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ABSTRACT 

The GRESS Version 0.0 code system was developed to automate the 
implementation of derimtive- taking capabilities in existing FORTRAN 77 computer 
models. The GRESS CHAIN option is used to calculate and report first derivatives 
of model results with respect to user selected input data by application of the 
calculus chain rule, The GRESS ADjoint matrix GENerator (ADGEN) option 
is used to calculate first derivatives of selected model results with respect to all 
input data,. The first part ob this paper presents the rnathematicd foundations 
and algorithms as presently impleniented in GRESS Version 0.0. Exannples are 
used to describe the iiiiplementation of both the CHAIN and ADGEN options. 
Due to excessive execution time and mcmory requirements with the CHAIN option 
users are often limited to propagating dcrivatives for just a few parameters. The 
ADGEN option allows an almost unlimited number of parameters (;.e., input data); 
however, the data storage requirement for an ADGEN application was more than 
322 mcgabytcs for a code that executes in 1 minute on a VAX 8600 computer. 

The purpose for this paper is to present three new algorithms that could easily 
be irnplemented in GRESS Version 0.0 to dramatically reduce the data storage 
requirements and execution time for application of the ADGEN option. The 
new algorithms are described with examples. Test versions of these algorithms 
were implemented and tested. The application of these algorithms to the GRESS 
cnirrancement of the PRESTO-I1 computer model resulted in it significant reduct ion 
in execution time and a reduction in data storage requirenients from 322 megabytes 
to 97 megabytes without any loss in the generality of the approach. 

ix 





1. INTRODUCTION 

In many areas of scientific computing, derivatives and sensitivities of model 
results to input parameters are often desired. Sensitivity analysis of computer- 
generated results consists of determining the effect of model data upon the 
calculated results of interest. The fields of sensitivity and uncertainty analyses have 
traditionally been dominated by statistical techniques when large-scale modeling 
codes are being analyzed. These methods are able to estimate sensitivities, generate 
response surfaces, and estimate response probability distributions. Because the 
statistical methods are computationally costly, they are usually applied only to 
problems with relatively small parameter sets. Deterministic methods, on the 
other hand, are very efficient and can handle large data sets, but generally require 
simpler models because of the considerable programming effort required for their 
implement ation. 

Since computer model equations can be differentiated analytically, sensitivities 
can be precisely clefined and calculated in a deterministic fashion.'-'' The 
deterministic approach is well suited to large-scale models for which direct 
perturbation of the model data becomes impractical from a cost standpoint. The 
main drawback to the deterministic approach has been the initial manpower 
investment to add the computational capability for calculating the necessary 
derivatives into existing computer models. 

To circumvent this costly manpower investment and thus provide the means for 
model users to take advantage of the strengths of deterministic sensitivity analysis, 
two related software systems were developed to automate the implementation of 
these methods into existing FORTRAN 77 computer rnodels. The first system, 
named GRESS (GRadient-Enhanced Software System), uses a FORTRAN 77 
precompiler, EXAP (Extended Arithmetic Processor), to add derivative taking 
capabilities to existing FORTRAN 77 p r ~ g r a m s . ~ ~ - ' ~  GRESS, which has been 
thoroughly tested, calculates derivatives by applying the calculus chain rule to the 
model equations as the equations are being solved. 

The second system, narned ADGEN (ADjoint matrix GENerator), was 
developed as a GRESS option that provides the capability of automated 
implementation of the adjoint sensitivity methods into existing FORTRAN 77 

ADGEW uses EXAP to automate the generation of an adjoint matrix 
from a computer model. Utility programs are then used to manipulate and solve 
the adjoint matrix for selected derivatives and sensitivities. 

The purpose of this paper is to describe three new algorithms that, if 
implemented, would significantly reduce resource requirements for the adjoint 
matrix generation option (ADGEN) of GRESS Version 0.0. A general approach 
to the mathematical foundations is developed for GRESS and ADGEN that is 
based firmly in differential calculus and linear algebra. A mathematical model 
of a computer program, differentiating the mathematical model, and solving 
for derivatives is shown with examples. The numerical algorithms' presently 

. 
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implemented in the GRESS and ADGEN systems are described. Limitations are 
discussed. 

