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ABSTRACT

The human-robot symbiosis concept has the fundamental
objective of bridging the gap between fully human-controlled
and fully autonomous systems to achieve true human-robot
cooperative control and intelligence. Such a system would
allew improved speed, accuracy, and efficiency of task execu-
tion, while retaining the human in the loop for innovative
reasoning and decision-making. Earlier research has resulted
in the development of a robotic system architecture facilitat-
ing the symbiotic integration of teleoperative and automated
modes of task execution. This architecture reflects a unique
blend of many disciplines of artificial intelligence into a
working system, including job or mission planning, dynamic task
allocation, human-robot communication, automated monitoring,
and machine learning. This report focuses on two elemeuts of
this architecture: the Job Planner and the Automated Monitor.






1.0 INTRODUCTION

During the lagt few decades, a growing awareness and belief has
arisen that automation-related technologies and intelligent machines will
play an increazing role in improving the development and operation of
complex and advanced systems. In this context, research and development
have taken place on a broad range of technologies aimed at achieving
advanced systems varying from fully remotely-controlled systems, such
as advanced teleoperaters and servomanipulators, te fully autononous
intelligent robots involving artificial intelligence, super-computing,
machine vision, and advanced contrel. Within this large spectrum of
technological research, work has been initiated on a new class of
automated systenms which offers promise for improving the productivity,
quality, and safety of operation of advanced systems. This new type of
automated system is referred to as "Human-Robot Symbiosis.™

In & symbiotic system, humans and robots cocperate in the decision-
making and contrel of tasks in a complex, dynamic environment, communicat-
ing frequently in the exchange of tasks. The fundamental objective of
human-robot symbiosis is to bridge the gap between autonomocus and human-
controlled systems by merging the advantages of fully autonomous systewms
(e.g. efficient repetitive task execution and immumnity from fatigue) with
those of fully human-controlled systens (e.g. expertise in a wide variety
of task domains and the ability to cope with unexpected events). The
function of the symbiotic system is to dynamically optimize the division
of work between the human and the robot, with the ultimate goal of
improving the admissible task range, accuracy, and work efficiency of
the system. The successful creation of such systems requires an effective
approach to several fundamental technical issues, such as human-robot
communication, autonomous task planning and execution monitering, dynamic
task allocation, human-vobot system architecture, and machine learning
via experience and human observation. {(Refer to [8] for more details
on human-machine symbiosis.)

Earlier research has resulted in the development of a robotic system
architecture facilitating the symbiotic integration of teleopertive and
automated modes of task executiocn {9]. Shown in Fig. 1, the architecture
reflects a unique blend of many disciplines of artificial intelligence
into a working system. Previous research has also resulted in the
development of a methodology for Dynamic Task Allocation, described
in {10-12]. This report focuses on the methodologies developed for
two additional elements of the symbiont architecture: the Job Planner,
described in Section 2, and the Autowmated Monitor, described in Section 3.
Section 4 describes the interface of these modules to the other compo-
nents of the symbiont architecture, while concluding remarks are given
in Section 5.
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2.0 JOB PLANNING FOR A HUMAN-ROBOT SYMBIONT

2.1 INTRODUCTION

In a human-reobot symbiotic system, the Job Planner is responsible for
planning the primitive task activity sequences that lead to efficient job
completion. The task strategy derived by the Job Planmer is impertant,
ag it establishes the steps to be followed by the human and the robot to
complete the job, or achieve the goal. Many job planning methodologies
currently exist which provide various approaches to the job plamming
problem [for example, 3-5, 13-17]. 1In this symbiotic system, the selec-
tion of a job planning approach was closely related to the definition of
a language through which the modules of the symbiont communicate. This
language provides the basis for the interaction of the modules during
symbiont operation, and consists ¢f an action-object relationship. A set
of valid actions which can be performed in the environment is defined,
along with the set of objects which exist in the symbiotic world and the
relationships between the actions and objects.  These sets will likely
vary over time as new actions are learned, or as new objects appear in
the world. Each of the components of the symbiont architecture uses this
language to accomplish its objectives: the Job Planner plans actions to
be performed on objects, the Dynamic Task Allocator assigns actions to be
performed to the human or the robot, the Automated Monitor observes the
execution of actions or the states of objects, and the Learning Systen
learns new actions or object characteristics.

With this action-object language in mind, the job planning
methodology used by the symbiotic system was chosen to exploit the
relationship between the actions to be performed and the objects in the
task execution environment. This methodology utilizes an initial starting
state, a goal state, and a set of actlion operator rules to generate a
sequence of operators which transforms the planping world model from the
initial state to the goal state. The Planner performs a depth-first
search of the action operators to create a linear, non-hierarchical plan.
The initial and goal states consist of modified first-order predicate
calculus statements defining conditions which describe the world state.
Ideally, this model would precisely reflect the state of the true world
during actual plan execution. An operator is a description of an action
which may be performed by the human or the robot, and has a syntax similaxr
to that of the STRIPS planning system [3], consisting of the set of condi-
tions which must be true before the action operator can be exercised and
the conditions which either become true or become false subsequent te the
application of the operator.

The job decomposition derived by the Job Planner is passed to the
Dynamic Task Allocator in the form of a tree for the assignment of tasks
to the human or the robot. The task sequence derived by the Job Planner
must allow for rapid reconfiguration due to problems in task execution or
changes in the human or robot capabilities. This reconfiguration will
occur in close cooperation with the Automated Monitor, described in
Section 3, which is responsible for detecting events requiring
modification of the task plan.
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The following sections describe the Job Planning methodology in more
detail.

2.2 JOB FLANNER INPUT

In order to plan jobs, the Job Planner must be provided with the
following input data:

1) Action operator rules to use during planning

2) Initial environmental conditions, or planning weorld model

3) Goal condition

4) Information on the "types" of the objects in the enviromment
(required when the action rules include references to object
types, indicated by prefixes of "#" in object references. For
example, "Small pin" would be the type of particular pins named
“*Small pin_ 1" and "Small pin 2".)

