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P. H. Worley 

Abstract 

PICL is a subroutine library that can be used to develop parallel programs 

that are portable across several distributed memory multiprocessors. The lihrary 

provides port able syntax for the key communication primitives and related system 

calls required to prograni these machines. It also provides portable routines to 

perform certain widely-used, high-level communication operations, such as global 

broadcast and global sum. Finally, the library provides an execution tracing facility 

that can be used to monitor performance or to aid in debugging. 

This report is the PICL reference manual for C programmers. It contains full 

descriptions of all PICL routines as well as explanations on how to use the routines 

to write a parallel program. A short users’ guide to PICL containing examples of 

how to use it is available as a separate report. 
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1. Background and overview 

PICL, the software library documented in this report, evolved over a period of years 

in direct response to user needs. Interest in parallel computation, both for algorith- 

mic research and for practical applications, goes back several years at  Oak Ridge Na- 

tional Laboratory (ORNL), which wits one of the first three sites to take delivery of 

the first commercially available hypercube, the Intel iPSCI1. We received a 64-node 

iPSC/l in late summer of 1985. Only a few months later, ORNL was one of the first 

customers to receive an Ncube hypercube, this one also having 64-nodes. Thus, we 

were presented almost from the beginning with the problem of porting pa rde l  codes 

across machines with similar architectures, but with incompatible operating systems 

and rnessage-passing syntax. 

The approach we adopted for providing portability between our two hypercubes 

was to write a common interface library that implemented a generic set of message- 

passing primitives. The user would write his parallel programs using these generic 

communication calls, which would in turn invoke the underlying native communication 

calls on whatever machine was currently being used. Such a capability could have 

been provided by a set of macros rather than actual subroutines, but we preferred the 

greater flexibility that subroutines allowed. Our experience since then has confirmed 

the value of this approach, as we have added capabilities beyond our original intentions. 

Moreover, our timing tests have shown that the additional subroutine call overhead is 

negligible compared to the overdl communication speed of today9s distributed-memory 

machines. 

As we developed an expanding set of algorithms for our hypercubes, certain message- 

passing patterns occurred repeatedly, such as global broadcast, global summation, and 

global synchronization. So that users would not have to invent these routines repeat- 

edly, we made these capabilities available in a convenient and portable way by encapsu- 

lating them into additional subroutines that in turn called our generic message-passing 

primitives. Indeed, some homogeneous and regularly structured applications require 

only these higher-level routines to meet all of their communication needs. With the 

addition of the high-level routines, the library permitted us to develop new parallel 

algorithms and applications programs quickly, and in such a way that they could be 

transported between our two hypercubes with no changes in the source code. 
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As new messa>ge-passing parallel architectures became available, we adapted our 

programs to them simply by creating new versions of the generic message-passing prim- 

itives, but without any changes in the higher-level routines or in user-level source code. 

Thus, for example, when the second-generation Intel hypercube was released, we were 

able to get our hypercube programs running on it successfully on the same day our 

iPSC/2 was delivered, changing nothing but the small underlying library of primi- 

tives. Although our initial set of target machines consisted exclusively of hypercubes, 

the package was easily adapted to message-passing machines based on other inter- 

connection networks, such as the mesh-based Symult (formerly Ametek) 2010, whose 

programming environment is based on the Cosmic Environment developed at  Caltech. 

There are limits, however, on the extent to which portability can be provided di- 

rectly by our approach. In particular, our implementation of the low-level primitives 

(or at least our programming style in using them) assumes that the underlying message- 

passing system is interrupt-driven and automatically routes messages between arbitrary 

pairs of processors. This is in contrast to the synchronous style of message-passing 

adopted in the Crystalline operating system developed at  Caltech, which does not sup- 

port automatic routing. In consequence, commercial machines such as the Ametek 

S/14 and the FPS T-Series are not currently included in the range of machines we 

support. 

We have also not implemented our package on any shared-memory or hybrid- 

memory machines, but there is no reason one could not do so. This might provide a 

useful alternative for programming such machines in a way that would preserve porta- 

bility to message-passing architectures. On some pure shared-memory machines, there 

is a significant performance penalty in this approxh, hut for non-uniform memory 

access (NUMA) machines, on which maintaining data locality is an important perfor- 

mance issue (e.g., BBN Butterfly, IBM RP3, Cedar), message passing may ultimately 

prove to be the most eft'ective programming pamdigm. 

More recently, we have added substantial new capahilities to our library, again 

driven by our own needs. In 1988 we began a major new research project on charac- 

terizing the perfornance of parallel algorithms on parallel architectures. An important 

facet of our approach is to match detailed theoretical performance models to detailed 

empirical performance data for real parallel applications codes. Thus, we needed a 
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ready supply of instrumented parallel application codes from which to collect perfor- 

mance data. Since our codes are written in terms of the portable library, this capa- 

bility was provided simply by instrumenting the library, again without changes to the 

user-level source code. These new versions of the low-level primitive and high-level 

communication routines generate execution trace information on demand, with user 

control of the volume and detail of the data produced. As an added bonus, the tracing 

capability provides a useful debugging tool as well. 

To some extent our motivation in promulgating this package is selfish: any ap- 

plication code written in terms of this library can be used to generate data for our 

performance characterization project. Thus, it is to our benefit if the library becomes 

more widely used, both within ORNL and at other institutions. Of course, we also 

hope that users of the library will benefit from the advantages the package has to offer: 

portability across message-passing architectures, convenient high-level global commu- 

nication operations, and optional execution trace data for performance monitoring or 

debugging;. We do not claim to have accomplished these objectives in the most elegant 

or comprehensive way possible. Our development of the package was entirely driven by 

the specific needs of individual projects over a significant period of time. We were not 

trying to  provide portability by inventing a new parallel programming paradigm (such 

as Yale’s Linda), nor were we so ambitious as to try to create a whole new operating 

environment (such as Caltech’s Cosmic Environment). We were simply trying to pro- 

vide users (mainly ourselves) with an efficient and uniform interface for programming 

a reasonably wide range of message-passing machines, building that interface on top 

of whatever tools were provided by the native operating systems. We believe we have 

accomplished those original goals, and along the way we have introduced additional fea- 

tures, such as optional execution tracing, that go beyond the facilities usually provided 

by machine vendors. We have tried to make reasonable decisions when confronted by 

the many choices that must be made in designing any software package, but we know 

thai we cannot please all of the people all of the time, so we welcome user feedback, 

which will be taken into account in future revisions. 
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2. Organization and design 

Currently, we provide a C version of the library to be used by C programs, and we are 

developing a FORTRAN version to  be used by FORTRAN programs. In the mean- 

time, we provide FORTRAN-to-C interface routines so that FORTRAN programs can 

call the C version of the library. We currently provide full implementations of the 

library for the Intel iPSC/2, the Intel iPSC/860, and t8he Ncube/3200 family of hyper- 

cube multiprocessors. We also provide subsets of the library for eaeh of the following 

distributed-memory multiprocessors and multiprocessor programming environments: 

the Intel iPSC/l, the Cogent, the Symult 52010, the Cosmic Environment, Linda, Unix 

System V, and the X Window System. The full implementation of the library will be 

available on all of these target machines and environments in the near future. We also 

expect this list to grow as new machines and programming environments appropriate 

for the library appear. 