The general approach is then used to develop the three matrix reduction 
algorithms: 1) Forward Reduction; 2) Back Reduction; and 3) Pipeline Reduction, 
that can easily be implemented in the present ADGFJN system to significaiitly 
reduce the amount of data storage required by an ADGEN application. ‘The matrix 
reduction algorithms are described with examples. The relative computational 
and storage requirements with and without matrix reduction are compared for the 
derivative enhancement of the PRESTO-11 computer model.” 
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2. A MATHEMATICAL FOUNDATION FOR 
THE GRESS AND ADGEN CODE SYSTEMS 

- 
input parameter 
input pa.ramet er 

f =  input parameter 
A * *2+  B * *2 
A * X + D * *2 

- X  * *2+ W + A * *3+  D * *3 

- 

2.1 A MATHEMATICAL MODEL OF A COMPUTER PROGRAM 
In w FORTRAN program, calculatcd left-hand-side variables are a function of 

previously defined left-hand-sick variables and data, either through mathematical 
operations or read statements. This relationship can be exprcssed as 

y := f (y )  (1) 
where the symbol,:=, indicates a value assignment (;.e., store) operation, the 
components of the column vector, y, are all the terms on the left-hand-side of real 
number replacement statements, and the column vector, f ,  represents the right- 
hand-side mathematical operations. The vector, y, includes both model calculated 
results axid data. R,ead stat,ernents are treated the same as setting a variable equal 
to a constant. 

111 a FORTRAK program a syiiibol cannot explicitly depend on itself. When 
a FORTR.AN mriable is redefined, mathematically, it is not the same variable. In 
the statem.ent, X := X + 5.0, the X on the left and the X on the right represent 
two different locations in the solution vector, y. Mathematically, the equation can 
be thought of as, X2 = XI + 5.0 

There€ore to represent equation (1) mathematically the dependence of a variable 
on itself must be considered explicitly. If we define 

($4 i - = 1, for all i. 
dyi 

Then equation (1) can be rewritten as 

Y = f(Y) 
Consider the following four lines of FORTRAN. 
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2.2 DIFFERENTIATING THE MATHEMATICAL MOXIEL 

Differentiating Eq. (3), with respect to y, yields 

where the identity matrix, I ,  provides the explicit dependence of a variable on itself 
ncccssary to make Eq. (4) meaningful. Eq. (4) can be rearranged, such that 

Eq. ( 5 )  can be representcd in a more compact form as, 

where 

,4- I - -  [ 3 

Since FORTRAN equations are solved in a sequential fashion, FORTRAS 
variables are dependent on prcviously defined variables. Therefore, 

so that the matrix, :f, is a lower triangular matrix with zeros on aid above the 
diagonal. Therefore, the matrix, ,4, is nonsingular and invertible. 

Solving Eq. (6) for Y' yieltls 

( 7 )  y' - A-1 

Since A is a lowcr tiictngular matrix, derivatives in thc solution matrix Y-' ,  can 
easily be resolved using foinard substitution. Also, since the transpose of .I is 
u p p r  tliaiigiilar cornponcnts of Y' can be calculated using back siibst;tution as  

represented by Eq. (8). 

p - y  - [p]--l (8) 
,- - l'ile t~ siipcrscript is used to represent the transpose of the matrix. 

2 - 3  THHE SOLUTION Mmmx 
The piirpose of this section is to look at the contents of the solution matrix, 

Y'. The matrix, Y ' ,  represented in Eq. (7) contains the total first derivatives of 
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all real number variables in the FORTRAN program with respect to all other real 
numbcr variables in the program. Since ~ Y L  = 1, for all i, the diagonal terms are 1. 

dY, 
Variables can only depend on variables that are defined in prior equations, therefore, 
the terms above thc diagonal are zero. This simplifies the solution matrix to 

1 

h . . .  
d y i  

1 

Note tha,t the terms in the ith column from Y' are (0, ... 17%, %, . . , e), 
and, the terms in the i t h  row of Y' are (k d y l 7  d y a  7 . ' LQL d y ,  ' 1 7 0, ... 1. R,esolving Y' 
for the ith colurnn, results in the derivakive of each element in y with respect to y;. 
This is the same result that would be obtained by calculating the derivatives of ij 
with respect to yi by application of the calculus chain rule. The GRESS CHAIN 
option calculates selected columns in this matrix by forward substitution in memory, 
without saving the A matrix. Solving Y' for the ith row, results in the derivatives 
of yi with respect to a,ll the elements of For a FORTRAN program, solving for 
a selected row in Y' yields the same result that is achieved by solving the adjoint 
equation for the iiimerical rriodel defined by the computer code as discussed in refs. 
(10-21). 

2.4 SOLVING THE DERIVATIVE MATRIX EQUATION 

When a code enhanced by EXAP for gradient calculation is executed, equations 
are solved seqiie~itially. As each equation is solved, the partid derivative of the term 
on the left is calculated with respect to each variable on the right. These derivatives 
are the off diagonal terms in the A matrix. Using a simple example, the matrix 
of partial derivatives will first be created, and then solved using both €orwa.rd and 
back subs ti tu tion techniques. 

2.4.1 A Simple Example 
The FORTRAN program shown in Fig. 2.1 is used to demonstrate the creation 

of the A matrix and the calculation of selected rows and columns in the derivative 
matrix, Y', as presently implemented in GRESS Version 0.0. 
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E = 2.0 

B = 3.0 

.I1 = 5.0 

x = E * +2 + n * *2 
bV = E * x + D * *2 
z =x**:!+ W + E * D  

END 

Fig. 2.1. A simple FORTRAN program to be used for derivative matrix generation. 

