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ABSTRACT 

The recent development of chemical sensor arrays promises to solve some of the 
industrial, military, and domestic problems of gas detection and monitoring, but there are 
many problem areas to be addressed before these types of devices become readily 
available. The work presented here represents initial expeditions into a new, hybrid 
discipline for chemical analysis that combines materials science, chemical sensing 
techniques, and the application of pattern recognition for automatic information 
extraction. Specifically, two kinds of chemical sensor array design and construction are 
discussed. The nature of the outputs from these sensor arrays is examined for qualities 
such as information content, stability, reliability, and accuracy. Several methods of 
pattern recognition are explored for their ability to classify sensor array information. 
Preliminary results indicate much promise in the use of neural networks for the analysis 
of mixtures, which is a vexing problem. It is found that the most appropriate pattern 
recognition technique depends to a large degree on the complexity of the sensing 
problem. 

... 
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1. INTRODUCTION 

1.1 THE PROBLEM OF OLFACTORY SENSING 

The human sense of smell works by the identification of scent "fingerprints." 
Blindfolded, we can know a rose from a lily, Juicy-Fruit" gum from a peppermint 
variety, and some of us can distinguish our mother's beef stew from someone else's; we 
do not need an organic chemist as a lifelong interpreter to guide us through Weas maze of 
olfactory pleasures and hazards. Few people lack the sense of smell, but the sense of 
smell does deteriorate with age, and there are many hazardous compounds that we cannot 
detect by our unaided senses. There may not be a compelling reason to equip the 
anosmic individual with an artificial nose, but a greater understanding of this human 
sense and the ability to enhance this capability or to model it, even crudely, are desirable 
goals. There are many real-time (rapid response time) and/or remote olfactory sensing 
problems in domestic, industrial, and military settings that could be solved with a detector 
that could rapidly identify hazardous gases or by-products of interest. We can analyze a 
number of compounds with mass spectrometry and gas chromatography, but the 
associated instruments are cumbersome for many applications, require preparation of 
samples, and cannot provide information in the required time frame. Many applications 
demand portable or remotely operated devices specifically tailored to the problem at hand 
to enable rapid gas analysis. 

In general, many kinds of olfactory sensors have the disadvantage of not k i n g  able 
to identify explicitly an unknown gas or mixture of gases because they are not inherently 
selective. They may be calibrated to give an alarm or quantitative measurement only 
when the gaseous species is known at the outset. This problem of cross-sensitivity is 
particularly acute when dealing with hazardous industrial chemicals, CBW (chemical and 
biological warfare) agents, explosives, military fuels, and so forth, because such mixtures 
are chemically complex. Rapid identification of many of these compounds is desirable or 
even critical for making decisions affecting the safety of personnel and equipment. 

was proposed by Clifford.1 His idea was to construct an array of sensors having 
differential sensitivities to different gases. For different gases such an m a y  would, in 
principle, yield signatures with varying degrees of uniqueness. The integrated gas 
analysis and sensing (IGAS) chip developed at Oak Ridge National Laboratory (ORNL) 
has effectively demonstrated the creation of such a sensor array on an integrated circuit- 
sized (IC-sized) ceramic chip.2 The signature or output from the IGAS chip consists of a 
histogram of resistance changes in the chip's rnultisensor array caused by a particular gas 
or gas mixture that cannot be analyzed from first principles. This miniature sensor array 
provides unique signatures for many types of simple organic compunds. Several other 
approaches to the design and construction of gas sensor arrays have also successfully 
displayed selectivity to gases, but few have become commercially available. 

The usefulness of the IGAS chip, or any alternative gas sensor array, could be 
dramatically expanded by giving it intelligence in the form of a pattern recognition 
engine. Various techniques have been proposed to handle the signal processing and 
pattern recognition required to convert the outputs of these arrays into useful information 
such as the identities and concentrations of particular chemical species. In general, 
pattern recognition techniques have not been developed as fully as have sensor arrays. 

One theoretical method of synthesizing selectivity or minimizing cross-sensitivity 
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Much of the work in signature recognition has taken a general approach in order to prove 
the principles. Gases used in signature analysis work to date are often simple compounds 
and not necessarily species that would ever pxcw together in a real-world situation. 
There is also the inherent difficulty of deconvolation of the signature from a Hnixture of 
two or niore compounds; up to now, very little work has &en done with co~nplex 
mixtures. Some of this early work has riot aQ&essd realistic problems, but the ultimate 
goal of solving a specific problem should be kept iii mind. For most applications, 
fortunately, we will have to contend with only a limited universe of possibic or likely 
chemical species, which will reduce the information processing problem to a manageable 
level. The problem can possibly be further simplfied by developing application-specific 
sensing elements to enhance signature differences for specific compounds expected in a 
given situation. Consequently, sensor and pattern recognition developments will most 
likely proceed in an iterative way. 

Several materials and packaging problems have to be addressed before these gas 
detection insmments can be built, Typical power consumption requirements of many 
existing gas S~XISCKS are too high for realistic battery-operated designs. Some sensors are 
poisoned by compounds containing sulfur, and some may also be affected adversely by 
the envirotiment. Other concerr~s involve the feasibility of incorporating the pattern 
recognition engine into agplication-specific integrated circuits so that the overall device is 
as small and efficient as possible. Other pwblerns will arise as developers become 
involved in design and construction of an actual device. 

design and information analysis meah s, with the goal, of initiating a methodology or 
guide for designing useful gas detection and monitoring insmiments. Included are 
discussions of the design and construction of two types of sensor arrays, the nature of 
their output, several approaches to data analysis, and evaluation of the different 
approaches in the context of some actual olfactory sensing problems. 

The thrust of this report is to present the results of a study of chemical sensor array 

1.2 DESIGN AND CONSTRUCTION OF GAS §E 

In the last several years, various types of chemical sensor ax-rays have been designed 
and constructed. Much work in the development of sensor m a y s  falls into two groups: 
arrays made of discrete commercial sensors armdl integrated serisors in which the m a y  is 
fabricated as a single device. In either group the selectivity of the array can be achieved 
in several ways: (1) by the usc of catalysts, (2) by the use of thermal gradients, and 
(3) by the use of filters. The mays described below employ one or more of these 
methods. Arrays of the first two types were constructed for this work, and a more 
detailed description of each follows this section, These sensor mays form useful test 
beds to explore the responses to various substances and to evaluate the usefulness of 
various signature recognition schemes. 

sensors is shown in Fig. 1.1. This prototype consists of six comme8-cial. gas sensors of the 
Taguchi type"instal1ed on a IO-crn-dim bakelire disk and mounted in an airtight 
chamber. The chamber is fitted with gas inlets and outlets for controlled gas flow. 
Resistance changes of the gas sensors are monitored by a computer data acquisition 

One early example3 of an array construct from several discrete conumercial gas 

Figaro Engineering Co., Osaka, Japan. 
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Fig. 1.1. Pirototype;cJensorarrayamabhgsixdi&rentgas~eBementa sensoas' 
differeatid sensitivities to different gases cauid form tbe basis of an intelligent system. (photo courtesy of 
M. W. Siegeil, CknegWvleUon University.) 

system. Each discrete sensop has its own internal heating element; power consumption 
for the complete six-elemnt array is -4 W. 

To reduce the size, paver consumption, and manufacturing costs of a metal-oxide 
gas sensor array, the GAS was designa3 and CoIEStNcted using conventional thick- 
fiim technology.2 The IGAS chip, Fig. 1.2, achieves the e t  of a multisenm array on a 
single subsme by Creating a continuous mefal-oxicic Nm whose catalytic properties vary 
from place to place on the chip. Embedded demdes allow us to mag the responses of 
the d3'f-t mdng areas. The catalytic activity is varied by creating a thermal gradient 
along the length of the chip, by distributing Merent catalysts in differeat areas along the 
surface, or by a combination of both t W q w .  The IGAS chip m~asures 2.5 x 1.0 cm 
and CollslEfneS -2.5 W. 
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Fig. 1.3. Prototype of thick-film sensor array developed 
at Hitachi and its response to four distinctive corn pound^.^ 

change of a semiconducting metal oxide. Stetter and coworkers6 have described an 
instrument having four electrochemical sensors and two catalytic filaments that can be 
heated separately or together to give four operating modes (Fig. 1.4). The combination of 
four sensors and four modes effectively creates a 16-sensor array. The response of their 
instrument, although achieved with a somewhat different physical approach, lends itself 
to the same type of pattern recognition scheme as other sensor arrays. 



Electrochemical 
Sensors 

Vent 

Pump 

Fig. 1.4. Schematic of sensor array of four 
electrochemical sensors operated in four catalytic modes. 

Other sensor array concepts being developed include the use of surface acoustic 
wave (SAW) devices with chemically selective coatings? metal-oxide semiconductor 
(MOS) sensors with molecular sieves,* and palladiudsilver (Pd/Ag) gate combinations 
with metal-insulator semiconductor (MIS) diodes? 

1.3 PREVIOUS WORK IN GAS SENSOR ARRAY ANALYSIS 

The conventional approach to signature recognition of sensor array data is through 
the application of chemometrics. Clifford describes an approach of this type in his patent 
"Selective Gas Detection and Measurement System."1 A system of equations is 
developed, one equation per gas sensor. Clifford states that the number of gas sensors for 
each system must be equal to or greater than the number of gases in the system, but this is 
not a requirement in all chemometric systems.4 The response of each element in the array 
is measured for each selected gas to determine the constants used in the equations. In 
addition, all the sensors in the array must have a response to at least one of the gases 
included in that system. Other workers have evaluated several types of chemometric 
approaches to determine suitability and practicality for various classification 
and have used this kind of pattern recognition to cull sensors from an array if they yield 
redundant information.11 

One of the few implemented chemometric classification systems has been done at 
Hitachi.4 The algorithm is presented schematically in Fig. 1.5. A standard pattern is 
calculated for each of seven pattern classes selected for this system. The standard pattern 
has some defined range to accommodate ranges in concentration. For an unknown 
sample pattern, x, similarity values are calculated by multiplying the difference between 
the x pattern and the standard pattern classes, i ,  by a weighting factor, Wj, where J' 
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specifies the sensor number. The smallest similarity value, Si. identifies the unknown 
sample, x, as belonging to the pattern class i. This algorithm has been implemented in an 
8-bit microcomputer, which has been incorporated into an instrument with the sensor and 
associated power and signal processing circuitry. Analog signals from the sensor are 
converted into digital signals forming the input to the microcomputer, which calculates 
the similarity values and identifies and quantifies the gas. 

