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AN ORTHOGONAL COLLOCATION APPROACH TO
MODELING MULTICOMPONENT ADSORPTION
IN CARBON BEDS

M. T. Harris
C. H. Byers

ABSTRACT

A multicomponent, packed-bed, adsorption model which solves simultane-
ously for the adsorption of any number of adsorbing components in a bed or
slab configuration is presented for predicting breakthrough curves of trace or-
ganics in water. Generally it may be directly applied to interacting systems
in which there are two interacting adsorbed species in an inert solvent. The
model assumes isothermal conditions and that axial dispersion is negligible. It
is also proposed that a linear rate model can be used to describe the rate of
adsorption of material on the adsorbent, although the method has been shown
to apply to more complex situations. The model was tested by comparing
predicted bed exit profiles with experimental data for the adsorption of trace
amounts of 2-butanol and t-amyl alcohol on a bed of carbon. The applicability
of the method to a broad range of adsorption problems in waste disposal and
the process industries is discussed.

1. INTRODUCTION

The removal of persistent organic pollutants from drinking water, waste streams
and hazardous wastes has assumed great importance in the past decade. In the
case of waste water, some of the organic and inorganic species are not removed by
normal biological treatment, at least to fhe extent which is required by the laws
which have been enacted during this period; and therefore, carbon columns are
employed as a tertiary treatment step. Carbon adsorption is also commonly used
as the final stage in the treatment of drinking water. Where applicable the same
techniques are used in dealing with hazardous wastes (Oswald, et. al. 1982; Brown,

Harris, and Roop 1984).



Ionic and metal species are often removed by parallel ion exchange techniques
(Pan and David 1978, Sherman 1978, and Helfferich 1962). While the resin beds
have an entirely different chemical basis of operation, the method of mathematical

analysis is almost identical to those used in dilute bed sorption.

Although the adsorption of organics on carbon and the ion exchange of ionic
species are sometimes performed in slurry type reactors (EPA 1972), it is more
common to adsorb these impurities by having the active granular materials ar-
ranged in filters as beds of particles. For a given set of operating conditions and
a given column design, the time at which breakthrough occurs is the most impor-
tant figure of merit. This can be determined by performing batch slurry tests and
by conducting bench-scale and pilot-scale packed-bed studies to allow prediction
of full-scale column performance. However, a full series of packed-bed studies can
be quite extraordinarily time-consuming, often requiring weeks of laboratory ex-
perimentation. It has been shown to be advantageous to perform only batch tests
to determine adsorption equilibria and to use correlations or mathematical mod-
els to predict the mass transfer parameters. Packed-bed behavior is subsequently
modeled by computer simulations, allowing the prediction of breakthrough time for
plant-scale units in a matter of minutes, or perhaps hours for the more elaborate
algorithms (Raghavan and Ruthven 1984, Harwell, et al. 1980; and Spahn and
Schlunder 1975).

After a satisfactory number of parameters have been examined using the com-
puter model, a few pilot-scale runs can be used to test the computer results against

experimental reality. Several advantages accrue to this procedure.

1. The parametric study can quickly identify the most relevant features of the

system, allowing a design which takes advantage of the particular properties
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of the species and resin.

2. Interactive systems can be studied in detail for their overall characteristics

in an expeditious manner.

3. Dangerous experimentation can be minimized by the procedure, particularly

where hazardous materials are the object of the design.

4. A good model can be used after construction to aid in the subsequent oper-

ation and trouble-shooting of the process.

5. In some of the better models, the effect of a changing feed material can be

predicted before these cause problems.

Bearing in mind the significant number of advantages which a good model can
bring to a project, it is critical that the robust, efficient algorithms be available to

engineers.

The objective of this paper is to present a new model for predicting the behavior
of interactive multicomponent adsorption and ion exchange systems. The model
represents a significant enhancement of previous computer algorithms, particularly
those developed by Carta{1986) which modeled isothermal single-component ad-
sorption. Because this is a significant area of theoretical activity, many models
have been presented in the past, and Ruthven (1984) gives a thorough review of
these models. Generally they deal with adsorptively non-interactive systems or with
single adsorbed components. Obviously they form a subset of the current study.
Analytical solutions, while very useful for dilute, non-interactive and noncompeti-
tive mixtures, often fail in the real situations which are the subject of this report.
Therefore it was our goal to produce an efficient, accessible method of predicting

these important real situations.



Generally, sorption processes are analyzed with the aid of computer algorithms.
Even the analytical solutions involve series solutions which converge slowly, making
computer operations necessary. In the non-linear cases considered in this study,
approximate computational methods are the only way known to solve the equations.

A considerable number of finite difference solutions have been proposed (Ruthven
1984), but these are generally inefficient because of the small step sizes required to
properly simulate the steep slopes in concentration profiles. A seemingly simple
problem can take hours of computer time. On the other hand, within the past 10
to 15 years, interest in the methods of weighted residuals (MWR) to solve partial
differential equations has increased {Finlayson, 1972). In particular, the use of
orthogonal collocation in the analysis of packed-bed reactors has been studied and
reported in a number of papers and texts. In this study, orthogonal collocation
has been used because it offers two advantages over finite differences: relatively
greater accuracy with fewer discrete points {and therefore with less computation),
and a concise representation of partial derivatives as matrices, which facilitates any
programming changes needed to accommodate different models.

Methods of weighted residuals (MWRs), in which the solution to one or more
differential equations is expanded in a series of known functions with arbitrary co-
efficients, have been available since the 1940s. The use of one particular MWR,
collocation, became popular in chemical engineering research after Villadsen and
Stewart (1967) showed that solution accuracy can be enhanced if collocation points
are chosen to be the roots of an orthogonal polynomial. Articles by Finlayson in the
early 1970s discussed the use of orthogonal collocation in the analysis of reactions in
packed beds (Finlayson, 1971; and Ferguson and Finlayson, 1970). Later, Michelsen
and Villadsen published an important paper detailing improved algorithms for cal-

culating collocation constants (Michelsen and Villadsen, 1972). A detailed descrip-
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tion of their work is collated in their later-published text (Michelsen and Villadsen,
1980). Finlayson has published two texts on the use of MWRs. The most re-
cent, Non-Linear Analysis in Chemical Engineering, contains extensive discussions
on steady-state and transient modeling of reactions using orthogonal collocation
(Finlayson, 1980). Recently, Raghavan and Ruthven (1983) have published results
from an analysiS of fixed-bed adsorption columns orthogonal collocation. Like the

Carta(1986) study these were confined to single adsorbed components.

Our solution expands the orthogonal collocation approach to multicomponent
mixtures. As a specific example, we studied some experimental data for the ad-
sorption of trace amounts of it 2-butanol and #-amyl alcohol on a bed of car-

bon(Santacesaria et al 1982).

2. THEORETICAL

2.1 PACKED BED ADSORPTION THEORY.

A model which describes the behavior of packed beds is illustrated in Fig. 1. In
the adsorption case, it is assumed that the fluid phase containing the components
to be sorbed enters the bed and the sorbate fills the sites on the bed beginning
from the entry, eventually breaking through the exit of the bed when the bed
is filled. Typically one observes an ‘S’-shaped curve if a single-sorbed specie is
involved. In modeling a bed, it is assumed that there is homogeneity in the bed,
leading to concentration variations only in the axial direction (2) and of course
with time, . Mass balances are performed on each solute in the liquid phase and
the corresponding adsorbed phase leading to the following relationship (Ruthven,
1984):
¢, dc;

= €

922 ot

aq_,- BC,'
+(1—e)pb~a—?+ev 3, (1)

eD
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Fig. 1. Schematic diagram of a sorption bed.



with a solid or adsorbed phase balance given as

9g; %
il - 2
: k., a (c, »’;) (2)

where k,, is the effective mass transfer coefficient and K; is the equilibrium con-

stant for component ¢, which may vary with concentrations of all species as well
as the temperature. The axial dispersion, D,,, is generally negligible in usual lig-
uid cases. In other cases where one has linear adsorbtion coefficients one may use
the Gluekauf(1955) approximation for an overall maés transfer coefficient, which is

given as follows.

_ 3
Kk~ \ e 3k, | 15¢,D, | 15KD. 3

1 D, (1—-e)‘+ R, R; r2

where D, and D, are macropore and micropore diffusivity, k; is the fluid film mass
transfer resistance, R, is the pore radius, r, is the micropore or crystal radius, and ¢,
is the macropore void fraction. Although component subscripts are not included,
Eq. 2 must be applied to each adsorbing specie. Ruthven(1984) has shown this

approach to be quite effective even with significantly nonlinear isotherms. The

liquid phase mass balance then becomes

ac,; ac,' aa’ .
gz T T dng =0 (1)

€v

To simplify matters in the application of the solid phase material balance, it is
often possible to replace the relationship with a linear rate expression (Carta 1986,

Santacesaria et al. 1982). Then adsorbed phase mass balance for component ¢ is:

ag;
Po 3t

= ki(e: — ¢f)- (5)

This expression assumes that the mass transfer resistances in the liquid film,

surface diffusion, and internal diffusion in the particle can be represented by the
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linear rate expression (Eq. 2). In the model proposed by Carta (1986), it is assumed
that the mass transfer in the liquid film is the controlling mechanism for adsorption.

The mass transfer constant is, therefore, given by the expression

, 3k,
k, = —R—’—. (6)

14

It should be noted in comparing Eqs. 3 and 6 that k! is really the product of &,
and the equilibrium constant K;. One would expect that this expression would
be applicable for liquid systems containing trace impurities, since it closely follows
the Gluekauf approximation(Eq. 3). It should be further noted that the applica-
tion of the linear driving force expression (Eq. 6) leads to the replacement of the
average solid phase species concentration g; with g}, the local equilibrium concen-
tration. Because of the interactive nature of the isotherms in the system which was
studied here, it is possible that the Gluekauf approximation does not apply. This
conservative assumption will be made throughout the remainder of the report.
The model developed by Santacesaria includes both liquid film mass transfer
resistance and pore diffusion resistance. These resistances are proposed to act in

parallel, following Gluekauf; therefore, the expression for the &' is given by:

_1_— Rp -+
k' 3k,

. ")
15¢,D,;

In Santacesaria’s model the term g, is related to adsorbed phase concentration, ¢,

by the expression:

q; = (1 - Ep)q: + fpc:' (8)

The adsorption equilibria, ¢* = f{¢;,¢;) is represented by a Freundlich-Fritz-

Schluender (FFS) (Fritz and Schluender 1974 and Liapis and Rippin 1977) type
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expression for n solutes. This expression has the form:

a;, cn:'l
g = —“;—b“&;:‘; (9)
ZJ. iy ij

The initial and boundary conditions for these models are:
C{(O,t) = Cfiy t 2 0

3.{z,0) = ¢;(2,0) =0, t <0. (10)

The conditions in Eq. 10 are for the adsorption case in which there is a step change
from a base at time zero. Our approach makes it possible to deal with virtually any
boundary and initial conditions. This is important in cyclic processes and those
where the feed concentration is not‘steady, as might be the case in wastewater
adsorption simulations. However, to test the modei only the conditions in Eq. 10

were explored.