Shown in Fig. 2.2 are the various components used by GRESS to create the A 
matrix. 

Row Y F 
Partial Derivatives 

Result 2 

Fig. 2.2. The components needed to create and salve the 4 matrix. 

The A matrix crcated using the partial derivatives from the sample program is 
shown in Fig. 2.3. The row niimhcr ideiitifies the depcndent term iii the equation, 
thc colulnii niimher identifies the illdependent term. ‘I’he first FORTRAN variable 
defined dinring execution becomes row one in the A matrix, the second defined 
variable becollies TOW two, etc. The column is determined by the row i r i  which the 
righi-hand-side term was defined. For J less than i, the matrix element in row i, 
column j identifies the negative of the partial derivative of the term defined in row 
i with respect to the term defined in row j. 
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* 

Rows 
1 
2 
3 
4 
5 
6 

' 1  
? 1  (0) 
? ?  1 
? ?  ? 1 
? ?  ? ? 1 

- ?  ? ? ? ? 1  

Columns 
1 2  3 4 5 6  

1 

0 0  1 
0 1  (0 )  

-4 -6 0 1 

-5 0 -2 -26 -1 1 
-13 0 -10 -2 1 

Fig. 2.3. The A matrix created by sample program. 

2.4.2 Forward S 11 bs t i t ut io n 

Using the A matrix shown in Fig. 2.3, the Y' matrix for the sa>mple program can 
he fully resolved by forward substitution. This is the same as simply calculating 
selected derivatives with the calculus chain rule. For example the derivative of ij 
with rcspect to E ,  could be calculated using the chain rule, as follows. 

d B  dD 
- 1  .-=0 - = o  d E  

dE ' d E  ' d E  
-- 

dX 
dE 

dX  dW7 
dE dE 
dZ d X  dW 

dE dE dE 

-- - 2 * E =  4 

-- - X + E * - =  21 

-- = 2 t x  t -- + -- + D = 130 

When using forward substitution to solve for the derivatives of ?j with respect 
to E ,  only column one of Y' has to be resolved. The matrices set up for forward 
substitution are shown in Fig. 2.4. The non-zero locations in Y' are indicated with 
a question mark (?). To invert column one it is necessary to resolve every non-zero 
term in column one. 

-4 -6 0 1 
-13 0 -10 - 2  1 
- 5  0 - 2  -26 -1 1 

Fig. 2.4. The matrices for solving A * Y' = 1 for column one of Y'. 

By successively multiplying each row in the A matrix by column one in Y', the 
unknown terms in column one can be quickly resolved. The Y' matrix with column 
one resolved is shown in Fig. 2.5. 
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- 1  
0 
0 
4 

21 
130 

7 

1 - 

1 
? 
? 

? '  
? 
? 
? 
? 
1- 

(0) 

1 
? 

-1 0 0 -4 -13 - 5  
1 0 -6 0 0 

1 0 -10 -2 
1 - 2  -26 

1 - 1  
1 

(0) 

- 

* 

Fig. 2.5. Y' with column one resolved by forward substitution. 

-1 

- 

The GRFSS CHAIN option calculates the derivatives irsing forward substitution 
in memory. Derivatives with respect to declared parameters are propagated forward 
as the enhanced model is executing. The actual A matrix is never stored. At any 
given point during execution, the user can retrieve tlie total first derivatives for a 
calculated variable with respect to all the declared parameters. Since GRESS does 
not know a priori which results are of interest, it is necessary to propagate the 
derivatives for the user selected parametcrs through every row in the matrix. This 
causes the amount of execution time and memory required to calculate dcrimtives 
using the CHAIN option to increase rapidly with the number of declared parameters. 
In practice with large codes, the user is often limitcd to a few parameters per run. 

2 - 4 3  Back Substitution 

By transposing the A matrix from Fig- 2.3, and setting up the matrices in 
Eq. (8), back substitution can be used to solve for the derivatives of Y ,  with respect 
to y .  The derivatives of U, with respect, to g air: in the ith column of [ , / I t r .  Shown 
in Fig. 2.6, are the sub-matrices necessary to calculate the derivative of 1;1/ with 
respect to t j  (;.e., { E ,  B ,  D , X ,  TV, 2) ) .  

? 
1 

(0) 

? 
? 
1 

Fig. 2.6. The sub-matrices for salving [A]2r*[Y']tr = 1- for column five of [ , ' I t r .  

Back substitution can be used to resolve column five. Shown in Fig. 2.7. is the 
[Y'Itr with column five completely resolved. 
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- 1 ?  ? ? 2 1 ?  
1 ? ? 1 2 ?  