J. R. Stetter and coworkers6 devised a recognition system noteworthy for its simple, 
yet workable, solution for their sensor array instrument described above. As shown in 
Fig. 1.6, for each gas, operating four sensors in each of four modes yielded 16 responses, 
which are arbitrarily assigned to 16 channels. "Fingerprint" patterns for each of 
19 hazardous gases were made up with the 16 data channel numbers from the sensing 
device, listed in order of greatest response to the selected gas. Only 2 of the 19 gases 
tested had the same fingerprint when the three channel numbers with the greatest 
responses were used as the basis for the fingerprint; however, the identities of these 
2 gases were determined unambiguously when the fingerprint was expanded to the five 
highest response channels. The significance of this kind of identification is in its obvious 
economy. No time-consuming chemometric manipulations are needed, and the system 
can be coded easily in a microcomputer. In proving the principle, S tetter et al. have 
designed a general-purpose instrument, but the identification principles could hold for 
specific applications with smaller sets of defined gases. 
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2. EXPERIMENTAL METHODS 

2.1 ARRAY OF CONVENTIONAL SENSORS: DESIGN AND FABRHCATION 

A typicai commercial gas sensor (Fig. 2.1) consists of a small ceramic tube coated 
with tin (IV) oxide and a suitable catalyst. A heater coil located inside the tube maintains 
the temperature at 200 to 50O0C so that the tin oxide can react with combustible gases. 
The electrical resistance of the tin oxide is measured between two electrodes at opposite 
ends of the tube. The entire assembly is packaged in a protective housing with an open 
area (covered by wire mesh) to allow gases to enter. Because the resistance change of 
this sensor can be large and reasonably linear over many decades of gas partial pressure, 
much work has been devoted to the creation of sensitive, inexpensive gas sensors and 
alarms. 

These conventional tin oxide gas sensors can be made more sensitive to specific 
gases (e.g., methane or carbon monoxide) by the choice of catalyst applied to the oxide 
surface.12 For example, platinum enhances the sensitivity to light hydrocarbons such as 
butane, whereas palladium increases the sensitivity to hydrogen and carbon monoxide. 
Figure 2.2 shows the characteristic responses of two different Figaro gas sensors to 
various gases. Unfortunately, as can be seen from that figure, any one sensor cannot 
distinguish between high concentrations of a less reactive gas and low concentrations of a 
more reactive gas. For many applications, this cross-sensitivity or lack of selectivity, 
severely limits the potential of the device as an analytical tool. It has therefore been 
suggested' that, by coordinating the outputs of several different gas sensors, each of 
which has characteristic responses for different gases, a signature could be derived that 
would identify any particular gas and possibly give an indication of the gas concentration. 
This concept was initially tested by M. W. Siegel," who constructed the prototype sensor 
array shown in Fig. 1.1. 

To collect data for this work, a sensor array was constructed with nine discrete 
commercial sensors of the Taguchi type. This sensor array can be configured into either 
of two modes; (1) nine identical sensors can be operated at different power levels (and 
hence, different temperatures), and (2) different models of sensors can be inserted into the 
different positions in the amy .  In this way each element of the array has different 
response characteristics that in general will not be identical for different gases. This 
arrangement allows wide control over the range of sensitivities of the different sensing 
elements. 

shelf in the middle of the cabinet with a baffle to diffuse the flow of the incoming gas. 
Dc power is supplied to the heater in each sensor through individual load resistors 
selected to control the power applied to each sensor. The sensor array consisted of nine 
Taguchi-type sensors operated at power levels ranging from 30 to 100% of the 
manufacturer's recommended operating power (900 mW). Sensor 1 was operated at 
100% and sensor 9 at 30%. 

of gases to which it is sensitive. The resistance of the model used in this work (TGS 812) 

The test chamber is a 1-ft3 Lucite cabinet (Fig. 2.3). The sensors are arranged on a 

A Taguchi metal-oxide sensor exhibits a large change in resistance in the presence 

* The Robotics Institute, Camegie-Mellon University (CMU). 

9 
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e I wt rode 

heater 

Sn02 ceramic t u b e  

Fig. 2.1. Design of Figaro Engineering TGSW gas sensor. 

will decrease by 4 to 5 orders of magnitude when exposed to alcohol vapor, for example. 
The response to the gas occurs in a matter o€ seconds to nlinutes, but recovery to its 
original resistance in air can take hours. The dynamic response is not well undeast 
and observations demonstrated that recovery is highly dependent on the substance to 
which the sensor was most recently exposed. The steady state response of the sensor to a 

reproducible. Consequently, all nieasuxements were made after allowing the sensor array 
to come to equilibrium with the sample gas (-5 min). 

given substance is much less sensitive to previous exposures and therefor- ’c. more 

2.2 IGAS CHIP: DESIGN AND FABRICATION 

‘he author was part of a team of workers at BRNL who developed the IGAS chip. l3 

This device is an example of a sensor array fabricated on a single substrate, design 
overcome the nsnselectivity of a single conventional gas sensor without k i n g  
substantially larger or more expensive, or requiring more power to operate. A detailed 
discussion of this device follows.2 

A natilral outgrowth oE the bulky, multisensor device described in the previous 
section was the idea of integrating many sensors on a single substrate by varying the 
catalytic properties of the tin oxide layer, either by distributing different catalysts or by 
varying the temperature in the different reactive regions on the chip. We achieved a 
Bramatic increase in functional density by using thick-film circuit technology to create an 
m y  of closely spaced electrodes on a refractory substrate so that the equivalent of up to 
25 different sensors could be fabricate8 on m area of -2 C M ~ .  The resulting device plugs 
into a ZO-pin, dual in-line IC socket. ‘I’ihre chip represents a significant advance in the 
development of a “sn~art” chemical sensor. Although conventional thick-film technology 
was used to develop this new gas sensing device, some of the design requirements 
dictated th dation of nontraditional thick-film inks. We chose the thick-fih 
technique e it is an inexpensive, reliable manufacturing method that provides much 
flexibility to accommodate design modifications as development p~-ogesses, 
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Fig. 2.3. Prototype sensor array containing nine gas sensing elements. 

Development of this device was initiated with funding by Cabot Copration. 
During the period of development (-1.5 years), hybrid circuit methods were exploited to 
produce a functional, rugged, miniature, and relatively inexpensive intelligent gas sensing 
element. Several designs were built and tested under steady state conditions. In a related 
program, workers at CMU were to study the sensor's response to transient conditions and 
develop the software needed to apply the sensor to specific analytical problems. The 
results obtained at CMU are published elsewhere.14 
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2.2.1 Design Specifications 

The IGAS chip was designed to meet the following requirements: 

The active area must consist of a semiconducting oxide film (e.g., SnOz, ZnO, 
F e a )  whose catalytic properties vary from place to place on the surface. The 
response to various gases should be rapid, reversible, and cover a large dynamic 
range. The baseline resistance of the oxide film in air should not be too high to 
measure conveniently (realistically, less than -106 52).  

A large number of electrodes must be arranged so that the electrical responses of all 
the different areas of the sensor can be quickly mapped by addressing the electrodes 
in pairs. 

The interconnection between the electrodes on the chip and the measurement 
equipment should be rugged, inexpensive, and compatible with standard circuit 
components. 

An integral heater must be able to keep the sensor at a sufficiently high temperature 
for reaction with the sample gases. The heater should be available in either of two 
configurations, depending on whether a uniform temperature or a thermal gradient is 
desired. 

The entire sensor should be stable with respect to thermal cycling and thermal aging. 
Specifically, mechanical incompatibilities such as poor adhesion to the substrate and 
spalling must be avoided. Although the present sensors have evolved with these 
considerations in mind, it is important to remember that the concept is quite general 
and alternative designs can be imagined for specific applications. 

2.2.2 Substrate Layout 

Several electrode patterns were used, as shown in Fig. 2.4. The first pattern 
provides for measurement at nine points along the length of the chip by addressing 
opposite pairs of electrodes. The second pattern provides for measurement at 17 points, 
giving potentially greater resolution and a more complex signature. The third pattern 
gives 25 measurement points and is conveniently arranged so that three strips of different 
sensor materials (e.g., with different catalysts applied) can be laid out along the thermal 
gradient. In each case, the photo masks were designed so that eight sensors are printed at 
once on a scored alumina substrate. The conductor material was a commercial gold- 
palladium (Au-Pd) frit-bonded thick-film composition, printed and fied according to 
standard practice. 

Heater configurations are shown in Fig. 2.5. The heater material was a commercial 
RuO2 resistor composition. Although the heaters were not originally designed to be used 
together on the same substrate, the masks for the large heater can be rotated by 180°, 
allowing power for the large heater to be applied across pins 10 and 11 while power to 
the small heater is applied across pins 1 and 20. The presumed benefit of a two-heater 
configuration is more precise thermal management and less thermal stress on the small 
heater. 
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2.23 Sensor Materid 

After the electrodes and heaters are fired onto the substrates, the semiconducting 
oxide layer can be deposited by either of two techniques. One approach involves insitu 
decomposition of an anhydrous tin chlodds&c acid &me. The other inethd 
involves the fmuh t im of printable inks that c a ~ l  be applied and fired by traditional 
thick-film practice. 

The stearic acid method, as described by Taguchi,ts involved the following steps. 
Anhydrous tin chloride, a clear liquid, was mixed with powdered stearic acid and 
warmed on a hot plate until the A d  &~lvad ,  Upon further heating, &e mix= 
became dark brown. At that point the mixture was painted on the substrate and fired at 
7 W C  in air. This process had to be repeated several times to build up an adequate film 
thickness on the substrate. The organic compomnt was intended to be burned off, 
creating desired porosity in the tin oxide layer. On top of the tin oxide layer, one or more 
alcohol solutions of precims metal chlorides were then painted on selected areas and 
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fued for 5 min art 700°C in air. Films with sheet resistances in the range of 5 to 30 
Wsquare were deposited by this technique. 