5) Condition difficulties, giving the conditions which are
considered to be the most difficult to accomplish (required
if more than one rule can be used to achieve the same effect)

The Job Planner expects data items 1-3 to be provided in a particular
format created exclusively for this purpose. This format can be easily
expressed as production rules in Backus-Naur form. The following nota-
tions are used for these expressions:

lower case indicates syntactic categories
1= "to be written as" symbol
vertical bar separating choices (OR)

I

{ 11 choose 1 of the enclosed items

{ Y14 repeat the enclosed items 1 or more times
{ Yo+ repeat the enclosed items O or more times
{ }opt optional items

o

ther items are terminal symbols of the language
The subsequent sections describe the required input data in more
detail.
2.2.1 Action Operator Rules

The syntax for the action operator rules is similar to the STRIPS
format, and must be expressed according to the following productions:

operator_rules ::= {operator_decl)q,
operator_decl ::= operator_name PRECONDITIONS: {condition}g,
END
DELETE_LIST: {conditionjgy
END

ADD_LIST: {(condition}q,
END



operatox _name ::= identifier { ( {pavaweter}y (,parameterlpos ) o+
condition ::= identifier { ( {parameter}q {,parameterlgsy ) lps+
parameter ::i= { * | # }opt identifier | -

identifier ::= {alphachar}i,

alphachar :i=§ [ & | & | " 1+ | -1 .1 /19001 ... 097 :1(; :
I>1t2z1efal ...tz iiNI TP _tat oo z] '

(i.e., any printable character sxpect ’space’, ‘comma’, #, (, ), *)

(NOTE: Four types of paramerers are possible with the above
definitions. An identifier preceded with "#" refers to an uninstantiated
parameter (refer to Section 2.3.7 for more information on parameter
instantiation) which can be matched to anything, as long as it is
instantiated to the same value in every occurrence of the parameter
in an operator rule. For example, "*object™ in "Grasped(¥object)”
could be instantiated to "Grasped(Casing)" or "Grasped{lever)." An
identifier preceded with "#* refers to an uninstantiated parameter
which must be matched to a value (i.e. object) of a certain type
{given by the identifier) throughout the rule. For instance, the
condition "Grasped(#Bolt)" could be instantiated to "Grasped{Bolt 1)*
or "Grasped(Bolt_2)," but not "Grasped(lever)." An identifier without
a prefix must remain exactly as is given in the rule. For example,
"Curr_loc™ in "Move Arm{Curr loc,*to loc)™ must remain as "Curr loc™.
Finally, a parameter of "-" serves as a type of place-holder, meaning that
it can match anything. An example of this type is given by "At(Hand,-)",
in which the "-" could be matched te anything, such as is shown in
"At(Hand,Lever :Hover pos)® or "At(Hand,Starting loc)").

An example of a wvalid set of action operator rules used to plan the
Assembly/Disassembly of the Cranfield Benchmark (which is discussed in
Section 2.4) is included in Appendix A.

2.2.2 Goal Condition

The goal condition provided by the humsn through the human-machine
interface (Presenter/Interpreter) must be in the following format:

goal_condition ::= condition

In the context of the Cranfield Benchmark and using the sample rules
given in Appendix A, the input geal for a Cranfield assembly would be
"Assembled{Benchmark) ,"” while the goal for a disassenbly would be
"Disassembled(Benchmark)."”



2.2.3 Environmental Ceondlitions

The environmental conditions describing the initial state of the
world must be in a file in the following format:

envirommental state :!:= {condition}jy

For exawple, if the Cranfield Benchmark is in a disassembled state
and the robot end-effector is empty at the beginning of task execution,
the environment could be described as follows:

At(Hand, Starting Loc)

Handempty
Positioned(Casingl,Casingl home)
Positioned(Casing?,Casing? home)
Positioned(Lever,Lever home)
Positioned(Spacer,Spacer home)
Inserted(Peg,Peg home)
Inserted(Large pin_ 1,L pinl home)
Inserted(Large pin 2,1 pin? home)
Inserted(Large pin_3,L pin3_home)
Inserted(Large pin 4,1, pin4d_home)
Inserted(Small pin 1,S pinl home)
Inserted(Small_pin_2,S_pin2_home)
Inserted(Small pin 3,S pin3 home)
Inserted(Small pin 4,5 pin/4_home)
Inserted(Small pin 5,5 pin5 home)
Inserted(Small pin 6,5 piné home)
Inserted(Swall pin 7,5 pin7 home)
Inserted(Small pin 8,S pin8 home)

These conditions compose the initial planning world model, sometimes
referred to as the environmental model, which the Job Planner will update
during planning to reflect the envirommental effects of actions added to
the job plan.

2.2.4 OQObject Types

The information describing the object types is obtained from the
objects knowledge base and is necessary to allow the Job Planner to handle
operator rules which refer to generiec types of objects, rather than
specific objects. For example, an operator rule can include a precondi-
tion that a small pin is to be grasped ("Grasped(#5 pin)") without naming
an individual small pin. This allows more than one object to satisfy the
required conditions, thus providing the possibility for more flexible job
plans. When the Job Planner encounters a parameter preceded by ’'#', It
cannot instantiate the parameter without first comparing the type of the
possible instantiating value with the required parameter type. The
parameter can only be instantiated if the object types match.



2.2.5 Condition Difficulties

A file containing a list of the conditions that are more "difficult”
to achieve must be provided if more than one operator rule can be used to
realize the same effect., This situation would occur in planning applica-
tions that allow more than one set of actions to be used to reach the
goal. The intent of the operator rule structure is for the job planmer
to derive a plan most suitable for the initial starting environment, which
will usually be different for each job start. Depending on the applica-
tion, several levels of condition difficulties can be established,
resulting in a hierarchy of difficulties. For example, a "Grasp" action
could be considered to be more difficult than a "Find" action, but less
difficult than an "Insert® action, in general. The current implementation
only allows a hierarchy of two levels and requires that the difficult
conditions be contained in a file in the following format:

difficult _conditions ::= {identifierig,

Refer to Section 2.3.6 for more details on the use of this data.

2.3 JOB PLANNING ALGORITHM

Once the Job Planner has been furnished with the required input
data, it can derive a plan to reach the goal. In terms of the previously
described input data, the job planning methodology can be expressed as
follows: let E = {el, €2, ...} be the set of initial envirommental
conditions, g be the goal condition, and T = (tl, ..., tm} be the set
of m action operator rules, where each ti consists of 3 lists:

P = {pPi1, Pi2» ---+ Pi maxp!., list of preconditions
A = {ag], a{2, -.., 2§ maxal, add conditions
D = {dg{1, di2. ..., di paxd). delete conditions,
where each pip, aijs dip € E, 1l =1 <m,

1 = h < maxp,

1 £ i < maxa,

1 % k < maxd.

The Job Planner’s task, then, is to find the sequence of actions ty, ...,
tn, such that condition g is true subsequent to execution of t,. The
algorithm used by the Job Planning system to implement this methodology
is described below in an outline form, followed by additional details of
the plamning procedures.

A. TInitialize; receive the goal from the human and push it onto an
empty goal stack.

B. While the goal stack is not empty, do the following:
1. If the top goal is true (see Section 2.3.1), do the following:
a, 1If the top goal is the last goal needed for an operator to
be applied, do the following:



1). Verify that all of the other preconditions of this
operator are still true.
a) 1If so, do the following:
i) Apply the ADD and DELETE lists of the current
operator to the current planning model (see
Section 2.3.2).
ii) Build the EMT entry for this operator for the
Automated Monitor (see Section 2.3.3).
iii) Add the current operator to the job plan.
iv) Pop the top goal off the goal stack.
b) 1If not, backtrack (see Section 2.3.4).