The library is made up of three distinct sets of routines: a set oflow-level generic 

communication and system primitives, a set of high-level global communication rou- 

tines, and a set of routines for invoking and controlling the execution tracing facility. 

The rest of this section provides an overview of each of the three components of the 

package and how they are related to one another. Since several key design issues are 

discussed here, we strongly recommend thai any new user read this section carefully 

before using the library. The C user should then proceed to the later sections of this 

document for further information. A short users’ guide to PICL containing examples 

of how to use it is also available as a separate report [Gei90]. 

A FORTRAN version of the reference manual will be published as a separate report 

after the development of the FORTRAN version of PfCL is finished. In the meantime, 

FORTRAN users will need to be familiar with both the C version of the documentation 

and the source code for the FORTRAN-to-C interface routines. 

2.1. Eow-level primitives 

Overview. On each of the target machines, the user has at  his disposal a, set of 

machine-dependent system and communication routines that enable him to use the 

underlying parallel architecture. Because each of the target machines and program- 

ming environments supports the same general message-passing programniiag paradigm, 
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open0 : 
close0 : 
load0 : 
sync0 : 
send0 : 
recvO : 
probe0 : 
recvinfo0: 

message0: 
who0 : 

clock0 : 
check0 : 

Open interprocessor communication. 

Close interprocessor communication. 

Load a node program. 

Synchronize the processors. 

Send a message. 

Receive a message. 

Check for an arriving message. 

Return information about the most recently received or 
probed for message. 
Print a message on the standard output device. 

Return processor ID number, host ID number, and number 
of node processors allocated. 

Read the system clock. 

Enable or disable parameter checking. 

Table 1: Low-Level PICL Routines 

most of these system and communication functions are available on all of the machines, 

though the subroutine names and parameter lists vary from machine to machine. Most 

importantly, our experience has shown that this set of common functions and capa- 

bilities is sufficient to produce efficient, clear, well-written codes. By providing the 

user with a generic interface to this common pool of functions, these library routines 

enable the user to write codes that can be transported without change to any machine 

on which the library has been implemented. The library contains a generic interface 

routine for each of the functions described in Table 1. 

A function or capability available on one target machine but not on another obvi- 

ously cannot be included in a library intended to to achieve portability for application 

codes. Thus, we support a restricted programming model that includes only capabilities 

and functions available on all target multiprocessing environments. 

Programming model. Our programming model can be viewed as a generic form 

of the message-passing programming environments found on most distributed-memory 

processors. It assumes a set of autonomous processors, each possessing a fixed amount 

of memory to which no other processor has access. Processors share data by sending 

messages to each other. More specilicdly, if processor i has data required by processor 
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j ,  then i must send the data to j by issuing a send0 command, and processor j must 

issue a r e m 0  command in order to receive the message. From the user’s viewpoint, 

processor i is idle (or bZocIeH) from the time it issues the send0 command until the 

message is copied from the user’s message buffer into a system buffer, a t  which time 

the user’s message buffer can be reused safely. Processor j is blocked from the time it 

issues the recvO command until a message satisfying the request arrives and is copied 

into the specified user buffer. Note that the program will never terminate if a recvO 

command is never satisfied by an arriving message. The programmer must design his 

programs so that there is an incoming message corresponding to each call to  recv0. 

The model also assumes that interprocessor communication is interrupt-driven: if 

processor i calls send0 to send a message to processor j before processor j calls racvO to 

receive it, then the incoming message causes processor j’s operating system to interrupt 

whatever task it is currently processing in order to receive the message and store it in 

a system buffer. When the user’s program on processor j finally issues a request for 

the message, the message is copied from the system buffer to the buffer provided by 

the user’s program. Thus, we support an asynchronous programming style, rather than 

a synchronous style where each sending processor blocks until the receiving processor 

has issued the corresponding recv0. 

We make no assumptions about the underlying communication network, and we 

rely on the ability of the target multiprocessors to send messages between arbitrarily 

chosen pairs o€ processors. The time required to send a message between two processors 

will often be a function of the interprocessor communication network, and a user will 

need to be aware of such machine dependencies in order to write efficient programs. 

Our model distinguishes one processor, the host, from the rest. The user has access 

to the remaining processors, the node processors (or simply nodes), only through the 

host. Typically, an application code consists of one program that runs on the host 

and another program (or set of programs) that runs on the node processors. The host 

program calls system primitives to allocate node processors, load the node program (or 

programs) on the nodes, send input data required by the node programs, and receive 

results from the nodes. 
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Restrictions. While the library implements a somewhat limited programming model, 

it more than adequately meets our needs, and we have not found excluded features and 

capabilities to he essential in our programs. The following features, available on some 

of our target multiprocessors, are not supported: 

1) PICL does not support running more than one process (or node program) simul- 

taneously on a single processor. 

2) PICL does not support the use of aonblocking interprocessor communication. 

3) PICL does not support user-defined handlers for system interrupts. 

4) PICL does not explicitly support synchronous interprocessor communication. 

Although users whose application programs require capabilities not supported by the 

library will not be able to use this library to  achieve full portability, they can still use 

it to  reduce the amount of code they have to  write and the number of changes required 

when porting a program to another machine. 

Portability. Our use of generic interface routines that in turn call vendor-supplied 

native routines raises the following fundamental portability issue. Each of our target 

multiprocessors has its own range and interpretation o€ legal parameter values. But, 

confining the user to universally valid parameter values is too restrictive, and it woiild 

become more restrictive as the number of programming environments on which the 

library is implemented grows. We have chosen therefore to  allow the user to  use the 

full range of valid parameter values on each target machine, with the exception of a 

small subset of values reserved for use by the library itself. On each machine, the 

routines perform conventional error trapping, checking each input parameter to  see if 

it falls in the range of valid values for that particular machine. When an invalid value 

i s  encountered by a routine, an error message i s  printed 011 the standard output device 

of the host and the routine stops processing. Thus, while the software requires the user 

to select parameter values vdid on each of his target machines, when he mistakenly 

choses a value that causes an error condition on one of the machines, his program fails 

gracefully, letting him know precisely what happened. To aid the user in selecting 

portable input parameter values, Section 7 describes the valid range of d u e s  of each 

machine-dependent input parameter on a machine-by-machine basis. 
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Further information. Section 3 of this document describes in more detail the C 
version of the low-level communication and system primitives. 