Figure 2.6 shows the active layer of one sensor made by this method. The tin oxide 
has a crenulated surface with a distribution of fine rut enium catalyst particles. It will be 
shown later that this type of sensor is fast and quite 
compounds. However, the stearic acid meth 
First, it was difficult to control and reproduce in the laboratory (although the technique 
can, of course, be done reproducibly with specialized manufacturing equipment). The tin 
oxide layers were not sufficiently uniform, and the stearic acid mixture tended to liquefy 
readily in the initial firing and partially overlap the heater strip, occasionally rendering 
the fust measurement point on the chip unusable. Second, the strength and adhesion of 
the tin oxide layer was quite poor, and its initial resistance varied greatly from point to 
point on the chip. Third, the distribution of catalyst was difficult to control; it is likely 
that the sensor layer shown in Fig. 2.6 contains much more precious metal than 
necessary, 

To overcome these difficulties, it became clear that printable compositions were 
needed. Our proprietary sensor inks contain three major components: a metal oxide, 
which is the active agent; glass frit for adhesion; and organic vehicles that burn off during 
firing. The catalyst can be either applied after firing, as before, or incorporated directly 
into the ink. 

parameters, four master inks (SnO% ZnO, FeD3, and glass) were formulated, as shown in 
Table 2.1. The same binder, dispersant, and solvent were used in each, so the three 
batches could be blended in any desired proportion. The inks were formulated by the 
following procedure. Each powder was milled in isopropanol to produce a fine particle 
size. The oxide powders were milled in a vibratory mill in a plastic jar with zirconia 
medium to break up agglomerates. The glass was pulverized in a steel mortar, ball-milled 
16 hours with alumina medium, and screened to -325 mesh (44 microns). The powders 
were dried in air at 100°C. 

To maximize the sensitivity, it is important for the oxide layer to be porous. 
Therefore, we formulated the inks with more organic vehicle than a normal commercial 
thick-film composition. To achieve a target of about 30 vol % solids in the ink, an 
amount of solvent equal to twice the theoretical volume of the powder was added dong 
with a small amount of a proprietary dispersant. The mixture was initially quite dry and 
was therefore blended by hand with a spatula until the dispersant was well distributed and 
the mixture became semifluid. The slurry was then liquefied With an ultrasonic 
dismembrator for 1 min at - 180 W of power. 

The binder (a commercial acrylic resin) was added to the liquefied slwry in the 
form of small beads supplied by the manufacturer. The mixture was stirred well, 
covered, and placed in an oven for several hours at 60°C to dissolve the resin completely. 
Each ink was thoroughly mixed again before each use. 

Because of the lower volume fraction of solids, our inks were somewhat less 
viscous than typical Commercial thick-fdm compositions, but each of the inks had a 
suitable viscosity range for screen printing onto alumina substrates. They were mixable 
in all proportions. A trial printing of the glass master composition fused to the substrate 
after 15 min at 92SOC. Higher f i n g  temperatures (950 and 975°C) gave slightly 
smoother films, indicating greater fusion of the glass frit, as expected. 

onsive to many organic 
had several important shortco 

To conduct a preliminary study of the effect of ink composition and firing 
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Fig. 2.6. scanning electron micrograph of IGAS chip ToS-3.13 A tin oxide layer was depagited by 
the stearic acid/tin chloride method and fited at 700'~ in air.  he process was repeated appoximately five 
more times, then the ~ u c 1 3 ~ ~ 2 o ~ e t m o i  which was mted on anti fired at 700°C 
in air (1 cm = 10 pm). 

was a~ped 

Table 2.1. Thick-film rmsta a n n p ~ s i t i ~  

Powder (g) 47.0 56.0 52.4 25.0 

Powder d y s i s  99.9SnO2 99.8ZnO 99.0 Fern 75.0 SQ 
120 Nafl 
8.0 C.0 
5.0 M@ 

Binder (g) 

solvent (g) 

Dispersant (cm3) 

3A 

13.5 

5.0 5.0 5.0 

20.0 20.0 20.0 

05 0.5 05 0.12 

Tin oxide and zinc oxide inks were each fmulated with three different nomind 
glass contents (1 1,20, and 33 vol8 ,  solids basis). These inks were printed on tt stancsard 
resistor test pattern that included s e v d  resistor geometries ranging from 1 x 1 mm to 
1.5 x 4 mm. The test pieces were leveled, dried, and then fited at 925,950, and 975OC. 
Sheet resistivities of the fired tin oxide layers were measured at 125 and 2000C 
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(Table 2.2). Resistivities of the zinc oxide specimens were measured only at 200°C 
(Table 2.3). Because the test pattern contains many sizes and shapes of resistors, we 
believe the standard deviations of the sheet resistivities given in Tables 2.2 and 2 3  
mainly reflect edge effects (such as interactions with the gold electrodes), rather than 
intrinsic variations in the pfintd films Pheniselves.16 The samples were exposed to 
acetone vapor as a crude measure of their relative sensitivities. Resistivities changed 
rapidly and reversibly by as much as a factor of 14. Initial response to the gas took a few 
secisnds and recovery took about a minute, 

Figure 2.7 shows typical examples of our sci~sor inks printed and fired according to 
standard practice. Note the improved uniformity as compared to the tin oxide film 
deposited by the stearic acid method. Note also the fine porosity and correspondingly 
high surface areas of the printed compositions. 

One can see from Tables 2.2 and 2.3 that e sheet resistivities of the printed 
sensors were quite high. The resistivities and sensitivities of the tin oxide samples were 
strongly temperature dependent, as expected. The tin oxide compositions were generally 
nmre responsive to acetone vapor than were the zinc oxide compositions, suggesting that 
SnOz has greater intrinsic catalytic properties than ZnO with respect to the oxidation of 
ace tone. 

Because of the high resistivities of these compositions, the soda-lime glass frit was 
later replaced by a more conductive vanadium oxide-based frit; however, sensors made 
with these newly developed inks were not studied extensively so that pattern-recognition 
work could focus on the large m a y  with its greater flexibility to control individual 
sensing elements. 

22.4 Interconnectisras 

Connector pins for the IGAS chip are a comercia1 product, duBsnt Connector 
Systems* 75503-003 preplated brass stock, with a tin-led (Sn-Pb) solder coating. The 
connectors are supplied on a continuous roll and me designed to clamp onto the dges  of 
the substrate, providing a mechanical band to supplemerit the adhesive or solder joint. 
Initially the pins were joined to the thick-film electrodes with silver-filled polymer 
adhesives (Ablebond 943- 1 and 7 1-1). We found that the strength of these adhesives 
was inadequate to withstand repeated handling of the sensors, md there was evidence of 
deterbration at the high operating temperatures. As a result, vapor phase solde?ang was 
later chosen as the preferred method of attachment. 

2.2.5 Sensor Fabrication 

The entire fabrication process is summasizd as follows: 

1. Substrates are prepxed for printing by boiling in a cleaning solution$for 5 to 10 min. 

2. The substrate is placed in the screen printer and aligned with the mask, which is 
f o m d  on a 200-mesh stainless steel screen. Standoff is adjusted to 1.0 m. 

Formerly Berg Electronics. 

*Crystal Clean, Aremco Products, Ossining, N.Y. 
Ablesa IAmratoaies, Gardam, Calif. 
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Table 2.2. Electrical chari+ct&tics of printed tin oxide inks 

Sheet Sheet 
Glass Firing resistivity resistivity 

content temperature (MWsqm) Sensitivity' (Wsquare) Sensitivityb 
(%la ("c) at 125" C at 125°C at 200°C at 200°C 

11 925 8.2f 4.0 1.5 1.7f 8.0 1.3 
11 950 81.0f 56.0 3.6 6.5 f 3.0 13.0 
11 975 40.0f 12.0 2.1 13.0f 3.0 10.0 

20 925 40.0f 14.0 1.3 5.3 f 2.6 14.0 
20 950 18.0f 7.0 1.3 1.6f 0.9 2.9 
20 975 1 0 . O f  4.0 1 .o 1.7f 0.6 33 

33 925 12.0f 5.6 1 .o 2.4f 15 3.1 
33 950 27.0f 7.0 1 .o 1.2f 0.5 3.1 
33 975 27.0f 7.0 1 .o 1.6f 1.0 2.9 

%Jominal volume percent of glass master ink, balance tin oxide master ink. 
bResistivity in air divided by resistivity in acetone vapor, with no caralyst applied. 

Table 2.3. Electrical charactaistics of printed zinc oxide inks 

Sheet 
Glass Fining resistivity 

content temperature (MNsquare) Sensitivityb 
%a m at 200°C at 200°C 

11 925 36.0f 10.0 4.0 
11 950 0.8 f 0.4 2.4 
11 975 3.1 f 0.8 1.8 

20 925 93.0 f 70.0 12.0 
20 950 1.Of 0.15 3.0 
20 975 2.5 f 2.0 1.3 

33 925 100.0f 49.0 2.0 
33 950 1.7f 0.7 1.5 
33 975 19.0f 7.0 1.7 

Wominal volume percent of glass master ink, balance zinc oxide 

bResislivity in air divided by resistivity in acetone vapor, with no 
master ink. 

catalyst applied. 
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6. 

7. 

8. 

Electrodes are printed with duPont 9910 (Au) or 9985 WAu) thick-film CondlEctOT 
compositions at a squeegee sped of-3 CnJS. They are a U d  to level far 10 min 
at morn temperature and then dry on a hot plate at 100 to 1WC. 

Firing is done in air using a belt furnace. The speed is set to give -1Omin atapeak 
tempmature of 925OC. Total time in the furnace is -1 h. 

Ekatm are printed with duPont 171 1 resistOr Camposition, levekd, dried, and fired 
as in step 4. 

The liquid tin chloriddstearic acid mixture is brushed on and fired in air at 70O0C for 

Alcohol solutions of precious metal chloride are then brushed on, dried, and fired in 
air at 700OC (the palradiwn mixture was fired 82 sooOC). Akmatively, om 
proprietary inks (containing the catalyst as a wluble organmmtdlic compound) are 
printed on and f d  as in step 4. 

5 min. This process is Iepeated s e v d  timcsmbuild up all adaquatc film thickness. 

Electrode pads are cleaned with a small fiberglass brush. 