1 ? 1 0 ?  
1 2 ?  

l ?  
- 1 

(0) 

d W  - 
d E  
__ d W  
d R  

d D  

d W  
d X  

d W  
d W  

d W  
dZ - 

- 

- 

Fig. 2.7. [,‘It‘ with the column five resolved by back substitution. 

- 
I 

From Fig. 2.7, we see that 

[ $4“‘ 
21 
12 
10 
2 
1 
0 

The ADGEN system USCS the GRESS adjoint matrix generation option to create 
thc A matrix. ADGEN utilities are used to transpose the A matrix, and then to 
solve for the derivatives in a selected column. The A matrix created by GRESS 
Version 0.0 can be excessively large. For a moderately sized program, it is not 
uncommon for the A matrix to have on the order of lo7 rows. If only the non-zero 
terms are stored, the data set can require as much as 200 megabytes of storage. 

There arc: three pieces of information stored for each row. 
1) N p  = number of non-zero derivatives 
2) C’s = column numbers for the right-hand-side terms 
3) D’s = derivatives with respect to right-hand-side terms 

For each row, values for items 2 and 3 are repeated N p  times. The row number 
of the left-hand-side term is not stored, since it can be determined during processing. 
The present version uses four byte words for N p ,  D, and C. Therefore, eight bytes 
are required for each non-zero derivative in the row, and an additional four bytes 
for each row to store the derivative count, N p .  The amount of storage required for 
either the forward or transpose matrix can be estimated as follows. 

Storage = (#of Rows) * [4 + (average N p )  * 81 bytes (9) 

For a matrix with lo7 rows with an average of two non-zero terms off the 
diagonal per row, the amount of storage can be estimated as follows. 
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Storage = ( lo7)  * [ 4 + (2 * 8)] bytes = 200 megabytes 

In application, this amount of storage has been required for codes that used 
1 minute of execution time on a VAX 8600 prior to enhancement. 
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3. ALGORITHMS FOR REDUCING 
THE SIZE OF THE A MATRIX 

Presented in this chapter are three matrix reduction algorithms that can be 
easily implemented in the present GRESS and ADGEN systems to reduce the 
resource requirements required by an enhamed model. Mathematically, the matrix 
reduction techniques are based on the fact that the rows in the A matrix are linearly 
independent arid the matrix is nonsingihtr. It can easily be proven that any sub- 
matrix from a linearly independent, nonsingular matrix, is dso linearly independent 
and nonsingular.22 This means that if a row and corresponding column (;.e., row 
i, column i) me removed from the matrix, tlie remaining matrix is still linearly 
independent arid nonsingulnr. Therefore, Eqs. ( 1-81 are still valid fop. any sub-matrix 
extracted from the A matrix. Since pararrieters and potential responses of interest 
must be declared by the user, and arc “known” during execution, information is 
available that can he used t o  extract a problem dependent sub-mat.rix, thus reducing 
the amount of data stored, and the nimxriber of calculations reqi-iired to solve for 
selected deriv -a, t’ wes. 

3.1 FORWARD REDUCTI 
When creating the A matrix, partial derivatives are calculated and stored for 

every equation solved. However, only derivatives in rows that are dependent on 
user specified parameters are actually needed. Forward Redlietion keeps track 
of parameter dependency. If any term on the right-ha,ncl side of a.n equation 
is dependent on a declared parameter, then the term being calculated is also 
dependent; and therefore, the row is needed. Tf there is no dependency on the 
right, then the row is not needed. For the example in Fig. 3.1, B and C‘ are 
declared to he parameters. The variable, R, is specified as a result of interest for 
derivative calculation. Using Forward Reduction, a probleni dependent sub-matrix 
can be extracted that includes those terms that are dependent on B and C. 

B = 2  

c=3 

0 = 4  

X = B + D  

Y = D * * 2 + B * * 2  

I’arameters of interest = B,  C 

R =  7 * X  + D * * 2  

S = Y * * 2  

END 

Result of interest = R 

Fig. 3.1. Example program to demonstrate forward reduction. 
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B 
C 
X 
Y 
R 
S 

The complete A matrix is shown in Fig. 3.2. Since only derivatives with respect 
to parameters B and C are of interest, the problem dependent sub-matrix, shown 
in Fig. 3.3, can be extracted. The variable D was eliminated from the matrix 
using forward reduction. Though R is dependent on D ,  11 is not included as a 
parameter; therefore, D may be treated as a constant,. S w a s  not eliminated by 
forsrcrard reduction because it is dependent on parameter B.  

3.6 
to associate the terms in the matrix with the variables in the sample program. 

The symbol names (;.e, 14; C, D, X ,  Y, I?, and S> are irlcluded in Figs. 3.2 

1 
0 1  
-1 -1 -1 
-4 0 0 1 
0 0 -7 0 1 
0 0 0 -40 0 1  

B C U X  Y R S  

B 
C 
D 
X 
Y 
R 
s 

1 

0 0 1  
-1 -1 0 1 
-4 0 -8 0 a 
0 0 -8 -7 0 1  
0 0 0 0 -40 0 1 

0 1  (0) 

_I 

bsig.  3.2. Complete i! matrix used to demonstrate forward reduction. 

