(Oll)=g(ll l ) = l ,  g(x)=O otherwise. 
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To this point, it has been shown that certain functions cannot be optimized under any 

r~~resentat~on, that affine transformations can transform certain unstable problems into stable 

problems. The suggestion has been made that these same affine transformations suffice to 

certain nonoptimizable functions into optimizable ones. The following example will 

lead to a proof that no representation is adequate for all optimizable functions. That is, for 

resentation i, there exists a function fd and a representation j such that fi is not 

g e ~ ~ ~ i ~ a ~ l y  optimizable, but f, is, where f,(i(x)) = f,(j(x)) = fd(x). 

Example 4. The function f defined in Table 1 below is a fully deceptive function 

(Goldberg, 1989b) in the sense that schemata (of order one or two) containing the point (000) 

her utility than their competitors, but (1 11) is the optimal. (A formal definition of fully 

deceptive is given in definition 1, below.) 

i 

OOQ 
001 
01 0 
01 1 
1 QO 
101 
110 
111 

fm 
13 
11 
7 

-1 5 
- 1  

-1 5 
-1 5 
15 

Table 1. A Fully Deceptive Function 

Let M be the ~ero-one, 3x3 matrix with determinant one defined by 
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Then the function g defined by g(x) = f [(11 1) + Mx] can be shown to generate Table 2, and 

is (strictly) fully easy in the sense of definition 1. below. 

i 

000 
001 
01 0 
01 1 
100 
101 
110 
1 1 1  

(s (i) 

15 
13 
1 1  

-1 5 
7 

-1 5 
- 1  
-1 5 

Table 2. A Fully Easy Function (Transformed from 
a Fully Deceptive One) 

Definition 1 In accordance with Goldberg (1 9891s) define a function f of binary bit strings 

of length L to be fully deceptive if and only if the following conditions obtain. The function has 

a single optimum x* whose complement is x", (for example, the complement of 001 is 1 IO). 

Let s, and s, be two competing schemata in the sense that s, and s, have the same fixed bits 

and differ in the value of some (one or more) fixed bit. Assume that O<o(s,)=o(s,)<L and that 

x" is an element of s,, but not s,. Then the utility u(s,) of s, exceeds the utility w(s,) of s,. 

Define a function to be strictly fully deceptive if and only if the following conditions obtain. Let 

s, and s, be two competing schemata with O<Q(S,) = O(S,)<L. Let J index the positions in 

which the schemata differ and let s,,=x*, for icJ. Then u(s,) > u(s,). Replace xc by x* to 

define fully easy and strictly fully easy. 

These definitions allow the formalization of the results of Example 4: Functions exist which 

are fully deceptive in one representation and fully easy in another. This is precisely the content 

of Lemma l., below. 
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Lemma 1. Consider a diadic group of order 8 = 2 ,  For any representation i, there exists 

a function fi and a t r a n ~ f ~ r ~ a t i ~ n  T such that fi is fully deceptive, but fi defined by fi (x)=f e(.)) 

Proof. Let functions f, and fi be the fully deceptive and fully easy functions f and g, 

ectively, of Example 4. 

In general, fully deceptive functions are easy to construct I 2  3. Let the order O(x) of a 

er of "1 's" in the string. Define a function f as follows: 

f(x)= 1 if o(x)=L 
1-1/2L if 0(x) = 0 and 
(n-l)/L if O(x)  = L-n, n = 0,L. 

It is easy to see that f is fully deceptive. Let S, and S, be two competing schemata with 0 < 

(S, )  = O(S,) < L. Let (0 ... 0) be an exemplar st SI. If (1 ... 1) is not an exemplar of S,, then 

clearly u(S, > u(S,). Otherwise, there are distinct: instantations t,, f (assignment of distinct 

values to the "don't cares") such that t,(S, = (0 ...) and t,(S,) = (1 ... 1). By construction, it 

follows that f(t,(S,)) + f(t,(S,)) > f(t1(SJ) + f(G(S,)). 