Leads ate attached with conductive adhesive (silver-med plyhide) and baked far 
30 min at 150°C followed by 30 min at 275OC. Altemhwly, leads m s o w  
using 63/37 Sn-Pb solder cream, reflowed by a fluomaakm vapor-phase soldering 
unit (temperature of the vapor is 216'0. 
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2.3 SELECTION OF COMPOUNDS FOR OLFACTORY TESTING 

Several compounds and mixtures of interest were tested, including water/alcohol; 
hexane/alcohol and gasoline mixtures; essential oils, flavorings, and foods; moth balls 
(naphthalene); and malathion, as an analog of chemical warfare agents. The mixtures 
chosen are representative of a wide variety of substances encountered in chemical process 
industries and particularly in food and fragrance production.17 Specifically, we examined 
mixtures of water and ethanol because of their significance to the distilling and 
pharmaceutical industries. Hexane/ethanol mixtures served as a paradigm for automotive 
fuels. Fresh whole milk and spoiled milk were used to study the possible detection of 
rancidity. Flavorings and essential oils were studied to determine the behavior of 
complex phenols and esters and the complicating effect of large quantities of alcohol as a 
diluent. Also, because water is such a ubiquitous substance and metal-oxide sensors are 
known to be influenced by humidity, we intentionally ran some measurements with 
water-saturated air as the carrier gas. 

sensitive the array would be for different concentrations of the water/alcohol and 
hexane/alcohol mixtures, and whether the array was sensitive to the decomposition 
products of dairy f d s  and fruits. Substances avoided were those likely to contain 
mercaptans or some other form of sulphur, such as onions or garlic, which contain allyl 
disulfide.18 It is well known that sulfur is a poison to noble metal catalysts, which are 
used with the Taguchi sensors and the XGAS chip and it is suspected that this 
characteristic makes them inherently unsuitable for environments in which these 
compounds are likely to occur. 

All the examples to be discussed present some of the characteristics of sensor array 
data that must be examined to determine the feasibility of applying pattern recognition 
techniques €or automatic identification of gaseous compounds in a system. It is therefore 
desirable to characterize the ranges of response and individuality of the signatures, to 
characterize the effect of water or other diluents, to define the limits of reproducibility, 
and to understand the complicating effects of reactive solvents and poisoning agents. 

Of interest was discovering the characteristic effects of the many substances, how 

2.4 TESTING CONDITIONS: DISCRETE SENSOR ARRAY 

Most of the substances measured are volatile liquids at room temperature. Vapors 
were introduced into the test chamber by passing air through a flask containing the liquid. 
Air flow was nominally 340 vh. Because of the baffle and because the system was 
allowed to come to equilibrium, the response was insensitive to flow rate of the sample 
gas. In the case of particularly volatile substances like alcohols, the sensors were able to 
equilibrate before appreciable evaporative cooling of the vapor generator could take place 
(-3 min). This characteristic is important, because temperature changes will affect the 
vapor pressure and hence the concentration of the species in the gas stream. 

After most exposures, the system was allowed to equilibrate with air. For most tests 
this took several hours, but recovery from certain substances was incomplete after 16 h or 
more. In general, tests were repeated to verify the reproducibility of the signatures. (In 
some practical applications, a sensor would not normally be allowed to come to 
equilibrium in air between measurements, and it is assumed that the sensor would still be 
sensitive to changes in the concentration of gases in a system). 
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For the present work, we used the first configuration of the Sensor array (identical 
sensors operated at different power levels). We used the TGS 8 12 general-purpose gas 
sensor, which is sensitive to a wide variety of organics and other reactive gases such as 
ammonia and hydrogen cyanide. An initial bake-out of the senson was done with all of 
the sensors at full power (900 mW) for several days (Fig. 2.8). This is recommended by 
the manufacturer and is related to baking off accumulated moisture and other 
contaminants.19 

2.5 TESTING CONDITIONS: IGAS CHIP 

The test chamber for evaluating steady state response of IGAS sensor chips to 
specific gases consists of a glass cell mounted to a glass-ceramic base (Fig. 2.9). The 
base supports a 20-pin chip receptacle, which provides two power feedthroughs for the 
chip's heater and 18 connections to a terminal box to measure the electrical resistance 
between any two electrodes on the chip. Note that the terminal box is identical for both 
the IGAS test cell and for the large array (Fig. 2.3). Power is supplied to the heater from 
a controlled dc power supply. 

The top of the glass cell is fitted with a stopper that secures the gas intake and 
exhaust tubes. The intake tube is bent to the side of the chamber to avoid a direct flow of 
gas across the chip, which would tend to cool it. This tube opens about 1 cm above the 
base of the test chamber and provides a slow, diffused flow of the test atmosphere around 
the chip to the gas exhaust near the top of the chamber. 

through a dry, empty flask to establish the baseline resistance of the: different areas of the 
chip in air. This flask is removed and replaced with one containing a pure organic liquid 
at room temperature. The air picks up vapor and carries it to the test chamber, exposing 
the G A S  chip to the test gas. 

To begin testing, the IGAS chip is mounted in the test chamber under an air flow 
rate of 1.1 l/h. A potential of 15 to 20 V is applied to the heater on the chip, and it is left 
overnight to reach thermal equilibrium and come to chemical equilibrium with the air. 
The electrical resistance of the tin oxide between opposite pairs of electrodes is then 
measured with a digital multimeter by addressing the appropriate points in the terminal 
box. 

Introduction of the test gas to the IGAS chip is accomplished by placing a flask of 
pure organic liquid in line with the air intake, thereby causing the air to pick up the test 
gas vapor and transport it to the chip without changing the flow rate of the air into the test 
chamber. The IGAS chip is left under flowing air with gas vapor for 5 min to allow it to 
come to equilibrium with the test atmosphere. The resistance between opposite 
electrodes along the length of the chip is then measured. 

an empty dry flask is inserted in its place. The IGAS chip is left under flowing air at the 
same constant flow rate, and the power to the heater is left on throughout the test 
procedure. The chip is left for -30 minutes to return to equilibrium with air. 

The resistances at the various points on the IGAS chip are measured after this 
30-min recovery period, before the next sample gas is introduced and the test procedure 
repeated. 

The intake air, which constantly feeds through the chamber during testing, passes 

The flask containing the pure organic liquid used for the first test is removed, and 

- 
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Fig. 2.8. Equilibrium values in air over time 
for large Sensor array. Sensors were operating at full 
power (900 mW) in air. Note variability among 
nominally identical sensors. 

The plot of the resistance in gas divided by the resistance in air measured between 
opposite points along the length of the chip is recorded for each gas tested. These 
"signatures" are compared to show how well each IGAS chip can differentiate between 
various similar gases (e.g., alcohols) and between gases of greater diversity (e&, alcohols 
vs ketones), 

that relative concentrations reflect the vapor pressure of each species at room 
temperature. This should be kept in mind particularly when dealing with mixtures. (For 
instance, the vapor over a water-ethanol mixture will be richer in ethanol than the liquid 
phase.) The reason for using this method of sample delivery was to better approximate 
head space analysis in which the unknown sample is present in bulk. 

No attempt was made to determine the absolute gas concentrations, but it is likely 
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Fig, 2.9. Test cell for evaluating s t e a w , - & t e ~  wf IGAS sensors LO pamcuk pal3 The 
electrical box, to measure the resistance between any hw e- am tbe chip, was intentionally designed 
to be compatible with any meaSurement system used on the large amy. Power is  supplied to the heater 
thmgb the coaxial cable (lower right) fmm a eontrolled dc power sopply. Gases fkom a vapor gemtor 
enterthmlgh th tubeath? top O f b  flask. 



3. RESULTS AND 1)ISCUSSIQN 

The bulk of experimental results was the generation of many signatures using a 
wide variety of substances and several sensor 
conditions, including complicating effects of mixtures. The signatures were evaluated in 
terms of their uniqueness and reproducibility, which can be verified by inspection in 
some cases. Various pattern recognition techniques were then applied to signatures that 
superficially met these criteria. The goals of this task were: (1) to evaluate these 
methods for their ability to satisfactorily distinguish different patterns and (2) to gain a 
better understanding of just how "different" the patterns need to bes A related issue is 
how different (or noisy) the same panem can be and still be recognized by the algorithm. 
It is clear that different algorithms are more appropriate for different problems and that 
the complexity of the problem can be reduced if the universe of possible outcomes is 
limited. 

what one expects to find, namely, that different sensors have different responses to a 
particular gas. Algorithms used by Kaneyasu et al.4 and Stetter et a1.6 successfully 
distinguished certain pure substances, but no attempt was reponed by these workers to 
analyze mixtures. Also, in these studies iew groups of similar compounds were analyzed, 
so it is difficult to know how these algorithms might perform if they were expected to 
distinguish among several ketones, for example. The reports also do not discuss day-to- 
day variability or reproducibility of the signatures. Specific test cases are discussed 
below to illustrate how these complications arise and their impact on the pattern 
recognition problem. 

ays. These were tested under various 

A study of the current literature dealing with sensor array developmentm indicates 

3.1 ORGANIZATION OF DATA 

Sensor array data were plotted in two ways. The discrete sensor m y  data were 
usually plotted as a set of resistance measurements, one for each sensor. The resistances 
are plotted along the y axis and the sensor number or position is plotted dong the x axis. 
(When looking at the graphs, it is important to remember that a low resistance 
corresponds with a strong sensor response.) Typically, the resistance measurement was 
taken after the system came to equilibrium (-3 to 5 min). For reference, ranges of "aif 
values of sensors before the gas was introduced to the system are shown on some of the 
plots. TGAS chip data were usually plotted as a set of ratios of resistance in gas to 
resistance in air. Because the response of the discrete senscm in the large array covered 
as much as four decades of resistance, it was appropriate to plot the data logarithmically. 
Because of its lower operating temperature, the response of the IGAS chip was less 
dramatic, and signature differences were better seen in a hea r  plot. (In the design sf an 
application-specific insmment, the particular sensor responses will l a  ely Betemnine the 
f r o n t a d  signal processing scheme of a detector circuit,) Examples of actual signatures 
will be examined in the following sections to illustrate the important attributes of sensor 
array data and evaluate the applicability of par~ieular algorithms. The following 
algorithms were examined: K-means and maximin-distance cluster mdysis algorithms, 
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and the Hamming, Hopfield, and Boltzmann machine paradigms on the ANSim m* 

artificial neural simulator. A discussion of these algorithms and data conversion methods 
is located in Appendix A. A complete tabulation of the performance of each neural. 
network is presented in Appendix B in a form designed to show at a glance the relative 
successes of individual algorithms. 