Otherwise (i.e., the top goal is not the last goal needed
for an operator to be applied):

Pop the top goal off the goal stack.

2. Otherwise (i.e., the top goal is not true)

a.

Find all the operators which have an ADD LIST condition

matching the top goal which is to be met (see Section
2.3.5).

If no operators are found, backtrack (see Section 2.3.4).
Otherwise (i.e., operators were found), i1f more than one
operator rule was found, select the "best"™ rule to use (see

Section 2.3.6).

Instantiate the parameters of the selected rule to those
required by the top goal condition (see Section 2.3.7).

Push the preconditions of the instantiated operator rule
onto the goal stack.

C. If a job plan was found, create the task tree for the Dynamic Task
Allocator (see Section 2.3.8);

otherwise, signal that a plan could not be found.

The current planning algorithm ends the search with the first-
obtained plan that reaches the goal (or with a message that a plan could
not be found), without attempting to find an alternative plan. Although
this method is not ideal, further research must be undertaken to ascer-
tain how to distinguish the "goodness" of various alternatives. A Job
Planner which could derive plans that are optimal in terms of logic
(the most "sensible" plan), cost (the plan with the fewest number of
operators), or time (the plan quickest to execute) would be much more

powerful.



2.3.1 Determining When the Top Goal is True

The goal condition at the top of the goal stack iz found to be true
in the following ways;

a) The goal condition matches a planning world model condition
exactly.

b) The goal condition has an uninstantiated parameter (denoted
by the first character being '*’) which, if instantiated to a
parameter of an existing envirommental condition, will make the
geal true (e.g., the goal "At(Hand,*curr_loc)" will match the
environmental condition "At(Hand,Pinl:Grasp_pos)" if "#*curr_ loc"
is instantiated to "Pinl:Grasp_pos").

¢) The goal condition requires an object of a certain type
(denoted by the first character being '#'), and a condition
exists with an instantiated parameter of this type (e.g., the
goal "Grasped(#S pin)" will match the environmental condition
“Grasped(S_pin_1)").

If the above process determines that the top goal must be
instantiated to particular values to be true, ALL of the parameters of
the corresponding operator rule must be instantiated consistently with
the values required by the current goal condition. Refer to Section 2.3.7
for more details.

2.3.2 Applying ADD/DELETE LIST Conditioms

Applying the ADD LIST conditions is done simply by adding the ADD
LIST conditions to the list of conditions which describe the current
planning world model. The DELETE LIST conditions are applied by searching
the current planning world model for a mateh of each of the DELETE LIST
conditions. All matching conditions are deleted from the world model. A
"match™ can either be an exact match, or a situation in which the DELETE
LIST condition type (e.g. Grasped, Placed, etc.) matches an environmental
model condition type, and the ummatching DELETE LIST parameters equal ‘-’
(meaning "anything"). For example, the DELETE LIST condition "At(Hand,-)"
matches the environmental condition "At(Hand,S pin 1:Hover pos)". Thus,
the "At(Hand,S pin l:Hover pos)" condition would be deleted from the
environmental model.

2.3.3 Building the Execution Monitoring Table

The Execution Monitoring Table (EMT) is built as the job is planmed.
As each new operator is added to the job plan, an EMT entry for that
operator 1s created. The entry consists of the instantiated preconditions
of the new operator, a set of continuing conditions, and the instantiated
ADD and DELETE lists of the current condition. The continuing conditions
are those conditions which were on the ADD LISTs of earlier operators but
have not yet appeared on the PRECONDITIONS list of a subsequent operator.
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Once the job is planned, the Execution Monitoring Table is available to
the Automated Monitor for use during job execution to detect problems in
task execution. Refer to Section 3.2 for more details on the use of the
Execution Monitoring Table.

2.3.4 Backtracking

Backtracking will be required when, during the course of accomplish-
ing one or more of the preconditions of an operator, one or more of the
previously-met preconditions of that operator was (were) "un-done" ---
i.e., it (they) became false. An alternative use of the operators to
achieve the preconditions must be found. To handle this type of scenario,
more sophisticated planning techniques must be utilized, such as the use
of critics in the NOAH planning system [13], or the use of constraint
posting in the MOLGEN System [14, 15). The backtracking technique must
be sufficiently intelligent to recognize previously attempted planning
paths to avoid infinite searches for a job plan, or cycling; without such
intelligence, the job planning algorithm is not guaranteed to terminate.
A backtracking technique has not been implemented in the current job
planning system.

2.3.5 Finding an Operator with an ADD LIST Condition Matching the Current
Goal

A match of the top goal on the stack with an operator ADD LIST
condition is found when any of the following are true:

a) The top goal matches an ADD LIST condition of an operator rule
exactly.

b) The type of the top goal condition (e.g. Grasped, Handempty, At,
etc.) is the same as an ADD LIST condition of an operator, and
the non-matching parameters in the ADD LIST condition are
uninstantiated (i.e., the parameter begins with '*')., For
example, the goal "Grasped(Casingl)" will match the ADD LIST
condition "Grasped(*object)" if "*object" is jinstantiated to
"Casingl."

c) The type of the top goal is the same as an ADD LIST condition of
an operator rule and the non-matching parameters in the ADD LIST
condition are uninstantiated objects of a certain type (i.e., the
parameter begins with '#').

2.3.6 Selecting the "Best™ Rule to Use When More Than One is Available

Depending upon the application, action operator rules can be designed
to allow more than one operator to be used to achieve a desired condition
(for example, there may be more than one way to perform an assembly task).
In these situations, a method must be incorporated for selecting the
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"best" rule to use. This selection is accomplished using two heuristic
measurements: percent-achieved (PA) and percent-difficult (PD).

The percent-achieved factoxr gives the percentage of the rule’s
preconditions that are currently met in the planning envirommental model.
The percent-difficult factor gives the percentage of the currently-met
preconditions which are "difficult” to achieve. As explained in Section
2.2.5, this factor is based upon the concept that some conditions are
"easier™ to be met than others. From a set of applicable operators, the
one with the highest PD factor is selected; however, 1f the rules have the
same PD factor, the selected rule is that with the highest PA factor. If
the rules still tie, the rule found first is arbitrarily selected.

2.3.7 Instantlating Parameters

In this report, the term "instantiate" refers to the process of
binding a variable (parameter) to a specific value. For instance,
instantiation of the variable "¥object" to "Spacer” in the condition
"Grasped(¥object)" would result in "Grasped(Spacer)." It is very
important that when a parameter of a rule is instantiated, all other
instances of that parameter in the rule are instantiated equally for that
particular use of the rule.

