
I

ORNL/TM-l1261

Enginecring Physics and Mathematics Division

MATRIX REDUCTION ALGORITHMS
FOR GRESS AND ADGEN

J. E. Horwedel*

*Computing and Telecommunications Division

DATE PUBLISHED -- November 1989

NOTICE: This document contains infortnation of a preliminary
nature. It is subject to revision or correction and
therefore does not represent a final report.

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
operated by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05--840R21400

3 445b 0328526 4

CONTENTS

ABSTRACT i x

1 . INTRODUCTION 1

2 . A MATHEMATICAL FOUNDAT'ION FOR THE GRESS AND ADGEN
CODE SYSTEMS 3

2.1,4 MATHEMATICAL MODEL OF A COMPUTER PROGRAM . . 3

2.2 DIFFERENTIATING THE MATHEMATICAL MODEL 4

2.3 THE SOLUTION MATRIX 4

2.4 SOLVING THE DERIVATIVE MATRIX EQUATION 5

2.4.1 A Simple Example 5

2.4.2 Forward Substitution 7
2.4.3 Back Substitution 8

3 . ALGORITHMS FOR REDUCING THE SIZE OF THE A MATRIX . . 11

3.1 FORWARD REDUCTION 11
3.2 BACK REDUCTION 13

3.3 PIPELINE REDUCTION 14

4 .MATRIX REDUCTION APPLIED TO PRESTO-I1 17

4.1 PRESTO-I1 BENCHMARK 17

4.2 PRESTO-I1 BENCHMARK WITH FORWARD AND BACK
REDUCTION 18

4.3 PIPELINE REDUCTION 18

5 . CONCLUSIONS AND RECOMMENDATIONS 23

REFERENCES 25

iii

LIST OF FIGURES

Page Fig .
2.1

2.2

2.3

2.4

2.5

2.6

2.T

3.1

3.2

3.3

3.4

3.5

3.6

4.1

A simple FORTRAN program to be used for derivative matrix
generation . G

6 The components needed to create and solve the A matrix

The A matrix created by sxnple program 7

The matrices for solving A'Y' = I for column one of Y'

.

. 7

Y' with column one rcsolvcd by forward substitution 8

The sub-matrices for solving [Altr*[Ytltr = I for coluinn five of [Y'Itr . . 8

[Y'Itr with the column five resolved by back substitution

Example program to demonstrate forward reduction

Complete A matrix used to demonstrate forward reduction

Sul>-matr-ix extracted from a sample program A matrix using
Forward Reduction . 12

9

11

12

Sub-matrix extracted from a sample program A matrix using
Back Rcduction . 13

Tlie transposed A matrix for the examplc in Fig . 3.4 14

Transposed A matrix reduced by Pipeline Reduction 14

A plot showing the structure of the eight million row PRESTO-I1 [AItr
matrix . 20

LIST OF TABLES

Table Page

3.1 Reduction in data storage due to Forward Reduction algorithm
applied to a sample problem . 13

Reduction in data storage due to both Forward and Back Reduction
algorithms applied to a sample problem 13

3.3 Data reduction clue to Pipeline Removal algorithm 15

4.1

3.2

Resource requirements for creating and solving the A matrix created
by PRESTO-I1 . 17

4.2 Resource requirements for creating and solving the A matrix created
by PRESTO-I1 with forward and back reduction 18

4.3 Frequency and cumulative percentage of variablcs defined and used
within ten, 1000 row bands of the PRESTO-I1 [AIt' niatrix 19

Results from seven executions of a simple Pipeline Reduction
algorithm . 21

4.4

4.5 Results from multiple executions of thc Pipeline Reduction algorithm
using the five year PRESTO-I1 sample problem 22

vii

ABSTRACT

The GRESS Version 0.0 code system was developed to automate the
implementation of derimtive- taking capabilities in existing FORTRAN 77 computer
models. The GRESS CHAIN option is used to calculate and report first derivatives
of model results with respect to user selected input data by application of the
calculus chain rule, The GRESS ADjoint matrix GENerator (ADGEN) option
is used to calculate first derivatives of selected model results with respect to all
input data,. The first part ob this paper presents the rnathematicd foundations
and algorithms as presently impleniented in GRESS Version 0.0. Exannples are
used to describe the iiiiplementation of both the CHAIN and ADGEN options.
Due to excessive execution time and mcmory requirements with the CHAIN option
users are often limited to propagating dcrivatives for just a few parameters. The
ADGEN option allows an almost unlimited number of parameters (;.e., input data);
however, the data storage requirement for an ADGEN application was more than
322 mcgabytcs for a code that executes in 1 minute on a VAX 8600 computer.

The purpose for this paper is to present three new algorithms that could easily
be irnplemented in GRESS Version 0.0 to dramatically reduce the data storage
requirements and execution time for application of the ADGEN option. The
new algorithms are described with examples. Test versions of these algorithms
were implemented and tested. The application of these algorithms to the GRESS
cnirrancement of the PRESTO-I1 computer model resulted in it significant reduct ion
in execution time and a reduction in data storage requirenients from 322 megabytes
to 97 megabytes without any loss in the generality of the approach.

ix

1. INTRODUCTION

In many areas of scientific computing, derivatives and sensitivities of model
results to input parameters are often desired. Sensitivity analysis of computer-
generated results consists of determining the effect of model data upon the
calculated results of interest. The fields of sensitivity and uncertainty analyses have
traditionally been dominated by statistical techniques when large-scale modeling
codes are being analyzed. These methods are able to estimate sensitivities, generate
response surfaces, and estimate response probability distributions. Because the
statistical methods are computationally costly, they are usually applied only to
problems with relatively small parameter sets. Deterministic methods, on the
other hand, are very efficient and can handle large data sets, but generally require
simpler models because of the considerable programming effort required for their
implement ation.

Since computer model equations can be differentiated analytically, sensitivities
can be precisely clefined and calculated in a deterministic fashion.'-'' The
deterministic approach is well suited to large-scale models for which direct
perturbation of the model data becomes impractical from a cost standpoint. The
main drawback to the deterministic approach has been the initial manpower
investment to add the computational capability for calculating the necessary
derivatives into existing computer models.

To circumvent this costly manpower investment and thus provide the means for
model users to take advantage of the strengths of deterministic sensitivity analysis,
two related software systems were developed to automate the implementation of
these methods into existing FORTRAN 77 computer rnodels. The first system,
named GRESS (GRadient-Enhanced Software System), uses a FORTRAN 77
precompiler, EXAP (Extended Arithmetic Processor), to add derivative taking
capabilities to existing FORTRAN 77 p r ~ g r a m s . ~ ~ - ' ~ GRESS, which has been
thoroughly tested, calculates derivatives by applying the calculus chain rule to the
model equations as the equations are being solved.