2.2. High-level communication routines 

The routines included in the high-level communication library are those that have 

proven most useful in our development of parallel algorithms and application programs 

for distributed-memory machines. See Table 2 for a description of the routines currently 

included. 

We expect to add other basic high-level cornmunication routines to  the library in 

response to  the needs of a growing community of users. On the lather hand, we want 

to maintain the relative simplicity and manageable size of the library, so we will not 

attempt to provide every conceivable variation and combination of current capabilities. 

Users who require an unsupplied variant or generalization of one (or more) of the high- 

level routines in the library should be able to save a significant amount of work and 

obtain portability by modeling the new routine on the corresponding library routine(s). 

Because we often study how an algorithm designed for message-passing machines 

behaves on different interconnection topologies, we have designed these routines to run 

on various network topologies: e.g., hypercube, fully-connected, unidirectional ring, and 

bidirectional ring interconnection topologies. The user must use the setarc0 routine 

to specify which interconnection topology to use. We also expect to add grid topologies 

as a user option. 

The fully-connected option requires further comment. By using automatic routing 

through intermediate processors, our target machines allow the user to program them 

as if they were fully connected. Moreover, the “worm-hole” routing now avdlable on 

the iPSC/B, iPSC/860, and the Symult 2010 enables these machines to approximate 

the actual behavior of a fully-interconnected network. Thus, despite the fact that a 

fully-connected network is not physically realized in any of our current target machines, 

the simulation of such a network is supported in our package. 

Section 4 describes in more detail the C high-level communication routines. 



- 10 - 

set arc0 : 

gatarco: 

barrier0 : 
bcastO : 

bcast 1 : 

g a d 0  : 

gcomb0 : 

p a x 0  : 

p i n 0  : 

gorO : 

gprodO : 

g s u 0  : 

gxorO : 

ginvO : 

grayQ : 

Specify the underlying topology to be used by the high-level 
communication routines. 
Return the parameters used in the most recent call to the 
satarc0 routine. 
Synchronize the processors. 

Broadcast the elements of a vector from one processor to all 
other processors. 

Broadcast the elements of a vector, taking advantage of 
pipelining during the broadcast. 

Compute the element-wise global “AND” of a distributed set 
of vectors. 
Compute the element-wise global function of a distributed 
set of vectors where the function is a user-supplied routine. 

Compute the element-wise global maximum of a distributed 
set of vectors. 
Compute the element-wise global minimum of a distributed 
set of vectors. 
Compute the element-wise global “OR” of a distributed set 
of vectors. 
Compute the element-wise global product of a distributed set 
of vectors. 
Cornpiite the element-wise globd sum of a distributed set of 
vectors. 
Compute the element-wise global exclusive “OR” of a dis- 
tributed set of vectors. 
Compute the inverse Gray code transformation of an integer. 

Compute the Gray code tramformation of an integer. 

Table 2: High-Level PICL Routines 
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traceenable : 
tracehost: 

tracenode: 

tracelevel:  

traceinfo : 
tracemark : 
tracemsg : 
traceflush: 
traceexit:  

Enable tracing and specify the name of the trace file. 
Begin tracing on the host. 

Begin tracing on a node processor. 

Specify the amount and type of trace information. 

Return the current tracelevel specification. 

Generate a user-typed trace record. 

Write a line of text directly into the trace file. 

Send trace information t o  the trace file now. 
Stop tracing. 

Table 3: PICL Routines for Tracing 

2.3. Execution tracing 

When the user requests execution tracing, he activates code within the low-level prim- 

itive and/or high-level communication routines that produces time-stamped records 

detailing the course of the computation on each processor. The information it pro- 

duces is similar to  that produced by some hypercube simulators [Dun861 and can help 

in analyzing performance or debugging a code. One of the key quantities captured is a 

record of the time each processor spends blocked while waiting for messages from other 

processors. With this and similar data the user can evaluate the performance of his 

code and locate possible performance bottlenecks. Execution tracing is controlled by 

the routines described in Table 3. 

It is crucial that the tracing facility have minimal impact on the performance of 

the code being studied. Three features of our design contribute to that goal. First, the 

tracing is "event-driven": trace information is generated only when an event of interest 

has occurred. The default events are sends, receives, and other events connected with 

interprocessor communication. Thus, tracing is guaranteed to have minimal impact on 

stretches of computation in which little interprocessor communication occurs. 

Second, the user can control the amount and type of trace data that is collected. By 

using the tracelevel command to enable and disable the various types of tracing and 

to  control the level of detail recorded, he can collect detailed data only where needed 

and avoid generating extraneous data from portions of the code not currently of interest. 

In the same vein, when his application is sufficiently regular and homogeneous to allow 
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extensive use of the high-level communication routines, tracelevel can be used to 

trace calls to the high-level routines while simultaneously suppressing trace records for 

the individud sends and receives that constitute each high-level operation. Another 

tool that enables removal of unwanted detail is the tracemark command. While using 

tracelevel to suppress detailed tracing, the user can post his own “major events’’ in 

the trace file with the tracemark command. Thus, with prudent use of the tracelevel 

command, the tracemark command, and the high-level communication library, the 

user can use the tracing facility to produce small, yet informative trace files, whose 

generation has little impact on the performance of his code. 

Third, the tracing facility stores trace records into a user-specified block of internal 

memory. There is no external communication or 1 / 0  associated with tracing as long 

as this internal trace array is not filled to capacity before the computation is complete. 

Node trace records are then automatically sent back to the host after ~ l l n o d e  programs 

have completed all other processing. 

If a PFOC~SSOT’S internal trace buffer is filled to capacity before the cornputation is 

completed, then the user has several options from which to choose other than simply 

increasing the buffer size in a subsequent run. First, the user can choose to have 

the contents of the trace buffer sent to the host automatically when the buffer is full, 

freeing the buffer to be used to store subsequent trace records. With this choice the user 

obtains complete execution tracing data, but risks significant changes in the program’s 

behavior due to the cost of sending m e  or more “full loadsn of trace data hack to the 

host while still in the middle of the computation. Second, if the user does not choose 

this automatic jlushing option, then no more trace records are saved after the trace 

buffer is full, and the partial record of the computation is sent back to the host at 

the end of the program execution. This choice preserves unintrusiveness at the cost of 

losing some of the trace data. As a third alternative the user can explicitly send trace 

data back to the host at an appropriate time during the computation. By exercising 

explicit control, the user can design his code so that sending trace data to the host 

does not alter the progsam’s behavior in an unacceptable way. 