At this time, it is not known whether strictly fully deceptive functions exist. They do not 

exist for b e 4. Rather than pursue these details further, it is instructive to view functions as 

~ ~ g ~ ~ ~ ~ ~ ~ l ~ .  For any function f on the diadic group, the coefficients of the corresponding 

polynomial can be recursively calculated. For example, let x=(x,, q, x,) be an arbitrary binary 

string of length three. Then the function f of Example 4. can be written as 

f(X) = 1 3-2X,-6x2-1 4~,-20x,~,-l 2x l~3-8X~x,+64~l~3.  
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Its transform g becomes 

It is not hard to see why the function f is deceptive; all coefficients other than the last 

"point to" fewer zeros in the solution rather than more. The perspective of functions as 

polynomials makes it easy to specify "nearly deceptive" functions. 

Definition 2. Define a function f given on the diadic group G of binary bit strings of length 

L to be k-point (strictly) fully deceptive if and only if there exists a fixed set S containing k 

points of G such that the function f is (strictly) fully deceptive whenever the calculation of the 

schemata utilities omits the k designated points. Define k-point (strictly) fully easy similarly. 

Example 5. The function f defined in (1) below is I-point strictly fully deceptive. The 

optimum for this function is at (1 ... 1) and the single point (1 ... I) is the designated point relative 

to the calculation of the schemata utilities and 1 -point deceptiveness. 

L f(X)=O-X,- ...- XL-X,q- ...- XL-, x, -...-x&...XL-k2 x, ... x, 

To see this, let s, and s, be two competing schemata of the same order, 0 c o(s,) = o(s,)<L, 

with the same fixed positions. For any fixed position, assume that schema s, has a "0" in that 

position whenever s, does, s, may have a "1" in that position only if schema s, does, and s, 

$ s,. Then (modulo the 1-point condition), schema s, has a higher (theoretical) utility than 

schema s,. This follows because the determination of the utility of schema s, includes more 

negative terms than the corresponding calculation for s,, 
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Clearly, the difference between fully deceptive and 1-paint fully deceptive are minimal. In 

the first case, the optimum is thought to be unstable in the sense of Example 2. of this pa 

Stability for I .-point fully deceptive functions has not been investigated, but they are less likely 

to be unstable. 

Again, a simple transformation T selves to transform this 1 -point fully deceptive function 

to a fully easy function. Set T(O..oO)=(l...l), T(O ... 01)={0 ... O), T(1 ... 1)=(0 ... Ol), with all other 

points invariant. The function g defined by g{x)=f(T(x)) is the following polynomial 

g(x) =2-2x,-xp3- ...- x, -...-xp3...xL+(2L-4)x ,... x,. 

A corresponding affine transformation (based on a zero-one matrix with determinant equal 

to 1) that maps (0 ... 0) to (1 ... 1) and (0 ... 1) to (Os..€)) can be specified by setting 

and defining T(x)=(l ... 1) -i- Mx. 

Example 5. is sufficiently general to prove Lemma 2. To generate a I-point (strictly) fully 

deceptive function, set the constant term equal to zero, and all but the last coefficient to 

negative one. For strings of length L, set the last coefficient to 2L. To transform the I-point 

(strictly) fully deceptive function to a (strictly) fully easy function, invoke the transfarmation 

in Example 5. 
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Lemma 2. For a diadic group of order 2L, L > 2 and any representation i, there exists a 

function f, and a transformation T such that f, is 1 -point fully deceptive, but fl defined by fi (x)=f, 

(f(x)) is fully easy. 

The primary significance of Examples 1-5 and Lemmas 1-2 is first, that there exist classes 

of functions that cannot be optimized regardless of representation, and more importantly, that 

no one fixed representation is best for all problems; representations should be suitably chosen 

to match the corresponding functions to be optimized. How to choose an appropriate 

representation is the topic of the remainder of the paper. 
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6. POLYNOMIALS 

To motivate techniques for representational change, it is once more instructive to look at 

polynomial functions. Rather informally, certain of these are grouped in Table 3. as "easy" or 

"hard." 