2.2 SOLUTION OF MODEL EQUATIONS FOR PACKED BED AD-
SORPTION.

The method of orthogonal collocation (Michelsen and Villadsen 1972, Villadsen
and Stewart 1967, Carta 1987) was used to simultaneously solve Egs. 1 and 2
for each component. This method converts the system of partial differential equa-
tions into a system of algebraic expressions and ordinary differential equations by
assuming that the concentration as a function of axial position in the column is
represented by a polynomial. Finite difference methods have also been used to
solve such equations; however, these methods usually require much longer com-
puter time. Application of orthogonal collocation to the above equations resulted

in the following set of ordinary differential equations for the collocation point z;:



Component 1

dey; g,;  €v (1) _
e (L - 4 Zl[l" (z:)ens (t,2,)| =0, (11)
i
da i ? *
Py d; = ki (e cu)’ (12)

Component 2

Ca: dg,,. €V
E—d:: + Pb(l - 5)% + “E [ll(cl)(zi)czj (taxj)] =0, (13)
J=1
dg; . .
d—; = k(€20 — €3;). (14)

These equations were written in the following form for the purpose of computer

integration:

Component 1

dﬁf - "pb(l; u dg;‘ - %JS; [‘il) (z:)ex; (t,zj)], (15)
%@;% = I;:I: (er: — es)s (16)
Component 2
d:lzzg- _ _pb(leu €) dgz,- ~ %:Vé [li” (2:)e, (t,:c,.)], an
d—% = ];% (€25 — €3:)- (18)

In the present algorithm, it was assumed that the concentration as a function of

axial position can be represented by a Jacobi orthogonal polynomial (Carta 1987).
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Villadsen and Stewart (1967) established that collocation points chosen to be roots
of Jacobi orthogonal polynomials are optimal in the sense that they maximize the

order of the solution approximation.

3. COMPUTER SOLUTION OF A TWO-ADSORBING
COMPONENT PROBLEM

A flow diagram of the computer algorithm is shown in Appendix I along with
the computer programs. There are two programs; ADS3C.FOR, which uses Carta’s
model, and ADSSAN.FOR, which employs Santacesaria’s model.

The initial function of the program is to input data from the data file
“ASMC.DAT”. An example of input data is given in Appendix I. The description
of each data point is given for clarification and is not to be entered into the actual
data set.

The constant terms (i.e. p,(1 — €)/¢, v/L, and k'/p,) in Egs. 15 through 18
are then computed from the input data. Important parameters are written to the
output file, “FR;DAT”.

The main program calls the subroutine JCOBI to cbmpute the zeros of the Jacobi
orthogonal polynomial. These roots are subsequently stored in “FR.DAT”. The
discretization matrix is computed by the subroutine DFOPR and is stored in the
array EL(K,I) in the program and is represented by the term lLl) (z;) in Eq. 19 and
20.

Initial and boundary conditions are assigned in the next portion of the main
program. Before proceeding with numerical integration, a flag is set so that when
the time interval, TDISP, is achieved during integration, the results are written
to the output file “FR.DAT”. The program then calls the subroutine RKG, which

employs the Runge-Kutta method to numerically integrate Eq. 15 through 18. The

11



Runge-Kutta subroutine calls the subroutine DERIVS, which computes the right
side of the time derivative Eqgs. 15 through 18. Several other subroutines are called
from DERIVS to compute the ¢; from g; by applying the equilibrium relationship
(Eq. 6). The list of constants, A11 through ZN21, which appears in the subroutines
QEQUIL, CEQUIL, and NEWSUB, are defined in the following expanded version
of Eq. 9 for each compcnent:

. All x (2N 11
q, -

T A2+ ZNZ L Bllac ML)

(19)

*4 M21
B21 % ¢;

= BZZ*C;ZM22+A21*CIZN21.

*

92

(20)

An important subroutine to note is the NEWSUB subroutine, which was imple-
mented to compute the ¢; by simultaneously solving the two nonlinear expressions
for the adsorption equilibria (Egs. 19 and 20). The NEWSUB algorithm is based
on the mathematical formulation (Appendix II) given by Scarborough (1966).

When TDISP is achieved during integration, the program exits RKG and writes
the time (T in program) and ¢;/c¢;; (i.e., XOUT in the program). The program
reenters the subroutine RKG if T is less than the time (TSTEP) specified to end
the program, and the process is repeated.

To test the approach against a known solution, it was decided to apply the
Klinkenberg (1954) solution to two components which do not interact. The as-
sumption in the Klinkenberg solution is the same as in our case except that the
isotherm for a single adsorbing specie is linear. As in our case, trace concentra-
tion is assumed, which assures isothermal conditions. A linearized rate expression,
identical to the one in Eq. 5, is assumed. The general solution is given as:

;CL =¢ ¢ /7 e_o 1o (2 fu) du+ e U+O], (2\/;5_) , (21)
o 0

12



where the nondimensional time, 7, and distance, £, are defined as:

k; z kiz f1—€)
T-—-—pbKi (t*;)&ﬂdf-—;;;( p ). (22)

The solution can be considerably simplified for the case where £ is > 2.0. To within

0.6

s e (vVe-vi-ge- )] (23)

In the limit of very large values of £,

o :—;—[1+erf(\/E—\/?)]. (24)

Since one may select the conditions under which to check the solution, obviously the
simplicity of Eqgs. 23 and 24 lead us to their application as a means of checking our
numerical solution. Computation of concentration values at the exit of a bed using
Eq. 23 requires a routine for calculating of erfc, the error function complement. A
public domain subroutine for the calculation of error functions was used in a simple
FORTRAN program to generate solutions which were used to check the orthogonal

collocation program solutions.

4. RESULTS AND DISCUSSION

In checking our solution against an analytical solution, two series of tests were
performed. The first, shown in Fig. 2, shows the effect of changing the number of
collocation points on the fit. It would appear that five collocation points (three
internal and two. external collocation points) give an adequate match to the analyt-
ical data. The good agreement between the orthogonal collocation solution, even
with a small number of collocation points, is strong indication: that our approach is

a valid one.

13
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1.0 -
0.9 |-
0.8 |-
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0.2 .
0.1 = i
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TIME (103 s)

Fig. 2. A comparison of an analytical solution of a non-interacting two- comnpo-
nent bed adsorption with the orthgonal collocation solution using different numbers
of collocation points.
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The second test is to increase the amount of interaction between the two adsorb-
ing components by increasing the influence of the denominator terms in a binary,
Freundlich-type isotherm, which is a reduction of Eq. 9 to the case where all the

concentration exponents are as shown in the following expression:

a;c;
_ ] 25
b,']_ CJ' -+ bi2 Cj ’ ( )

*

q;

where

a; = 6.0, a; = 24., by =by; = by =by, =1.0

By increasing the ¢, from zero, interaction and non-linearity are increased. A series
of four runs were made increasing the ¢;-values. Figure 3 shows the results. It is
important to note that there is an orderly progression from one level of interaction
to the next, and that the number of collocation points needed to arrive at a steady
solution did not increase significantly with interaction. Based on these two results,
it is assumed that the solutions presented in this report are valid approximations
to the truth, and that the remaining solutions may be trusted.

The modified version of Carta’s program for two components adsorption was
tested by simulating the adsorption of Z-butanol and t-amyl alcohol in a carbon
bed. The experimental data were eﬁtrapolated from Fig 5 in a paper by Liapis
and Rippin (1978). Values of k;;, = k;; = 0.002cm/s, D,; = 7.77 x 10" %cm?® /s,
D,; =13.03 x 10" %cm? /s, r, = 0.05 cm, V = 0.14 cm/s, L = 41 cm, € = 0.5, and
€, = 0.94 were used in the column calculations. These values were taken from the
paper by Liapis and Rippin (1978). The values for D,; and D,, were estimated by
modeling the adsorption kinetics during batch studies (Liapis and Rippin 1977).

Figure 4 shows the results of a simulation where Carta’s model was used, where

k' was computed using Eq. 6, where §; = ¢; and where six collocations points (four

15
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Fig. 3. Theoretical results using orthogonal collocation for four situations with
increasing competition for sites between the adsorbing components.
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internal and two external) were used. The model is qualitatively correct in that it
predicts correctly that the 2-butanol begins to exit the column before t-amyl alcohol.
The experimental data confirms this behavior. Futhermore, the model predicts that
a maximum appears in the Z-butanol breakthrough curve. The model predicts a
maximum value for ¢;/¢c;; (where i=2-butano}l) of 1.5. An experimental value of
1.1 is observed. The model does predict that the time at which this maximum
occurs is approximately 8000 s, which agrees very well with experimental data. The
experimental t-amyl alcohol data does not show a maximum value, which is also
predicted by the model. Thus the disagreements are probably caused by incorrect

values of the constants rather than a completely inapplicable model.

The initial breakthrough of each component as predicted by Carta’s method of
predicting k', tends to lag the experimental data. This would indicate that adsorp-
tion of these components on the carbon particles is not controlled by mass transfer
in the liquid film, thus suggesting that internal pore diffusion in the particles is
the controlling parameter. Internal pore diffusion has been found to be the most
important resistance in the adsorption of trace organics from liquids and especially
wastewater (Westermark 1975). To correct for internal pore diffusion resistance,
Carta’s assumption concerning the model was slightly modified by replacing the
constant,k, derived from the fluid film model (Eq. 3) with one predicted by Eq.
7. The latter prediction includes the effect of macropore diffusion as well as the
fluid film resistance. In this case, k| = 0.031s™' and k), = 0.046s~'. The result of
this change is illustrated in Fig. 5 where 6 collocation points were also used. There
is a significant improvement in agreement between the predicted and experimental
breakthrough curves for both 2-butanol and t-amy! alcohol. Another area of consid-
erable improvement is in the comparison between the predicted and experimental

maximum point for the 2-butanol breakthrough curve. This model indicates that
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¥ig. 4. Carbon Adsorption of Two Components (Film Model).

18



they are within 10% of each other.

The question of the proper number of collocation points was resolved in Fig. 6.
It shows that when eight collocation points are used, the results are substantially
unchanged from the six-point solution. Therefore, six collocation points are suffi-
cient for convergence. It is possible that fewer points may be sufficient, but areas
of large change in slope would show oscillatory behavior, and further testing would
be required in that area. Typical run time on a Definicon 780+ Board operating at
20MHz is approximately 45 minutes. It is about 2.5 times faster on a VAX 8600. It
is possible that considerable reductions in run time could be gained by improving

the algorithms for solving the ODEs.

Figure 7 shows the result of using Santacesaria’s model. There are no significant
improvements by applying Santacesaria’s model over the result in using the model
which was employed in Fig. 5. The computational time is about the same {~ 45

min for six collocation points).

It is evident that a large number of runs are possible which would improve the
prediction. However, empiricism was not our objective so we did not attempt a “best
fit” of the data. Rather, the objective was to establish an efficient multicomponent
adsorption program which could be used in a number of applications. Extensions
to this work might include the introduction of dispersion, and mircopore diffusion.
These changes would be relatively easy and could give a considerably improved
simulation of the data. Of course, the extension of the program to n components
is feasible. Times associated with solution would increase proportionately; but,
with the accelerating pace of speed increases in computation that will not pose a

significant problem in the near future.
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Fig. 7. Carbon Adsorption of 2-butanol and t-amyl alcohol as predicted by the
Santacesaria (1982) model. Comparison is with the experimental data of Liapis and
Rippin (1978).
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5. CONCLUSIONS

The multicomponent bed adsorption model has been formulated to account for
the interactions between components. The current application was to three-compo-
nents systems, of which one is an inért carrier. A ﬁnea.r adsorption rate equation
was used to model the dynamic characteristics of the adsorbed phase material. The
orthogonal collocation routine, based on a single component program by Carta,

simulated the behavior of the species in the bed with six collocation points.