3.2 CROSS-SENSITIVITY 

Probably the most important questions to be answered about a sensor array are 
whether it is selective and whether it can distinguish substances of interest in a mixture. 
Many sensor arrays described in the literature have unique signatures for various 
compounds, but most have no information about their abilities to identify compounds in 
mixtures. Both sensor arrays used in this project were subjected to mixtures, and both 
sensor arrays had some successes with mixtures. The large array of discrete sensors was 
tested more extensively with mixtures, so more of the results described below are from 
those tests. 

tests in which the large sensor array was exposed to flavor extracts (Fig. 3.1). Initially, 
most of the flavor extracts tested contained a relatively large amount of alcohol (36 to 
88% in the samples examined). The alcohol matrix dominates the signatures; 
consequently, the signatures of three commercially prepared flavor extracts (almond, 
peppermint, and lemon) are very similar to that of ethanol, although there are some 
secondary differences that may indicate a degree of uniqueness in the signature of each 
mixture. Given the fact that the TGS 8 12 sensor was intentionally designed to be highly 
sensitive to alcohol, it might be possible to magnify the differences with a different 
combination of sensors or operating conditions. This situation serves to illustrate that no 
one sensor array is sufficiently general that it can resolve all identification problems. 

At the other end of the cross-sensitivity spectrum is the relatively benign effect of 
water when a much more reactive substance such as alcohol is present: (Fig. 3.2). In this 
test the discrete sensor array was exposed to lemon extract (88% alcohol) carried in dry 
air and the same extract carried in moist air (created by passing the air stream through a 
flask containing water and then through a flask containing lemon extract). For all 
practical purposes the resulting signatures are the same, indicating that the presence of 
water vapor has little effect on the signature if one or more of the constituents of the 
mixture is substantially more reactive than water. This result is encouraging, given the 
ubiquity and variability of water vapor in most environments. 

Between the two extremes of cross-sensitivity presented above are hexane/ethanol 
and gasoline/ethanol mixtures. In our previous work we discovered, surprisingly, that 
relatively small amounts of ethanol or methanol affwted the signature of gasoline 
(Fig. 3.3). The effect was relatively insensitive to the amount of alcohol present but was 
different for each of the two alcohols. 

In Fig. 3.4, a mixture of 2% ethanol in hexane was tested to compare with pure 
ethanol and pure hexane. The resulting signature shows a resemblance to hexane at the 
higher temperature sensors at which hexane gives the greater response and a resemblance 
to ethanol at the lower temperature sensors at which ethanol gives the greater response. 

An extreme example of cross-sensitivity or interference can be seen in the series of 

*Science Applications International Corpration (SAIC), San Diego, Calif. 
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Fig. 3.1. Signatures of flavor extracts 
masked by ethanol present as a diluent. 
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Fig. 3.2. Presence of water vapor: 
little effect on signature of lemon extract. 
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Fig. 3.4. Hexane and ethanol: 
reactive at different temperatures. Signature 
of h e x m a %  ethanol shows some 
characteristics of each. 

This response is not unexpected; the response of any one sensor is the sum of its 
responses to the individual components, and, because these responses are exponential, 
they are dominated by the most reactive component at that temperature. Notice that the 
response is nonlinear; at the lower temperatures (sensors 4 to 9) the response to 
hexanen% ethanol is very close to that of pure ethanol. 

This interesting behavior suggests the possibility that enough information is present 
in the combined signature to enable a pattern recognition scheme to be developed that 
could identify both the hexane matrix and the small amount of akohol. by their individual 
dominance of different parts of the signature. 

Tests were performed on a set of hexane, ethanol, and hexane/2% ethanol. signatures 
using cluster analysis and neural network algorithms. Both cluster analysis programs 
were able to sort ethanol and hexane signatures, but they were not able to form separate 
clusters for the group of hexanen% ethanol signatures (Tables 3.1 and 3.2 1. (Note: 
These data were taken at different times, and control of the actual mixture was not 
performed, so it is possible that at longer times the ethanol had selectively evaporated, 
leaving a residual mixture that would behave more like pure hexane.) In the main, 
hexanen% ethanol signatures taken after a longer time tended to be classed with the 
hexanes, and signatures taken after only 1 min were classed with the ethanols. The most 
successful neural algorithm for this problem was the Hamming network using derivative 
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Table 3.1. Classification of hexane and ethanol signatures' by the 
K-means algorithm 

Composition of clusters 

Hexane/ 
Ethanol Hexane 2% ethanol 

No. of clusters = 2 
Cluster 1 

2 

No. of clusters = 3 
Cluster 1 

2 
3 

No. of clusters = 4 
Cluster 1 

2 
3 
4 

No. of clusters = 5 
Cluster 1 

2 
3 
4 
5 

11 
15 2 

4 
9 

15 

4 
7 
2 

15 

7 

2 

4 

4 

11 

1 
4 

1 
4 

1 
1 
3 

Total number of ethanol signatures was 15; total number of hexane 
signatures was 13; total number of hexane/% ethanol signatures was 5 .  

data sets (Table 3.3). A network trained with representative signatures from three 
alcohols (ethanol, methanol, and isopropanol) and two alkanes (hexane and heptane) 
consistently recognized all ethanol signatures and all hexane signatures. Of five 
hexane/;?% ethanol signatures presented to this network, two were classed with ethanol, 
two with hexane, and one was classed as both hexane and ethanol. The Hamming 
network, trained on magnitude data, also easily classed pure ethanols and hexanes but 
was confused by the hexane/2% ethanol signatures. The Boltzmann network, trained 
with derivative data, performed reasonably well with classification of pure hexane and 
ethanol signatures, but also confused the hexane/2% ethanol signatures with other 
compounds. 

It must be kept in mind that in a real sensing problem, if the possibilities are quite 
limited and known at the outset, the problem might not require pattern recognition at all. 
Consider again the signatures of gasoline and alcohol mixtures (Fig. 3.3). If a sample is 
taken at the gas pump, it must be one of these three substances (it cannot possibly be 
water, ammonia, etc.). For this problem, a nine-element array is not necessary; if the 
curves are reproducible, any two sensors ought to be enough. Sorting the possible 
responses into at least two or b e e  categories can be done with a simple analog or digital 
circuit (Fig. 3.5). (Sorting into more than two categories will depend on the customer's 
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Table 3.2. Classification of hexane and ethanol signaturesaby the distance 
maximin-algorithm 

Composition of clusters 

Hexanel 
Ethanol Hexane 2% ethanol 

Threshold = 0.50 
Cluster 1 

2 

Threshold = 0.33 
Cluster 1 

2 
3 
4 
5 

Threshold = 0.25 
Cluster 1 

2 
3 
4 
5 
6 

15 

15 

15 

9 
4 

5 

3 

Total number of ethanol signatures was 15; total number of hexane 
signatures was 13; total number of hexan&% ethanol signatures was 5. 

Table 3.3. Classification of hexane and ethanol signatmesaby 
the Hamming network 

Network assignment 

Hexane/ 
Ethanol Hexane 2% ethanol 

Input Pattern: 

Ethanol 
Hexane 
Hexane/ 
2% ethanol 

15 

2 

12 

2 1 
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Rc : Resistor calibrated to balance the bridge when the detector "sniffs" 

Rconcn, : Resistance of the sensor. 

pure gasoline. 

5 : Bridge resistors. 

Red LED lights when alcohol is present in the gasoline mixture. 

Green LED lights during idle condition before the gasoline is present. 

pig. 3.3. Ciasahol aetector circuit in its most elemenw form. It might t>e 
necessary to amplify bridge output to light LEDs; likewise, it might be necessary to 
add Sensor circuit(s) for redundancy and tn compensate for cancenbation. 

goal: One might want to avoid any fuel containing alcohol, whereas another might 
tolerate ethanol but not methanol in the gasoline.) 

3.3 UNIQUENESS 

Implicit in any pattern recognition scheme is the assumption that signatures are 
unique. But because this is a catalytic oxidation process,15 it is reasonable to expect 
families of related organic compounds to have similar signatures. This proposition was 
tested with the IGAS chip in both the thermal gradient (Fig. 3.6) and the distributed 
catalyst (Fig. 3.7) designs.* Not surprisingly, similar compounds do indeed have similar 
signatures, This phenomenon can also be observed in the large sensor m a y  with hexane 
and heptane (Fig. 3.8). 

The neural network algorithms often confused signatures of chemically similar 
substances, such as heptane and heptane or ethanol, methanol, and isopropanol, but they 
almost always at least classified all members of one group together (refer to Appendix B). 
The Hamming network always correctly identified the normal hydrocarbons as normal 
hydrocarbons, and in most cases successfully distinguished hexane from heptane. It was 
slightly more successful identifying individual alcohols. The Boltzmann network usually 
grouped the alcohols successfully as alcohols, but it had difficulty with the normal 
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Fig. 3.6. Response of sensor TOS-2 
exposed to seven gases. Heater power was 
constant at -2.5 W. Similar compounds 
have similar signatures, suggesting that 
behavior is dominated by the most active 
functional group on the molecule and 
relatively insensitive to chain length. 



34 

s < 

W 
C) z 
< i- 

0 
w 
iT 

0 < 
c; 
z 

v, 

. 
W 
0 
L. 

Fig. 3.7. Responses of sensor TOS-7 
to eight gases. Active area was unifomly 
heated, so different signatures arise from 
differences in way each gas interacts with 
catalysts. Notice that the effect of ammonia. 
on thc sensor is strongest in the ruthenium 
instead of platinum area (as with the oxher 
gases). This is the sort of information go 
look for when designing a sensor amy for a 
particular application. Heater power was 3.9 
W. 
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Fig. 3.8. Comparison of heptane and hexane 
signatures in large sensor array. Readings for each 
were taken 5 min aftex start of gas stream. 

hydrocarbons, although with water as part of a derivative training set, normal 
hydrocarbon group classification was reasonably successful. The Hopfield network 
performed poorly with one particular data set, but could recognize the alcohol group with 
the magnitude data sets. 