While our approach is inevitably more intrusive than a performance monitor built 

into the operating system (perhaps with hardware support), such a monitor is not 

available on most machines and, in any case, would be highly non-portable. Experience 
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with our trace facility indicates that it generally has a small effect on the performance 

of the code being instrumented, but not enough to change the important features of its 

run-time behavior. More detail on the perturbations caused by tracing can be found 

on a machine-by-machine basis in Section 7. 
Section 5 describes in more detail the C routines used to enable and control the 

collection of trace information. Section 6 describes the format of the trace information. 
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3. Low-level primitives 

Purpose 

The low-level primitives are the first and most fundamental of the three compo- 

nents comprising the library. These low-level communication and system interface 

routines provide a portable syntax for message-passing programs, thereby en- 

abling development of programs that can be run on several distributed-memory 

multiprocessors with no source code changes. Incorrect usage of the low-level 

primitives generates an error message and causes the program to terminate. 

Machines and Mu1 t ip ro cess ing Environment  si 

Implementations of the low-level primitives are available for the following ma- 

chines and multiprocessing environments: 

iPSC/ 1 hypercube iPSC/2 hypercube iPSC/SSO hypercube 

Ncube/3200 hypercube Cogent Symult S2010 

Cosmic Environment Linda Unix System V 

X Window System 

Synopsis 

The host and node programs should be linked, respectively, with host and node 

libraries containing the system and communication primitives listed below. All 

routines except two are available on both host and node. The routine load0 is 

available only on the host, while the routine sync0 is available only on the node 

processors. 

void openO(int *numproc, int m e ,  int *host) 

void close0(int release) 

void whoO(int *numproc, int *me, int *host) 

void sandO(char *buf, int bytes, int type, int dest) 

void recvO(char *buf, int bytes, int type) 

void recvinfoO(int *bytes, int *type, int *source) 

int probeO(int type) 

void messageO(char *message) 
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void loadO(char *file, iat node) 

void sync00 

void checkO(int checking) 

double clockO() 

Standard Usage 

A typical host program calls the following routines (in the indicated order): 

open0, load0, sendQ, recv0, and closeQ. The call to open0 allocates a set of 

processors to the host program and enables interprocessor communication. One 

or more calls to load0 load node programs on the node processors. One or more 

calls to send0 send data to the nodes. Qne or more calls to raw0 receive results 

back from the nodes. The call to closeQ disables interprocessor communication. 

A typical node program minirndly calls the following routines (in the indicated 

order): openo, recv0, sendo, and cl05eO. The call to open0 to the enables 

interprocessor communication. One or more calls to recvO receive data from the 

host. One or more calls to send0 send results back to the host. Communication 

with other node processors will require additional send0 and recvO calls. The 

call to close0 disables interprocessor communication ps.mnnently. 

The next two pages contain node and host programs that demonstrate how the 

low-level PICL routines are typically used. These programs take a vector of float- 

ing point numbers and calculate a new vector that is the generated by summing 

consecutive pairs of elements in the original vector. For example, if the two vec- 

tors are called old and new, then new[i] = old[i] + old[i + 11. Although many of 

the PICL routines are not used, all of the required ones are called. 
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main()( 
int P, me, host, M ,  I, j, k, bytes, type, node; 
float *data, *results, *block; 
double btime, etime, clock00; 

/* start timing */ 
btime = clock00; 

/* allocate processors and open communication channel */ 
P = 32; 
open0 (&P , &me, &host 1 ; 

/* allocate space for data and results, and create data */ 
N = 1024; 
H = N/P; 
data = (float *)malloc(N*sizeof(float)); 
results = (float *)malloc(N*sizeof(float)); 
block = (float *)malloc(M*sizeof(float)); 
for (j=O; j C # ;  j++) dataCj1 = 1.0; 

/* load node program */ 
load0 ( 'nodeprogram ' ' , - 1) ; 

/* send data to processors */ 
for ( j = O ;  j < P ;  j++) sendo(&#, sizeof(int1, 0 ,  j )  
f o r  ( j = O ;  j C P ;  j++) sendO(&data[P*j], M*sizeof(float), 1, j) 

/* receive results */  
f o r  ( j = O ;  j < P ;  j+a)-E 
recvO(block, M*sizeof (float), 3); 
recvinf oO(&bytes, Btype, &node) ; 
for (k=O; k<H; k++) results[M*node + k1 = blockCkl ; 
I-; 

/* finish timing and send message to the standard output */ 
etime = clock00; 
printf("host took %lf seconds to f in ish",  etime-btime); 

/* release allocated processors and close communication channel */ 
closeO(1) ; 

3 

Figure 1: Example C host program using low-level PICL routines. 
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main (1 { 
i n t  P ,  me, hos t ,  H, l e f t ,  j ;  
f l o a t  *data,  * resu l t s ,  r i g h t n u ;  
double bzirne, etime, clock00; 
char buf [801 ; 

/* open communication channel */  
openO(lP, h e ,  &host); 

/* receive problem parameter from host  */ 
recvO(kH, s i zeo f ( in t1 ,  0); 

/* a l l o c a t e  space f o r  da t a  and r e s u l t s  */ 
data = ( f l o a t  *)malloc(M*sizeof ( f l o a t ) ) ;  
r e s u l t s  = (float *)malloc(M*sizeof(float)) ; 

/* receive problem data from host */  
recvO(data, M*siaeof ( f l o a t ) ,  1) ; 

/*  synchronize and begin timing t h e  computational kernel*/ 

btime= c l ~ ~ k O ( ) ;  
sync0 (1 ; 

/* communicate v i t h  other  processors and add 

/* successive numbers together  */ 
l e f t  = (me -1) 1 P;  
sendO(&datatB], s i z e o f ( f l o a t ) ,  2, l e f t ) :  
f o r  ( j = O ;  j < M - 1 ;  j++) resultsCJ1 = dataCjl + data[ j+ l ] ;  
recvQ(&rightnunr, s izaof  ( f l o a t ) ,  2); 
results[M-l] = data[j-11 + r i g h t n u ;  

*/ 

/* f i n i s h  timing and send r e s u l t  t o  standard output */ 
etime = clozk00; 

sp r in t f (bu f ,  "node %d took %I€ seconds t o  f i n i s h " ,  me, etime-btime) ; 
messageO(buf); 

sync0 ( 1 ; 

/* send r e s u l t s  t o  host, and c lose  communication channel */ 
sandO(results,  M*sizeof(float) ,  3, hos t ) ;  
close00 ; 

3 

Figure 2: Example C node program using low-level PICL routines. 
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check0 

check0 enables or disables pornmeter checking in the low-level primitives. 