The model was tested on experimental data for the adsorption of trace amounts of
2-butanol and ¢-amyl alcohol in water on a bed of carbon. A simple film resistance
controlled model does not adequately model the adsorption of these organics from
water. Previous investigators determined that internal pore diffusion was the most
significant resistance in this system; hence, this effect was incorporated into the
model. This approach gave a significantly improved rendition of the data. The
model proposed by Santacesaria was tested and was not significantly different from
the model proposed in this study. There was some indication that our solution
converged much more quickly.

Future work should include the development of an algorithm which incorporates
a detailed model of the internal pore diffusion resistance as described by Liapis
and Rippin (1978). Improvements may also be realized if the concentration driving
force, (e; — ¢;), in the linear rate model proposed by Carta and Santacesaria were
replaced by (g7 — ;). The numerical integration routines should also be upgraded
to more efficient algorithms (i.e. fourth- or fifth- order Runge-Kutta method or
DGEAR). Streamlining of the code for easier user access to variables such as the
constants in Egs. 19 and 20 and the plotting of the exit concentration profiles are

needed.
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7. NOTATION

constants (Eq. 9)

constants (Eq. 9)

liquid-phase concentration of component i, g/cm?®.
liquid-phase feed concentration of component i, g/em®.
equilibrium concentration of component i, g/cm®.
equilibrium concentration of component i, g/cm®.
concentration of component i at collocation point j, g/cm?.
equilibrium concentration of component i at collocation point j, g/cm®.
pore diffusion coefficient of component i, cm? /s.

mass transfer constant of component i, s~ *.

film mass transfer coefficient of component i, cm/s.
discretization matrix.

total length of packed column, cm.

constants (Eq. 9).

constants (Eq. 9).

equilibrium sorbate concentration, g /cm?®.

average sorbate concentration, g /em?®.

radius of particles, cm.

time, s.

velocity of bulk fluid, cm/s.

dimensionless axial position in column, z/L, at collocation point i.
axial position in column, cm.

bed porosity.

particle porosity.

density of sorbent, g/cm?®.

25



8. REFERENCES

Brown, C. H., Harris, M. T. , and Roop, R. D. 1987. “Polishing Treatment of Coal
Liquefaction Wastewaters,” Environ. Prog., 3, 228-37.

Carta, G. 1986. FXCOLFRF.F77: A FORTRAN 77 Computer program, University
of Virginia.

Carta, G. 1987. “Personal Communication,” Knoxville, Tennessee.

Environmental Protection Agency 1972. “Powdered Activated Carbon Treatment
of Combined and Municipal Sewage,” WPC Res. Services, 11020, DSO.

Fritz, W. and Schluender, E. U. 1974. “Simultaneous Adsorption Equilibrium of
Organic Solutes in Dilute Aqueous Solutions on Activated Carbon,” Chem. FEng.
Sei., 29, 1279-1282.

Helfferich, F. 1962. Ion Ezchange, Chapter 9, McGraw-Hill, New York.

Harwell, J., Liapis, A., Litchfield, R., and Hanson, D. 1980. “A Non-equilibrium
Model for Fixed-Bed Multicomponent Adiabatic Adsorption,” Chem. Eng. Sci.,
35, 2287- 2298.

Liapis, A. I. and Rippin, D. W. I. 1977. “A General Model for the Simulation of
Multicomponent Adsorption from a Finite Bath,” Chem. Eng. Ses., 32, 619-627.

Liapis, A. 1. and Rippin, D. W. 1. 1978. “The Simulation of Binary Adsorption in
Activated Carbon Columns Using Estimates of Diffusional Resistance Within the
Carbon Particle Derived from Batch Experiments,” Chem. Eng. Sci., 33, 593-600.

Michelsen, M. L. and Villadsen, J. 1972. “A Convenient Computational Procedure
for Collocation Constants,” Chem. Eng. J. 4, 64.

Oswald, G. E., Walker, J. F., Brown, C. H., Klein, J. A., and Genung, R. K.
1982. Development and FEvaluation of Wastewater Treatment Processes at the H-
Coal Site in Catlettsburg, Kentucky, Volume I:. Design Summary and R & D Task,
ORNIL/TM-8213.

Pan,S. and David, M. M. 1978. “Design Effect of Liquid Phase Ionic Migration on a
Moving Packed-Bed Ton Exchange Process,” AIChE Symposium Series, T4, 74-82.

Raghavan, N. S. and Ruthven, D. M. 1984. “Dynamic Behaviour of an Adiabatic
Adsorption Column-II: Numerical Simulation and Analysis of Experimental Data,”
Chem. Eng. Sei., 39, 1201-1212.

Ruthven, D. M., 1984. Principles of Adsorption and Adsorption Processes, John
Wiley and Sons, New York.

Santacesaria, K. M., et. al. 1982. “Separation of Xylenes on Y Zeolites. 2. Break-

through Curves and Their Interpretation,” Ind. Eng. Chem. Process Des. Dev.,
21, 446-451.

26



Scarborough, J. B. 1966. Numerical Mathematical Analysis, Sixth Edition, Johns
Hopkins Press, Baltimore.

Villadsen, J. V. and Stewart, W. E. 1967. “Solution of Boundary-Value Problems
by Orthogonal Collocation,” Chem. Eng. Sct, 22, 1483.

Sherman, J. D. 1978. “lon Exchange Separations with Molecular Sieve Zeolites,”
AIChE Symposium Serses, T4, 98-116.

Spahn, H., and Schlunder, E. U. 1975. “The Scale-up of Activated Carbon Columns
for Water Purification, Based on Results from Batch Tests-1,” Chem. Eng. Set.,
30, 529-537.

Westermark, M. 1975. “Kinetics of Activated Carbon Adsorption,” J. WPCF,
47(4), 704-719.

27



APPENDIXES

28



APPENDIX 1: COMPUTER PROGRAM LISTINGS

This appendix lists the two main computer programs which are used to solve the system of
equations described in Sect. 3 of the main body of this report. All of the programs are written in
FORTRAN 77 and have been shown to operate on a wide variety of computers, including a VAX
8600, a SUN Model 3, and a Definicon 780+ plug-in board for an IBM PC-AT. A flowsheet of
the two main programs is given in Fig. 6. The first FORTRAN program is for the solution of the
two- component problem with interactive multicomponent Fruendlich isotherms. The resistance
to mass transport is assumed to be in the form of an effective fluid film which is modeled by
a single constant for each component. The program was originally written by Giorgio Carta,
University of Virginia, and was substantially modified by Michael Harris.
C******#*******************************##*t********t************

C TWO-COMPONENT ADSORPTION
C MICHAEL T. HARRIS - MODIFICATION IN NOVEMBER ’87
C GIORGIO CARTA - ORIGINAL PROGRAM 8/14/86

C***************************************************************

C ADS3C.FOR - EFFECTIVE FLUID FILM RESISTANCE - 2 COMPONENT
C f‘ROGRAM SOLVES FIRST ORDER PDE’S FOR WAVE PROPAGATION IN
g E*IXED BED ADSORPTION
g SJONSTANT FLUID VELOCITY
g E‘LUID FILM MASS TRANSFER RESISTANCE
g EOLUTION BY ORTHOGONAL COLLOCATION
g*RKG USED TO SOLVE RESULTING ODE’S
23 FREUNDLICH ADSORPTION ISOTHERM
.
g*_EPSI::VOIDAGE FRACTION ROB=BED SORBENT DENSITY
23 ;Z:BED LENGTH U=SUPERFICIAL VELOCITY
g szMASS TRANSFER PARAMETER CF=FEED CONCENTRATION
g EGr:INITIAL CONCENTRATION CREF=REFERENCE CONC.
g !’?TP—-:I"'EED PULSE DURATION X=COUT/CREF
g 'Z.‘STEP:STEP DURATION
C
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BLOCK FLOW DIAGRAM FOR ADS3C. FOR AND ADSSAN. FOR

ADS3C. FOR-
MAIN PROGRAM | ASMS. DAT-

INPUT DATA INPUT FILE

!

STORE INPUT DATA FR. DAT-
IN OUTPUT FILE { 7] OUTPUT FILE

!

JACOB]-
COMPUTE ZEROS
OF ORTHOGONAL

POLYNOMIAL

!

DFOPR-COMPUTE
DISCRETIZATION MATRIX

ADS3G-SET 1 QEQUIL-
INITIAL CONDITIONS |._| CALCULATE QSTARS
" DERIVS-
CALCULATE ODE’S
CEQUIL-
CALCULATE CSTARS
RKG-
NUMERICAL i}
INTEGRATION NEWSUB-SOLVE

* FOR CSTARS
NO ENDT:=TDISP
Yo )

ADS3C FOR
OUTPUT DATA

{

T>+TSTEP

YES
‘

Tig. 8. Block Diagram for the orthogonal collocation solution of the adsorption of two
components on a resin bed.
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C**t***********#****#*#*********#********t******t**t#*#****#****

C
IMPLICIT REAL*8 (A-H,0-2)
COMMON/LAGR/EL(40,40),NT, AKE1,AKE2, AKRB1,AKRB2,VZ,AM, Y01,
1Y02 |
COMMON/QE1/QM,QK,CREF
COMMON /ULK/CF1,CF2
DIMENSION Y(80) |
DIMENSION DIF1(40),DIF2(40),DIF3(40),ROOT(40), VECT(40)

C
C
C INPUT COLUMN PARAMETERS
C
OPEN(UNIT=5FILE=‘ASMC.DAT’, STATUS='0LD’)

REWIND 5

READ(5,*) U,AK1,AK2,%

READ(5,*) EPSL,ROB

V=U/EPSI
C
C ASSIGN EQUILIBRIUM PARAMETERS QM AND QK
C FOR FREUNDLICH ISOTHERM: Q=QK*{C**QM)
C

QM=0.5

QK=0.6

c

READ(5,*) CF1,CF2,C01,C02,CREF1,CREF2
READ(5,*)TSTEP
C

C

AKE1=AK1/EPST*(1-EPSI)
AKE2=AK2/EPSI*(1-EPST)

AKRB1=AK1/ROB

AKRB2:=AK2/ROB

VZ=V/Z

READ(5,%) N

READ(5,*) H

READ(5,*) TDISP

OPEN(UNIT=6 FILE="FR.DAT’, STATUS="NEW’)
WRITE(6,500)

500 PORMAT{* *** ESEB PROGRAM TO COMPUTE OUTPUT
1 PROFILE ***)

WRITE(6,501)

501 FORMAT(® ****#* -5 INPUT INFORMATION << *****7)
WRITE(6,502) Z,AK1,AK2,U

502 FORMAT(* BED DEPTH =, F10.4, * CM — BED
1AREA = *,F10.4,' CM — BED AREA =’ F104,
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2’CM**2 — SUPERFICIAL VELOCITY = ¢, F10.4,” CM/SEC)
C WRITE(6,503) EPSI, ROB

C 503 FORMAT( ¢ BED VOID FRACTION =’,F6.4,

C 1* BED DENSITY = ’,F10.4, GRAM/LITER’)

C WRITE(6,504) CF1,CF2,C01,C02,CREF1,CREF2

C 504 FORMAT(‘ CONCENTRATIONS - FEED1 = ’,E10.4,MOLES/L
C 1-FEED2 = *E10.4,'MOLES/L-INITIAL2 = ’,E10.4,MOLES/L
C 1-INITIAL1 = ’E10.4, ‘MOLES/L — REF1=",E10.4, MOL/L’
C 1,'MOLES/L — REF2 =",E10.4,* MOL/L’)

C WRITE(8,505) QM,QK

C 505 FORMAT(‘ FREUNDLICH CONSTANTS — PRE = *,F10.7,
¢ I'EXPONENT = ’,F10.7)

WRITE(6,506) TSTEP, H, TDISP,N

506 FORMAT(* TIMES =’,3E10.4,

1¢ # OF COLLOCATION PT =’,12)

NO=1

Ni=1

AL=0.