When training vectors included water signatures, some unhappy consequences were 
observed in the Boltzmann and Hopfield networks trained with magnitude data. Water 
signatures, though dramatically different from those of the other substances, were not 
identified as successfully. In the same tests, the Boltzmann network failed miserably 
with the norma1 hydrocarbons-it could not even identify all of its own training vectors. 
One explanation for the poor performance is that the addition of the water vector, with its 
much greater magnitude, looked a lot different from the coilective alcohol and normal 
hydrocarbon signatures, which share many of the same bits; consequently, differences 
between their signatures were reduced in significance to the network. This factor 
suggests the importance of training the network with equally "different" patterns as much 
as possible. 

Although uniqueness of signatures is considered desirable, there might be 
situations in which the signature of an unknown substance has some similarities to a 
known substance that could provide some chemical information. The signatures of both 
oil of clove and oil of wintergreen show an interesting increase in sensor array response 
at the middle temperature zones (Fig. 3.9). Perhaps this response is due to the benzene 
ring present in both compounds. In fact, the signature of naphthalene, another aromatic 
compound, also parallels oils of clove and wintergreen in the intermediate temperature 
range (sensors 5 to 7) (Fig. 3.10). This fact suggests the possibility that one part of a 
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Fig. 3.9. Two aromatic compounds with 
similarities. An indication of the. reproducibility of 
the signatures is shown by the two solid Lines for oil 
of clove representing two measurements separated by 
a week during which signatures of other substances 
were collected. 

Fig. 3.10. Signatures of naphthalene vapor 
from whole and crushed moth balls. Effect of 
concentration is to raise or lower signature without 
affecting its shape. Note similarity of middle of 
signature (steep, monotonic decrease in resistance of 
sensors 5 through 7) to signatures of aromatics shown 
in Fig. 3.9. 
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signature is more important or contains more chemical information in some cases than 
another. One might, therefore, consider analyzing only certain parts of the signatures or 
possibly weighting some points. Although these kinds of sensors would not have the 
distinguishing power of a mass spectrometer or a gas chromatograph, there are 
applications in which their ability to sense a trend, such as that described above with the 
phenolic compounds, would be very useful. 

3.4 EFFECTS OF CONCENTRATION 

In many chemical engineering situations it is important to know quantitatively the 
concentration of one or more components when the identities of all components are 
known. It has already been shown that the signatures of hexane/ethanol mixtures do not 
follow a rule-of-mixing behavior. To explore further the behavior of two component 
mixtures over a wider concentration range, water/alcohol solutions (0, 10,20, SO, and 
100% ethanol) were tested (Fig. 3.1 1) in the large sensor array. It was observed that the 
signature of each mixture had virtually the same shape, but the absolute value of the 
responses was nonlinear with composition. The 50% and the 100% ethanol gave 
virtually identical responses; concentrations of ethanol between 50% and 100% would 
therefore be difficult to distinguish. The response to the 10% ethanol mixture is about 

aThe network was trained with derivative data sets of three different alcohols, and 
two different normal hydrocarbon signatures.one-fourth the response to pure ethanol 
(relative to the response to water), and the response to 20% ethanol is about one-half the 
response to pure ethanol. 

Generally, the cluster analysis algorithms gave expected results for the data; that is, 
the more variable and distant water signatures formed groups opposed to one or two 
groups of signatures containing any ethanol (Tdbles 3.4 and 3.5). Without selectively 
tuning the threshold value of a particular grouping by the maximin-distance algorithm, 
the nonlinear response of the array poses a problem for distinguishing smaller 
concentration differences. The K-means algorithm with five clusters performs better, as 
shown by the separation of pure alcohols (and the high-concentration ethano4water 
signature) from the lower-alcohol signatures. One of the 10% ethanoywater patterns is 
grouped with pure ethanol, but the reading for this particular signature was taken earlier 
than the other 10% readings and is considered a transient response. Better results might 
be achieved by converting the data to logarithms before processing, although the metal- 
oxide sensors that were used will always exhibit a more variable and less sensitive 
response to high concentrations of water, and special techniques might have to be 
employed to deal accurately with mixtures at the less-reactive end of the spectrum. This 
insensitivity leads to the consideration of replacing some of the sensors in the array by 
others that handle water vapor measurements with consistency. 

data because it was felt that the curve shapes of mixtures between the pure water and pure 
ethanol curves were too similar to provide useful information. Success was declared if 
the signature was classed as water when the input pattern was more water than alcohol 

Little attention was given to applying the neural network algorithms to this kind of 
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Fig. 3.11. Signatures of w;aker/ethanol 
mixtures. Signature of 50% ethanol (not shown) 
is virtually identical to that of pure e 
how ethanol signature dominates that of water 
even at low concentrations. 
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Table 3.4. Classification of water and ethanol signatmesaby tlhe 
K-means algorithm 

Composition of clusters 

100% 50% 20% 10% 100% 
Ethanol Ethanol Ethanol Ethanol Water 

NO. of clusters = 2 
Cluster 1 2 1 1 4 

2 5 

No. of clusters = 3 
Cluster 1 2 1 1 4 

2 3 
3 2 

NO. of clusters = 4 
Cluster 1 2 

2 
3 
4 

1 1 
1 3 

2 
3 

NO. of clusters = 5 
Cluster 1 1 1 

2 1 1 
3 2 
4 3 
5 1 4 

%put patterns consisted of 2 each 100% ethanol, 1 each 50% ethanol, 1 each 
20% ethanol, 5 each 10% ethanol, 5 each 100% water. 

and classed as alcohol when the input pattern was 50% alcohol or greater. In this 
approach, the networks trained with derivative data sets were more successful than the 
ones trained with the magnitude data. This fact might indicate that the neural networks 
can successfully distinguish subtle changes in slope caused by changes in mixture 
concentration. 

A suggested approach for increasing the success of using neural networks for 
concentration analysis is to train the networks with patterns for specific concentrations 
and to use a training vector, which is as large as practical, to increase resolution of 
individual patterns. A characteristic of the Boltzmann and Hopfield networks as 
implemented on the ANSimm program, namely the intermediate “gay” scale candidates 
that appear as next likely choices, might be exploited to interpolate the concentration 
value. 

3.5 REPRODUCIBILITY 

Another implicit assumption is that the sensor array is stable enough over the long 
term so that once a known signature is learned, the array can produce that signature any 
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Table 3.5. Classification of water and ethanol signaturesa by 
the maximin-distance algorithm 

Composition of clusters 

100% 50% 20% 10% 1 0 %  
Ethanol Ethanol Ethanol Ethanol Water 

Threshold = 0.50 
Clusttr 1 

2 

Threshold = 0.25 
Cluster 1 

2 
3 
4 

Threshold = 0.10 
Cluster 1 

2 
3 
4 
5 
6 

2 1 1 5 2 
3 

2 1 1 5 
1 
3 
1 

2 1 1 5 
1 
1 
1 
1 
1 

%put patterns consisted of 2 each 100% ethanol, 1 each 50% ethanol, 1 each 
20% ethanol, 5 each 10% ethanol, 5 each 100% water. 

time it is exposed to the same substance. Signatures of ethanol collected sporadically 
over 9 months' time (Fig. 3.12) seem at first glance to have significant differences. 
However, examination of this series of patterns with some of the derivative data networks 
yielded surprising results. When the signatures were converted to a more useful form 
(Appendix A), the network, after training with randomly selected signatures, consistently 
recognized them as ethanol. 

In some of the Boltzmann and the Hopfield networks, the final response does not 
converge to the same answer every time. This disparity occurred most often within 
groups of like compounds; for example, sometimes when confronted with a hexane 
signature, the Hopfield network would converge to hexane, other times to heptane, and 
convergence to both at once also occurred. This is a known feature of neural network 
bchavior,2l especially when the network becomes saturated or the training vectors have 
too many similarities. This might be an indication that the training vectors or the sensor 
array need to be redesigned or that the front-end signal processor should be altered to 
give more distinct signatures for the different substances. 

Reproducibility can also be looked at with regard to pattern recognition behavior. 
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Fig. 3.12. Signatures of ethanol over 9-month period. Most of these sngnatures were 
identified correctly as ethanol by one Boltzmann network and one Hopfield network trained with 
derivative data, and one Hamming network trained with magnitude data. 
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3.6 DYNAMIC BEHAVIOR 

All signatures presented so far represent steady state conditions in which the 
measurement is made after the sensor array has been exposed to the test atmosphere long 
enough for the signature to become reasonably stable. The dynamic response to a 
changing atmosphere is generally not well understood but is, nonetheless, quite important 
for real applications. First, one would like to know how long it takes the array to form a 
recognizablc signature upon exposure to a sample. Second, SiegeP suggested that 
dynamic measurements might supplement the steady state signatures of compounds that 
are similar structurally and allow them to be distinguished. A limited number of dynamic 
measurements were done primarily to explore the first of these two issues. Training 
vectors consisting of patterns assumed to be steady state responses were tested against 
series of readings taken at prescribed times. The Hamming network consistently 
performed well for both derivative data and magnitude data when only alcohols and 
normal hydrocarbons formed the training vectors. The Boltzrnann network, trained with 
the five hydrocarbon training vectors, did fairly well using the derivative data, arid it also 
perforrncd well with magnitude data when trained with the additional water signature. 
Usually the true identity of the signature was determined by the €ourth or fifth minute that 
the air stream carrying the gas had been flowing through the sensor array. With the 
Hamming network, there was very little confusion during the entire time period. 

The potential usefulness of Siegel's proposition is shown by the dynamic responses 
of the  large array to methanol and isopropanol (Figs. 3.13 and 3.14). Although the 
signatures of these two compounds have many similarities and are misidentified by some 
of the neural networks, their dynamic responses are much different. Note that for 
isopropanol the resistance of sensor 4 decreases with time during the first 4 min, whereas 
for methanol, the resistance of sensor 7 increases over the entire 20 min of exposure. 
Obviously, the dynamic behavior is a potential source of additional information to 
enhance the uniqueness of the signatures. 
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4. CONCLUSIONS 

It was found that methodologies from several disciplines can be combined to form a 
new field of development devoted to solving some important and potentially wide- 
ranging gas sensing problems. The determination of concentrations and, more 
importantly, the analysis of mixtures by using metal-oxide sensor arrays coup15d with 
pattern recognition schemes were shown to be feasible. The conclusions in this study can 
serve as a basis for the development of a selective chemical detection instrument that 
does not pretend to replace sensitive and general-purpose instruments such as gas 
chromatographs and mass spectrometers, but discovers its niche in specific problem areas 
where small size, low cost, portability, field operation, low power, andlor rapid response 
time are desirable characteristics. 