When instantiating the parameters of a condition or rule, it is
useful to be able to instantiate only a portion of a parameter, rather
than the entire parameter. For example, consider the following rule:

Place(*object,*loc): PRECONDITIONS: Grasped(*object)
Found(*loc¢)
At(Hand,*loc>hover pos)
END
DELETE_LIST: END
ADD LIST: Positioned(¥*object,*loc)
END

in which "*loc" is to be instantiated to "Site_1." The Job Planner will
replace only the exact character string "*loc" with "Site_1," rather
than the entire parameter, resulting in the following (notice the "At"
condition):

Place(*object,Site_1): PRECONDITIONS: Grasped(*object)
Found(Site 1)
END
DELETE LIST: END
ADD_LIST: Positioned(*object,Site 1)
END

In this example, the "At" condition became "At(Hand,Site_ 1>hover_ pos)®
rather than "At(Hand,Site 1)." An additional instantiation of "*object"
to, for example, "Lever" would complete the Instantiation of this rule.
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2.3.8 Creating the DTA Task Tree

This step is necessary to convert the derived job plan into a format
useful for the Dynamic Task Allocator (DTA). The DTA expects the job
plan in the form of a task tree that gives a hierarchical breakdown of
the job to be performed down to the elemental sub-subtask level. The Job
Planner currently plans at the subtask level --- that is, the operators
are equivalent to subtasks in DTA terminology. Since these operators
(subtasks) are not the most elemental actions that the human and the
robot can perform (for example, the robot operates at the lowest level in
joint rotations), additional research should be performed to determine the
breakdown of the actions to the most primitive level. In the meantime,
the Job Planner provides this information to the Dynamic Task Allocator
by equating the subtask information with the elemental sub-subtask data.
The only exception to this is in the case of the FIND and MOVE ARM
actions, which, in the current implementation, must be performed by the
same rescurce and not allocated separately. This is due to the current
limitation of human-robot communication which does not facilitate rapid
communication of object locations between the human and the robot. The
FIND and MOVE ARM actions thus become elemental sub-subtasks of a common
subtask, which will then be allocated as one unit by the Dynamic Task
Allocator. Logically, then, a sample task tree for a portion of the
Cranfield assembly appears as shown in Fig. 2. The Job Planner converts
its plan to this tree format and writes the results to a file for the
Dynamic Task Allocator. Refer to the Dynamic Task Allocation documenta-
tion in [10-12] for more details on the task tree format and the Dynamic
Task Allocation methodology.

2.4 AN IMPLEMENTATION OF THE JOB PLANNER

The job planning algorithm has been jwmplemented using the "C*
programming language, first on an IBM-PC, and then on an 0S-9 68020
system. A demonstration scenario was selected to illustrate the results
of the symbiont architecture, including the job planning and execution
monitoring methodologies. The task, called the "“Cranfield Benchmark
Assembly/Disassembly," represents fundamental characteristics of practi-
cal small component manipulation tasks, and was developed as a European
benchmark by the Cranfield Robotics and Automation Group at the Cranfield
Institute of Technology in Bedfordshire, England [2]. Figures 3 and 4
illustrate the Benchmark in the disassembled and assembled states. As
shown in these photos, the Cranfield Benchmark consists of 17 parts --- 2
casings, 1 lever, 1 spacer, 1 peg, 4 large pins, and 8 small pins. The
actions required to assemble/disassemble the Benchmark include Grasp,
Release, Insert, Place, Move Arm, and Find.

After being provided with the action operator rules listed in
Appendix A, the initial environmental conditions given in Section 2.2.3,
and a goal condition of "Assembled(Benchmark)," the Job Flanner derived
a job plan containing 119 actions, as shown in Appendix B. Note that the
additional inputs of object types and condition difficulties discussed
in Section 2.2.4 and 2.2.5 were not required, since the action operator
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Assembled Cranfileld Benchmark.

Fig. 4.
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rules in this example do not use preceded with "#", and no two can result
in the same effect.

The processing time required to plan this job on an 05-9 68020-
based system was approximately 20 "wall clock” seconds. The increase in
processing time with increasing job plan length for this sample set of
operator rules is linear, requiring approximately one second for every
six actions in the plan. Of course, the planning time requirements for
the general case will be dependent upon the number of operator rules
utilized and their complexity. Although not instantaneous, the typical

processing time should be quite acceptable for the applications envisioned
for this type of planning system.
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3.0 EXECUTION MONITORING FOR A HUMAN-ROBOT SYMBIOHNT
3.1 TINTRODUCTION

In the human-robot symbiont, the Automated Monitor module fulfills
the execution monitoring responsibilities during task performance. In
this role, several key functions are provided by the Automated Monitor,
all of which revolve around the observation of the task execution and the
selection of appropriate actions to be taken based upon the observations.
First of all, the Automated Monitor is responsible for detecting when
problems in task execution have occurred -- a particularly important
function since the euviromment is assumed to be hostile. This aspect of
the Automated Monitor focuses on the importance of sensing and the
integration of the planning and sensing operations. After determining
that a problem has occurred, the Automated Monitor proceeds to perform its
second function -- working to derive a modified job plan to reach the goal
in spite of the task executioun problem. The philosophy behind the
approach to this responsibility is to re-use the existing job plan to the
fullest extent possible to preveut a needless waste of time in
re-planning. The ability to recover from execution errors is a key to
improving the performance of the symbiotic system and to the reduction of
the fragility of the system. The third duty of the Automated Monitor is
to maintain the consistency between the real world and the knowledge
bases. This function is of particular importance to the computerized
elements of the symbiont, since they rely on the accuracy of the knowledge
bases to perform their tasks. The final responsibility of the Automated
Monitor 1s to ohserve the actual performances of the resources (human and
robot) during task execution and adjust the resource capability parameters
as necessary to reflect the true resource capabilities. This function is
significant for the Dynamic Task Allocator, since it uses the capability
parameters to derive apprepriate task allocation recommendations.

Although all four of the Autcomated Monitor functions are important,
this report focuses on the first two: detecting problems in task
execution and recovering from those problems. The following sections
provide more detail on these functions.

3.2 DETECTING PROBLEMS IN TASK EXECUTION
3.2.1 Using Execution Monltoring Table

A number of sensor-based execution monitoring strategies have been
investigated in the literature (for example, [1,6]). While several of
these approaches would apply to symbiotic systems, the monitoring approach
developed for this praject was selected to correlate with the job planning
methodology described in the earlier section. This correlation is cru-
cial, since the Job Planner possesses the knowledge required to success-
fully monitor job execution. This section describes the methodology used
for the detection of problems in task execution,

How adeptly the Automated Monitor can detect that a problem has
occurred is directly related to sensor feedback; not only must sensor
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feedback be available to the Monitor, but the sensors must also be
measuring parameters that provide insight to the process being monitored.
For example, manipulation-related conditions, such as "Grasped(*object)",
"Handempty," or "At(Hand,*loc),” can be verified using sensors such as
force/torque, gripper width, tactile, and end-effector position sensors,
whereas object-relationship conditions, such as "At(Wrench,Toolbox),"
"On(Boxl,Bex2)," or "Connected(Boltl,Plated)," can be verified using
vision sensors. The basic concept is to compare the current (usually,
preprocessed) sensor readings with the expected sensor readings at
critical points in time to determine if any inconsistency is detected.