BE=0.

NT=N+NO0+N1

NEQ=2*(NT+NT-1)

CALL JCOBI (N,NO,N1,AL,BE,DIF1,DIF2,DIF3,ROOT)
WRITE(6,114)

114 FORMAT(/,‘COLLOCATION POINTS’,/, ****+ssxtsskiiniirss /)
DO 200 I=1,NT

WRITE(6,115),ROOT(I)

115 FORMAT(X( *,12, ) = *,F'7.4)

200 CONTINUE

WRITE(6,120)

120 FORMAT(/’M:******************:)

ID=1

DO 10 I=1,NT

C WRITE(6,125) 1

CALL DFOPR (N,N0,N1,LID,DIF1,DIF2,DIF3,ROOT,VECT)
DO 5 K=1,NT

EL(K,I)= VECT(K)

C WRITE(6,130)K,EL(K,I)

5 CONTINUE

10 CONTINUE

125 FORMAT(/,COLLOCATION POINT I == *,I2)

130 FORMAT(* L[1]( ’,12, ) = *,E12.6)

C

C ASSIGN INITTIAL CONDITIONS

C

T=0.0

CALL QEQUIL (C01,C02,QSTAR1,QSTAR2)

DO 20 I=1,NT-1
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Y{[}=Co1

Y(2*NT-1+1)=C02
Y(NT+1)=QSTAR!1
Y(3*NT-1+I)=QSTAR2

20 CONTINUE

Y{NT)=QSTAR1
Y(3*NT-1)=QSTAR2

C

C ASSIGN BOUNDARY CONDITION
Y01=CF1

Y02=CF2

C

WRITE(6,123)

123 FORMAT(/," RESULTS OF NUMERICAL INTEGRATION’,/}
C

ENDT=TDISP

IFLAG=0

30 CONTINUE
IF(ENDT.LT.TSTEP.OR.IFLAG.EQ.1) GOTO 35
ENDT=TSTEP

IFLAG=1

35 CONTINUE

C

CALL RKG (NEQ,H,T,ENDT,Y)

C

IF(IFLAG.EQ.1) YO1=Co01
IF(IFLAG.EQ.1) Y02=C02
XOUT1=Y(NT-1)/CREF1
XOUT2=Y(3*NT-2)/CREF2

¢ print *,xout
WRITE(6,40)T,XOUT1,X0UT2

40 FORMAT(F12.4, *,F10.7,* *, F10.7)

C WRITE(6,45)Y01,Y(NT),Y02,Y(3*NT-1)

C45 FORMAT(/,'ENTRANCE CONCENTRATION = *E12.6 Y(NT} =
C > E12.6)

c

IF(IOUTF.EQ.1) WRITE(5,*)T,X0UT1,XOUT2
ENDT=ENDT+TDISP

IF(T.GE.TSTEP) GOTO 510

IF(IFLAG.EQ.1) GOTO 510

GOTO 30

510 CONTINUE

END

G

3
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C

C SUBROUTINE TO CALCULATE DERIVATIVES OF ODE‘S
C

SUBROUTINE DERIVS (NEQ,X,V,YP)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/LAGR/EL(40,40),NT,AKE1, AKE2, AKRB1,AKRB2,VZ,
1AM, Y01,Y02

DIMENSION V/(80),YP(80)

CALL CEQUIL (V(NT),V(3*NT-1),CSTAR1,CSTAR2)
YP(NT)=AKRB1%(Y01 -CSTAR1)
YP(3*NT-1)=AKRB2*(Y02 - CSTAR2)

DO 10 I=1,NT-1

YSUM1=YO01*EL(1,1+1)

YSUM2=Y02*EL(1,1+1)

DO 15 K=1,NT-1

YSUM1=YSUM1+EL(K-+1,]+1)*V(K)
YSUM2=YSUM2+EL(K+1,[+1}*V(2*NT-1+K)

15 CONTINUE

CALL CEQUIL (V(NT-+1),V(3*NT-1+1),CSTAR1,CSTAR2)
YP(I)=-akel*(v(i)-cstarl)-vz*ysum1l
YP(2*NT-141)=-ake2*(v(2*nt-14i)-cstar2)-vz*ysum?2
YP(NT+I)=AKRB1*(V(I)}-CSTAR1)
YP(3*NT-1+1)=AKRB2*(V(2*NT-1+1)-CSTAR2)

10 continue

RETURN

END

C

C

SUBROUTINE QEQUIL (X,Y,Q1,Q2)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/QE1/QM,QK,CREF

C

C SUBRCUTINE CALCULATES QSTAR GIVEN C FROM THE
C EQUILIBRIUM ISOTHERM: Q={(C)

C

All==1.6
ZN11=1.27
Al12=1.0
ZN12=0.812
B11=0.626
ZM11=0.76
B21==1.07
IM21=1.254
B22=1.0
ZM22=0.906
A21=0.045
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ZN21=0.634

IF(X.LT.1.0E-12) X=DABS(X)
IF(Y.LT.1.0E-12) Y=DABS(Y)
IF(Y.EQ.0.AND.X.EQ.0) GOTO 2111
Q1 = A1I*X**ZN11/(A12*X**ZN12 + B11*Y**ZM11)
Q2 = B21*Y**ZM21/(B22*Y**ZM22 + A21*X**ZN21)
GOTO 2112

2111 Q1 =10

Q2=0

2112 CONTINUE

C

RETURN

END

C

SUBROUTINE CEQUIL (Q1,Q2,C1,C2)
IMPLICIT REAL*8 (A-H,0-7)
COMMON/QE1/QM,QK,CREF

C

C SUBROUTINE CALCULATES CSTAR GIVEN Q FROM THE
C EQUILIBRIUM ISOTHERM: C=f(Q)
C

Al1=186

ZN1i=1.27

A12=1.0

ZN12=0.812

B11=0.626

IM11=0.78

B21=21.07

ZM21=1.254

B22=:1.0

ZM22=:0.906

A21==,045

ZN21=.834

IF(Q1.LT.1.0E-12) Q1=DABS(Q1)
IF{Q2.LT.1.0E-12) Q2=DABS{Q2)
CALL NEWSUB (Q1,Q2,C1,02)

g C=(Q/QK)**(1.0/QM)

RETURN

END

C

C

C SUBROUTINE JCOBI

C

C EVALUATION OF ROOTS AND DERIVATIVES OF JACOBI POLYNOMIALS
C P(N} (AL,BE)
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C

C FIRST EVALUATION OF COEFFICIENTS IN RECURSION FORMULAE
C RECURSION COEFFICIENTS ARE STORED IN DIF1 AND DIF2

C

C SUBROUTINE FROM MICHELSEN AND VILLADSEN, P. 418

C

SUBROUTINE JCOBI(N,NO,N1,AL,BE,DIF1,DIF2,DIF3,RO0T)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION DIF1(40),DIF2(40),DIF3(40),ROOT(40)

c

AB=AL+BE

AD=BE-AL

AP=BE*AL
DIF1(1)=(AD/(AB+2.)+1.)/2.
DIF2(1)=0.0

IF{N.LT.2) GO TO 15

DO 10 1=2,N

Z1:=11.

7=AB+2.*71
DIF1(T)=(AB*AD/Z/(Z+2.)+1.)/2.
IF (LNE.2) GO TO 11
DIF2(I)=(AB+AP+21)/Z/%/(Z+1.)
11 Z=2*Z

Y=Z1*(AB+Z1)

Y=Y*(AP+Y)
DIF2(1)=Y/Z/(Z-1.)

10 CONTINUE

15 X=0.

DO 20 I=1,N

25 XD=0.0

XN-=1.0

XD1=0.0

XN1=0.0

DO 30 J=1,N
XP=(DIF1(3)-X)*XN-DIF2(J)*XD
XP1=(DIF1(J)-X)*XN1-DIF2(J)*XD1-XN
XD=XN

XD1=XN1

XN=XP

30 XN1=XP1

7C=1.0

Z=XN/XN1

IF(LEQ.1) GO TO 21

DO 22 J=2,1

22 ZC=%C-2/(X-ROOT(J-1))

21 7=2/C

X=X-7
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IF(DABS(Z).GT.1.0D-12) GO TO 25
ROOT(I)=X

X:=X+.0001

20 CONTINUE

C

C ADD INTERPOLATION POINTS AT X=0 AND X=1 IF REQUIRED
C

NT=N+No+N1 .

IF(N0.EQ.0) GO TO 35

DO 31 1=1,N

J=N+1-1

31 ROOT(J+1)=ROOT(J)
ROOT(1)=0.

35 IF(N1.EQ.1} ROOT(NT)=1.0

C

C EVALUATE DERIVATIVES OF NODAL POLYNOMIAL

C

DO 40 I=1,NT

X=ROOT(])

DIF1{T)=1.

DIF2(I)=0.

DIF3(I)=0.