Specific conclusions can be summarized as follows: 

1. 

2. 

3. 

4. 

5. 

6.  

7. 

An array of different chemical sensors can provide significantly more detailed 
information about its environment than can a single sensor. 

A simple experimental sensor array can be constructed with discrete conventional 
sensors operated at different temperatures. Because different compounds react on 
catalytic surfaces with different characteristic activation energies, the collection of 
responses for a given substance can form a recognizable signature. 

A miniature sensor array can be constructed by hybrid circuit or other techniques to 
minimize the overall size and power consumption. This concept was demonstrated 
in a small device with a continuous gas sensing film with varying surface catalytic 
properties. By measuring responses at different points along the film with an array 
of electrodes, one can obtain electrical signatures characteristic of particular gases. 
Variations in catalytic properties from point to point on the miniature sensor can be 
achieved by establishing a thermal gradient, by distributing several different 
catalysts, or both. 

Gas-sensitive film can be deposited by several methods, including by screen 
printing of fritted oxide mixtures or the decomposition of tin chloride. The relative 
effectiveness of the catalysts with respect to oxidation of organic compounds 
studied here, in decreasing order of effectiveness, are: platinum, rhodium > 
ruthenium > palladium > iridium, osmium. 

Much work remains to be done in the development and optimization of the sensor 
arrays themselves, particularly with regard to power consumption, thermal 
management, and materials stability. 

No matter what technique is used to physically manufacture the sensor array, to be 
useful the output of the array must be deconvoluted by matching the pattern of 
responses to those produced by known substances. 

In sensors examined thus far, the resulting signatures were similar within the 
functional group; that is, the ketones exhibited similar responses that were. distinct 
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from alcohols and normal hydrocarbons, and the hydrocarbons and alcohols had 
similar responses within their groups. The behavior of these compounds is more 
strongly influenced by the presence or absence of reactive groups such as CO or OH 
than by the hydrocarbon chain length. Signatures of other substances, such as 
phenolic compounds, have similar features that appear to be related to the chemical 
structures they have in common. 

8. The signature of a mixture appears to be the superposition of the signatures of its 
constituents, but because the effect is exponential, the signature of the more reactive 
component will dominate. Therefore, if the substance that we seek to detect is the 
more reactive component, we will enjoy enhanced sensitivity (e.g.., alcohol in 
gasoline). On the other hand, diluents such as alcohol can completely mask more 
subtle components such as essential oils. 

9. Water has a relatively weak effect on the sensor array. This characteristic has two 
implications: first, humidity has little effect if we are looking at substances that are 
much more reactive than water; and second, if the array is properly configured, it 
might be possible to study flavor notes in coffee or tea. 

10. Several pattern recognition approaches have been examined to determine their 
applicability to gas sensor arrays. Each technique was found to have its inherent 
strengths and weaknesses. No one technique was the best for all cases studied. The 
difficulty of the analysis is directly related to how much is known at the outset 
(number of possible species present, expected concentrations, ranges of responses, 
etc.). 

11. Neural networks, as used in this study, have been successfully applied to the 
identification of gas signatures. The poorer performance of the Hopfield network 
was probably due to the small size of the pattern vectors, which shared many bits in 
common. This problem might be overcome by increasing the number of bits in the 
patterns. The Boltzmann network, a better performer, not only returns a "best" 
choice, but also indicates which patterns are "next best" by gray-scale shading. 
These intermediate values might be useful in interpolating gas concentrations. The 
Hamming network was the best perfomer for signatures input more or less directly 
(magnitude data). This performance is encouraging because it means a much 
simpler front-end signal processor for an actual device. This network also had some 
success with the correct identification of more than one compound in a mixture 
(using derivative data), and this fact indicates some exciting prospects for the future 
analysis of mixtures. Much more work is required in data conversion approaches 
and network tuning to realize the full potential of neural networks for olfactory 
analysis. 

12. The clustering techniques had success in separating hexane signatures from ethanol 
and high concentrations from low concentrations in ethanovwater mixtures. These 
tests, too, were of a preliminary nature, and much remains to be done to fully 
appreciate their power in gas signature analysis. Either algorithm could be 
successfully applied to the analysis of concentration. 
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13. Preliminary tests on alcohol/gasoline mixtures hold the promise that this technology 
can indeed be applied to important industrial problems. In fact, the problem of 
detecting alcohol in gasoline can be solved by a two-sensor array in which each 
sensor has a different set of responses to the possible gasohepdlcohol 
combinations. 

14. Both the sensors themselves and the pattern recognition engines must ultimately be 
application specific. No one system will be general enough to classify completely 
unknown mixtures from an infiiite universe of possibilities; conversely, if relatively 
simple problems can be identified, the classification procedure can be more easily 
developed. Each algorithm studied can conceivably be implemented as an 
application-specific integrated circuit. 
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APPENDIX A 

PATTERN RECOGNITION METHODOLOGY 

Much of the historical and current effort in pattern recognition design' has focused 
on image processing and speech and language analysis, not olfactory problems. 
However, the observer must make sense of gas sensor data through measurement 
comparisons and graphical means, and these do, in fact, constitute "scenes" of 
information. In light of this fact, many pattern recognition schemes become likely 
candidates for automatically processing these data, and the underlying chemical or 
physical principles of the gas sensor response are of no consequence to their design or 
operation. Collectively, the mathematical and technical approaches to chemical data 
analysis are called "chemometrics."2 Many of these are intensely statistical probabilities 
and can involve lengthy computation time? so the use of these for this study was rejected 
on the grounds that they would be impractical for eventual use in application-specific 
hardware. 

The approach in this study was to initiate the development of a general 
methodology based on the theory that selected pattern recognition techniques can be 
applied to any array that gives signatures. It is assumed that the sensor input to the 
pattern recognition system would be standxdized in some way so that a general pattern 
recognition test bed could be used to define the parameters of an application-specific 
identification system. A coordinating function of the test bed would be to help eliminate 
or add sensors to get a "good" solution for a selected classification problem. (€Iopfield4 
says that from an engineering or economic standpoint what we really desire is not the 
"best" solution, but a "good" one that works.) The defined parameters could then be used 
in real-time software-controlled systems, embedded microprocessors, or in an 
application - specific integrated circuit. 

approach requires that the sensor array be "calibrated" by exposing it to known 
compounds, thereby developing a library of signatures. Unknown samples would then be 
identified by the signature recognition capabilities of the network, which would be 
chosen for its ability to analyze such signatures in real time. The application-defined 
system or network of the necessary size could be implemented as a single very large-scale 
integration (VLSI) chip or programmed in a microprocessor. 

Just as one sensor array will not satisfy all applications, that one pattern recognition 
method likely will not work for every sensing problem or every sensor array; the 
recognition system will have to be customized, too. However, it will be easier to make 
successive models once the first one has been made. 

Some existing pattern recognition tools were examined for their usefulness in 
resolving signatures collected from the gas sensor arrays. Two cluster analysis 
techniques, the K-means and maximin-distance algorithms were chosen to compare with 
results given by Hamming, Hopfield, and Boltzmann machine neural network simulation 
aIgorithrns. (No claim is made that these techniques are the only ones applicable or that 
they are necessarily the best solutions for this data.) Resistance readings from the sensor 
arrays could be input directly in the cluster analysis techniques, but the neural networks 
required a scene, or binary picture, as input, and so a preliminary transformation of the 

As with any chemical analysis system that relies on pattern recognition, the 
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data had to be devised. Descriptions of the pattern recognition algorithnis and data 
conversion methods follow. 

A.l  CLASSICAL METHODS: CLUSTER ANALYSIS 

Once plotted, the signatures of gas sensor data appear to be separable by clustering 
techniques (refer to Tables 3.1,3.2,3.4 and 3.5). Cluster analysis techniques are not 
unknown to the analysis of chemical data.5 Also, Allgood6 suggested that the gas sensor 
array data would be easily processed by either the K-means or the maximin-distance 
algorithms. 

For this study, several data sets were processed by K-means and the maximin- 
distance algorithms as implemented by Allgood.6 These tests were of a preliminary 
nature intended to demonstrate the ability of the algorithms to separate the data into 
logical groups. 

The K-means algorithm (pp. 94-97 of ref. 7) forces the data sets into the number of 
groups specified by the designer. That is, if the designer specifies four groups, the 
algorithm iteratively processes the data sets so that the members of each group arc closer 
to their calculated cluster center than to the cluster center of any other group. Results of 
the K-means processing for the hexane/ethanol data and the watedethanol data are given 
in Tables 3.1 and 3.4. One situation that occurs as a result of the relatively large variation 
of the water responses is that some of the water signatures will be grouped by themselves. 
The designer of a system might wish to scale the data logarithmically to minimize this 
situation, or to recognize that certain groups will have to be lumped together as one. In 
an actual application, a test bed could define the cluster centers for the possible outcomes, 
and these could be programmed into the application-specific hardware; alternatively, the 
K-means algorithm could be implemented as part of a calibration procedure in the 
instrument, so that any effects of sensor drift could be minimized. 

determines the number of clusters formed by use of a threshold value, which gives a 
maximum distance that an individual member of the group can be from the calculated 
cluster center. The designer specifies the threshold value to be tolerated, and the 
algorithm iteratively processes the data sets until all groups are defined. Results of using 
this algorithm with the hexane/ethanol and the water/ethanol data are given in Tables 3.2 
and 3.5. Effects of the larger variation of water signatures and to a lesser extent the 
hexane and alcohol signatures are noticed in the formation of more than one group 
containing different signatures of the same compound (the same thing is noticed with the 
K-means algorithm). This technique could be incorporated into an instrument design in 
the same way as the K-means algorithm. Depending upon the chemical substances 
involved, clusters might be assigned different threshold values to accommodate variable 
shifts in sensor responses to a particular compound. 

The maximin-distance algorithm (pp. 92-94 of ref. 7) as implemented by Allgood6 

A.2 NEURAL NETWORK DESIGNS 

It seems reasonable to apply the concept of neural networks as a means of pattern 
classification for gas sensor arrays. Several features of neural networks, summarized 
recently by Jorgensen and Matheus,* promise advantages over the chernometric approach. 
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1. Recall of information learned by the system is highly resistant to hardware failure 
(loss of a memory bit or two in traditional computers can be catastrophic). 