The second system, narned ADGEN (ADjoint matrix GENerator), was
developed as a GRESS option that provides the capability of automated
implementation of the adjoint sensitivity methods into existing FORTRAN 77

ADGEW uses EXAP to automate the generation of an adjoint matrix
from a computer model. Utility programs are then used to manipulate and solve
the adjoint matrix for selected derivatives and sensitivities.

The purpose of this paper is to describe three new algorithms that, if
implemented, would significantly reduce resource requirements for the adjoint
matrix generation option (ADGEN) of GRESS Version 0.0. A general approach
to the mathematical foundations is developed for GRESS and ADGEN that is
based firmly in differential calculus and linear algebra. A mathematical model
of a computer program, differentiating the mathematical model, and solving
for derivatives is shown with examples. The numerical algorithms' presently

.

1

2

implemented in the GRESS and ADGEN systems are described. Limitations are
discussed.

The general approach is then used to develop the three matrix reduction
algorithms: 1) Forward Reduction; 2) Back Reduction; and 3) Pipeline Reduction,
that can easily be implemented in the present ADGFJN system to significaiitly
reduce the amount of data storage required by an ADGEN application. ‘The matrix
reduction algorithms are described with examples. The relative computational
and storage requirements with and without matrix reduction are compared for the
derivative enhancement of the PRESTO-11 computer model.”

3

- A -
B
D
X
W z

y "

2. A MATHEMATICAL FOUNDATION FOR
THE GRESS AND ADGEN CODE SYSTEMS

-
input parameter
input pa.ramet er

f = input parameter
A * *2+ B * *2
A * X + D * *2

- X * *2+ W + A * *3+ D * *3

-

2.1 A MATHEMATICAL MODEL OF A COMPUTER PROGRAM
In w FORTRAN program, calculatcd left-hand-side variables are a function of

previously defined left-hand-sick variables and data, either through mathematical
operations or read statements. This relationship can be exprcssed as

y := f (y) (1)
where the symbol,:=, indicates a value assignment (;.e., store) operation, the
components of the column vector, y, are all the terms on the left-hand-side of real
number replacement statements, and the column vector, f , represents the right-
hand-side mathematical operations. The vector, y, includes both model calculated
results axid data. R,ead stat,ernents are treated the same as setting a variable equal
to a constant.

111 a FORTRAK program a syiiibol cannot explicitly depend on itself. When
a FORTR.AN mriable is redefined, mathematically, it is not the same variable. In
the statem.ent, X := X + 5.0, the X on the left and the X on the right represent
two different locations in the solution vector, y. Mathematically, the equation can
be thought of as, X2 = XI + 5.0

There€ore to represent equation (1) mathematically the dependence of a variable
on itself must be considered explicitly. If we define

($4 i - = 1, for all i.
dyi

Then equation (1) can be rewritten as

Y = f(Y)
Consider the following four lines of FORTRAN.

4

2.2 DIFFERENTIATING THE MATHEMATICAL MOXIEL

Differentiating Eq. (3), with respect to y, yields

where the identity matrix, I , provides the explicit dependence of a variable on itself
ncccssary to make Eq. (4) meaningful. Eq. (4) can be rearranged, such that

Eq. (5) can be representcd in a more compact form as,

where

,4- I - - [3

Since FORTRAN equations are solved in a sequential fashion, FORTRAS
variables are dependent on prcviously defined variables. Therefore,

so that the matrix, :f, is a lower triangular matrix with zeros on aid above the
diagonal. Therefore, the matrix, ,4, is nonsingular and invertible.

Solving Eq. (6) for Y' yieltls

(7) y' - A-1

Since A is a lowcr tiictngular matrix, derivatives in thc solution matrix Y-' , can
easily be resolved using foinard substitution. Also, since the transpose of .I is
u p p r tliaiigiilar cornponcnts of Y' can be calculated using back siibst;tution as

represented by Eq. (8).

p - y - [p]--l (8)
,- - l'ile t~ siipcrscript is used to represent the transpose of the matrix.

2 - 3 THHE SOLUTION Mmmx
The piirpose of this section is to look at the contents of the solution matrix,

Y'. The matrix, Y ' , represented in Eq. (7) contains the total first derivatives of

5

all real number variables in the FORTRAN program with respect to all other real
numbcr variables in the program. Since ~ Y L = 1, for all i, the diagonal terms are 1.

dY,
Variables can only depend on variables that are defined in prior equations, therefore,
the terms above thc diagonal are zero. This simplifies the solution matrix to

1

h . . .
d y i

1

Note tha,t the terms in the ith column from Y' are (0, ... 17%, %, . . , e),
and, the terms in the i t h row of Y' are (k d y l 7 d y a 7 . ' LQL d y , ' 1 7 0, ... 1. R,esolving Y'
for the ith colurnn, results in the derivakive of each element in y with respect to y;.
This is the same result that would be obtained by calculating the derivatives of ij
with respect to yi by application of the calculus chain rule. The GRESS CHAIN
option calculates selected columns in this matrix by forward substitution in memory,
without saving the A matrix. Solving Y' for the ith row, results in the derivatives
of yi with respect to a,ll the elements of For a FORTRAN program, solving for
a selected row in Y' yields the same result that is achieved by solving the adjoint
equation for the iiimerical rriodel defined by the computer code as discussed in refs.
(10-21).

2.4 SOLVING THE DERIVATIVE MATRIX EQUATION

When a code enhanced by EXAP for gradient calculation is executed, equations
are solved seqiie~itially. As each equation is solved, the partid derivative of the term
on the left is calculated with respect to each variable on the right. These derivatives
are the off diagonal terms in the A matrix. Using a simple example, the matrix
of partial derivatives will first be created, and then solved using both €orwa.rd and
back subs ti tu tion techniques.

2.4.1 A Simple Example
The FORTRAN program shown in Fig. 2.1 is used to demonstrate the creation

of the A matrix and the calculation of selected rows and columns in the derivative
matrix, Y', as presently implemented in GRESS Version 0.0.

6

E = 2.0

B = 3.0

.I1 = 5.0

x = E * +2 + n * *2
bV = E * x + D * *2
z =x**:!+ W + E * D

END

Fig. 2.1. A simple FORTRAN program to be used for derivative matrix generation.

Shown in Fig. 2.2 are the various components used by GRESS to create the A
matrix.

Row Y F
Partial Derivatives

Result 2

Fig. 2.2. The components needed to create and salve the 4 matrix.

The A matrix crcated using the partial derivatives from the sample program is
shown in Fig. 2.3. The row niimhcr ideiitifies the depcndent term iii the equation,
thc colulnii niimher identifies the illdependent term. ‘I’he first FORTRAN variable
defined dinring execution becomes row one in the A matrix, the second defined
variable becollies TOW two, etc. The column is determined by the row i r i which the
righi-hand-side term was defined. For J less than i, the matrix element in row i,
column j identifies the negative of the partial derivative of the term defined in row
i with respect to the term defined in row j.