Environment 

host, node 

Synopsis 

void checkO(checking) 

int checking; 

Input parameters 

checking - If checking is 1, then parameter checking is enabled. Oth- 

erwise, it is disabled. 

Output parameters 

None 

Discussion 

Often a parameter passed to  a PICL routine is simply passed directly to a 

machine-specific system primitive. Since the range of valid values for such a 

parameter often varies from machine to machine, this raises an important porta- 

bility issue. When parameter checking is enabled, each PICL routine examines 

such parameters to  see if they are valid on the current multiprocessor. When 

an invalid value is discovered, the P E L  routine generates an error message and 

stops execution. 

Since by default parameter checking is enabled, a call to check0 is necessary to  

disable parameter checking. When parameter checking is disabled, many of the 

PICL routines run slightly faster. But parameter checking should be disabled 

only for programs that are known to be correct. 



clock0 returns the system cloc 

Environment 

host, node 

Synopsis 

double clock00 ; 

Input parameters 

None 

Output parameters 

None 

Function value 

- 20 - 

clock0 

time (in seconi 

clockQ returns as a double precision value the system clock time converted into 

seconds. 

Discussion 

The clockQ function first converts the value obtained from the native timing rou- 

tine to seconds, and then retirrns this value as a double precision number. Unlike 

most of the low-level primitives, clock0 performs correctly even if interprocessor 

communication has not been enabled with a ca.11 to open0 or ha3 been disabled 

with a call to close0. 
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close0 

close0 disables interprocessor communication. The host version of close0 can 

release the c u m n t  allocation of nude processors on machines that have a system 

primitive for that purpose. 

Environment 

host, node 

Synopsis 

void closeO(re1ease) 

int  release; 

Input parameters 

release - On the host of a machine that can deallocate node proces- 

sors under program control, if release is 1, then close0 re- 

leases the node processors allocated to  the user. If release 

contains a value other than 1, then close0 releases no allo- 

cated node processors. On a node processor, the parameter 

is ignored. 

0 ut put parameters 

None 

Discussion 

Every processor, including the host, must execute open0 before it can execute 

any low-level primitive that performs, or even indirectly supports, interprocessor 

communication. The user can also explicitly disable interprocessor cornmuni- 

cation with a call to close0. When interprocessor communication is disabled, 

calling the routines close0, load0, probe0, recv0, recvinfo0, send0, or Rho0 

will generate an error message stating that the communication channel is not 

open, and the program will terminate. As a general rule, a user should issue 
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a call to open0 n e x  the beginning of his program (host or node) and a call to 

close0 near the end. 

To guarantee correct execution, any node program that uses PICL routines must 

call close0. On the nodes, it  is best to assume that close0 also kills the process 

since this is how it i s  implemented on some machines. Thus, close0 should be 

the last executable instruction in a node program. 

Similarly, if the host program uses PICL routines, then it must call close0 in 

order to guarantee correct execution. But, it  is logically correct to call open0 and 

close0 multiple times on the host as long as a call to  close0 is used to  disable 

commiinication before the next call to open0 or before the end of the program. If 

release is equal to one, then close0 releases the allocated processors in addition 

to disabling interprocessor communication, provided that the multiprocessor is 

capable of doing this under program control. On machines incapable of releasing 

processors while under program control, the value of release is ignored. The 

only practical issue raised by releasing processors in this way is the correct choice 

of parameters in a subsequent call to open0. The manual page for open0 discusses 

this in detail. 
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load0 

load0 loads and starts the execution of an executable file on one node processor 

or on eve y node processor allocated to the user. 

Environment 

host 

Synopsis 

void load0 ( f  i l e  , node) 

char * f i l e ;  

in t  node ; 

Input parameters 

f i l e  - f i l e  points to L e  name of the file contain,,ig the executable 

to be loaded and run. 

node is the ID number of the processor on which the exe- 

cutable is to be loaded and run. When its value is -1, the 

executable is loaded on every allocated node processor. 

node - 

Output parameters 

None 

Discussion 

The load0 routine is available only on the host. It is the only means provided 

by the package for loading and running node programs. A call to  load0 will fail 

if interprocessor communication has not been enabled with a call to open0. 

If P node processors have been allocated, then the legal values for the input 

parameter node are the integers between -1 and P - 1. The integers 0 to P - 1 

are the ID numbers of the individual node processors, and are used to  load a node 

program on a single processor. Calling load0 with node set to -1 loads the same 
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program on every dlocated node processor. If different programs are to run on 

different node processors, then the user must load each processor individually. 

PICL does not support having multiple processes on a single processor. If load0 

is used to load a process onto a processor that already has an active process, then 

the result is machine-dependent. On some multiprocessors, the original process is 

killed and the new process begins execution normally. On other multiprocessors, 

an error message is generated and execution stops. See Section 7 for a description 

of the behavior on a given target multiprocessor. Note that it is always legal to 

load a process onto a processor if a process previously loaded onto the processor 

has successfully terminated (after calling closeQ), but it is up to the user to 

determine whether or when this has occurred. 
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message0 

-- 
message0 writes a string on the host’s standard output device. 

Environment 

host, node 

Synopsis 

void messageO(string) 

char *string;  

Input parameters 

s tr ing  - s tr ing  points to  il character string that is to  be printed 

on the standard output device. Only the first 80 characters 

will be printed. 

0 u t  p ut parameters 

None 

Discussion 

-- 

The message0 routine is intended to be an alternative to the C routine printf .  

Typically, a user will first use the C routine sprintf  to fill a character buffer. 

He will then use message0 to send the buffer to  the host, where its contents 

are printed on the standard output device. Thus, message0 provides the same 

functionality as printf , although it is limited to relatively small messages (2 80 

characters). 

The primary reason for its inclusion in the library is that the capability of writing 

to the standard output from a node program is not supported on some target 

multiprocessors. Also, our experience indicates that using massage0 in a node 

program is significantly less expensive than using printf  on those machines that 

do support printf  on the nodes. A call to message0 in a node program will fail 
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if interprocessor communication has not been enabled with a call to open0. This 

restriction does not hold for a host program. 
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open0 

open0 enables interprocessor communication. The host versian of open0 ccan also 

allocate pmessors  on machines that provide a system routine far that purpose. 