DO 40 J=1,NT

IF(J.EQ.I) GO TO 40

Y=X-ROOT(J)

DIF3(1)=Y*DIF3(I)+3.*DIF2(])

DIF2({I)=Y*DIF2(I)+2.*DIF1(I)

DIFL{I)=Y*DIF1{1)

40 CONTINUE

RETURN

END

C

C

C SUBROUTINE DFOPR

C FINDS DISCRETIZATION MATRICES AND GAUSSIAN QUADRATURE
C WEIGHTS FOR GENERAL COLLOCATION APPROXIMATION

C SUBROUTINE JCOBI MUST BE EXECUTED FIRST TO FIND ZEROS AND
C DERIVATIVED OF NODAL POLYNOMIAL

C

SUBROUTINE DFOPR (N,No,N1,LID,DIF1,DIF2, DIF3,ROOT, VECT)
IMPLICIT REAL*S (A-H,0-%) '

DIMENSION DIF1(40),DIF2(40),DIF3(40),ROOT(40), VECT(40)
%2

C GAUSSIAN WEIGHTS NORMALIZED TO SUM 1

C ID=1: DISCRETIZATION MATRIX FOR Y’(X)

C ID=2 : DISCRETIZATION MATRIX FOR Y*(X)

O ID=3 : GAUSSIAN QUADRATURE WEIGHTS
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C VECT:= COMPUTED DIFFERENTIATION WEIGHTS
C

NT=N+NO+N1

IF(ID.EQ.3) GOTO 10

DO 20 J=1,NT

IF(J.NE.I) GOTO 21

IF(ID.NE.1) GOTO 5
VECT(I)=DIF2(I)/DIF1(I)/2

GOTO 20

5 VECT(T)=DIF3(I)/DIF1(I)/3

GOTO 20

21 Y=ROOT(I)-ROOT(J)
VECT(J)=DIF1(I)/DIF1(J)/Y
IF(ID.EQ.2) VECT(J)==VECT(J)*(DIF2(I)/DIF1(1)-2/Y)
20 CONTINUE

GOTO 50

10 Y=0.

DO 25 J=1,NT

X=ROOT(J)

AX=X*(1-X)

IF (N0O.EQ.0) AX=AX/X/X

IF (NL.EQ.0) AX=AX/(1-X)/(1-X)
VECT(J)=AX/DIF1(J)**2

25 Y=Y+VECT(J)

DO 60 J=1,NT

60 VECT(J)=VECT(J)/Y

50 RETURN

END

C

C

SUBROUTINE RKG (N,H,T,ENDT,Y)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION YP(80),V(80),Y(80),C(80),W(80),Q(80)

C ..SOLVES SYSTEMS OF N ODE’S
C ..REQUIRES AS INPUT:

C oo N = NO. OF EQUATIONS

C oo H = DELTA-T

C o R ENDT = FINAL T-VALUE

C e T = INDEPENDENT VARIABLE
C e Y(J) == DEPENDENT VARIABLES
C ..REQUIRES AS SUBROUTINE "DERIVS”

C oo dY(1)/dT = YP(1)

C oo dY(2)/dT = YP(2)

(o

C oo dY(N)/dT = YP(N)

C ...VARIABLES Y(J) IN SUBROUTINE DERIVS ARE:
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20 CONTINUE
U=T

DO 30 J=1,N

V(I)=Y(J)

30 CONTINUE

CALL DERIVS (N,T,V,YP)

DO 40 J=1,N

C{J)=H*YP(J)

W(J)=Y(J) + .5*C(J)

Q(N)=c(J)

V({)=W(J)

40 CONTINUE

U=T+H/2

CALL DERIVS (N,T,V,YP)

DO 50 J=1,N

C(J)=H*YP(J)

W(I)=W(J) + .2928932*(C(J)-Q(J))
Q(J)=.5857864*C(J) + .1213024*Q(J)
V(J)=wW(J)

50 CONTINUE

CALL DERIVS (N,T,V,YP)

DO 60 J=1,N

C(J)=H*YP(J)
W(J)=W(J) + 1.707107%(C(3)-Q(J))
Q(J)=3.414214*C(J) - 4.12132*Q(J)
V(3)=W(J)

60 CONTINUE

U=T+H

CALL DERIVS (N,T,V,YP)

DO 70 J=1,N

O(J)=H*YP(J)
Y(3)=W(J) + C(3)/6. - Q(J)/3.

70 CONTINUE
T=T+H

IF (T.LT.ENDT} GOTO 20
RETURN
END

SUBROUTINE NEWSUB {Q1,Q2,X0,Y0)
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IMPLICIT REAL*8 (A-H,0-Z)

C REM NEWTON-RAPHSON METHOD FOR SOLVING SIMULTANEOUS
C NONLINEAR EQUATIONS
COMMON/ULK/CF1,CF2

i=0

All=1.6

ZN11=1.27

A12=1.0

ZN12=0.812

B11=0.626

ZM11=0.76

B21=1.07

ZM21=1.254

B22=1.0

ZM22-=0.906

A21=.045

ZN21=.634
X=(Q1*A12/A11)**(1/(ZN11-ZN12))
Y=(Q2*B22/B21)**(1/(ZM21-2M22))

IF(CF2.EQ.0.0R.Q2.EQ.0) GOTO 2241
IF(CF1.EQ.0.0R.Q1.EQ.0} GOTO 2242

IF(Q1.EQ.0.and.q2.eq.0) goto 2240

2100 PHI = A11*X**ZN11/(A12*X**ZN12 + B11¥Y**ZM11) - Q1
XI = B21*Y**ZM21/(B22*Y**IM22 + A21*X**ZN21) - Q2

BB1 = (A12*X**ZN12 + B11*Y**ZM11)

BB2 = (B22*Y**ZM22 + A21*X**ZN21)
DPHX1=A11*ZN11*X**(ZN11-1)/BB1
DPHX2---A12*A11*ZN12*X**(ZN11-ZN12+1) /BB1**2
DPHX=DPHX1+DPHX2

DPHY = -A11*BI1*ZM11*X**ZN11*Y**(ZM11-1)/BB1**2
DXIY1 = B21*ZM21*Y**(ZM21-1)/BB2

DXIY2:= - B22*B21*ZM22*Y**(ZM21-ZM22+1) /BB2**2
DXIY = DXIY1 + DXIY?2

DXIX = -B21*A21*ZN21*X**(ZN21-1)*Y**ZM21/BB2**2
DDD = DPHX*DXIY-DXIX*DPHY

ZH11= (-PHI*DXIY+XI*DPHY)/DDD

ZK11 = (-XI*DPHX+PHI*DXIX)/DDD

X =X + ZH11

Y = Y +ZK11

IF(X.LT.0) GOTO 2240

IF(Y.LT.0) GOTO 2240

X0=X

YO=Y
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RPXS = ZH11/X
RPYS=ZK11/Y
IF(RPXS.LE. 0.0 AND.RPYS.LE.0.01) GOTO 2250

GOTO 2100

2240 X=0

Y=0

YO=0

X0=0

GOTO 2250

2241 XO=(Q1*A12/A11)**(1/(ZN11-ZN12))
YO=0.

GOTO 2250

2242 YO=(Q2*B22/B21)**(1/(ZM21-2M22))
X0=0.

2250 CONTINUE

RETURN
END
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This appendix lists the second of the main computer programs which are used to solve the
system of equations described in Sect. 3 of the main body of this report. The routine is written
in FORTRAN 77 and have been shown to operate on a wide variety of computers, including
a VAX 8600, a SUN Model 3, and a Definicon 780+ plug-in board for an IBM PC-AT. A
flowsheet of this program is given in Fig. 6. Like the first FORTRAN program, this is for the
solution of the two- component problem with interactive multicomponent Fruendlich isotherms.
The resistance to mass transport is assumed to be in the form assumed by Santacesaria et al.
(1982) of an effective fluid film plus macropore diffusion is modeled by a two constants for each
component. The program was originally written by Giorgio Carta, University of Virginia, and
was substantially modified by Michael Harris.

C*********************************************************

C TWO-COMPONENT ADSORPTION -SANTACESARIA MODEL

C MICHAEL T. HARRIS - MODIFICATION IN NOVEMBER ’87

C GIORGIO CARTA - ORIGINAL PROGRAM 8/14/86

CHEFE R ok ok ok ok o o KRR KR B R R Ak Rk

C ADSSAN.FOR - FILM AND MACROPORE RESISTANCE - 2 COMPONENT
C*

kL P P e P e P TP

C PROGRAM SOLVES FIRST ORDER PDE’S FOR WAVE PROPAGATION IN
C*

C FIXED BED ADSORPTION

Cc*

C CONSTANT FLUID VELOCITY

o *

C SANTACESARIA’S MODEL (EXCLUDING AXIAL DISPERSION EFFECTS)

C *

C SOLUTION BY ORTHOGONAL COLLOCATION
C *

C RKG USED TO SOLVE RESULTING ODE’S

c *

C FREUNDLICH ADSORPTION ISOTHERM

C*

(“j******************#******#*****#*#iuk*********#*****************_

C*

CFEHA A A ok R o oo o KR o R K
®
g*EPSI:VOIDAGE FRACTION ROB=BED SORBENT DENSITY
% ZJ:BED LENGTH U=SUPERFICIAL VELOCITY
g ;&KzMASS TRANSFER PARAMETER CF=FEED CONCENTRATION
g SOzINITIAL CONCENTRATION CREF=REFERENCE CONC.
é DTP=FEED PULSE DURATION X=COUT/CREF
C*
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C TSTEP=STEP DURATION
C*
QR dok ok koo ok ko ok o ok A K KRR IR R R Rk R Ak

C*

C

IMPLICIT REAL*8 (A-H,0-Z) ‘
COMMON/LAGR/EL(40,40),NT,AKE1,AKE2,AKRB1,AKRB2,VZ,AM, Y01,
1y02

COMMON/QE1/QM,QK,CREF
COMMON/ULK/CF1,CF2,ESP

DIMENSION Y/(80})

DIMENSION DIF1(40),DIF2(40),DIF3(40),ROOT(40), VECT{40)
C

C

C INPUT COLUMN PARAMETERS

C

OPEN(UNIT=5,FILE=*ASMC.DAT’, STATUS=‘OLD’)
REWIND 5

READ(5,*) U,AK1,AK2,Z

READ(5,*) EPSI,ROB

V=U/EPSI

C

C ASSIGN EQUILIBRIUM PARAMETERS QM AND QK
C FOR FREUNDLICH ISOTHERM: Q=QK*{(C**QM)

C

QM=0.5

QK=0.6

C

READ({5,*) CF1,CF2,C01,C02,CREF1,CREF2
READ(5,*)TSTEP

C

C

AKE1=AK1/EPSI*(1-EPSI)

AKE2=AK2/EPSI*(1-EPSI)

AKRB1=AK1/ROB

AKRB2==AK2/ROB

VZ=V/Z

READ(5*} N

READ(5*) H

READ(5,*} TDISP,ESP
OPEN(UNIT=6,FILE='FR.DAT’, STATUS=‘NEW"’)
WRITE(6,500)

500 FORMAT(¢ *** ESEB PROGRAM TO COMPUTE OUTPUT
1 PROFILE ***7)

WRITE(6,501)

501 FORMAT(* ****** >> INPUT INFORMATION << ***¥¥)
WRITE(6,502) Z,AK1,AK2,U

502 FORMAT(* BED DEPTH =, F10.4, * CM — BED

43



1AREA = ’,F10.4, CM — BED AREA =’ F10.4,

2‘CM**2 — SUPERFICIAL VELOCITY = ’, F10.4, CM/SEC’)
C WRITE(8,503) EPSI, ROB

C 503 FORMAT( ¢ BED VOID FRACTION =’,F6.4,

C 1° BED DENSITY = *,F10.4 GRAM/LITER’)

C WRITE(6,504) CF1,CF2,C01,C02,CREF1,CREF2

C 504 FORMAT(* CONCENTRATIONS - FEED1 = ’,E10.4,'MOLES/L
C 1-FEED?2 = *,E10.4,‘MOLES/L-INITIAL?2 = ’,E10.4,MOLES/L
C 1-INITIAL1 = *,E10.4, ‘MOLES/L — REF1="E10.4, MOL/L’
C 1,'MOLES/L — REF2 =*,E10.4,* MOL/L’)

C WRITE(6,505) QM,QK

C 505 FORMAT(* FREUNDLICH CONSTANTS — PRE = *,F10.7,
¢ 1'EXPONENT = *,F10.7)

WRITE(8,506) TSTEP, H,TDISP,N

506 FORMAT(* TIMES =’,3E10.4,

1° # OF COLLOCATION PT =",I2)

NO=1

Ni=1

AL=0.