2. The abstraction of data occurs automatically as a byproduct of learning. 

3.  Pattern recognition occurs in parallel and reconstructively. 

4. The neural networks can exhibit adaptive features, which select and generate their 
own pattern features from exposure to the inputs. 

5. Neural networks can capture patterns occurring both in time and space and operate in 
discrete or continuous representation modes. 

The attributes mentioned above could lead to features in a pattern recognition system that 
are not possible now. The reconstructive capability of a neural network should be much 
more forgiving of sensor drift and missing information in a gas signature; alternatively, or 
in addition, the neural network, programmed to behave dynamically, could overcome the 
drift problem and information loss. Also, an analog neural scheme, because of its ability 
to handle parallel computations rapidly,4 might SuccessfulIy address the identification 
problem in the overlapping patterns of gas mixtures. 

system is because many workers, such as Verleysen et al.,9are designing and building 
neural networks in VLSI chips. This type of signal processing device is precisely the sort 
of component needed in a low-power and portable gas sensing system. It is a small, fast, 
and low-power device. (A Hopfield network, implemented in a VLSI chip, was proposed 
by Verleysen and co-workers. The chip is 64 mm2, consists of 128 neurons that converge 
to a stable state in 150 ns, and dissipates -100 mW.) 

Artificial Neural Systems (ANS) Simulation program, version 2.3. The program consists 
of two parts, the ANSpecm* compiler for developing application code of the supplied 
ANS paradigm, and the ANSimm graphics-oriented, menu-based program for the user to 
develop ANS models based upon ANS paradigms. The ANSimm program allows for 
network training, monitoring, and storing for later use. Available paradigms include 
Adaptive Resonance Theory-Gray Scale, Back Propagation, BP Shared Weights, 
Hopfield, Boltzmann, and Hamming networks. The ANSimTM system hardware used in 
the present work consists of an IBM AT clone with an SAIC Delta Floating Point 
Processorm+ (22 MFlop AT bus compatible processors). Microsof't WindowsTM* is 
required for the operation of the user interface. 

The Hopfield, Boltzmann, and Hamming networks were chosen because they work 
as autocorrelators that retrieve the patterns most like the input pattern presented to them. 
The operation of these networks also most closely fits the conception of how a real-time 
gas sensor array detector would work; that is, the stored patterns would be the possible 
choices with which the input pattern would be compared. All of these networks are 
trained with a set of training vectors that consist of bit patterns. Individual bits are valued 

Another reason for choosing neural networks as the basis of a pattern recognition 

Several paradigms are available for testing and evaluation in the SAIC ANSimm 

*Science Applications International Corporation, San Diego, Calif. 
+Science Applications International Corporation, San Diego, Calif. 
*Microsoft Corporation, Redmond, Wash. 
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at either -4.5 or 0.5. In this study, the three networks were trained with the same sets of 
training vectors. 

Each of the networks has slightly different characteristics that might render one or 
another more appropriate for a specific kind of gas sensor data, but this difference had to 
be determined experimentally. The basic network is the Hopfield network,l" which 
consists of units (neurons) that are connected to other units by weights determined during 
the training session by autocorrelating the input patterns. The state of the neuron is 
affected by its hard threshold nonlinearity interacting with its weighted connections to the 
other neurons. When trained, the network responds to an (unknown) input pattern by 
synchronously updating the connections made by the input in the weighted network until 
the network converges to a minimum energy state. The final state may not depict one of 
the original training patterns if the training patterns share too many bits in common. The 
Hopfield network requires the most care in training pattern configuration to ensure a 
stable and accurate network. 

The Boltzmann machine network10 represents an improvement to the Mopfield 
network by an annealing process analogous to the method of strengthening metals. A 
temperature is identified during each cycle through the network. A unit has an energy 
value equal to the weighted sum of all its connections to other neurons and will remain 
stable according to the Roltzmann probability if its energy is very high or very low at 
high temperature cycles of the system. It switches states if the cycle temperature is high 
and it has a midrange energy state. As the system goes toward lower temperatures, the 
fluctuations become infrequent and a minimum energy state is achieved. An annealing 
schedule consists of several cycles run at different temperatures to drive the network into 
a deep local minima. 

The Hamming networklo is also an improvement to the Hopfield network. The 
Hamming distance is used to compute a score between the input to the network and each 
of the training vector sets in the network. The network is then cycled until it converges 
on one of the training set patterns. This network always returns one of the patterns of the 
training set, unlike the Boltzmann and Hopfield networks. 

A.3 DATA CONVERSIONS FOR NEURAL NETWORK PROGRAMS 

The main strategies of data conversion were to (1) make the patterns different 
enough to be distinguished by the network and (2) keep the pattern size fairly small (to 
minimize processing time and system size). Upon examination of the raw data, 
differences are fairly obvious to the obsewer, but to the neural networks, the general 
trends between one signature and another might not appear all that different. 'I'he neural 
networks used require the input in the form of a bit pattern of -0.5 and 0.5 values. Size of 
the bit pattern matrix is defined by the user. 

Two types of data conversions were performed. In the first, called magnitude data, 
the base-ten logarithms of the resistance values were plotted in a 9 x 10 or a 9 x 16 grid 
(Fig. A.1). Columns were ordered by sensor number, left to right; rows corresponded to 
sensor response, as indicated. In general, only one block per column was filled in, 
although in training vectors several patterns were added together in hopes that variation 
and drift in signatures could be better accommodated. In the second type of data 
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Fig. A.l .  Magnitude data plots for four ethanol signawes (left) and one ethanol signature (right). 

conversion, called derivative data, the bit pattern was determined by calculating the 
slopes between adjacent sensor responses and plotting the base-ten logarithm of these in 
8 x 10 or 8 x 14 grids (Fig. A.2). I€ the slope is negative, the signature is plotted as a 
histogram beginning at the middle of the grid and extending down a length equal to its 
magnitude. If positive, the histogram will start in the middle and extend upward. 

shown in Figs. A.3 and A.4. The first of these has isopropanol, methanol, ethanol, 
heptane, hexane, and water training vectors; the second is a scaled-down version of the 
fiist that does not include the water vector. There are two sets of training vectors 
containing derivative data, shown in Figs. A S  and A.6. As with the magnitude training 
sets, one includes the water profile and the other does not. (Note that water signatures, as 
seen in Sect. 3, can be 2 to 3 decades higher than those of alcohols and normal 
hydrocarbons, and the resulting bit patterns are dramatically different from those of the 
other substances.) As much as possible, the training vectors were selected from 
signatures that appeared to be representative of the particular compound. 

Four sets of training vectors were constructed. The first two are of magnitude data, 
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APPENDIX B 

NEURAL NETWORK RESPONSE DATA 

Figures B.1 through 8-12 give results of each neural network for each of the four 
training sets. One can consider two levels of success: Complete success would be 
indicated by all correct identifications of the actual compound (all points would lie along 
the diagonal), whereas partial success would be indicated by correct placement of an 
unknown into at least its correct chemical class (all points are within the large bold boxes 
on the diagonal). Correct identification of the network for its own training vectors is 
probably a minimal expectation of performance. For this reason the box corresponding to 
the training vectors is also highlighted. 

The solid-black circles in the boxes represent the network's classification of an input 
pattern every time that pattern was presented to the network. Open circles indicate that 
the classification was sometimes chosen, but not always. (The network converged to 
different answers when presented with the same signature more than once.) The dashes 
represent a less-than-positive classification, and this was indicated nn the network 
simulation program by an intermediate gray-scale value. (The gray-scale value had to lie 
closer to a "yes" response for the identification in question than a ''no'' response.) Some 
network classifications simultaneously returned more than one positive response to an 
input pattern. (For this reason, the number of solid circles in some horizontal rows is 
greater than the number of different signatures for those compounds.) 

The number of input patterns for a particular compound is shown in parentheses to 
the right of the compound name. 

The first three figures (Figs. B.l, B.2, and B.3) show the responses of each network 
trained with the five-element magnitude data set. The second three (Figs. B.4, B.5, and 
B.6) give the responses of each network to the six-element magnitude data set. The third 
three figures (Figs. B.7, B.8, and B.9) are the responses of each network to the five- 
element derivative data set, and the last three (Figs. B. 10, B. 11, and B.12) indicate the 
networks response to the six-element derivative data set. 

63 



A
ct

ua
l 

id
en

ti
ty

 o
f 

In
pu

t 
Pa

tt
er

n 
A

ct
ua

l 
Id

cn
ti

ty
 o

f 
In

pu
t P

at
te

rn
 

2
2
 

Y
 
0
 

A
ct

ua
l 

Id
en

ti
ty

 o
f 

In
pu

t 
Pa

tt
er

n 

Is
op

ro
pa

no
i 

M
et

ha
no

l 

Et
ha

no
l 

H
ep

ta
ne

 

H
ex

an
e 

W
at

er
 

Tr
ai
ni
ng
 S

ei
 

5
 

Y
 

CD
 

3
 z
 

E
 

CD
 

A
ct

ua
l 

Id
en

ti
ty

 o
f 

in
pu

t P
at

te
rn

 



65 

Assignment by the Neural Network 

Fig. B.5. Classification by Boltzmann 
network trained with six magnitude data patterns. 

Fig. B.7. Classification by Hopfield 
network trained with five derivative data 
patterns. 

Assignnient by the Neural Network 

Fig. B.6. Classification by Hamming 
network trained with six magnitude data paaerns. 
Note: For one pattern, the network returned no 
classification. 

Assi_riimcnt by the Neural J etwork 

Fig. B.8. Classification by Boltzmann 
network trained with five derivative data 
patterns. 
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Assignment by the Neural Network 

Fig. B.9. Classification by Hamming 
network lrained with five derivative data 
patterns. 

c 

As\igninent by the Neural Network 

Assignment by the Neural Network 
- 
E 

Fig. B.18. Classification by Hopfield 
network trained with six derivative data patens. 

Assignment by the Neural Network 

Fig. B. 1 1. Classification by Boltzmann Fig. B.12. Classification by Hamming 
network trained with six derivative data patterns. network trained with six derivative data patterns. 

Note: For one pattern, the network returned no 
classification. 
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