Environment. 

host, node 

Synopsis 

void openO(numproc, me, host)  

i n t  *numproc, *ma, *host;  

Input parameters 

numproc - On a node processor, numproc is exclusively an output pa- 

rameter. On the host, if numproc points to a positive value, 

then open0 will allocate that many processors. If, on the 

other hand, numproc points to a non-positive value, then 

the interpretation of numproc is machine-dependent. For 

futher discussion of how non-positive values are interpreted 

read the discussion section below. 

0 ut put parameters 

numproc - numproc points to  the number of processors allocated. 

me - me points to the ID number of the processor on which the 

program is running. 

numproc points to the ID number of the host processor. host - 

Discussion 

On both host and node, interprocessor communication must be “opened” with a 

call to open0 before any of the following PICL routines can be called: close0, 

load0, probe0, recv0, recvinfo0, send0, sync0, and uho0. For the nodes only, 
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this is also true for message0. As a general rule, the user should issue a call to  

openQ near the beginning of his program (host or node) and a call to claseQ near 

the end. 

On the host, openQ is also used to  allocate processors on which to load node 

programs. If nurnprocs points to a positive value, then the routine attempts to 

allocate that many processors. If the requested number of processors is iinavail- 

able, then the underlying primitive prints an emor message and stops processing. 

On hypercubes, the number of processors allocated is required to be a power of 

two, but YICL essentially frees the user from this restriction. For example, a 

host program using open0 lo request 13 processors on a hypercube multiproces- 

sor will cause the system to allocate 16 processors. Nevertheless, PICL allows the 

program access to only the first 13 processors of the allocation, and, upon exit 

from open0, numprocs points to the value 13, not 16. For all practical purposes, 

both the host and node programs operate as if the extra three processors were 

not included in the originaa allocation. 

When numprocs points to a nonpositive value, the action taken by open0 on the 

host is machine-dependent. On machines where processors can be allocated at 

the keyboard with a system command (e.$., the iPSC/l, iPSC/2, and iPSC/860), 

a nonpositive value tells the host program to use the current allocation of nodes. 

On machines that allow processor allocation only under program control on the 

host, a nonpositive value tells open0 to a.llocate as many processors as possible. 

On the host, interprocessor communication can alternate between the “open” and 

“closcd” state as desired by alternating calls to open0 and close0. On machines 

that allow open0 to  reuse the previoiis allocation of nodes, a call to open0 that 

presumes an existing allocation of nodes must not follow a call to  close0 that 

releases the current allocation. For example, on the iPSC/2 a call of the form 

closeO(1) releases any allocated processors. In the next call to open0, nmprocs 

must point to a positive value, and thus allocate a new set of nodes. Otherwise, 

an error message will be generated and the program will stop. Similarly, on such a 

machine, a call of the form closeO(0) must be followed by a call to open0 where 

nurnprocs points to a nonpositive value in order to reuse the same allocation of 

processors. 
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probe0 

probe0 checks whether a message of specified type is waiting in the message queue. 

It is nonblocking. 

Environment 

host, node 

Synopsis 

int  probeO(type1 

i n t  type; 

Input parameters 

type - type contains the type field of the message being sought. 

When its value is -1, any message in the message qiieue 

will satisfy the probe. 

Out put parameters 

None 

Function value 

probe0 returns the value 1 if a message o the specified type is found in the 

message queue. Otherwise, it  returns the value 0. 

Discussion 

Every message has associated with it an integer "type" field that is used by the 

receiving processor to discriminate one kind of message from another. The probe0 

routine searches the message queue for messages of a specified type. It returns 

as soon as it  has finished checking the queue, whether the desired message has 

been found or not. If the specified type is -1, then any message will satisfy the 

probe. A call to probe0 will fail if interprocessor communication has not been 
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enabled with a call to openo. The routine recvinfoo can be used to  obtain the 

following information about a message found by probe& the length and type of 

the message and the ID number of the originating processor. 

Acceptable values for the input parameter type are machine-dependent. The 

range of valid values for this parameter is given on a machine-by-machine basis 

in Section 7. 

The inclusion of probe0 in the package is essential to support the asynchronous 

programming style necessary for efficiency in some applications. Typically, such 

an application program will periodically probe the message queue for the next 

message that is expected. A blocking probe, also useful in some applications, can 

be coded as follows: 

while (probeO(type) == 0) ; 
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recvO receives a message of the specified type. It blocks processing until the mes- 

sage is received. 

Environment 

host, node 

Synopsis 

void recvO(buf, bytes ,  type) 

char *buf; 

int bytes ,  type; 

Input parameters 

buf - buf points to the beginning of the buffer into which the 

incoming message is to  be written. 

bytes is the size of the buffer (in bytes) into which the 

message is to be written. 

type is the "type" of the message to be received. When its 

value is -1, recvO will receive the first available message of 

any type. 

bytes - 

type - 

Output parameters 

None 

Discussion 

The routine recvO receives a message of type type into a buffer buf of length 

bytes.  If the value of type is -1, then the first available message of any type 

will be received. When executing recv0, the processor stops all computation 

until a message satisfying the request is received. A call to recvO will fail if 

interprocessor communication has not been enabled with a call to  openo. The 

routine recvinfoo can be used to obtain the following information about the most 



- 32 - 

recently received (or successfully probed for) message: the length and ‘type” of 

the message and the ID number of the originating processor. 

Acceptable values for the input parameter type are machine-dependent. The 

range of valid values for this parameter is given on a machine-by-machine basis 

in Section 7. 
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recvinfo0 

recvinfo0 returns information about the most recently wceived or successfully 

pmbed for message. 

Environment 

host, node 

Synopsis 

void recvinf 00 (bytes,  type, source) 

i n t  *bytes, *type, *source; 

Input parameters 

None 

Output parameters 

bytes - bytes points to the length (in bytes) of the most recently 

received or successfully probed for message. 

type points to the “type” of the most recently received or 

successfully probed for message. 

source points to the processor ID number of the originat- 

ing processor of the most recently received OH successfully 

probed for message. 

type - 

source - 

Discussion 

The routine recvinf 00 reports information about the most recently received or 

successfully probed for message. A call to recvinf 00 will fail if interprocessor 

communication has not been enabled with a call to open0. 

If P node processors have been allocated, then the possible values for source are 

the integers between 0 and P - 1, the ID numbers of the P node processors, and 

the integer -32,768, the ID number of the host processor. 