BE=0.

NT=N+N0+N1

NEQ=2*(NT+NT-1)

CALL JCOBI (N,No,N1,AL,BE,DIF1,DIF2,DIF3,RO0T)
WRITE(6,114)

114 FORMAT(/,‘COLLOCATION POINTS’,/,t¥¥*+stttttttssssss /)
DO 200 I=1,NT

WRITE(6,115),ROOT(I)

115 FORMAT(*X( *,12, ) = *,F7.4)

200 CONTINUE

WRITE(6,120)

120 FORMAT(/’K*******************!)

ID=1

DO 10 I=1,NT

C WRITE(s,125) I

CALL DFOPR (N,No,N1,1,ID,DIF1,DIF2,DIF3,ROOT,VECT)
DO 5 K=1,NT

EL(K,I)= VECT(K)

C WRITE(6,130)K,EL(K,I)

5 CONTINUE

10 CONTINUE

125 FORMAT(/,‘COLLOCATION POINT I = *,12)

130 FORMAT{* L[1]( *,12,* ) = *,E12.6)

C

C ASSIGN INITIAL CONDITIONS

C

T=0.0

CALL QEQUIL (C01,C02,QSTAR1,QSTAR2)

DO 20 I=1,NT-1

Y(I)=Co1
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Y(2*NT-1+1)=Co02
Y(NT+I)=QSTAR1
Y(3*NT-1+1)=QSTAR2
20 CONTINUE
Y(NT)=QSTAR1
Y(3*NT-1)=QSTAR2

C

C ASSIGN BOUNDARY CONDITION
Y01=CF1

Y02=CF2

C

WRITE(6,123)

123 FORMAT(/, RESULTS OF NUMERICAL INTEGRATION’,/)
C

ENDT=TDISP

IFLAG=0

30 CONTINUE
IF(ENDT.LT.TSTEP.OR.IFLAG.EQ.1) GOTO 35
ENDT=TSTEP

IFLAG=1

35 CONTINUE

C

CALL RKG {NEQ,H,T,ENDT,Y)

C

IF(IFLAG.EQ.1) Y01=C01
IF(IFLAG.EQ.1) Y02=C02
XOUT1=Y(NT-1)/CREF1
XOUT2=Y(3*NT-2)/CREF2

¢ print *,t,xout
WRITE(6,40) T, XOUT1,X0UT2

40 FORMAT(F12.4, *,F10.7, °,F10.7)

C WRITE(6,45)Y01,Y(NT),YO2,Y(3*NT-1)

C45 FORMAT(/,'ENTRANCE CONCENTRATION = *,E12.6, Y(NT) =,
C > E12.6)

C

IF(IOUTF.EQ.1) WRITE(5,*)T XOUT1,XOUT2
ENDT=ENDT+TDISP

IF(T.GE.TSTEP) GOTO 510

IF(IFLAG.EQ.1) GOTO 510

GOTO 30

510 CONTINUE

END

C

C

C

C SUBROUTINE TO CALCULATE DERIVATIVES OF ODE‘S
C
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SUBROUTINE DERIVS (NEQ,X,V,YP)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/LAGR/EL(40,40),NT,AKE1,AKE2, AKRB1,AKRB2,VZ,
1AM,Y01,Y02

DIMENSION V(80),YP(80)

CALL CEQUIL (V(NT),V(3*NT-1),CSTAR1,CSTAR2)
YP(NT)=AKRB1*(Y01 -CSTAR1)
YP(3*NT-1)=AKRB2*(Y02 - CSTAR2)

DO 10 I=1,NT-1

YSUM1=Y01*EL(1,1+1)

YSUM2=Y02*EL(1,I+1)

DO 15 K=1,NT-1
YSUM1=YSUMI1+EL(K+1,1+1)*V(K)
YSUM2=YSUM2+EL(K+1,I1+1)*V(2*NT-1+K)

15 CONTINUE

CALL CEQUIL (V(NT+I),V(3*NT-1+1),CSTAR1,CSTAR2)
YP(I)s=-akel*(v(i)-cstarl)-vz*ysum1
YP(2*NT-1+1)=-ake2*(v(2*nt-1+i)-cstar2)-vz*ysum2
YP(NT+I)=AKRB1*(V(I)-CSTAR1)
YP(3*NT-1+I)=AKRB2* (V(2*NT-1+1)-CSTAR2)

10 continue

RETURN

END

C

C

SUBROUTINE QEQUIL (X,Y,Q1,Q2)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/QE1/QM,QK,CREF

C

C SUBROUTINE CALCULATES QSTAR GIVEN C FROM THE
C EQUILIBRIUM ISOTHERM: Q=f(C)

C

All=1.6
ZN11=1.27
Al12=1.0
ZN12=0.812
B11==0.626
ZM11=0.76
B21=1.07
ZM21=1.254
B22=1.0
ZM22=0.906
A21=0.045
ZN21=0.634

IF(X.LT.1.0E-12) X=DABS(X)

IF(Y.LT.1.0E-12) Y=DABS(Y)
IF(Y.EQ.0.AND.X.EQ.0) GOTO 2111
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QL = ALI*X**ZN11/(A12*X**ZN12 + B11*Y**ZM11)
Q2 = B21*Y**ZM21/(B22*Y**ZIM22 + A21*X**ZN21)
GOTO 2112

2111 Q1 = 0

Q2=0

2112 CONTINUE

C

RETURN

END

C

SUBROUTINE CEQUIL {(Q1,Q2,C1,C2)
IMPLICIT REAL*8 (A-H,0-7)
COMMON/QE1/QM,QK,CREF

C

C SUBROUTINE CALCULATES CSTAR GIVEN Q FROM THE
C EQUILIBRIUM ISOTHERM: C=f(Q)
C

A11=1.6

ZN11=1.27

A12=1.0

ZN12=0.812

B11==0.626

ZM11=0.76

B21=1.07

ZM21=1.254

B22=1.0

ZM22=-0.906

A21=045

ZN21=.634

IF(Q1.LT.1.0E-12) Q1=DABS(Q1)
IF(Q2.LT.1.0E-12) Q2=DABS(Q2)
CALL NEWSUB (Q1,Q2,C1,C2)

g C=(Q/QK)**(1.0/QM)

RETURN

END

C

C

C SUBROUTINE JCOBI

C

C EVALUATION OF ROOTS AND DERIVATIVES OF JACOBI POLYNOMIALS
C P(N) (AL,BE)

C

C FIRST EVALUATION OF COEFFICIENTS IN RECURSION FORMULAE
C RECURSION COEFFICIENTS ARE STORED IN DIF1 AND DIF2

C

C SUBROUTINE FROM MICHELSEN AND VILLADSEN, P. 418

C

SUBROUTINE JCOBI(N,No,N1,AL,BE,DIF1,DIF2,DIF3,ROOT)
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IMPLICIT REAL*8(A-H,0-Z)
DIMENSION DIF1(40),DIF2(40),DIF3(40),ROOT(40)
c

AB=AL+BE

AD=BE-AL

AP=BE*AL
DIF1(1)=(AD/(AB+2.)+1.)/2.
DIF2(1)=0.0

IF(N.LT.2) GO TO 15

DO 10 1=2,N

Z1:=11.

Z=AB+2.*71
DIF1(I)=(AB*AD/Z/(Z+2.)+1.)/2.
IF (LNE.2) GO TO 11
DIF2(I)=(AB+AP+21)/2Z/Z/(Z+1.)
11 2=7*2,

Y=Z1*(AB+Z1)

Y=Y*(AP+Y)

DIF2()=Y/Z/(Z-1.)

10 CONTINUE

15 X=0.

DO 20 I=1,N

25 XD=0.0

XN=1.0

XD1::0.0

XN1=0.0

DO 30 J=1,N
XP:=(DIF1(J)-X)*XN-DIF2(J)*XD
XP1=(DIF1(J)-X)*XN1-DIF2(J)*XD1-XN
XD=XN

XD1=XN1

XN=XP

30 XN1=XP1

ZC=1.0

Z=XN/XN1

IF(L.EQ.1) GO TO 21

DO 22 J=2,1

22 2C=2C-2/(X-ROOT(J-1))

21 2=2/1C

X=X-7

IF(DABS(Z).GT.1.0D-12) GO TO 25
ROOT(I)=X

X:=X+.0001

20 CONTINUE

c

C ADD INTERPOLATION POINTS AT X=0 AND X=1 IF REQUIRED
o

NT=N+N0+N1

IF(N0.EQ.0) GO TO 35
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DO 31 I=1,N

J=N+41-1

31 ROOT(J+1)=ROOT(J)

ROOT(1)=0.

35 IF{(N1.EQ.1) ROOT(NT)=1.0

C

C EVALUATE DERIVATIVES OF NODAL POLYNOMIAL

C

DO 40 I=1,NT

X=ROOT(I)

DIF1(I)=1.

DIF2(I)=0.

DIF3(1)=0.

DO 40 J=1,NT

IP{(J.EQ.I) GO TO 40

Y=X-ROOT(J)

DIF3(I)=Y*DIF3(I)+3.*DIF2(I)
DIF2(D)=Y*DIF2{I})+2.*DIF1(I)

DIF1{1)=Y*DIF1{1)

40 CONTINUE

RETURN

END

C

C

C SUBROUTINE DFOPR

C FINDS DISCRETIZATION MATRICES AND GAUSSIAN QUADRATURE
C WEIGHTS FOR GENERAL COLLOCATION APPROXIMATION
C SUBROUTINE JCOBI MUST BE EXECUTED FIRST TO FIND ZEROS AND
C DERIVATIVED OF NODAL POLYNOMIAL

C

SUBROUTINE DFOPR (N,NO,N1,I,ID,DIF1,DIF2,DIF3,ROOT,VECT)
IMPLICIT REAL*8 (A-H,0-7)

DIMENSION DIF1(40),DIF2(40),DIF3(40),RO0T(40),VECT(40)
C

C GAUSSIAN WEIGHTS NORMALIZED TO SUM 1

C ID=1: DISCRETIZATION MATRIX FOR Y’(X)

C ID=2 : DISCRETIZATION MATRIX FOR Y”(X)

C ID=3 : GAUSSIAN QUADRATURE WEIGHTS

C VECT= COMPUTED DIFFERENTIATION WEIGHTS

C

NT=N+NO+N1

IF(ID.EQ.3) GOTO 10

DO 20 J=1,NT

IF(J.NE.I}) GOTO 21

IF(ID.NE.1) GOTO 5

VECT(1)=DIF2(1)/DIF1(1}/2

GOTO 20

5 VECT(I)=DIF3(I)/DIF1(I)/3

GOTO 20
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21 Y=ROOT(I)-ROOT(J)
VECT(J)=DIF1(I)/DIF1(J)/Y
IF(ID.EQ.2) VECT(J)=VECT(J)*(DIF2(1)/DIF1(1)-2/Y)
20 CONTINUE