Using t,he sub-matrix shown in Fig. 3.3, it is possible to calculate the derivatives 
of R with respect to B and C.  These are the same derivatives that can be calculated 
with the complete A matrix, by either forward or back substitution. Since only the 
derivatives for specified results with respect to declared parameters are retrievable, 
there is 110 loss of usable information during the Forward Reduction process. 

B C X  Y R S  

Fig. 3.3. Sub-matrix extracted from a sample 
program A matrix using Forward ICeduction. 

Table 3.1 shows the reduction in data storage that occurs in this sample program 
due to Forward Reduction. What can not be easily shown in a small program is 
the overall impact to execution time. However, in most applications, the arnount of 
execution time to write the A matrix to disk is significant. By removing rows from 
the matrix, not only is the data storage reduced; but also, in most applications the 
execution time decreases. Reduction in execution time is discussed in the application 
to PRESTO-I1 in Chapter 4. 
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B 
C 
X 
n 

Table 3.1. Reductiorr in data storage due to Forward Reduction algorithm applied 

to a sample problem. 

1 (0) 
0 1  
1 -1 1 
0 0 - 7 1  

R,EDUCTION ALGORITHM TOTAL STORAGE (bytes) 

None 
Forward 

RESULT = 26% reduction in data stored 

7s 
56 

3.2 RACK REDUCTION 
Once the A matrix exists, the results of interest for derivative calculation 

are known. Back Reduction uses this information to extract the sub-matrix that 
conta,ins only results of interest, declared parameters, mcl other rows on which the 
chrpseri results of interest depend. If both Forward and Baxk Reduction algorithms 
are used, the remaining sub-matrix will contain only the independent parameters, 
the dependent results of interest, and the intermediate variables required to map the 
parameters into the results. Applying Back R,ednction algorithm to the sub-matrix 
shown in Fig. 3.3, rcsults in the sub-nmtrix shown in Fig. 3.4. 

B C X R  

Fig. 3.4. Sub-matrix extracted from a sample 

program A matrix using Back Reduction. 

The sub-matrix in Fig. 3.4 can he used to calculate the derivatives of R with 
respect to paranieters B and D. Shown in Table 3.2, is a comparison of the amount 
of data storcd after using Forward and Back Reduction algorithms. 

Table 3.2. Reduction in data storage due to both Forward and 

Back Reduction algorithms applied to a sample problem. 

REDUCTION ALGORITHM TOTAL STORAGE (bytes) 

None 
Forward 
Forward and Back 

Total Reduction in Data Stored = 53% 

76 
56 
36 
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3.3 PIPELINE REDUCTION 

The third algorithm discussed is Pipeline Reduction. This method takes 
advantage of the fact that in FORTRAN programs, memory locations tend to 
be re-used often. When a variable is re-defined, its FORTR,AN symbol becomes 
associated with a difi'erent row in the matrix, and the associated column in the A 
matrix is truncated. The variable associated with that row will never appear on 
the right-hand side of ail equation again. If a mapping variable (one that. is not a 
parameter or a response) appears on the right-hand side of an equation only one 
time, then data storage can be reduced. The method is applied to the A matrix 
after completion. At that point, knowledge of the entire memory-use pattern is 
available. By reading the A matrix from bottom-to-top ( read the last row first, 
then read the next-blast. row, etc.), it is possible to know where variables are used, 
as well as knowing where they were defiiied. If a variable is defined very near where 
it is used, and if the variable was never used aga,in, then it is possible to apply the 
Pipeline Reduction algorithm to reduce the arnoiint of data stored. 

In the example, the FORTRAN variablc, X ,  can be considered to be a mapping 
variable, The tmnsposed A matrix from Fig. 3.4 is shown in Fig. 3.5. By using 
the calculus chain rule, the derivative iii€ormation associated with the variable X 
can be moved to the column associated with R by simply multiplying the non-zero 
derivatives in column X by $5 (;.e., 7)) and adding them to the non-zero derivatives 
in column R. 

a 0 -1 0 
1 -1 0 

1 -7 
(0) 1 

13 
C 
R 

Fig. 3.5. The transposed A matrix for the example in Fig. 3.4. 

1 0 -7 
1 -7 

(0) 1 

Once the processing has passed the row associated with X ,  that row can be 
dropped from the matrix. This is analogous to removing X from the FORTRAN 
model by re-writing the program. The reduced matrix is shown in Fig. 3.6. 

B C R  

Fig. 3.6. Transposed A matrix reduced by Pipeline Reduction. 

The reduction in data storage by removing column X '  from the matrix is shown 
in Table 3.3. 
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Table 3.3. Data reduction due to Pipeline Removal algorithm. 