Easy: 

linear: % + a , x , + a +  ...+ a LxL 

monotone: 1 3-2x1-6&-1 4~,-20~,~;-1 2x,x3-8v3-64x,v3 

hard: 

delta: X,& ... x, 

fully deceptive: 1 3 - 2 ~ , - ~ - 1 4 ~ , - 2 0 ~ , ~ - 1  ~X,X,-~X$,+~~X,X,X,  

Table 3. A Selection of Easy and Hard Functions 

Linear polynomials are defined to be those with no cross terms. Monotone polynomials 

have all coefficients (other than constant) the same sign, In Lemma 3., hear  polynomials are 

proved to be semi-fully easy. Lemma 4. provides the corresponding proof for monotone 

polynomials. Semi-fully easy is defined in the same way as fully easy, but with multiple optima 

allowed and strict dominance between competing pairs of schemata replaced by dominance 

(equality allowed). 

Lemma 3. All linear polynomials are semi-fully easy. Proof. Without loss of generality, 

assume that the function is to be maximized, and the terms are ordered so that the first rn 

coefficients are positive, the next n are negative, and the final L-(m-tn) are zero. Thus, the 

opiima occur at (1 ... 1 O...O#...#). Let s, and s, be competing schemata with entries s,, and with 

the same fixed positions j such that sq = 1 implies sIi = 1 for the fixed positions j(m and s,~ 
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plies s , ~  = 0 for the fixed positions m < j g .  Moreover, assume that sll f sZj for some 

j such that 1 5  j 5 m+n. Then u(s,) > u(s,): The instantation of the "don't care" positions 

determines a one-to-one correspondence between strings x that match s, and strings y that 

match s,. For of eveiy such pair, f(x)>f(y). In the case that sll = sZi for all jsm+n, u(s,)=u(s,). 

Lemma 4. All monotone polynomials are semi-fully easy, Proof. Without loss of generality, 

assume that a!! coefficients are non-negative, and every x1 participates in some palyno 

xi...xj.. .x, non-zero coefficient. Thus, the optimum is at x = (1 ... 1). Let s, and s, be 

competing schemata with entries sij and with the same fixed positions j such that sI = 1 

implies s,] = 1, and s, # s,. Then u(sl) 2 u(s,). Proof. Every term that appears in the 

c ~ ~ ~ ~ ~ ~ a t i ~ n  of the utility of s, appears also in the calculation of the utility of s,. 

There exists at least one more class of polynomials that are trivially semi-fully easy, the 

class of linearly dominated polynomials. 

Definition 3. For every variable xi, let J be the set of (non-monomial) cross terms that 

include xi as a factor. Let a, be the coefficient associated with the singleton term 9. By abuse 

of notation, k t  {a,) for i d  be the coefficients of the terms in J. Then the polynomial B is 

linearly dominated if and only if la,l > I za,I 
3 

Lemma 5. All linearly dominated polynomials are semi-fully easy. 

Proof. Follows immediately from the semi-fully easiness of linear polynomials. 

As can be seen from the transform g of the Goldberg function of Example 4., the linear, 

monotone, and linearly dominated polynomials do not exhaust the class of easy functions, 

Discouragingly, easy functions are not always trivial to recognize. Conversely, hard functions 

de at least those that resist accurate estimation of schemata utilities (delta or "needle-in- 

t ~ ~ - ~ ~ y ~ t a ~ ~ '  functions) as well as the fully deceptive, strictly fully deceptive, and 1 -point fully 
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deceptive functions. Moreover, hard functions can differ only negligibly from easy functions; 

the Goldberg fully deceptive function differs from a monotone function in only one term -- a 

delta function. (it is known that this last observation is not generally true.) These observations 

should temper, but not extinguish hopes of developing useful techniques to adaptively select 

suitable function representations, Fully deceptive, strictly fully deceptive, and 1 -point fully 

deceptive functions will often remain resistant to optimization, but these are unlikely to be the 

only difficult functions of interest. 
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7. CHANGE STRAEGIES 