GOTO 50

10 Y=0.

DO 25 J=1,NT

X=ROOT(J)

AX=X*(1-X)

IF (NO.EQ.0) AX=AX/X/X

IF (N1.EQ.0) AX=AX/(1-X)/(1-X)
VECT(J)=AX/DIF1(J)**2

25 Y=Y+VECT(J)

DO 60 J=1,NT

60 VECT(J)=VECT(J)/Y

50 RETURN

END

C

C

SUBROUTINE RKG (N,H,T,ENDT,Y)
IMPLICIT REAL*8 (A-H,0-7)
DIMENSION YP(80),V(80),Y(80),C(80),W(80),Q(80)

C ..SOLVES SYSTEMS OF N ODE’S
C ..REQUIRES AS INPUT:

C oo N = NO. OF EQUATIONS
C..covveeeeeeeeeeen. H = DELTA-T
C.evrvveeeveee...ENDT = FINAL T-VALUE

C oo T = INDEPENDENT VARIABLE
C oo Y(J) = DEPENDENT VARIABLES
C ..REQUIRES AS SUBROUTINE "DERIVS”

C oo dY(1)/dT = YP(1)

C oo dY(2)/dT = YP(2)

L TN

C ovnoeeeerererrnn dY(N)/dT = YP(N)

C ..VARIABLES Y(J) IN SUBROUTINE DERIVS ARE:
(T V(1) = Y(1)

C oo V(2) = Y(2)

L

C

C

K=3

20 CONTINUE

Us=T

DO 30 J=1,N

V(3)=Y(J)

30 CONTINUE
CALL DERIVS (N,T,V,YP)
DO 40 J=1,N
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C(J)=H*YP(J)

W(3)=Y(J) + .5*C(J)

Q(I)=c())

V{1)=wW(J)

40 CONTINUE

U=T+H/2

CALL DERIVS (N,T,V,YP)

DO 50 J=1,N

C(J)=H*YP(J)

W(J)=W(J) + .2928932*(C(J)-Q(J))
Q(J)==.5857864*C(J) + .1213024*Q(J)
V())=W(J)

50 CONTINUE

CALL DERIVS (N,T,V,YP)

DO 60 J=1,N

C())=H*YP(J)

W(J)=W(J) + L707107*(C(J)-Q(J))
Q(3)=3.414214*C(J) - 4.12132*Q(J)
V(3)=W(J)

60 CONTINUE

U=T+H

CALL DERIVS (N,T,V,YP)

DO 70 J=1,N

C(3)=H*YP(J)

Y(N)=W(J) + C(J)/6. - Q(7)/3.

70 CONTINUE
T=T+H

IF (T.LT.ENDT) GOTO 20
RETURN
END

SUBROUTINE NEWSUB (Q1,Q2,X0,Y0)
IMPLICIT REAL*8 (A-H,0-2)

C REM NEWTON-RAPHSON METHOD FOR SOLVING SIMULTANEQUS
C NONLINEAR EQUATIONS
COMMON/ULK/CF1,CF2,ESP
i=0

All=1.6

ZN11=1.27

Al12=1.0

ZN12=0.812

B11=0.626

ZM11==0.76

B21=1.07

IM21==1.254

B22=1.0
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ZM22=0.906

A21=.045

ZN21=.634
X=(Q1*A12/A11)**(1/(ZN11-ZN12))
Y=(Q2*B22/B21)**(1/(ZM21-2M22))

IF(CF2.EQ.0.0R.Q2.EQ.0) GOTO 2241

IF(CF1.EQ.0.0R.Q1.EQ.0) GOTO 2242

IF(Q1.EQ.0.and.q2.eq.0) goto 2240

2100 PHI = (1-0.0)*A11*X**ZN11/(A12*X**ZN12 + B11*Y**ZM11)+
1ESP*X-Q1

XI = (1-0.0)*B21*Y**ZM21/(B22*Y**ZM22 + A21*X**ZN21)
1+ESP*Y - Q2

BB1 = (A12*X**ZN12 + B11¥*Y**ZM11)

BB2 = (B22*Y**ZM22 + A21*X**ZN21)
DPHX1=A11*ZN11*X**(ZN11-1)/BB1
DPHX2=-A12*A11*ZN12*X**(ZN11-ZN12+1)/BB1**2
DPHX=DPHX1+DPHX2 + ESP

DPHY = -A11*B11*ZM11*X**ZN11*Y**(ZM11-1)/BB1**2
DXIY1 = B21*ZM21*XY**(ZM21-1)/BB2

DXIY2= - B22*B21*ZM22*Y**(ZM21-ZM22+1)/BB2**2
DXIY = DXIY1 + DXIY2 + ESP

DXIX = -B21*A21*ZN21*¥X**(ZN21-1)*Y**ZM21/BB2**2
DDD = DPHX*DXIY-DXIX*DPHY

ZH11= (-PHI*DXIY+XI*DPHY)/DDD

ZK11 = (-XI*DPHX+PHI*DXIX)/DDD

X = X + ZH11

Y = Y +ZK11

IF(X.LT.0) GOTO 2240

IF(Y.LT.0) GOTO 2240

X0=X

YO=Y

RPXS = ZH11/X
RPYS=ZK11/Y
IF(RPXS.LE. 0.01.AND.RPYS.LE.0.01) GOTO 2250

GOTO 2100

2240 X=0

Y=0

YO=0

X0==0

GOTO 2250

2241 ALP = A11/A12
ZNP = ZN11- ZN12
CALL NEWP (Q1,XO0,ALP,ZNP,ESP)
YO = 0.

GOTO 2250
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2242 ALP = B21/B22

ZNP = ZM21 - ZM22

CALL NEWP (Q1,YO,ALP,ZNP,ESP)
X0=0.

2250 CONTINUE

RETURN
END

SUBROUTINE NEWP (QA1,X01,A1,ZNU,EP)
IMPLICIT REAL*8 {(A-H,0-7)

write(*,*) enter newsub’

=0 ‘
IF(QA1.EQ.0.)GOTO 203

201 ZH={1-EP)*A1*X01**(ZNU-1.0)+EP
i=i+1

X01 =X01 + ZH

RZH = ZH/XO1

write(*,*)i,rzh

IF(RZH.LE.0.0001) GOTO 202

GOTO 201

203 X01=0.0

202 CONTINUE

RETURN

END
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A1.1 Program input information

The two programs we have listed operate in precisely the same way. One must
create a data input file, (ASMC.DAT), which is used to provide parameters and
other input information for the operation of the program. The file is open format
with one input per line as follows:

TYPICAL INPUT INFORMATION!

Input Description

0 7 Superficial Velocity, U
0.05 e Mass Transfer Coefficient, AK1
0.08 i i Mass Transfer Coefficient, AK2
4385 i e Length of Column, L
0.3 i et Density of Particles, ROB
05 PPt Porosity of Bed, EPSI
0.0502 .. e i et Feed Concentration, CF1
0.050Z  tiiiii i i Feed Concentration, CF2
0.000 . i i e ittt iae e Initial Concentration, CO1
0.000 it i et et Initial Concentration, CO2
0.0502 ... . Reference Concentration, CREF1
00502 ... Reference Concentration, CREF2
200000 L i eiieeaeiee e TSTEP
N No. of Internal Collocation Points
2.00 e Numerical Integration Step
L1000 L et e e e TDISP
0.94 ... Particle Porosity (ADSSAN.FOR only)

' In the data file enly the numerical values appear.
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The output information is given in a file called FR.DAT which is created by
the program. The results appear as follows:

Typical Output File

TIME XOUT1 X0UT2

100.0 -.0166266 -.0041621
200.0 0539132 0056909
300.0 0536714 0057257
400.0 0540616 0058031
500.0 0546014 0059109
600.0 0553202 0060504
700.0 0562222 0062226
800.0 0573003 0064278
900.0 0585764 0066659
1000.0 0600262 0069374
1100.0 0616591 0072429
1200.0 0634749 0075825
1300.0 0654777 0079567
1400.0 0676783 0083677
1500.0 0700456 0088120
1600.0 0725943 .0092917
1700.0 0753236 0098068
1800.0 0782330 .0103579
1600.0 0813222 0109453
2000.0 0845912 0115695
2100.0 0880403 0122310
2200.0 .0916699 0120307
2300.0 .0054808 0136693
2400.0 0994741 0144477
2500.0 .1036511 0152672
2600.0 .1080133 0161260
2700.0 1125625 0170345
2800.0 1173007 0179852
2900.0 1222297 0189829

55



Typical Output File

CONTINUED

TIME XOoUuT1 XO0UT?2

3000.0 1273512 .0200295
3100.0 1327631 0211239
3200.0 .1384219 .0222938
3300.0 .1442828 0235212
3400.0 1503633 .0248116
3500.0 1567755 .0261790
3600.0 .1633354 .0276053
3700.0 1701359 .0291039
3800.0 1771796 0306781
3900.0 .1845563 .0323452
4000.0 1922083 .0340947
4100.0 2000405 .0359239
4200.0 .2081361 0378450
4300.0 .2164984 .0398622
4400.0 2251307 0419797
4500.0 2340361 .0442018
4600.0 .2432174 .0465329
4700.0 2526766 .0489775
4800.0 2624157 0515401
4900.0 2724359 .0542250
5000.0 .2828898 .0570659
5100.0 2937639 .0600490
5200.C .3046674 .0631360
5300.0 3158547 .0663637
5400.C 3273207 0697362
550C.C 3390619 0732575
5600.0 .3510739 0769315
57C0.0 .3635181 .6806343
5800.C 3761890 .0846618
5900.0 3893704 .0888618
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Typical Output File

CONTINUED

TIME XOUT1 XOUT2

6000.0 4026807 0032403
6100.0 4162485 0977965
6200.0 4303758 1025778
6300.0 4444953 1075133
6400.0 4588580 .1126368
6500.0 4734456 1179454
6600.0 .4882394 .1234559
6700.0 5032174 1291637
6800.0 5189223 1351517
6900.0 .5342569 .1412626
7000.0 5497749 1475793
7100.0 5654656 ,1540071
7200.0 5812423 .1608141
7300.0 .5971108 1677314
7400.0 6130499 1748479
7500.0 6290383 .1821624
7600.0 6450374 .1896762
7700.0 6610842 .1973825
7800.0 6770891 .2052782
7900.0 .6930541 2133616
8000.0 7089560 .2216201
8100.0 7258146 2302875
8200.0 7414635 .2389162
8300.0 7570825 .2477231
8400.0 7725392 .2566952
8500.0 .TR78178 .2658268
8600.0 8028963 2751117
8700.0 8177531 2845431
8800.0 .8323675 .2941140

8900.0 .8468658 30385660
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Typical Output File