I1f so, the human in the human-robot symbiotic system is informed of the
inconsistency to verify that a problem exists, and is requested to
intervene in the task execution if necessary.

To accomplish this, the Automated Monitor uses the following
methodology:

Define:
Available sensor suite:
S = {s1, sp, ... , sp}, where n = total number of sensors

Generic types of conditions describing the environment:
C = {c1, €9, ... , €g), where m = number of types of conditions

Actual sensor readings at a given point in time:
R = {ry, r9, ... , Tpn)

In addition, for all cj, let Vli, Vzi, ... , equal the sets of valid
sensor readings expected for each of the n sensors for condition cj,
where:

V%i - (vl vl oo v
Ve = {v5i1, VT2, oo Voal
Then, for an expected condition cj, if T3 = Vij, j =1, ..., n for some

set Vi, no problem exists, and execution can proceed normally. Otherwise,
a discrepancy has been detected and the human will be notified of the
potential problem.

As an example, assume that the available sensor suite, S, equals
{tactile, gripper width, position), and that the generic conditions
describing the environment, C, are {Grasped(*object), Handempty,
At(Hand,*loc))}. Further assume that the tactile sensor returns either a
0 or a 1, meaning "no object sensed" or "object sensed," respectively;
the gripper width sensor returns a non-negative number indicating the
width of the gripper (0 implies closed); and that the position sensor
returns the three position coordinates (x, y, z) and three orientation
angles of the end-effector. Then, for each condition in C, the sets of
expected sensor readings V; can be derived as follows:

for cq = Grasped(*object),

vli - (1, >0, -
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for c; = Handempty,

vig = (o0, -, -
vzz’z{"’oy-}

for c¢3 = At(Hand,*loc)
vlj = ( -, -, *loc)
(where '-' means the reading is not applicable, or does not matter)
Now, assume that at a certain point during task execution, the
Automated Monitor expects the condition "Grasped(*object)” to be true.
It obtains the actual sensor readings and finds that:
R = { tactile_readin

g =1
gripper width = 2.5,
position = (3,4,5,90,45,60) }

Comparing these readings to the expected readings, Vll, it determines that
1 = 1 (tactile), and 2.5 > 0 (gripper_width), so the "Grasped" condition
appears to be true. One modification to V%1 could be to make the expected
gripper width equal the actual width of the object being grasped. This
would allow verification that the correct object is being grasped, rather
than just any object.

The two sets of wvalid expected sensor readings, Vlz and V22, for c9,
"Handempty," correspond to the gripper being either open or closed with
no held object. In these situations, if the tactile sensor detszcts
nothing, the gripper sensor reading is immaterial, whereas, if the gripper
width is zero, the tactile reading is unnecessary. In either case, the
position sensor is not applicable.

The information the Automated Monitor uses to make these comparisons
comes directly from the information on the conditions that must be true at
any given point in time. The question thus becomes -- How does the
Automated Monitor know what conditions must be true at any given point in
time? At first glance, it might appear that the information would come
from the current action being performed. However, consider the action of
moving the robot arm from point ’a’ to point 'b’. The action is the same
regardless of whether or not an object is being grasped during the move,
but the sensor readings are not the same. Instead, what is required is
detailed kunowledge about the overall plan to be executed, not just the
current action.

Since the Job Planner knows the overall intent of the plan to be
executed (i.e., it knows the goal and subgoals), it can provide informa-
tion to the Automated Monitor on what conditions should be true at any
point during the execution of the plan. This information is relayed to
the Automated Monitor in the form of an Executlon Monitoring Table (EMT),
which includes the expected conditions both prior to subtask execution
(preconditions) and during subtask execution (continuing conditions).
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Recall that the Job Flannev preduces a list of actions, tq, R
such that the goal condition g is true subsequent to the execution of
action tn. The EMT, then, consists of the following for each task
tk, 1 < k < n:

PRECONDITIONS: Preconditions, Pk, of action ty
CONTINUING CONDITIONS: All ADD LIST conditions, A, of previous

tasks €y, ..., tx.1, which have not yet appeared on the
PRECONDITIONS list, P, or DELETE LIST, D, of a subsequent
task.

ADD LIST CONDITIONS: ADD LIST conditions, A, of action ty
DELETE LIST CONDITIONS: DELETE LIST conditions, D, of action ty

The intuition behind the composition of the set of continuing
conditions is that the effects of tasks in a job plan should remain true
until they are needed as preconditions of a later task, or until they
are nullified by a later task. Futurs enhancements to this rule could
1) distinguish between desired =ffects of operaters and side-sffects
(which are not ueeded by any fubture task), and 2) allow conditions to
remain in the set of continuing conditions when needed by more than one
subsequent task. The use of the ADD and DELETE LIST conditions is
described in Section 3.2.3.

Using this table, the Automated Monitor is thus able to compare the
actual sensor readings to Che expected sensor readings both prior to and
during task execution to detsct problems in task execution. Once a
problem svent has been detected during task execution, the Automated
Monitor works with the human to resolve the problem, since the human can
more easily determine the significance of a detected problem. First, the
humaa could instruct the Monitor teo simply ignore the problem and continue
with task execution. Presumably, the supposed problem is actually a false
alarm, so no corrective action nesds to be taken. Secondly, the human can
instruct the Monitor to reallocate the task. In this situation, the human
believes that the current subtask can be pertormed, but that the other
resource (human or robot) would have a better chance of successfully
completing the subtask. 1In this situation, the Monitor would inform the
Dynamic Task Allocator of the human's request, and the Allocator would
re-allocate the current subtask. Task execution would start anew while
the newly-assigned resource attempted the subtask. The final option
available for the human is to instruct the Automated Monitor to replan the
job. In this circumstance, the human realizes that the current job plan
is not sufficient to correct the problem, and a2 new or revised plan must
be derived. Section 3.3 provides details on this replanning strategy.

3.2.2 Using Expected Execution Time

In addition to the knowledge available in the Execution Monitor-
ing Table, the Autowmated Monitor can also obtain knowledge from the
Dynamic Task Allocator concerning the expected subtask completion time.
Typically, this information will be used during the performance of a
job that was allocated based upon a policy of minimizing the expected
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execution time (see [10-12]). During subtask execution, the Monitor can
ugse this information te detect unexpectedly long attempts Lo complere a
subtask and warn the human of suspected problems. This feature is of
particular assistance during vobot performance, since the human might

not be aware of the reascnable length of time vequired for the robot to
perform the currvent subtask. The human can respond by either Instructing
the Automated Monitor to ignore the elapsed time, ve-allocate the subtask,
or replan the job.