7

*

Rows
1
2
3
4
5
6

' 1
? 1 (0)
? ? 1
? ? ? 1
? ? ? ? 1

- ? ? ? ? ? 1

Columns
1 2 3 4 5 6

1

0 0 1
0 1 (0)

-4 -6 0 1

-5 0 -2 -26 -1 1
-13 0 -10 -2 1

Fig. 2.3. The A matrix created by sample program.

2.4.2 Forward S 11 bs t i t ut io n

Using the A matrix shown in Fig. 2.3, the Y' matrix for the sa>mple program can
he fully resolved by forward substitution. This is the same as simply calculating
selected derivatives with the calculus chain rule. For example the derivative of ij
with rcspect to E , could be calculated using the chain rule, as follows.

d B dD
- 1 .-=0 - = o d E

dE ' d E ' d E
--

dX
dE

dX dW7
dE dE
dZ d X dW

dE dE dE

-- - 2 * E = 4

-- - X + E * - = 21

-- = 2 t x t -- + -- + D = 130

When using forward substitution to solve for the derivatives of ?j with respect
to E , only column one of Y' has to be resolved. The matrices set up for forward
substitution are shown in Fig. 2.4. The non-zero locations in Y' are indicated with
a question mark (?). To invert column one it is necessary to resolve every non-zero
term in column one.

-4 -6 0 1
-13 0 -10 - 2 1
- 5 0 - 2 -26 -1 1

Fig. 2.4. The matrices for solving A * Y' = 1 for column one of Y'.

By successively multiplying each row in the A matrix by column one in Y', the
unknown terms in column one can be quickly resolved. The Y' matrix with column
one resolved is shown in Fig. 2.5.

8

- 1
0
0
4

21
130

7

1 -

1
?
?

? '
?
?
?
?
1-

(0)

1
?

-1 0 0 -4 -13 - 5
1 0 -6 0 0

1 0 -10 -2
1 - 2 -26

1 - 1
1

(0)

-

*

Fig. 2.5. Y' with column one resolved by forward substitution.

-1

-

The GRFSS CHAIN option calculates the derivatives irsing forward substitution
in memory. Derivatives with respect to declared parameters are propagated forward
as the enhanced model is executing. The actual A matrix is never stored. At any
given point during execution, the user can retrieve tlie total first derivatives for a
calculated variable with respect to all the declared parameters. Since GRESS does
not know a priori which results are of interest, it is necessary to propagate the
derivatives for the user selected parametcrs through every row in the matrix. This
causes the amount of execution time and memory required to calculate dcrimtives
using the CHAIN option to increase rapidly with the number of declared parameters.
In practice with large codes, the user is often limitcd to a few parameters per run.

2 - 4 3 Back Substitution

By transposing the A matrix from Fig- 2.3, and setting up the matrices in
Eq. (8), back substitution can be used to solve for the derivatives of Y , with respect
to y . The derivatives of U, with respect, to g air: in the ith column of [, / I t r . Shown
in Fig. 2.6, are the sub-matrices necessary to calculate the derivative of 1;1/ with
respect to t j (;.e., { E , B , D , X , TV, 2)) .

?
1

(0)

?
?
1

Fig. 2.6. The sub-matrices for salving [A]2r*[Y']tr = 1- for column five of [, ' I t r .

Back substitution can be used to resolve column five. Shown in Fig. 2.7. is the
[Y'Itr with column five completely resolved.

9

- 1 ? ? ? 2 1 ?
1 ? ? 1 2 ?

1 ? 1 0 ?
1 2 ?

l ?
- 1

(0)

d W -
d E
__ d W
d R

d D

d W
d X

d W
d W

d W
dZ -

-

-

Fig. 2.7. [,‘It‘ with the column five resolved by back substitution.

-
I

From Fig. 2.7, we see that

[$4“‘
21
12
10
2
1
0

The ADGEN system USCS the GRESS adjoint matrix generation option to create
thc A matrix. ADGEN utilities are used to transpose the A matrix, and then to
solve for the derivatives in a selected column. The A matrix created by GRESS
Version 0.0 can be excessively large. For a moderately sized program, it is not
uncommon for the A matrix to have on the order of lo7 rows. If only the non-zero
terms are stored, the data set can require as much as 200 megabytes of storage.

There arc: three pieces of information stored for each row.
1) N p = number of non-zero derivatives
2) C’s = column numbers for the right-hand-side terms
3) D’s = derivatives with respect to right-hand-side terms

For each row, values for items 2 and 3 are repeated N p times. The row number
of the left-hand-side term is not stored, since it can be determined during processing.
The present version uses four byte words for N p , D, and C. Therefore, eight bytes
are required for each non-zero derivative in the row, and an additional four bytes
for each row to store the derivative count, N p . The amount of storage required for
either the forward or transpose matrix can be estimated as follows.

Storage = (#of Rows) * [4 + (average N p) * 81 bytes (9)

For a matrix with lo7 rows with an average of two non-zero terms off the
diagonal per row, the amount of storage can be estimated as follows.

10

Storage = (lo7) * [4 + (2 * 8)] bytes = 200 megabytes

In application, this amount of storage has been required for codes that used
1 minute of execution time on a VAX 8600 prior to enhancement.

11

3. ALGORITHMS FOR REDUCING
THE SIZE OF THE A MATRIX

Presented in this chapter are three matrix reduction algorithms that can be
easily implemented in the present GRESS and ADGEN systems to reduce the
resource requirements required by an enhamed model. Mathematically, the matrix
reduction techniques are based on the fact that the rows in the A matrix are linearly
independent arid the matrix is nonsingihtr. It can easily be proven that any sub-
matrix from a linearly independent, nonsingular matrix, is dso linearly independent
and nonsingular.22 This means that if a row and corresponding column (;.e., row
i, column i) me removed from the matrix, tlie remaining matrix is still linearly
independent arid nonsingulnr. Therefore, Eqs. (1-81 are still valid fop. any sub-matrix
extracted from the A matrix. Since pararrieters and potential responses of interest
must be declared by the user, and arc “known” during execution, information is
available that can he used t o extract a problem dependent sub-mat.rix, thus reducing
the amount of data stored, and the nimxriber of calculations reqi-iired to solve for
selected deriv -a, t’ wes.

3.1 FORWARD REDUCTI
When creating the A matrix, partial derivatives are calculated and stored for

every equation solved. However, only derivatives in rows that are dependent on
user specified parameters are actually needed. Forward Redlietion keeps track
of parameter dependency. If any term on the right-ha,ncl side of a.n equation
is dependent on a declared parameter, then the term being calculated is also
dependent; and therefore, the row is needed. Tf there is no dependency on the
right, then the row is not needed. For the example in Fig. 3.1, B and C‘ are
declared to he parameters. The variable, R, is specified as a result of interest for
derivative calculation. Using Forward Reduction, a probleni dependent sub-matrix
can be extracted that includes those terms that are dependent on B and C.