- 34 - 

If a program mixes calls to the native receive routine with calls to recv0, then 

the information recvinfoO returns may or may not pertain to the most recently 

received message. This problem will not arise if all incoming messages are handled 

by the probeQ and recvQ routines. 
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send0 

send0 sends a message. It blocks p m s s i n g  until it is safe to modify the contents 

of the send bufler. 

Environment 

host, node 

Synopsis 

void sendO(buf, bytes ,  type, dest )  

char *buf; 

int bytes ,  type, dest;  

Input parameters 

buf - buf points to the beginning of the buffer containing the 

message to be sent. 

bytes  is the length of the message (in bytes). 

type allows the user’s program to distinguish between dif- 

ferent kinds or “types” of messages . 
dest  is the processor ID number of the destination proces- 

sor. 

bytes 

type 

- 

- 

dest  - 

0 ut p ut parameters 

None 

Discussion 

The routine send0 sends a message stored in the buffer pointed to by buf to the 

processor whose ID number is contained in dest. The length and “type” of the 

message are contained in bytes and type respectively. A call to send0 will fail 

if interprocessor communication has not been enabled with a call to openo. Note 

that the host ID number is -32,768, but this value is also returned by open0 and 

who0 and need not be explicitly used in a program. 
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The send operation invoked by send0 is both blocking and asynchronous. That 

is, computation on the sending processor resumes as soon as the message is safely 

on its way to  the receiving processor. This is in contrast to synchronous com- 

munication, during which computation on the sending processor halts until the 

matching receive i s  executed by the receiving processor. It is also in contrast to 

nonblocking communication, in which the sending processor resumes computation 

before the message has been copied from the user’s message buffer. 

Acceptable vdues for the input parameters bytes, type, and dest are machine- 

dependent. The range of v&d values for these two parameters is given on a 

machine-by-machine basis in Section 7. 
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sync0 

sync0 synchmraizes the node processors. 

Environment 

node 

6 

Synopsis 

void sync00 

Input parameters 

None 

Output parameters 

None 

Discussion 

One way to (approximately) synchronize the node processors is to call sync0 on 

each node processor. When a node processor executes sync0, it participates in an 

interchange of messages, the sole purpose of which is the nearly simultaneous exit 

of all processors from sync0. These message exchanges are designed to minimize 

as much as possible the time that elapses between the first and last exit from 

sync0. 

A call to sync0 will fail if interprocessor communication has not been enabled with 

a call to openo. A call to sync0 is also likely to fail if it is immediately preceded by 

a call to recvO with a type parameter of -1. In this situation, the “promiscuous” 

receive is likely to remove one of the synchronization messages from the queue, 

after which the synchronization process will never complete because of the missing 

message. While the library is able to identify this error and issue an appropriate 

error message, it is not able to recover from it. Finally, a call to  sync0 will fail 

unless aEl node processors call sync0. If any node processor fails to call sync0, 

then all of the processors that do call sync0 will never exit the routine. 
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The sync0 routine i s  very different from the other low-level primitives included 

in the library. It does not merely issue a call to some native routine whose 

function clearly matches its own. It is more like the high-level communication 

routines than the low-level primitives with which it is grouped. Despite the fact 

that vendors do not generally supply a convenient barrier or synchronization 

routine, we feel that this function i s  of such fundamental importance in obtaining 

legitimate timing results that we include it in the low-level library. 
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who0 

who0 returns the number of processors, the nude ID number and the host ID 
number. 

Environment 

host, node 

Synopsis 

void whoO(numproc, me, host) 

i n t  *numproc, *me, *host; 

Input parameters 

None 

Output parameters 

numproc - 

- me 

host - 

Discussion 

nmproc points to the number of processors allocated to the 

user. 

me points to the ID number of the processor on which the 

program is running. 

host points to the ID number of the host processor. 

The who0 routine returns the same information that open0 returns. This routine 

is included so that this information can be conveniently obtained by subroutines 

that do not call openo. A call to who0 will fail if interprocessor communication 

has not been enabled with a call to open0. 
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4. High-level communication routines 

Purpose 

The high-level communication routines perform various operations that involve 

global communication, such a global broadcast, global summation, and global 

synchronization. Since the only routines cdled by the high-level routines are low- 

level PIGL primitives, the source code for the high-level routines is independent 

of the target machine. 

While we include only those global communication routines that we have found 

useful to date in our codes, these routines are also meant to serve as models for 

routines that implement similar globd communication operations not currently 

implemented in our package. Note that the high-level communication routines do 

not check for errors (beyond that provided by the low-level P E L  primitives), and 

some extra care must be taken to use the routines corzctly. 

Machines and Multiprocessing Environments 

Implementations of the high-level communication routines are available) for the 

following machines and multiprocessing environments: 

iPS C / 1 hypercube iPSC/2 hypercube iPSC/SSO hypercube 

Wcube/3200 hypercube Cogent Symult S2010 

Cosmic Environment Linda Unix System V 
X Window System 

Synopsis 

The host and node programs should be linked, respectively, with host and node 

libraries containing the high-level communication routines listed below. With the 

exception of barrier0, every routine is available on both host and node. The 

routine barrier0 is available only on the nodes. 
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void bcastO(char *buf, i n t  bytes,  i n t  type,  i n t  root)  

void bcastd(char *buf, i n t  byte  i n t  type,  i n t  roo t )  

void gcombO(char *buf, i n t  i t e m s ,  i n t  datatype, 

i n t  msgtype, i n t  root ,  void (*comb)()) 

void gandO(char *buf, i n t  items, i n t  datatype, 

i n t  msgtype, i n t  roo t )  

void paxO(chah *buf, i n t  item, h e  datatype, 

i n t  mgtype, in% root)  

void pinO(char  *buf, i n t  i t e m s ,  i n t  datatype, 

i n t  msgtype, i n t  root)  

void gorO(char *buf , in% items, i n t  datatype, 

i n t  msgtype, i n t  root) 

void gprodO(char *buf, i n t  items, i n t  datatype, 

i n t  msgtype, i n t  root)  

void gseunO(chxr *buf, i n t  items, i n t  datatype, 

i n t  msgtygs, i n t  root)  

void gxorO(char *buf, i n t  items, i n t  datatype, 

int msgtype, i n t  root)  

void b a r r i e r 0 0  

i n t  grayO(int i> 

i n t  ginvO(int i> 

Standard Usage 

The high-level communication routines supplied with PICL were designed to serve 

a number of purposes: 

- as a convenience to users, so that certain commonly occurring global cornmu- 

nicatioii operations do not have to he reimplemented by each programmer, 

- as examples of machine-independent code written using PICL primitives, 

serving as models upon which users can base other global operations of 

their own design, 
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- as abstractions above the low-level communication primitives, reducing the 

volume of trace data produced by PICL’s instrumentation, and 

- as a mechanism for conveniently carrying out computational experiments in 

which the user varies such parameters as the number of processors and the 

effective interconnection topology used. 