3.2.3 Updating the Envirommental World Model

As described in Secticn 2, the Job Plamner relies on the accuracy of
the current environmental model to derive feasibls job plansz. Obviously,
if the world model is not consistent with the actual environment, the
derived job plan will probably be incerrect. The important step of main-
taining the accuracy of the world model is performed by the Automated
Moniter during job executicon. The information reguired te achieve this
function is provided to the Automated Monitor via the Execution Monitoring
Table, which, along with the pre- and continuing condition for each opera-
tor, contains the instantiataed ADD and DELETE LIST conditiocuns of each
action operator in the plan. Subsequent to the successful completion
of each task, the Automated Monitor updabes the eunvironmental wodel with
these ADD and DELETE LIST conditions of the action, thus maintaining the
accuracy of the world model for future use by the Job Plammer.

3.3 REPLANNING DUE TO TASK EXECUTION PROBLEMS

After detecting that a problem has ocourred and receiving instruction
from the human to replan, the Automated Monitor works to vecover from the
error by deriving a new or revised plan to achieve the goal. Ideally,

the existing jeob plan should be re-used to the fullest extent possible to
prevent a waste of time in re-planming. Only those portions of the plan
which are no longer useful in reaching the goal should be replaced with a
new sequence of operators.

A number of recovery technigques arve possible in this scenario,
varying from doing nothing to undergoing complete replanning (refer to [7]
for a review of existing techniques). The replanning techniqua developed
for this symbiont system Involves utilizing pre-defined recovery strate-
gies for the task execution problems detectable with the available sensor
suite, and undergoing complete replamming when such a recoevery strategy is
unavailable. This strategy was considered to be more appropriate for the
symbiosis project than the development of an elaborate recovery strategy,
since more elaborate strategies could probably not be used with the
limited sensing capabilities of the symbiont.

Formally, the veplanning strategy cen be stated as follows:
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Let P = {p1, P2, --., pj} the set of j problem events that
the Automated Monitor is able to
detect and recover from

FX = (F1, F2, ..., F3) the set of plan fixes for each
event: in P
where:
Fi{ = {ti0, ti1, ...} the list of subtasks to be

instantiated, then inserted into
the plan to recover from the
problem event i

Then, when a problem event py € P occurs, the subtasks in set Fy € FX are
instantiated appropriately and inserted into the job plan prior to the
subtask during which the event occurred.

As an example, assume that the Automated Monitor is able to detect
an object being dropped. Thus, the set P = {dropped(¥*object)}. Further
assume that during the execution of a "Move Arm" action, the Monitor
detects that an object, say a "Lever,” has been dropped -- that is,
"Grasped(Lever)" is no longer true. The Automated Monitor consults the
human, who instructs the Monitor to replan the job. This causes the
Monitor to look up the plan fix for a dropped object, Fy, which consists
of the following tasks:

F1 = { Find(*object)
Move Arm(*object:Hover pos)
Grasp(*object) }

The Monitor must determine the identity of the dropped object by
extracting the object’s name from the "Grasped" condition (in this case,
"Grasped(Lever)") of the Execution Monitoring Table condition which became
untrue. The plan fix, Fp, is then instantiated to become:

F1 = { Find(lLever)
Move Arm{Lever:Hover pos)
Grasp(Lever) )

These tasks are then inserted into the job plan prior to the Move Arm
action that was being performed, and are given to the Dynamic Task
Allocator for allocation to the human or the robot. Once human approval
is obtained, task execution begins again to re-grasp the Lever. 1If the
problem event had not been a member of set P, the Monitor would have
instructed the Job Planner to undergo complete replanning to correct

the problem, since a simple fix is unavailable.

3.4 AN IMPLEMENTATION OF THE AUTOMATED MOMITOR

This methodology has been implemented in "C", first on an IBM-PC,
and then on an 05-9 68020-based system, and tested with the Cranfield
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Benchmark scenario discussed in Section 2.4, A portion of the Execution
Monitoring Table gererated by the Job Planney and used by the Automated
Monitor is given in Appendix C. In the demonstraticn set-up, the sensors
available to the Automated Monitor were the tactile, gripper-width, force-
torque, and end-effector position sensors. With these sensors, the
Automated Monitor could monitor the conditions "Grasped,® "At(Hand,*loc),®
and "Handempty,” thus allowing the detection of problem events such as
"object dropped” or “"object not grasped as expected.” The Automated
Monitor was also able to wonitor the elapsed execution time to warn the
human when task execution time was exceeding the expected time. The
Automated Monitor successfully detected these problem events with
simulated sensors during a task execution simulation and worked with

the human to resolve the preblewms, using the replanning strategy when
requested.
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4.0 JOBR PLANMER AND AUTOMATED MONITOR INTERFACE TO OTHER SYMBIONT MODULES

Within the architecture developed to illustrate buman-machine
symbiosis, it is crucial that all of the reasoning medules werk together
for the sharing of knowledge and the transfer of control. This character-
istic is particularly important during task executien when problem events,
task failures, or even normal task completions occur. Each of the modules
must be able to determine the current state of the symbiont. Synchronized
program flows were developed and implemented for the Job Planner, Dynamic
Task Allocator, and Automated Monitor teo allew the knowledge-sharing and
transfer of control to occur. These program flows are shown in Figs. 5,
6, and 7. Inter-module communication was accomplished by the sending and
receiving of messages between modules, implemented in the 08-9 system as
pipes. With these program flows and through the uss of messages, the
high-level reasoning modules (Job Planner, Dynamic Task Allocator, and
Automated Monitor) successfully cooperated in the simulation of a symbiont
execution which included problems in subtask execution.
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5.0 CONCLUSIONS AND FUTURE WORXK

Methodological approaches to i1ob planning and execution monitoring in
a human-robot symbiotic system have been presented and discussed. These
approaches have been shown to be successful for planning and monitering
a simulated task execution containing problem events. Continuing work
should proceed toward interfacing these modules with real sensors during
task execution on actual hardware to allow further testing of the plamning
and monitoring strategies. Continued enhancement of the planning methed-
ology should concentrate on the development of hierarchical and optimal
job plans, along with planning using Incomplete information. Automated
Monitoring capabilities can be enhanced with the avallability of more
sophisticated sensors, such as wision. The capability to analyze and
interpret such complex sensors for use duvring job execution would greatly
expand the execution monitoring potential,
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Dynamic Task Allocator Program Flow
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APPENDIX A