B = 2

c=3

0 = 4

X = B + D

Y = D * * 2 + B * * 2

I’arameters of interest = B, C

R = 7 * X + D * * 2

S = Y * * 2

END

Result of interest = R

Fig. 3.1. Example program to demonstrate forward reduction.

12

B
C
X
Y
R
S

The complete A matrix is shown in Fig. 3.2. Since only derivatives with respect
to parameters B and C are of interest, the problem dependent sub-matrix, shown
in Fig. 3.3, can be extracted. The variable D was eliminated from the matrix
using forward reduction. Though R is dependent on D , 11 is not included as a
parameter; therefore, D may be treated as a constant,. S w a s not eliminated by
forsrcrard reduction because it is dependent on parameter B.

3.6
to associate the terms in the matrix with the variables in the sample program.

The symbol names (;.e, 14; C, D, X , Y, I?, and S> are irlcluded in Figs. 3.2

1
0 1
-1 -1 -1
-4 0 0 1
0 0 -7 0 1
0 0 0 -40 0 1

B C U X Y R S

B
C
D
X
Y
R
s

1

0 0 1
-1 -1 0 1
-4 0 -8 0 a
0 0 -8 -7 0 1
0 0 0 0 -40 0 1

0 1 (0)

_I

bsig. 3.2. Complete i! matrix used to demonstrate forward reduction.

Using t,he sub-matrix shown in Fig. 3.3, it is possible to calculate the derivatives
of R with respect to B and C. These are the same derivatives that can be calculated
with the complete A matrix, by either forward or back substitution. Since only the
derivatives for specified results with respect to declared parameters are retrievable,
there is 110 loss of usable information during the Forward Reduction process.

B C X Y R S

Fig. 3.3. Sub-matrix extracted from a sample
program A matrix using Forward ICeduction.

Table 3.1 shows the reduction in data storage that occurs in this sample program
due to Forward Reduction. What can not be easily shown in a small program is
the overall impact to execution time. However, in most applications, the arnount of
execution time to write the A matrix to disk is significant. By removing rows from
the matrix, not only is the data storage reduced; but also, in most applications the
execution time decreases. Reduction in execution time is discussed in the application
to PRESTO-I1 in Chapter 4.

13

B
C
X
n

Table 3.1. Reductiorr in data storage due to Forward Reduction algorithm applied

to a sample problem.

1 (0)
0 1
1 -1 1
0 0 - 7 1

R,EDUCTION ALGORITHM TOTAL STORAGE (bytes)

None
Forward

RESULT = 26% reduction in data stored

7s
56

3.2 RACK REDUCTION
Once the A matrix exists, the results of interest for derivative calculation

are known. Back Reduction uses this information to extract the sub-matrix that
conta,ins only results of interest, declared parameters, mcl other rows on which the
chrpseri results of interest depend. If both Forward and Baxk Reduction algorithms
are used, the remaining sub-matrix will contain only the independent parameters,
the dependent results of interest, and the intermediate variables required to map the
parameters into the results. Applying Back R,ednction algorithm to the sub-matrix
shown in Fig. 3.3, rcsults in the sub-nmtrix shown in Fig. 3.4.

B C X R

Fig. 3.4. Sub-matrix extracted from a sample

program A matrix using Back Reduction.

The sub-matrix in Fig. 3.4 can he used to calculate the derivatives of R with
respect to paranieters B and D. Shown in Table 3.2, is a comparison of the amount
of data storcd after using Forward and Back Reduction algorithms.

Table 3.2. Reduction in data storage due to both Forward and

Back Reduction algorithms applied to a sample problem.

REDUCTION ALGORITHM TOTAL STORAGE (bytes)

None
Forward
Forward and Back

Total Reduction in Data Stored = 53%

76
56
36

14

B
C
X
R

3.3 PIPELINE REDUCTION

The third algorithm discussed is Pipeline Reduction. This method takes
advantage of the fact that in FORTRAN programs, memory locations tend to
be re-used often. When a variable is re-defined, its FORTR,AN symbol becomes
associated with a difi'erent row in the matrix, and the associated column in the A
matrix is truncated. The variable associated with that row will never appear on
the right-hand side of ail equation again. If a mapping variable (one that. is not a
parameter or a response) appears on the right-hand side of an equation only one
time, then data storage can be reduced. The method is applied to the A matrix
after completion. At that point, knowledge of the entire memory-use pattern is
available. By reading the A matrix from bottom-to-top (read the last row first,
then read the next-blast. row, etc.), it is possible to know where variables are used,
as well as knowing where they were defiiied. If a variable is defined very near where
it is used, and if the variable was never used aga,in, then it is possible to apply the
Pipeline Reduction algorithm to reduce the arnoiint of data stored.

In the example, the FORTRAN variablc, X , can be considered to be a mapping
variable, The tmnsposed A matrix from Fig. 3.4 is shown in Fig. 3.5. By using
the calculus chain rule, the derivative iii€ormation associated with the variable X
can be moved to the column associated with R by simply multiplying the non-zero
derivatives in column X by $5 (;.e., 7)) and adding them to the non-zero derivatives
in column R.

a 0 -1 0
1 -1 0

1 -7
(0) 1

13
C
R

Fig. 3.5. The transposed A matrix for the example in Fig. 3.4.

1 0 -7
1 -7

(0) 1

Once the processing has passed the row associated with X , that row can be
dropped from the matrix. This is analogous to removing X from the FORTRAN
model by re-writing the program. The reduced matrix is shown in Fig. 3.6.

B C R

Fig. 3.6. Transposed A matrix reduced by Pipeline Reduction.

The reduction in data storage by removing column X ' from the matrix is shown
in Table 3.3.

15

Table 3.3. Data reduction due to Pipeline Removal algorithm.

REDUCTION ALGORITHM

None
For ward
Forward a.nd Back
Forward, Back and Pipeline

RESULT = 63% reduction in data stored

TOTAL STORAGE (bytes)

76
56
36
28

At first glance, a Pipeline Reduction algorithm does not necessarily appear to
be very useful. However, as will be shown with the PRESTO-I1 example, a majority
of variables in FOftTRAN progra.rns tend to be defined near where they are used.
This results in a partially banded matrix. The Pipeline: r k h c t i o n algorithm is
primarily concerned with the nieinory locations that are used only nea,r where they
are defined (those in thc band near the diagonal).