CONTINUED

TIME XouT1 X0UT2

9000.0 .8608105 3136562
9100.0 8745708 3235997
9200.0 .8880240 3336514
9300.0 9011441 3438026
9400.0 9139167 .3540444
9500.0 9263284 .3643679
9600.0 9383670 3747639
9700.0 9500218 3852232
9800.0 9612832 3957365
9900.0 9721432 4062942
10000.0 9825953 4168868
10100.0 9926341 4275050
10200.0 1.0022557 4381391
10300.0 1.0114577 4487799
10400.0 1.0202387 4594179
10500.0 1.0285989 4700439
10600.0 1.0365395 .4806489
10700.0 1.0440629 4912239
10800.0 1.0511728 5017601
1G900.0 1.0578736 .5122490
11000.0 1.0641709 5226824
11100.0 1.0700713 6330521
11200.0 1.0755821 .5433504
11300.0 1.0807113 5535697
11400.0 1.0854676 .5637030
11500.0 1.0898606 5737432
11600.0 1.0939001 .5836839
11700.0 1.0975964 .5935189
11800.0 1.1009605 6032422
11900.0 1.1040033 6128483
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Typical Output File

CONTINUED

TIME X0OUT1 X0oUT2

12000.0 1.1067363 6223322
12100.0 1.1091711 6316889
12200.0 1.1113194 6409141
12300.0 1.1131930 6500036
12400.0 1.1148039 6589538
12500.0 1.1161638 6677612
12600.0 1.1172846 6764229
12700.0 1.1181781 6849362
12800.0 1.1188557 6932987
12900.0 1.1193290 7015085
13000.0 1.1196091 7095638
13100.0 1.1197070 7174634
13200.0 1.1196336 .7252061
13300.0 1.1193994 7327912
13400.0 1.1190144 7402183
13500.0 1.1184888 7474870
13600.0 1.1178320 .7545975
13700.0 1.1170534 7615500
13800.0 1.1161619 .7683451
13900.0 1.1151661 7749835
14000.0 1.1140745 7814661
14100.0 1.1128948 877941
14200.0 1.1116348 7939688
14300.0 1.1103017 7999917
14400.0 1.1089025 8058644
14500.0 1.1074438 8115887
14600.0 1.1059319 8171665
14700.0 1.1043727 8225908
14800.0 1.1027720 8278908
14900.0 1.1011351 8330416
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Typical Output File

CONTINUED

TIME XO0UT1 XOUT2

15000.0 1.0994670 .8380546
15100.0 1.0977725 .8429322
15200.0 1.0960561 8476768
15300.0 1.0943221 .8522909
15400.0 1.0925743 8567770
15500.0 1.0908165 .8611377
15600.0 1.0890522 .8653756
15700.0 1.0872846 .8694933
15800.0 1.0855166 .8734935
15900.0 1.0837510 8773789
16000.0 1.0819905 .8811519
16100.0 1.0802375 .8848154
16200.0 1.0784941 .8883719
16300.0 1.0767623 .8018241
16400.0 1.0750440 .8951744
16500.0 1.0733410 8984256
16600.0 1.0716546 9015801
16700.0 1.0699865 8046405
16800.0 1.0683377 9076093
16900.0 1.6667095 9104888
17000.0 1.0651028 9132815
17100.0 1.0635186 9159898
17200.C 1.0619577 9186160
17300.0 1.0604208 9211624
17400.0 1.0589084 9236312
17500.0 1.0574211 9260246
17600.0 1.0559593 9283448
17700.0 1.0545234 9305938
17800.0 1.0531136 9327738
17900.0 1.0517303 9348867
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Typical Output File

CONTINUED

TIME XOUT1 XOUT2

18000.0 1.0503734 .9369345
18100.0 1.0490433 .93891901
18200.0 1.0477398 .9408424
18300.0 1.0464630 9427061
18400.0 1.0452129 9445122
18500.0 1.0439894 9462622
18600.0 1.0427923 9479579
18700.0 1.0416216 .9496009
18800.0 1.0404769 9511928
18900.0 1.0393581 9527352
19000.0 1.0382650 9542205
19100.0 1.0371973 9556773
19200.0 1.0361546 9570799
19300.0 1.0351368 .9584387
19400.0 1.0341435 8597551
19500.0 1.0331742 9610304
19600.0 1.0322288 9622658
19700.0 1.0313068 .0634625
19800.0 1.0304078 0646218
19900.0 1.0295315 9657448
20000.0 1.0286775 9668327
20100.0 1.0278454 8678865
20200.0 1.0270347 9689072
20300.0 1.0262452 .9698959
20400.0 1.0254763 9708536
20500.0 1.0247277 9717813
20600.0 1.0239990 8726799
20700.0 1.0232898 9735502
20800.0 1.0225996 9743932
20900.0 1.0219280 9752097
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Typical Output File

CONTINUED

TIME XOUT1 XOUT2

21000.0 1.0212747 9760006
21100.0 1.0206393 9767666
21200.0 1.0200213 9775085
21300.0 1.0194203 9782270
21400.0 1.0188360 9789230
21500.0 1.0182680 9795970
21600.0 1.0177159 9802498
21700.0 1.0171793 9808820
21800.0 1.0166578 .9814943
21900.0 1.0161511 9820873
22000.0 1.0156588 9826616
22100.0 1.0151805 9832178
22200.0 1.0147160 9837565
22300.0 1.0142648 9842781
22400.0 1.0138266 9847832
22500.0 1.0134011 9852724
22600.0 1.0129880 9857461
22700.0 1.0125869 9862048
22800.0 1.0121975 9866491
22900.0 1.0118195 9870792
23000.0 1.0114526 9874957
23100.0 1.0110966 9878991
23200.0 1.0107510 9882896
23300.0 1.0104158 9886678
23400.0 1.0100904 9890340
23500.0 1.0097748 9893885
23600.0 1.0094685 9897318
23700.0 1.0091715 9900642
23800.0 1.0088833 .9903860
23900.0 1.0086038 9906976
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Typical Output File

CONTINUED

TIME XOUT1 XOouUT?2

24000.0 1.0083328 .9909992
24100.0 1.0080699 9912013
24200.0 1.0078149 .9915740
24300.0 1.0075677 0918478
24400.0 1.0073280 9921128
24500.0 1.0070956 9923694
24600.0 1.0068703 9926177
24700.0 1.0066519 .9928581
24800.0 1.0064402 .9930009
24900.0 1.0062349 9933162
25000.0 1.0060360 9935343
25100.0 1.0058432 9937454
25200.0 1.0056563 .9939497
25300.0 1.0054752 .0941475
25400.0 1.0052997 .9943390
25500.0 1.0051297 0945243
25600.0 1.0049649 9947037
25700.0 1.0048052 0948773
25800.0 1.0046505 9950453
25900.0 1.0045006 9952079
26000.0 1.0043555 9953652
26100.0 1.0042148 0955175
26200.0 1.0040786 9956649
26300.0 1.0039466 .0958076
26400.0 1.0038187 .0959456
26500.0 1.0036949 9960792
26600.0 1.0035750 9962084
26700.0 1.0034589 .0063335
26800.0 1.0033464 0964546
26900.0 1.0032375 . 9965717
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Typical Output File

CONTINUED

TIME XOUT1 XOoUT2

27000.0 1.0031320 .89966850
27100.0 1.0030299 9967946
27200.0 1.0028310 9969007
27300.0 1.0028352 6970034
27400.0 1.0027425 9971027
27500.0 1.0026528 9971988
27600.0 1.0025659 9972917
27700.0 1.0024818 9973816
27800.0 1.0024003 9974686
27900.0 1.0023215 9975528
28000.0 1.0022452 .0076342
28100.0 1.0021713 9977130
28200.0 1.0020998 9977892
28300.0 1.0020306 .9978629
28400.0 1.0019636 9979342
28500.0 1.0018988 .9980021
28600.0 1.0018361 9980698
28700.0 1.0017754 9981343
28800.0 1.0017166 9981967
28900.0 1.0016598 9982571
29000.0 1.0016048 9983154
29100.0 1.0015516 9983719
25200.0 1.0015001 9984265
29300.0 1.0014502 9984793
29400.0 1.0014020 9985203
29500.0 1.0013554 9985797
29600.0 1.0013102 9986275
29700.0 1.0012666 9986736
20800.0 1.0012243 9987183
29900.0 1.0011835 9987615
30000.0 1.0011439 9988022
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APPENDIX 2. NEWTON-RAPHSON METHOD FOR SOLVING
SIMULTANEOUS EQUATIONS

The following is an example of the Newton-Raphson method for solving two

simultaneous equations. First, define two functions as follows:

¢($, y) =0, : (Al)

1/)(3:, y) =0. (A2)

If z, and y, are approximate values of a pair of roots and h and k are corrections,

so that
z=1x,+h,
Y=Y +k,
then (Al) and (A2) becomes
| ¢(z, + h,y, + k) = 0, (A3)
Y(zo + b,y + k) = 0. (A4)

Expanding (A3) and (A4) by Taylor’s theorem for a function of two variables,the

following expression is derived:

¢z, o) +h(gi) +k(gj) =0 (A5)
¢(zo,yo)+h(gf) +k(g’5) =0 (A6.)

Equations A5 and A6 are solved simultaneously to determine values of 2 and k. New
values of z, and y, are computed by calculating z and y, and substituting these
values into Eqs. A5 and A6. This procedure is repeated until 2 and k approach

zero or some predetermined quantity.
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In the present algorithm (Carta’s Model), the functions ¢ and ¢ are defined as

follows:
All % ¢rZNn _

45(01’62) = A12 *chznz + Bl11+ c;zuu 4

B21  ¢;7M 21 B

'/’(Clscz) = B22*C;ZM” +A21*c’;z‘~2’ 42

Santacesaria’s model requires that ¢ and ¢ are to be defined as:

All x c}2N 11

¢‘(Cucz) - A12 * c;zwm + B11 % c;zu 11

— *
— gy t€6¢

2 *ZM21
B21 % ¢}

¢(cl,c2) - 322*6221\422 +A21*CIZN21

— *
— g4, T €0y

(A7)

(A8)

(AT)

(A8)

The term (1 — ¢,) has been deleted because ¢}, as is given by Liapis and Rippin

(1978), is in terms of grams of sorbent per unit total particle volume; therefore, a

volume correction is not necessary.

66



11-15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27,
28-29.
30-31.
32.
33.
34.

35-317.

38.

39.
40.

41.

42.

43-52.

ORNL/TM-10735

INTERNAL DISTRIBUTION

. Appleton
. Byers
. Clinton
. Fisher
. Genung
. Gibson
. Harris
. Hightower
. Johnson
. Merriman
. Perona
. Scheitlin
Scott

“meqmmicmw

wn
o
o

ZQHO’QH‘-‘@‘*ZZW"UWOW
QOUZ

2]

Central Research Library
Laberatory Records

Laboratory Records, ORNL R.C.
ORNL Patent Section
ORNL-Y-12 Technical Library
Document Reference Section

EXTERNAL DISTRIBUTION

Professor G. Carta, Department of Chemical Engineering,

University of Virginia, Charlottesville VA, 22901

J. P. DeCarli , Department of Chemical Engineering,

University of Virginia, Charlottesville VA, 22901

F. J. Hurst, 134 Nebraska Ave, Oak Ridge TN, 37830

R. §. Marianelli) Office of Basic Energy Sciences, DOE, Room G-338/GTN,
Washington, DC 20545

F. D. Stevenson, Office of Basic Energy Sciences, DOE, Room G-341/GTN,
Washington, DC 20545

Office of Assistant Manager for Energy Research and Development,
DOE-ORO, P.O. Box 2001, Oak Ridge, TN 37831-8600

Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831

67