EXAMPLE ACTION OPERATOR RULES



A-2

Complete Assembly(Benchmark) PRECONDITIONS:
Positioned(Casingl ,Jig lower center)
Positioned(Lever,Jig axis)
Positioned(Spacer,Casing 1 _bottom edge)
Inserted(Large_pin 1,Casing 1 bottom left hole)
Inserted(Large_pin 2,Casing 1 bottom right hole)
Inserted(large_pin 3,Casing 1 top left hole)
Inserted(Peg,Casing 1 center_hole)
Positioned(Casing?,Jig upper_ center)
Inserted(Small pin_1,Casing 1 bottom side_left hole)
Inserted(Small pin 2,Casing 1 bottom side right hole)
Inserted(Small pin 3,Casing 1 top side left hole)
Inserted(Small pin 5,Casing 2 bottom side left hole)
Inserted(Small pin 6,Casing 2 bottom side right hole)
Inserted(Small_pin 7,Casing 2 top side left hole)
Inserted(Small_pin 8,Casing 2 top side right hole)
END

DELETE LIST: Disassembled(Benchmark)
END
ADD LIST: Assembled(Benchmark)
END

Complete Disassembly(Benchmark) FRECONDITIONS:

Positioned(Casingl,Casingl home)
Positioned(Lever,Lever home)
Positioned(Spacer,Spacer home)
Inserted(Large pin 1,L pinl home)
Inserted(Large pin 2,1, pin2_ home)
Inserted(Large pin 3,L pin3 home)
Inserted(Large pin 4,L pin4 home)
Inserted(Peg,Peg home)
Positioned(Casing?,Casing? home)
Inserted(Small pin 1,S pinl home)
Inserted(Small_pin 2,S_pin? home)
Inserted(Small_pin 3,5 pin3 home)
Inserted(Small_pin 4,S pin4 home)
Inserted(Small pin 5,5 pin5_home)
Inserted(Small_pin 6,5 piné_home)
Inserted(Small pin 7,5 pin7_home)
Inserted(Small_pin 8,5 pin8_home)
END

DELETE LIST: Assembled{Benchmark)

END
ADD LIST: Disassembled(Benchmark)
END



Place(*object,*loc)

Grasp(*object)

Insert(*object,*loc)

Move Arm(Curr_Loc,*to_loc)

Release (*object)

Find(*object)

PRECONDITIONS: Grasped(*ohject)
Found(*loc)
At (Hand, *loc>Hover pos)
END

DELETE LIST: END

ADD LIST: Positioned(*object,*loc)

END

PRECONDITIONS: Handempty
Found(*cbject)
At (Hand,*object:Hover_pos)
END

DELETE LIST: Handempty

Inserted(*object,-)
Positicned(*object, -)

END
ADD LIST: Grasped(*Object)
END

PRECONDITIONS: Grasped(*object)
Found(*loc>Hover_pos)
At (Hand, *loc>Hover pos)
END

DELETE LIST: END

ADD LIST: Inserted(*object,¥loc)

END

PRECONDITIONS: END

DELETE LIST: At(Hand,-)
END

ADD _LIST: At(Hand,*to loc)

END

PRECONDITIONS: Grasped(*object)

END

DELETE_LIST: Grasped(*object)
END

ADD LIST: Handempty

END

PRECONDITIONS: END

DELETE_LIST: END

ADD_LIST: Found(*object)
END






APPENDIX B

EXAMPLE JOB PLAN FOR CRANFIELD ASSEMBLY
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Task Description

Find(Casingl)

Move Arm(Curr Loc,Casingl:Hover pos)
Grasp(Casingl)

Find(Jig lower center)

Move Arm(Curr Loc,Jig_ lower center>Hover pos)
Place(Casingl,Jig lower_center)
Release(Casingl)

Find(Lever)

Move Arm(Curr_Loc,Lever:Hover_pos)
Grasp(Lever)

Find(Jig axis)

Move Arm(Curr Loc,Jig_ axis>Hover pos)
Place(Lever,Jig axis)

Release(Lever)

Find(Spacer)

Move Arm(Curr_Loc,Spacer:Hover_pos)
Grasp(Spacer)

Find(Casing 1 bottom_edge)

Move Arm(Curr_Loc,Casing 1_bottom_edge>Hover_pos)
Place(Spacer,Casing 1 bottom edge)
Release(Spacer)

Find(Large pin 1)
Move_Arm(Curr_Loc,Large'pin~l:Hovermpos)
Grasp(Large pin 1)
Find(Casing 1 bottom left hole>Hover pos)
Move_Arm(Curr_Loc,Casingwl_bottommleft_hole>HoverMpos)
Place(lLarge pin 1,Casing 1 bottom_left hole)
Release(large pin_ 1)

Find(Large pin_2)

Move Arm(Curr Loc,Large pin_2:Hover_ pos)
Grasp(Large pin_2)
Find(Casing 1 bottom_right hole>Hover pos)
Move Arm(Curr_Loc,Casing_l_bottom_right hole>Hover pos)
Insert(large pin 2,Casing 1 bottom_right_hole)
Release(Large pin 2)

Find(Latge pin_3)

Move Arm(Curr Loc,Large pin_3:Hover pos)
Grasp(Large pin_ 3)

Find(Casing 1 top left hole>Hover pos)

Move ALm(Curr Loc CaGJng 1 top_ lefL ‘hole>Hover pos)
Insert(Large pin 3,Casing 1 top 1eft _hole)
Release(Large pin 3)

Find(Large pin_4)

Move Arm(Curr Loc,Large_pin_ 4:Hover pos)
Grasp(Large pin_4)
Find(Casing 1 top right hole>Hover pos)

Move Arm(Curr Loc,Casing_l1_top_right hole>Hover_pos)
Insert(lLarge pin 4,Casing 1 top_right hole)
Release(lLarge pin_4)

Find(Peg)

MoveﬂArm(Cureroc,Peg:Hover»pos)
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Task Description

Grasp(Peg)

Find(Casing 1 center hole>Hover pos)

Move Arm(Curr_Loc,Casing 1 center hole>Hover_pos)
Insert(Peg,Casing 1 center_hole)

Release(Peg)

Find(Casing?)

Move Arm(Curr_Loc,Casing?:Hover_pos)

Grasp(Casing2)

Find(Jig_upper_center)

Move Arm{Curr Loc,Jig upper center>Hover pos)
Place(Casing?,Jig upper center)

Release(Casing?)