With forward substitution, as presently implernented in GRESS Version 0.0,
there is no u priori knowledge as to where, arid how often, a variable is used. As
has been shown, once the matrix is created, information about varia.ble usage is
available. But what is also true is that once a variable is re-defined, we know that
its associatcd column in the A matrix is truncated. By maintaining an output
buffer large enough to hold several thousand rows of the matrix in memory, it
would be possible to apply the Pipeline Reduction algoritlim during the execution
of the enhanced code. If ten thousand rows are kept in the matrix output buffer, in
essence, the code can "see" ten thousand rows ahead as to how memory locations
are being used. The required buffer size can be estimated using Eq. (6). If the
average N p is two, then the amount of memory needed to maintain a buffer of
10,000 rows would be 50,000 four byte words. With the PRESTO-I1 application,
discussed in Chapter 4, the band that contains 58.8% of the variables used in the
model is only 10,000 rows wide.

17

4. MATRIX REDUCTION APPLIED TO PRESTO-I1

The PRESTO-I1 computer was used as a benchmark for the GRESS
Version 0.0 adjoint matrix generation option, ADGEN. A more complete discussion
of the benchmark is included in Ref. 21. In this chapter, the computational and
storage requirements for an ADGEN application with and without matrix reduction
are compared for the derivative enliancenient of the PRESTO-I1 computer model.
The banded nature of the PRESTO-II derivttive matrix is shown. A simple Pipeline
Reduction algorithm is tested.

4.1 PRESTO-11 BENCHMARK

PRESTO-I1 was developed as a non site-specific screening model for evaluating
the possiblc health effects due to shallowland disposal of radioactive waste. The
model has approximately 6,900 lines of coding. The PRESTQ-I1 computer resource
requircnients are for the Barnwell sample problem included in Ref. 23. This
problem calculates a tirne-dependent radiation dose to a man from transport of
42 radionuclides over a one thousand year time span.

PRESTO-I1 was cnhanced with the EXAP precompiler, GRESS Version 0.0.
Derivatives for two results with respect to 2800 parameters were calculated. Thc
resource requiremcnts for creating and solving the [A] matrix are shown in Table 4.1.
The PRESTO-I1 [A] matrix had more than eight million rows and 322 megabytes
of direct access storage were required to create the [AItr matrix. The [.4] matrix
is considered a scratch data set, and may be dcleted once [AIt' is created-t
However, the [AIt' matrix (144 megabytes) must remain active for the YSOLVE
step. YSOLVE reads [AIt' and calculates the derivatives for one result with respect
to all the declared parameters (;.e., a column of [Y]"). The YSOLVE step can be
re-executcd for additional results of interest that were specified during the execution
of the enhanced model.

Table 4.1. Resource requirements for creating

and solving the A matrix created by PRESTO-11.

Job Step
Run Time Data Set Storage
[Min: Sec) created [megabytes]

178
144

322 (total)

Enhanced Presto-I1 24:51 [AI
TMAT* 8:09 [AIt'
YSOLVE (1 result)* 4:59

* TMAT and YSOLVE are described in "GRESS Version 0.0 User's Manual."

t A GRESS utility, TMAT, is used to convert the [A] matrix into the [A]" matrix.

18

4.2 PRESTO-I1 BENCHMARK WITH FORWARD AND BACK
REDUCTION
Simple modifications to the GItESS/ADGEN run-time library routines were

made to implement the Forward Reduction algorithm. Results, summarized in
Table 4.2, show a decrease in the size of [AIt' from 144 megabytes to 86 megabytes
due to the Forward Reduction algorithm, alone. Because of the nature of the
algorithm changes, the intermediate step of creating a separate forward matrix,
then transposing it, was also eliminated. This removed the TMA'X' utility from the
calculational sequence.

Table 4.2. Resource requirements for creating and solving the

A matrix created by PRESTO-II with forward and back reduction.

Run Time Data Set Storage
............ Job Step (Min: Sec) created f M c s] .

86
1.1

97(t ot al)

Enhanced model 24:01 [AIt'
RREDUCE" 3:32 [AI r.

YSOTAVE : 34

a BREDUCE is test program €or implerncnting the Back Reduction algorithm
that creates a subset of [AIt'.

The Back Keductiori algorithm was irnplementcd in a utility program,
BREI>IJCE, to be executed after the creation of the .4 matrix. HKRBUCE way

uswl to crvatc the suh-sct of [AIt' that contains only those terms on which the
results of inter& (as specified by the user in the ruii step) depend. The results
r7ft:'r ccccutiori of tlie Back Reductiorx algoritliili show t l ~ i , arnolniit of data storage
to bc rctl1icf.d to 11 mcgahytcs. Thc execution time to ~'t'diice ~ 1 1 7 matrix anid solve
foi- derivati~:~~; for on(' responsc with respect to 2800 I)araIiletei s is less than the
timc it takcs to solvc for onc ic'sponse wit11 thr entilt, nmtris. 'i lic h i ~ c to solve for
a secmicl r c d t m-ould I:e 31 scconds, ab opposed to tlic ilcarly 5 minutes recpircd to
~ C ~ W th:. unrt-clciced matrix. In pyiforniiiig forward arid back reduction as drsciihed
no data or results of intcrcst art- removed from the -4 matrix. I1it.r~ Is nu loss in
t hc generality of the adjoint approach as iriiplemented in GICESS Versiun 0.0.

4.3 PPPELINk: IkHldU CTION
'I'he purpose of this section is to motivate the fin-the1 study and development

of Pipclinc Keductioii techniques. 'l'hew are two ways to implement a Pipeline
Reduction algorithm: (1) a Plpelirie Reduction algorithm could be implemented OIP

the forward run of an erilipnced model to help reduce the size of the [AIt' matiix,
prior to its creation; or (2) Pipeline Reduction can be impleimntecl in a utility
program to bo executed after the matrix is created.

The use of pipeline reduction on the forward run would be designed to try to
minimize the size of the actual matrix written to disk, by removing local variables

,-1

19

(those that are defined and then used only one time, near the point of definition).
For small models, it is conceivable that the combination of Forward and Pipeline
Reduction could result in the entire matrix being maintained in virtual memory
until after the execution of the Back Redi.sction algorithm. For PRESTO-11, this
would reduce the total required disk storage from 86 megabytes to less than 11
megabytes.

The advantage of implementing P i p e h e Redirction algorithm in a utility
program to be executed after the matrix is created, is that it eonld be used to
further reduce the size of the [A]" matrix prior to salving.

Shown in Fig. 4.1, is a plot of [AItr showing its banded xiature and sparseness.
Each dot in the matrix plot represents a 1 0 , ~ ~ ~ . - ~ ~ - 1 0 , ~ 0 ~ sub-matrix with at least
one non-zero partial derivative. It is not a density plot. Terms that are defined near
where they are used, appear near the diagonal of the matrix. Terms that are used
fa.r away from tvhere they iare defined appear in sub-matrices above the diagonal.
Pipeline Reduction is concerned with the terms that a e defined near where they
are used, and then, only used one or two times.