REDUCTION ALGORITHM 

None 
For ward 
Forward a.nd Back 
Forward, Back and Pipeline 

RESULT = 63% reduction in data stored 

TOTAL STORAGE (bytes) 

76 
56 
36 
28 

At first glance, a Pipeline Reduction algorithm does not necessarily appear to 
be very useful. However, as will be shown with the PRESTO-I1 example, a majority 
of variables in FOftTRAN progra.rns tend to be defined near where they are used. 
This results in a partially banded matrix. The Pipeline: r k h c t i o n  algorithm is 
primarily concerned with the nieinory locations that are used only nea,r where they 
are defined (those in thc band near the diagonal). 

With forward substitution, as presently implernented in GRESS Version 0.0, 
there is no u priori knowledge as to where, arid how often, a variable is used. As 
has been shown, once the matrix is created, information about varia.ble usage is 
available. But what is also true is that once a variable is re-defined, we know that 
its associatcd column in the A matrix is truncated. By maintaining an output 
buffer large enough to hold several thousand rows of the matrix in memory, it 
would be possible to apply the Pipeline Reduction algoritlim during the execution 
of the enhanced code. If ten thousand rows are kept in the matrix output buffer, in 
essence, the code can "see" ten thousand rows ahead as to how memory locations 
are being used. The required buffer size can be estimated using Eq. (6). If the 
average N p  is two, then the amount of memory needed to maintain a buffer of 
10,000 rows would be 50,000 four byte words. With the PRESTO-I1 application, 
discussed in Chapter 4, the band that contains 58.8% of the variables used in the 
model is only 10,000 rows wide. 
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4. MATRIX REDUCTION APPLIED TO PRESTO-I1 

The PRESTO-I1 computer was used as a benchmark for the GRESS 
Version 0.0 adjoint matrix generation option, ADGEN. A more complete discussion 
of the benchmark is included in Ref. 21. In this chapter, the computational and 
storage requirements for an ADGEN application with and without matrix reduction 
are compared for the derivative enliancenient of the PRESTO-I1 computer model. 
The banded nature of the PRESTO-II derivttive matrix is shown. A simple Pipeline 
Reduction algorithm is tested. 

4.1 PRESTO-11 BENCHMARK 

PRESTO-I1 was developed as a non site-specific screening model for evaluating 
the possiblc health effects due to shallowland disposal of radioactive waste. The 
model has approximately 6,900 lines of coding. The PRESTQ-I1 computer resource 
requircnients are for the Barnwell sample problem included in Ref. 23. This 
problem calculates a tirne-dependent radiation dose to a man from transport of 
42 radionuclides over a one thousand year time span. 

PRESTO-I1 was cnhanced with the EXAP precompiler, GRESS Version 0.0. 
Derivatives for two results with respect to 2800 parameters were calculated. Thc 
resource requiremcnts for creating and solving the [A]  matrix are shown in Table 4.1. 
The PRESTO-I1 [A] matrix had more than eight million rows and 322 megabytes 
of direct access storage were required to create the [AItr matrix. The [.4] matrix 
is considered a scratch data set, and may be dcleted once [AIt' is created-t 
However, the [AIt' matrix (144 megabytes) must remain active for the YSOLVE 
step. YSOLVE reads [AIt' and calculates the derivatives for one result with respect 
to all the declared parameters (;.e., a column of [Y]"). The YSOLVE step can be 
re-executcd for additional results of interest that were specified during the execution 
of the enhanced model. 

Table 4.1. Resource requirements for creating 

and solving the A matrix created by PRESTO-11. 

Job Step 
Run Time Data Set Storage 
[Min: Sec) created [megabytes] 

178 
144 

322 (total) 

Enhanced Presto-I1 24:51 [AI 
TMAT* 8:09 [AIt' 
YSOLVE (1 result)* 4:59 

* TMAT and YSOLVE are described in "GRESS Version 0.0 User's Manual." 

t A GRESS utility, TMAT, is used to convert the [A] matrix into the [A]" matrix. 



18 

4.2 PRESTO-I1 BENCHMARK WITH FORWARD AND BACK 
REDUCTION 
Simple modifications to the GItESS/ADGEN run-time library routines were 

made to implement the Forward Reduction algorithm. Results, summarized in 
Table 4.2, show a decrease in the size of [AIt' from 144 megabytes to 86 megabytes 
due to the Forward Reduction algorithm, alone. Because of the nature of the 
algorithm changes, the intermediate step of creating a separate forward matrix, 
then transposing it, was also eliminated. This removed the TMA'X' utility from the 
calculational sequence. 

Table 4.2. Resource requirements for creating and solving the 

A matrix created by PRESTO-II with forward and back reduction. 

Run Time Data Set Storage 
............ Job Step (Min: Sec) created f M c s ] .  

86 
1.1 

97( t ot al) 

Enhanced model 24:01 [AIt' 
RREDUCE" 3:32 [AI r. 