Find(Small_pin_ 1)

Move Arm{Curr Loc,Small_pin 1:Hover pos)

Grasp(Small pin_1)

Find(Casing 1 _bottom_side left hole>Hover pos)

Move Arm{Curr_ Loc, Cdslng 1 bottom side lett _hole>Hover pos)
Insert(Small pin_1,Casing 1 bottom Glde left _hole)
Release(Small pin 1)

Find(Small pin 2)

Move Arm(Curr Loc,S5mall_pin 2:Hover pos)
Grasp(Small pin 2)

Find(Casing 1 bottom side right hole>Hover pos)

Move Arm(Curr Loc,Casing 1 bettom side_right hole>Hover_ pos)
Insert{Small pin 2,Casing 1 bottom side right hole)
Release(Small pin 2)

Find(Small pin_3)

Move Arm(Curr Loc,Small pin 3:Hover pos)

Grasp(Small pin 3)

Move Arm(Curr Loc aqlng 1 rop side left _hole>Hover pos)
Insert(Small pin_ 3, PaSLnngmtopws1dem1eft~hole)
Release(Small_pin_3)

Find(Small pin _4)

Move Arm(Curr_Loc,Small_pin_4:Hover pos)
Grasp(Small pin 4)
Find(Casing 1 top_side right hole>Hover pos)

Move Arm{(Curr loc,Casing 1 top side right hole>Hover pos)
Insert(Small pin 4,Casing 1 top side right hole)
Release(Small pin 4)

Find(Small pin %)

Move Arm(Curr Loc,Small pin 5:Hover pos)

Grasp(Small pin_5)

Find(Casing 2 bottom_side_left hole>Hover pos)

Move Arm(Curr_Loc,Casing 2 boitom side left ‘hole>Hover pos)
Insert(Small_pin_5, (d%lﬂgﬁ?_bottomM51dem eft hole)
Release(Small pin 5)

Find(Small pin 6}

Move Arm(Curr_Leoc,Small pin 6:Hover pos)
Grasp(Small_pin_6)

Find(Casing_ 2 bottom side right hole>Hover pos)
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Plan Number Task Description
103 Move Arm(Curr Loc,Casing 2 bottom_side_right_hole>Hover_ pos)
104 Insert(Small pin 6,Casing 2 bottom side_right_hole)
105 Release(Small pin 6)
106 Find(Small pin 7)
107 Move Arm(Curr_Loc,Small pin_7:Hover_pos)
108 Grasp(Small pin_7)
109 Find(Casing 2 top side left hole>Hover_ pos)
110 Move Arm(Curr_Loc,Casing 2 top_side_left_hole>Hover_ pos)
111 Insert(Small pin 7,Casing 2 top_side_left_hole)
112 Release(Small pin_7)
113 Find(Small pin 8)
114 Move Arm(Curr_Loc,Small_pin_8:Hover_pos)
115 Grasp(Small pin 8)
116 Find(Casing 2 top side_right hole>Hover_ pos)
117 Move Arm(Curr Loc,Casing 2 top_side_right_hole>Hover pos)
118 Insert(Small pin 8,Casing 2 _top_side_right _hole)

119 Complete_Assembly(Benchmark)
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APPENDIX C

EXAMPLE EXECUTION MONITORING TABLE



Subtask: Find(Casingl)
Preconditions:

Continuing Conditions:
Subtask: Move Arm(Curr Loc,Casingl:Hover_pos)
Preconditions:
Continuing Conditions: Found(Casingl)
Subtask: Grasp(Casingl)
Preconditions: Handempty
Found(Casingl)
At(Hand,Casingl:Hover pos)
Continuing Conditions:
Subtask: Find(Jig lower center)
Preconditions:
Continuing Conditions: Grasped(Casingl)
Subtask: Move Arm(Curr Loc,Jig lower center>Hover_pos)
Preconditions:
Continuing Conditions: Found(Jig lower center)

Grasped(Casingl)

Subtask: Place(Casingl,Jig lower center)
Preconditions: Grasped(Casingl)
Found(Jig lower center)
At (Hand,Jig lower center>Hover pos)

Continuing Conditions:
Subtask: Release(Casingl)

Preconditions: Grasped(Casingl)

Continuing Conditions: Positioned(Casingl,Jig lower center)
Subtask: Find(Lever)

Preconditions:

Continuing Conditions: Handempty
Positioned(Casingl,Jig lower center)



Subtask:

Subtask:

Subtask:

Subtask:

Subtask:

Subtask:

Move Arm(Curr Loc,Lever:Hover pos)
Preconditions:

Continuing Conditicons: Found(Lever)
Handempty
Positioned(Casingl,Jig lower_center)

Grasp(Lever)

Preconditions: Handempty
Found(Lever)
At(Hand,Lever:Hover pos)

Continuing Conditions: Positioned(Casingl,Jig lower center)

Find(Jig axis)
Preconditions:

Continuing Conditions: Grasped(Lever)
Positioned(Casingl,Jig lower_center)

Move Arm{Curr loc,Jig axis>Hover pos)
Preconditions:

Continuing Conditions: Found(Jig axis)
Grasped(Lever)
Positioned(Casingl,Jig lower center)

Place(Lever,Jig axis)
Preconditions: Grasped{Lever)
Found(Jig axis)
At (Hand,Jig_axis>Hover pos)

Contimuing Conditions: FPositioned(Casingl,Jig lower_center)
Release{Lever)
Preconditions: Grasped(Lever)

Continuing Conditions: Positioned(Lever K Jig axis)
Positioned(Casingl,Jig lower_center)l






e
U

39.

40.

41.

42 .

43.

44 .

52.

53-62.

-
PO O 8 00 O LR W R

ORNL/TM-11308

CESAR-89/34
INTERNAL DISTRIBUTION
B. R. Appleton 16. F. C. Maienschein
G. A. Armstrong 17. W. W. Manges
S. M. Babcock 18-22. R. C. Mann
D. L. Barnett 23. J. R. Merriman
M. Beckerman 24, E. M. Oblow
P. F. R. Belmans 25-29. F. G. Pin
J. €. Culioli 30. D. B. Reister
G. de Saussure 31. B. A. Worley
F. Depiero 32. EPMD Reports Office
J. R. Einstein 33-34. Laboratory Records Department
C. W. Glover 35. Laboratory Records, ORNL-RC
W. R. Hamel 36. Document Reference Section
J. N. Herndon 37. Central Research Library
J. P. Jones 38. ORNL Patent Office
H. E. Knee

EXTERNAL DISTRIBUTION

Office of the Assistant Manager for Energy Research and
Development, Department of Energy, Oak Ridge Operations, P.O.
Box 2001, Oak Ridge, TN 37831

John J. Dorning, Department of Nuclear Engineering and Engineering
Physics, Thotunton Hall, University of Virginia, Charlottesville,

VA 22901

Robert M. Haralick, Department of Electrical Engineering,
University of Washington, Seattle, WA 98195

Susan Hruska, Department of €SC, Florida State University,
Tallahassee, FL 32306

James E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, MD 20878

Neville Moray, Dept. of Mechanical and Industrial Engineering,
University of Illinois, 1206 West Green Street, Urbana, IL 61801

Lynne E. Parker, 125 Slade Street, Belmont, MA 02178

Carl Steidley, Central Washington University, Department of CSC,
Ellensburg, WA 98926

Chuck Weisbin, M5/198-330, Jet Propulsion Laboratory, California
Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-
8099

Mary F. Wheeler, Mathematics Department, University of Houston,
4800 Calhoun, Houston, TX 77204-3476

Office of Scientific and Technical Information, P.0. Box 62,
Dak Ridge, TN 37831