The banded nature of the PRESTO-11 [,4jt" matrix is shown in Table 4.3. To
generate this data, the area within 10,000 rows of the diagonal for the PRESTO-I1
[AIt' xna,trix was broken into ten vertical bands, each 1000 rows high. Each 11on-zcro
partial derivative on the sight-hard side: o f an equation is placed in a band relative
to the row nmmber (or band) of the equation. ;tior exa.mple, a term that is defined
within 1000 rows of where it appears on the right-hand side of a,n equation will be
in band 1; a term defined within 2000 rows will be in hand 2; etc. The results show
that 58.8 percent of the ~ O I W W Q derivatives are used within ten thoiisand rows of
where they are defined.

Table 4.3. Frequency and cumulative percentage of variables defined and used
within ten, 1008 row bands of the diagonal for the PRESTO-TI [AIt' matrix.

Band Width
{IO00 rows')

1
2
3
4
5
6
7
8
9

10

Frequency

6934351
242738
132'113
143017
144551
131345
43409

252993
173120

341 1

Ciiniulat ive
Frequency

6934351
7173089
7309802
7452819
7597370
7728715
7776124
8029117
8202237
8205648

C umulat ive
____ Percent

40.7
51.4
52.4
53.4
54.4
55.4
55.7
57.5
58.7
58.8

20

....

....

21

The nature of FORTRAN programs is clearly shown in Fig. 4.1, and Table 4.3.
FORTRAN progra,ms work with a limited memory space. A significant niimloer of
iiieniory locations are defined, or re-defiled, and then used only one time, near the
point of definition. After the [AIt' matrix is created, the complete history of the
niemory use is available. By simply reading the inatrix froni right-to-left (which is
equivalent to looking at the last equation solved in the cnha,nced model, th.en next
to the last eqnation, etc.), a simple algorithm coiild be implemented that checks
the row number of the term.s on the right-hand side of the equation and compares
that to the row number of the equation itself. If the right-hcznd-side term is clefined
within. a specified niiniber of rows of where it is used, and it is never used again,
then it can be flagged as a iriapping term arid removed by application of the Pipeline
EX,eduction algori thni.

No attempt was made to implement Pipeline Reduction on the €i,rward run
of tIie nod el; however, a limited version of a Pipeline R.ccluction xlgori thm was
irriplementeti in a utility progrii111 for execution after tlie matrix is created. To lteep
it sizriple, only o m term wa,s removed from a column in a single pass through the
matrix. However, the reduction program can be re-run lasing the reduccd matrix
as input. Each re-execution of the reduction program will remove aclditional terms
from the matrix. 31otv.n in Table 4.4 are the results from seven successive executions
of the Pipelirie Reduction algoritlmi.

Table 4.4. Results from seven executions of a simple Pipeline Reduction algorithm.

Step_

N o lneduct ion
For ward Reduction
Forward and Rack Reduction
PLNP (1 exccutions)
PLINE (7 executions)

[.4] t r Storage
(megabytes) [Seconds]

Retrieval Tixne'

322
85
11
8
6

299
127
34
24
18

The retrieval time is the execution time required to retrieve and report the
derivativcs for a requested result with respect to the 2800 declared parameters.
PLINE is the utility program that implements a simplified version of tlie Pipeline
Reduction algorithm.

Clearly a Pipeline Reduction algorithm can be used to reduce the data storage
required to store the [A]" matrix. By reducing the size of the matrix, not only are
we saving storage, but the access time to retrieve a derivative is also decreasing. If
the data storage were reduccd to the point where only parameters and responses
remained in the matrix, the matrix is completely solved. Also, the matrix is stored
in a structure that allows quick access to any derivative requested. The potential for

22

using t,his methodology to autoiliatically generate a response surface model should
he investigated. To further understand this potential, the first 647,000 rows of the
PRES'P'O-I1 matrix were further reduced using the Pipeline algorithm. (The first
647,000 rows represent running the PRESTO-II Barnwell sample problem for five
ycars, rather than the full 1000 years.)

The results summarized in Table 4.5 were achieved by executing the simple
pipeline roi-itine 135 times. A more sophisticated implemcntation of the algorithm
should be able to arrive at the same point with one or two executions; however, the
results demonstrate the potential for such an algorithm.

Table 4.5. Results from multiple executions of the Pipelhe Reduction

algorithm using the five year PRESTO-I1 sample problem.

[A] t . Storage IRetrieval Time * L megabytes) - [Seconds)

Xo Reduction 24.050 51
Forward Reduction 5.992 21
E'orward and Back Reduction 0.260 6
P E S E (If! cxecutions) 0.063 3
PL1NE (75 executions) 0.033 1
PLINE (135 cxecutions) 0.003 < 0.5

23

5. CONCLUSIONS AND RECOMMENDATIONS

The dgorithms as presently implemented in the GRESS and ADGEN systems
for calciilating derivatives have limitations. With the GRESS CHAIN option, one
can be limited to a few parameters due to limited memory available. Also, the
execution time can increase significantly with each additiond parameter of interest.
Conversely, ADGEN can require an excessive amount of data storage. The A4 matrix
for a moderately sized code could easily be greater than 200 megabytes.

Because of the size of the entire A matrix, the calculational efficiency of first
extracting a problem dependent sub-matrix, and then calcul.ating the derimtives
of interest is apprent . The three matrix reduction algorithms presented in this
report were used to extract a problem dependent sub-matrix from the PRESTO-I1
application, thus significantly reducing the amount of data storage and execution
time required to calculate derivatives of selected results with respect t.0 declared
parameters.

The Forward and Back Reduction algorithms need to be implemented and fully
tested as soon as possible. A more sophisticated Pipeline Reduction program for
use after the matrix is created should be developed. This version should reduce
the matrix as much as possible on a single pass, rather than, requiring multiple
executions.

The possibility of using Pipeline Reduction on the forward pass warrants
thorough testing. By maintaining a rnatrix buffer that includes 50,000 rows, it
is possible to see the memory use pattern, 50,000 rows ahead of the row being
output. For PRESTO-11, this is five times the band-widt,h containing 59 percent
of the non-zero terms. A fully implemented Pipeline Reduction algorithm on the
forward run of the enhanced model could be used to significantly reduce data storage
of the initial [AIt' data set.

25

REFERENCES

1. Tomovic, R. and Vukobratovic, M., General Sensi t iv i ty Theory, Elsevier North-

2. Stacey, W. M., Variational Methods in Nuclear Reactor Phydics, Academic

3. Greenspan, E. , “Develoyrnents in Perturbation Theory,” Advances in Nuclear

4. Oblow, E. M., “Sensitivity Theory for Reactor Thermal-Hydraulics Problems,”

5. Frank, P. M., Introduct ion t o S y s t e m Sensi t iv i ty Theory , Academic Press,

6 . Kedern, Gershon, “Automatic Differentation of Computer Program,” A CM

7. Cacuci, D. G., J. Math . Phys. (NY) 22, 2794 (1981).

8. Cacuci, D. G., J. M a t h . Phys. (NY), 22, 2803 (1981).

9. Weisbin, C. R. et al, “Sensitivity and Uncertainty Analysis of Reactor
Performance Parameters,” Advances in Nuclear Science and Technology 14,
Plenum Press, New York (1982).