YSOTAVE : 34 

a BREDUCE is test program €or implerncnting the Back Reduction algorithm 
that creates a subset of [AIt'. 

The Back Keductiori algorithm was irnplementcd in a utility program, 
BREI>IJCE, to be executed after the creation of the .4 matrix. HKRBUCE way 

uswl to crvatc the suh-sct of [AIt' that contains only those terms on which the 
results of inter& (as specified by the user in the ruii step) depend. The results 
r7ft:'r ccccutiori of tlie Back Reductiorx algoritliili show t l ~ i ,  arnolniit of data storage 
to bc rctl1icf.d to 11 mcgahytcs. Thc execution time to ~'t'diice ~ 1 1 7  matrix anid solve 
foi- derivati~:~~; for on(' responsc with respect to 2800 I)araIiletei s is less than the 
timc it takcs to solvc for onc ic'sponse wit11 thr entilt, nmtris. 'i lic h i ~ c  to solve for 
a secmicl r c d t  m-ould I:e 31 scconds, ab opposed to tlic ilcarly 5 minutes recpircd to 
~ C ~ W  th:. unrt-clciced matrix. In pyiforniiiig forward arid back reduction as drsciihed 
no data or results of intcrcst art- removed from the -4 matrix. I1it.r~ Is nu loss in 
t hc generality of the adjoint approach as iriiplemented in GICESS Versiun 0.0. 

4.3 PPPELINk: IkHldU CTION 
'I'he purpose of this section is to motivate the fin-the1 study and  development 

of Pipclinc Keductioii techniques. 'l'hew are two ways to implement a Pipeline 
Reduction algorithm: (1) a Plpelirie Reduction algorithm could be implemented OIP 

the forward run of an erilipnced model to help reduce the size of the [AIt' matiix, 
prior to its creation; or (2) Pipeline Reduction can be impleimntecl in a utility 
program to bo executed after the matrix is created. 

The use of pipeline reduction on the forward run would be designed to try to 
minimize the size of the actual matrix written to disk, by removing local variables 

,-1 
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(those that are defined and then used only one time, near the point of definition). 
For small models, it is conceivable that the combination of Forward and Pipeline 
Reduction could result in the entire matrix being maintained in virtual memory 
until after the execution of the Back Redi.sction algorithm. For PRESTO-11, this 
would reduce the total required disk storage from 86 megabytes to less than 11 
megabytes. 

The advantage of implementing P i p e h e  Redirction algorithm in a utility 
program to be executed after the matrix is created, is that it eonld be used to 
further reduce the size of the [A]" matrix prior to salving. 

Shown in Fig. 4.1, is a plot of [AItr showing its banded xiature and sparseness. 
Each dot in the matrix plot represents a 1 0 , ~ ~ ~ . - ~ ~ - 1 0 , ~ 0 ~  sub-matrix with at least 
one non-zero partial derivative. It is not a density plot. Terms that are defined near 
where they are used, appear near the diagonal of the matrix. Terms that are used 
fa.r away from tvhere they iare defined appear in sub-matrices above the diagonal. 
Pipeline Reduction is concerned with the terms that a e  defined near where they 
are used, and then, only used one or two times. 

The banded nature of the PRESTO-11 [,4jt" matrix is shown in Table 4.3. To 
generate this data, the area within 10,000 rows of the diagonal for the PRESTO-I1 
[AIt' xna,trix was broken into ten vertical bands, each 1000 rows high. Each 11on-zcro 
partial derivative on the sight-hard side: o f  an equation is placed in a band relative 
to the row nmmber (or band) of the equation. ;tior exa.mple, a term that is defined 
within 1000 rows of where it appears on the right-hand side of a,n equation will be 
in band 1; a term defined within 2000 rows will be in hand 2; etc. The results show 
that 58.8 percent of the ~ O I W W Q  derivatives are used within ten thoiisand rows of 
where they are defined. 

Table 4.3. Frequency and cumulative percentage of variables defined and used 
within ten, 1008 row bands of the diagonal for the PRESTO-TI [AIt' matrix. 

Band Width 
{IO00 rows') 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Frequency 

6934351 
242738 
132'113 
143017 
144551 
131345 
43409 

252993 
173120 

341 1 

Ciiniulat ive 
Frequency 

6934351 
7173089 
7309802 
7452819 
7597370 
7728715 
7776124 
8029117 
8202237 
8205648 

C umulat ive 
____ Percent 

40.7 
51.4 
52.4 
53.4 
54.4 
55.4 
55.7 
57.5 
58.7 
58.8 
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The nature of FORTRAN programs is clearly shown in Fig. 4.1, and Table 4.3. 
FORTRAN progra,ms work with a limited memory space. A significant niimloer of 
iiieniory locations are defined, or re-defiled, and then used only one time, near the 
point of definition. After the [AIt' matrix is created, the complete history of the 
niemory use is available. By simply reading the inatrix froni right-to-left (which is 
equivalent to looking at the last equation solved in the cnha,nced model, th.en next 
to the last eqnation, etc.), a simple algorithm coiild be implemented that checks 
the row number of the term.s on the right-hand side of the equation and compares 
that to the row number of the equation itself. If the right-hcznd-side term is clefined 
within. a specified niiniber of rows of where it is used, and it is never used again, 
then it can be flagged as a iriapping term arid removed by application of the Pipeline 
EX,eduction algori thni. 