Since change of representation has historically yielded inconclusive results, why should the 

i sue be revisited at this time? To answer the question, it is useful to more carefully consider 

previous implementations. Three factors are particularly pivotal. First, l.he class of 

transformations previously used consisted of permutations of the basis elements. (The central 

concern of earlier investigators was the third failure mode, disruption of schemata by 

crossover.) This corresponds to the subclass of affine transformations with zero translation and 

/ 

a zero-one matrix with precisely a single one in each row and column (permutation matrices). 

This class of transformations is insufficiently powerful to resolve the difficult problems discussed 

in this paper. Second, genetic populations generally were formed of individuals each 

expressed in their specific representation. With such a mixture, it is unlikely that the genetic 

algorithm can properly estimate schemata utilities. Third, representations underwent continual 

dynamic change, again confounding estimates of schema utility. The methods suggested here 

use a larger class of transformations. The first method uses either the affine transformations 

or permutations introduced earlier in this paper and would be implemented through central 

control; that is, there would be a nongenetic mechanism to determine change of representation. 

The second method is particularly suitable for implementation on a parallel processor, and 

would be implemented by a genetic algorithm at a meta-level. These two methods are 

complementary. The first could be used to identify a favorable starting representation. The 

latter could dynamically change representations. 

To be implementable in practice, representational changes should be suggested by the 

currently available information about the function. Insofar as linear functions are strictly fully 



easy, a plausible first heuristic for guiding change of representation is to select representations 

to linearize functions as much as possible. 

Assume that the function f is to be maximized. Any function f can be written as a SUM f=fL 

i- f, of linear and nonlinear terms, f, and f,, respectively, defined as follows. Consider bit 

strings of length L. Formally, let x, be the bit string with a one in the ith position and zeros 

elsewhere. Every bit string can be uniquely written as a formal vector sum of distinct "basis" 

TIS, x= z: xi. For any bit string x, define f, (x) as f(O ... 0) -t- f(T) where the SUM is over the 

unique set of basis elements determining x. Define f,(x) = f(x)-f,(x). Given a current genetic 

population P, augment it by the basis elements and zero. Call this augmented set P. One way 
/ 

to specify a representational change is to choose that transformation (from some specified 

class of transformations) that minimizes the nonlinear function component summed over the 

transformation of the elements of P I  

minimize f,(Tx) 
T P' 

Twa possible simple classes of transformations are the affine transformations and 

permutations of PI. It is not hard to show that an affine transformation can be written as the 

SUM of i% t r a n ~ ~ a t ~ o ~  and multiplication by a zero-one matrix M with determinant of odd parity, 

T(x)=y+Mx. Qn the one hand, affine transformations are preferable to permutations first, 

because of their succinct representation, and second, becuase they affect individuals outside 

of P: However, at this time, the second alternative seems more attractive since there is a 

htforward heuristic that allows for the easy solution of the minimization. 

Let P' be the current population augmented by the origin x, and the basis elements {xi}, 

i=l  ,..., L. Without loss of generality, assume that the function f is to be maximized. Order the 

elements of P' in decreasing magnitude of the function values f(x), say the order is 
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f(y,)zf(y2)z ... Order the basis elements q, i-0, ..., 1 and the origin x, so that x, is first and the 

remainder are in some arbitrary order, say x,, &, .... If f(y,)>f(q,), map y, to q. Otherwise, if 

f(x,)cf(y,)<f(xJ, and 3 is the first basis element in the ordering that follows x, and has not been 

mapped into, then map y1 to xi. Continue in this fashion to map elements y, into basis 

elements as long as possible. Call this map T *’. Define the transformation T as follows: If 

x=T-’y, set Tx=y. If no element is mapped onto x by the transformation T - I ,  complete the 

permutation ? on P by extending it randomly (consistent with previous assignments). 