10. Oblow, E. M., An Automated Procedure f o r Sensi t iv i ty Ana lys i s Using C0rnpute.r
Cabcubus, ORNL/TM-8776, Oak Ridge National Laboratory, Oak Ridge,
Tcnnessm, May 1983.

11. Oblow, E. M., “GRESS, Gradient-Enhanced Software System,” ORNL/TM-
9658, Oak Ridge National Laboratory, Oak Ridge, Tennessee, July 1985.

12. Oblow, E. M., F. G. Pin, R. Q. Wright, “Sensitivity Analysis Using Computer
Calculus: A Nuclear Waste Isolation Application,” Nucl . Sci . Eng. 94,46 (1986).

13. Worley, B. A., R. Q. Wright, F. G. Pin, W. V. Harper, “Application of an
Automated Procedure for Adding a Comprehensive Sensitivity Calculation
Capability to the ORIGEN2 Point Depletion and Radioactivity Decoy Code,”
Nucb. Sci . Eng . 94, 180 (1986).

14. Pin, F. G., B. A. Worley, E. M. Oblow, R. Q. Wright, W. V. Harper, “A4n
Automated Sensitivity Analysis Procedure for the Performance Assessment of
Nuclear Waste Isolation Systems,” Nucl . and C h e m . W a s t e M a n . 6, 255 (1986).

15. Worley, B. A., R. Q. Wright, F. G . Pin, A Fin i t e -L ine Meat Transfer Code
w i th A u t o m a t e d Sensi t iv i ty- Calculation Capability, ORNL/TM-9975, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, September 1986.

16. Worley, B. A. and J. E. Horwedel, A W a s t e Package Per formance A s s e s s m e n t
Code w i th Auto7nated Sensite’vity-Calculation Capabilsty, ORNL/TM-9976,
Oak Ridge National Laboratory, Oak Ridge, Tennessee, September 1986.

Holland, Inc., New York (1972).

Press, New York (1974).

Science and Technology, Vol. 9, Academic Press, New York (1976).

NucE. Sci. Eng. 68, 322 (1978).

New York (1978).

Transact ions o n Mathematical Software 6, No. 2, June 1980, pp. 150-165.

17. Horwedel, J. E., Worley, 13. A., Oblow, E. M., Pin, F. G., and Wright, R. Q.,
G R E S S Version 0.0 User’s Manual , QRNL/TM-10835, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, October 1988.

18. Pin, F. G. and E. M. Oblow, “Sensitivity Analysis of Predictive Models with an
Automated Adjoint Generator,” Proceedings of N i n t h A n n u a l DOE Low-Level
W a s t e Managemen t Conference, Denver, Colorado, August 25-27, 1987.

19. Pin, F. G., E. M. Oblow, J. E. Horwedel, and J. L. Lucius, “AADGEN: An
Automated Adjoint Code Generator for Large-Scale Sensitivity Analysis,”
Trans. Am. Nuc . SOC. 5 5 , 311 (1987).

20. Horwedel, J. E., F. G. Pin, B. A. Worley, a.nd E. M. Oblow, “EXAP-Precompiler
for the GRESS and ADGEN Automated Sensitivity Calculation Systems.”
Trans. Am. N u c . soc. 56, 301 (1988).

21. Worley, B. A., F. G. Pin, J. E. Horwedel, and E. M. Oblow, A D G E N - A D j o i n t
GENeru tor FOT Computer Models, ORNL/TM-11037, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, May 1989.

22. Kohlman, B., Elemen tary Linear Algebra, The MacMillan Company, New York
(1971).

23. Fields, D. E., et al., PRESTO-II: A Low-Level W a s t e Environmenta l Transport
and R i sk Asses smen t Code, ORNL-5970, Oak Ridge National Laboratory,
Oak Ridge, Tennessee (1986).

27

ORNL/TM-11261

INTERNAL DISTRIBUTION

1. R. G. Alsmiller, Jr.
2. 13. R. Applcton
3. D. L. Barnrtt
4. M. Beckcrman
5. A. G. Croff
6. J. R. Einstein
7. C. W. Cilovcr
8. w. R. Hamel

9-13. J. E. Hoswrdel
14. J. P. Jones
15. D. C. Korher
16. 13. E. Mat-.rker

17-21. F. C. Maienscl-iein
22 26. %L. C. Manri

27. J. R. Merriman
28. E. M. Qblow
29. W. H. I’cchin

30-34. F. G. Pi11
35. R. J. Raridon
36. n. PV. Roussin
37. T. H. Row
38. B. A. Warley
39. ft. &. Wright

40-44. RSIC
45-49. EP&MD Reports Office
50 51. Laboratory Rccords

Department
52. Laboratory Records,

ORNI, RC
53. Document Reference

Sect ion
54. Ccntrd Research Library
55. ORNL Patent Section

EXTERNAL IUISTltXIE3Ur%’IO N

56. Offifice of Assistant Manager fbr Energy Research and Development,

57. E:. L. Alberiesius, Savaxrnah River Laboratory, U.S. :DClE, P.O. ~ Q X A,
DOE-OR,O, Oak Ridge, TN 37830

Aiken, SC 29801 ’

Program, 10(30 Inckp~ndence Aye., SW, Washingtun, DC 20585

Ontario, M5GlX6, CANADA

58, Donald Alexander, 1J.S. 110 E, Civilian Radioactive Waste Management

59. R. E. Allan, Ontario H y h , 700 Uraivcrsity Ave., XI18Dl6, Toronto,

GO. M. hptecii, I’acific: Northwest Laboratory, P. . Box 999, Richland,
WA 99352’