No attempt was made to implement Pipeline Reduction on the €i,rward run 
of tIie   nod el; however, a limited version of a Pipeline R.ccluction xlgori thm was 
irriplementeti in a utility progrii111 for execution after tlie matrix is created. To lteep 
it sizriple, only o m  term wa,s removed from a column in a single pass through the 
matrix. However, the reduction program can be re-run lasing the reduccd matrix 
as input. Each re-execution of the reduction program will remove aclditional terms 
from the matrix. 31otv.n in Table 4.4 are the results from seven successive executions 
of the Pipelirie Reduction algoritlmi. 

Table 4.4. Results from seven executions of a simple Pipeline Reduction algorithm. 

Step_ 

N o  lneduct ion 
For ward Reduction 
Forward and Rack Reduction 
PLNP (1 exccutions) 
PLINE (7 executions) 

[ .4] t r  Storage 
(megabytes) [Seconds] 

Retrieval Tixne' 

322 
85 
11 
8 
6 

299 
127 
34 
24 
18 

The retrieval time is the execution time required to retrieve and report the 
derivativcs for a requested result with respect to the 2800 declared parameters. 
PLINE is the utility program that implements a simplified version of tlie Pipeline 
Reduction algorithm. 

Clearly a Pipeline Reduction algorithm can be used to reduce the data storage 
required to store the [A]" matrix. By reducing the size of the matrix, not only are 
we saving storage, but the access time to retrieve a derivative is also decreasing. If 
the data storage were reduccd to the point where only parameters and responses 
remained in the matrix, the matrix is completely solved. Also, the matrix is stored 
in a structure that allows quick access to any derivative requested. The potential for 
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using t,his methodology to autoiliatically generate a response surface model should 
he investigated. To further understand this potential, the first 647,000 rows of the 
PRES'P'O-I1 matrix were further reduced using the Pipeline algorithm. (The first 
647,000 rows represent running the PRESTO-II Barnwell sample problem for five 
ycars, rather than the full 1000 years.) 

The results summarized in Table 4.5 were achieved by executing the simple 
pipeline roi-itine 135 times. A more sophisticated implemcntation of the algorithm 
should be able to arrive at the same point with one or two executions; however, the 
results demonstrate the potential for such an algorithm. 

Table 4.5. Results from multiple executions of the Pipelhe Reduction 

algorithm using the five year PRESTO-I1 sample problem. 

[A] t .  Storage IRetrieval Time * L megabytes) - [Seconds) 

Xo Reduction 24.050 51 
Forward Reduction 5.992 21 
E'orward and Back Reduction 0.260 6 
P E S E  (If! cxecutions) 0.063 3 
PL1NE (75 executions) 0.033 1 
PLINE (135 cxecutions) 0.003 < 0.5 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The dgorithms as presently implemented in the GRESS and ADGEN systems 
for calciilating derivatives have limitations. With the GRESS CHAIN option, one 
can be limited to a few parameters due to limited memory available. Also, the 
execution time can increase significantly with each additiond parameter of interest. 
Conversely, ADGEN can require an excessive amount of data storage. The A4 matrix 
for a moderately sized code could easily be greater than 200 megabytes. 

Because of the size of the entire A matrix, the calculational efficiency of first 
extracting a problem dependent sub-matrix, and then calcul.ating the derimtives 
of interest is apprent .  The three matrix reduction algorithms presented in this 
report were used to extract a problem dependent sub-matrix from the PRESTO-I1 
application, thus significantly reducing the amount of data storage and execution 
time required to calculate derivatives of selected results with respect t.0 declared 
parameters. 

The Forward and Back Reduction algorithms need to be implemented and fully 
tested as soon as possible. A more sophisticated Pipeline Reduction program for 
use after the matrix is created should be developed. This version should reduce 
the matrix as much as possible on a single pass, rather than, requiring multiple 
executions. 

The possibility of using Pipeline Reduction on the forward pass warrants 
thorough testing. By maintaining a rnatrix buffer that includes 50,000 rows, it 
is possible to see the memory use pattern, 50,000 rows ahead of the row being 
output. For PRESTO-11, this is five times the band-widt,h containing 59 percent 
of the non-zero terms. A fully implemented Pipeline Reduction algorithm on the 
forward run of the enhanced model could be used to significantly reduce data storage 
of the initial [AIt' data set. 
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