The transformation ? Is the required permutation that minimizes the nonlinear component 
1 

f,., summed over P . ?his is easy to see because any permutation of P’ leaves the sum 

invariant, and (modulo a re-ordering of the basis elements) the construction heuristic 

construction maximizes 

Whether or not this change of representation aids in function optimization depends on the 

specific function and the evolving genetic populations. Far the Goldberg fully deceptive 

function or the 1 -point strictly fully deceptive problem illustrated earlier, no (practical) change 

of representation results in improvement unless the optimum is already present in the 



population. More generally, whenever the current population is a (subset) of the zero and 

basis elements, this representational transformation will yield no change. 

However, on other problems, such as the Hamming Cliff Problem illustrated in Table 4., the 

transformation is likely to produce improvements. 

000 0 
001 0 
01 0 1 
01 1 2 
100 2 
101 1 
110 0 
111 0 

Table 4. A Hamming Cliff Problem 

For example, if the current population is P={(01 l ) ,  (OlO), (1 10)) then one choice for the 

transformation T is specified in Table 5. below, and the transformed function g(x)=f(T(x)) is 

given in Table 6. 

001 000 
P 01 0 01 0 

110 110 

000 01 1 
001 001 
100 100 

Table 5. One Choice for the Transformation T 



31 

i 

000 
001 
01 0 
01 1 
100 
101 
110 
111 

909 

Table 6. Typical Transformation of the 
Hamming Cliff Problem of fable 3. 

The second method of representational change uses the genetic algorithm at two levels, 

one to search for representations, and one to optimize the function in question. This method 

is particularly suitable for implementation on mulltiprocessor computers. The details remain to 

be investigated, but the basic concept is simple. For a given function f, the suitability of a 

representation i can be evaluated as the expected population average fitness after some 

number of genetic generations. The expectation should be taken with regard to different 

random initial populations and random seeds. An estimate of the fitness of the representation 

might simply be the average population fitness for the one fixed initialization and randomization. 

Choose a base representation and initial population. For each node of the 

multiprocessor, select (randomly or otherwise) a transformation and use the genetic algorithm 

to search for function optima under that transformation. After some number of generations, 

determine the fitness of the transformation in terms of the corresponding population fitness. 

Use these representation fitness estimates to drive a genetic search over transformations. 

A hidden issue is how to apply crossover to transformations. Clearly, affine transformations 

can be concatenated into bit strings. However, ensuring that the crossover produces a matrix 
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with determinant of odd parity appears to be less than straightforward. An alternative would 

t transformations as permutations. In this approach, consider each bit string 

e a binary representation of an integer. Any transformation could be coded as the 

c ~ r ~ ~ s ~ ~ ~ ~ ~ n ~  permutation of integers. Thus, the fundamental units of search at the 

representational level would be strings of transpositions, and crossover would be done with 

regard to these {variable length) strings. These concepts are illustrated in Tables 7 and 8. 

below. 

bit string transformation 

54: (001 101 10) T (1 1 1  0001 1) :227 
(001 00000) : 32 - 32: (001 00000) (001 101 10) : 54 

222: (1 1 1  0001 1) (00000001) : 1 

1 : (00000001) 

product of transpositions 

(54,227) (54,l) (54,32) 

Table 7. A Transformation as a Product of Transpositions 

I 

I 
(451,46)(46,322)(322,67) I (67,81) 

parents 
(1 9 1  4)(14,6) 

Table 8. Crossover of Transformations 
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8. SUMMARY 

The roles of embedding and representation in genetic optimization have been made 

explicit. Three modes of genetic algorithm failure have been discussed: unreliable estimates 

of schemata utilities, misleading schemata utilities, and disruption due to crossover. Easy and 

hard functions have been constructed, and it has been shown that for any representation, there 

exists a function and a transformation such that the function is difficult in the original 

representation, and easy in the transformed. Possible reasons for the inconclusive results of 

previous investigations into representational change have been discussed, and several new 

approaches to dynamic representational change have been introduced. 
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