P.0. Box 1625, Idaho Falls, ID 83415

Albuqizerqiic: N h/d $7 185

99352

WA 99352

P.8. Box 1625, Idaho Falls, ID S3415

WA 99352

Oak Ridge, T N 37830

SC 29801

NM 87185

61. R. Bacs, Idaho National Engineering Laboratory, EG&@ Idaho, Inc.,

G2. E. J . Bo~iaiio, Sandia National Laboratories, P.O. Box 5800,

63. L. C. Brown, Westinghousc Hanford Co., P.O. BSX 1970, Richland, WA

64. J. W. Cammann, Westinghouse Ranford Co., P.O. Box 1978, Richland,

65. M. J. Case, Idaho National Engineering Laboratory, EG&G Idaho, Inc.,

66. C. Cole, Pacific Northwest Laboratory, P.O. Box 999, Riclrland,

67. R. Coller, Research and Waste Management Division, U S . DOE-ORO,

68. J. R. Cook, Savannah River Laboratory, U.S. DOE, P.O. Box A, Aiken,

69. R. Cranwell, Sandia National Laboratories, P.O. Box 5800, Albuquerque,

28

90. It. Curl, Idaho National Engineering Laboratory, EG&G Idaho, Inc., P.O.
Box 1625, Idaho Falls, ID 83415

71. J. B. Czai-necki, United States Geological Survey, Box 25046, Ilenver
FeJeral Center, Denver, CO 80225

72 D. H. Dahlcm, U.S. D(3E-BWlPO, Richland, Wia 99352
73. C. DeFigh-Price, Westinghouse Manford Co., P.O. Box 1970, Richland,

b?Til 99352
(4. P. Doctor, Pacific Northwest Laboratory, P.O. Box 999, Richlalid,

W.4 99352
75. J . 5. Eorning, Departrncnt of Nuclear Engineering and Physics, Thornton

Hall, McCormick Road, University of Virginia, Charlottesville, VL4 22901
76. B. R. Erdal, INC-DO, MS J-519, Los Alamos National Laboratory, Los

Alarnos, NM 87545
'17. It. Erikson, Pacific Northwest Laboratory, P.O. Box 999, Richlarid.

WA 9935'2
78. M. E'oley, Pacific Northwest Laboratory, P.O. Box 999, Iticliland,

WA 99352
79. J. 1%. Fowler, Savannah River I , a b ~ r a t ~ r p , U.S. TIOE, P.O. Box A, Ailken,

SC 29801
80. C. J. Geier, Westingliouse Hailford Co., P.O. Box 1970, Richlalid.

WA 39352
81. R. M Halalick, Eaciiig Clairmont Xgtvedt Prof., Dept. of Electr;cal

Engiiieer ing, Director, Brdxlligent Systems Lab, University of Washington,
402 Elrctnical Eng. Bldg., FT-10, Seattle, WA 98195

82. J . C. IIelton, Sandia National Laboratories, P.O. Box 5800, Albuquerque,
NM 8'1185

83. D. T. Hoxie, United States Geological Surv-ey, Box 25046, Denver Federal
Center, Denver, CO SO225

84. 1%. 1;. Iman, Sandia National Laboratories, P.O. Box 5800, Albuquerque,
NM 87'185

85. E. A . Jennrich, Rogers 8: Associates Engineering Corp , P.O. Box 330,
Salt Lake City, UT 84110 0330

86. M. R. Jugan, Research an: Waste Management Division,
U.S. XIC)E-ORO, Oak Ridge, TN 37830

89. W. E. Kennedy, Pacific Northwcst Laboratory, P.0. Box 999, Richland,
wia 9935%

88. C. Moplik, The Analytic Sciences Corporation, 1 Jacob Way, Reading,
MA 10867

89. P. E. Tzarnont, U.S. DOE-BWIQO, Richland, WA 99352
90. D. Langmuir, Department of Chemistry and Geochemistry, Colorado

91. W. C. Latting, U.S. DOE - Idaho Operations Ofice, 785 DOE Place,

92. I3. Lazas, Idaho National. Engineering Laboratory, EG&G Idaho, Inc.,

93. VI'. @. Lee, R. F. Weston, Inc., 2301 Research Blvd., ftockville, MD 20850
94. J. E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, MD 20878
35. A. Liebetrau, Pacific Northwest Laboratory, P.O. Box 999, Richland,

36. S. J. Maheras, Idaho National Engineering Laboratory, EG&G Idaho,

I

School of Mines, Golden, CO 80401

Idaho Falls, ID 83402

P.O. Box 1625, Idaho Falls, ID 83415

WA 99352

Inc., P.O. Box 1625, Idaho Falls, ID 83415

29

97. M. McKenzie-Carter, Idaho National Engineering Laboratory, EG&G

98. N. Moray, Dept. of Mechanical and Industrial Eng., University of Illinois,

99. B. Napier, Pcwific Northwest Laboratory, P.O. Box 999, Richland,

100. J. 0. Neff, U.S. Department of Energy, Rich1a.n.d Operations Office, 505

101. B. L. Nitschke, Idaho National Engineering Laboratory, EC&G Idaho,

102. M. I>. Otis, Science Applications International Corp., 101 Park -4ve.,

103. M. Piephci, Pa.cific Northwest Laboratory, P.O. Box 999, Richland,

104. rr. :H. Pigford, Department of Nuclear Engineering, University of

105. J. Rhoda-ick, U S . DOE/OCRWM, 1000 1ndependenc.e Ave., SW,

106. C. Russomaniio, U.S. DOE, Civilian Radioactive Waste: Management

107. 13. Sager, Pacific Northwest Laboratory, P.O. Box 999, Richland,

108. M. W. Shiipe, 1J.S. DOE - Idaho Operations Ofice, 785 DOE Place, Idaho

109, S. Sneider, Pacific Northwest Lahora,tory, P.O. Box 999, .I%ichlancS,

110. J. Sonnicksen, Westinghouse Hanford eo., P.O. Box 1970, Itichland,

111. R. W. Sturm, Savannah River Laboratory, U.S. DOE, P.0. Box A, Aiken,

112. J . Sykes, Dept. of Civil Exigineering, University of Wa,terloo, Fliaterloo,

113. M. IC. ‘I’h0131pson, U.S. DOE-BWPO, Richla~~cl, WA 99352
114. D. Veneziano, hInssachusetts Institute of Tkclinology, Room 1.-382> 77

115. E. L. Wilhite, Savannah River Laboratory, U.S. DOE, P.Q. Box A, Aiken,

116. M. F. ’tVheeler, Matheniatics Department, University of Houston, 4800

117. D. Wood, Westinghouse Wanford Co., P.O. Box 1970, R,ichland,

118-1105. For distribution as shown in TID-4500, Distribution category, UC-512 -

Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83415

1206 West Green Street, Urbana, IL 61801

WA 993.52

King Ave., Columbus, OH 43201

Tnc., P.O. Box 1625, Idaho Falls, ID 83415

Iddio Falls, ID 83401

WA 99352

Ca.lifornia, Berkeley, CA 94720

Washington; DC 20585

Program> 1000 Independence AWL, S.W., Washington, DC 20585

WA 99352

Falls, ID 53402

WA 99352

WA 99352

sc 29801

Ontario,, N2L3G1, CANADA

Massachusetts Ave., Ca.Inbridge, PIA 02139

SC 29801

Calhom, Houston, T X 77204--3476

WA 99352

Nuelear Waste Management

*US. GOVERNMENT PRINTING OFFICE 1989-748--114/00105