The high-level routines are based on the concept of a virtual architecture consist- 

ing of a specified number of processors and a specified network topology inter- 

connecting them. The number of processors used can be any number up to the 

number allocated by the most recent call to openo. If the specified intetconnec- 

tion network is not physically realized on a particular machine, then the network 

is emulated by system-supplied message routing. The architectural parameters 

are set by calling the routine setarc0. The parameters to  setarc0 are input 

parameters on the host and output parameters on the nodes. The host version 

of setarc0 communicates this information to  the nodes by sending a message of 

a special type to  each of the nodes to be used. In this way, the host program 

informs the nodes of the number of processors to be used m d  the interconnection 

pattern to use for global Communication operations. We will refer to  the number 

of processors specified in the call to  open0 as the number of processors allwuted, 

and to the number of processors specified in the call to  setarc0 as the number 

of processors in use. Any allocated processors that are not in use are unaffected 

by calls to  the high-level routines (other than setarc0 itself; see below), 

For experimenting with varying numbers of processors within a single run, the 

‘‘standard usage” for the high-level routines is for node programs to contain an 

outer loop around a call to setarc0. All of the processors “hang” in a call to 

recvo inside setarc0, awaiting the special message from the host informing them 

of the number of processors in use, as well as the other architecturd parameters. 

Those processors that have been allocated but are not to be used for the moment 

will simply remain hung in setarc0 until a new call to setarc0 on the host 

specifies a large enough number of processors to involve them. In order to break 

out of this loop, a special case is provided; namely, if the number of processors 

is set to 0 in the call to setarc0 on the host, then all of the allocated nodes 

calling setarc0 will receive a message reporting this fact. In this case, the call 
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to setarc0 on the nodes will return the value 0 for the number of processors, so 

that this condition can be used in a test to  break out of the loop and proceed 

with an orderly termination of the program (including a call to close8). 

The next two pages contain a sample skeleton code representing a hypothetical 

application using the high-level routines. The example illustrates how the node 

program can be executed multiple times, using a different number of processors 

each time. The node program calls setarc0 inside an infinite while loop that 

is terminated when setarc0 returns a value of zero for the number of in use 

processors. The use of varying numbers of processors would be typical of a 

computational experiment to determine the speedup curve for a parallel program 

on a given application problem. The other architectural parameters can also 

easily be varied within this same framework. 
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main() 
C 
int nprocs, me, host, p, top, ord, dir, n; 
float *results; 

n = 100; 
results = (float *)mallocO(n*sizeof(float)); 

nprocs = 64; 
openO(%nprocs, h e ,  &host); 
loadO("node", -1) ; 

ord = 1; 
dir = 1; 
for (p=i ; p<=nprocs ; p * 4  C 

top = 1; 

/*  set architectural parameters */ 
setarcO(%p, %top, &ord, &dir); 

/* broadcast problem data to a l l  processors in use */ 
bcastO(&n, sizeof (int) , 0, host) ; 

/* collect global sum of results from all processors in use */ 
gsumO(results, n, 4, 1, host); 
1 

Figure 3: Example C host program using high-level PICI, routines. 
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main0 
c 

int p ,  me, host, top,  ord, dir, n; 
f l o a t  *results ; 

openB(&p, h e ,  &host); 
while (1) < 

/* get architectural parmeters fr 
ss%arcO(&p, &top, &ord, k d i r ) ;  
if (p == 0) break; 

/* get problem data from host */ 
bcastO(&n, sizeof(int), 0, host); 

results = (f loat *)malloeQ(n*sizeof (f loat )  ) ; 

/* compute local contribution to results vector */ 

/* globally sum results across processors and send to host */  
gswnO(results, n, 4, 1, host); 

Figure 4: Fragment of C node program using high-level PICL routines. 
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barrier0 

barrier0 synchronizes the node processors currently in we. 

Environment 

node 

Synopsis 

void barrier00 

Input parameters 

None 

0 ut put parameters 

None 

Discussion 

The routine barrier0 synchronizes the node processors declared in w e  during the 

most recent call to setarc0. To perform the synchronization, the user should have 

each node processor in use call barrier0 at the point in the program requiring 

synchronization. While in barrier0, each processor participates in a sequence of 

message exchanges, the sole purpose of which is the nearly simultaneous exit of all 

processors from barrier0. More precisely, the message exchanges are designed 

to minimize as much as possible the time that elapses between the first and 

last escape from barrier0. The message types used in the barrier algorithm 

are determined from a machine-dependent base value and from the number of 

processors specified by the most recent call to setarc0. For example, if basetype 

is the base value and nprocs is the number of processors specified by setarc0, 

then all message types used by barrier0 are between basetype and basetype + 
nprocs. This range is guaranteed to be within the legal range of message types 

for the given multiprocessor. The base value used for a given target machines is 

described in Section 7. 
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A call to barrier0 must be preceded by a call to  open0 to  open interprocessor 

communication, and by a call to setarc0 to declare the number of processors 

in use and to indicate what interconnection topology to use. For more details 

consult the manual pages for these two routines. 

Like bwrier0, the low-level primitive routine sync0 is also designed to sychronize 

processors, and the two routines are very similar. They differ however in two 

important ways: 

I. Like all of the high-level routines, the source code for barrier0 is rnachine- 

independent; it uses the same hypercubestyle dimensional exchange algo- 

rithm on all target machines. Since the primary emphasis in sync0 is on 

speed of execution and sharpness of the resulting synchronization, the im- 

plementation of sync0 takes advantage of the most efficient synchronization 

mechanism ofFered by a given architecture. 

2. barrier0 synchronizes only the processors currently in use, as specified in 

the most recent call to seta-cQ; sync0 synchronizes all processors in the 

current allocation of node processors, as specified in the call to open0; 

The dimensional exchange algorithm used by barrier0 is likely to fail if one or 

more of the calls to barrier0 is immediately preceded by a call to rem0 with 

a type parameter of -1. In this situation, at least one of these “promiscuoiis” 

receives is likely to  receive a synchronization message, eaiising at least some of 

the processors in use to “hang” in barrier0 due to missing messages. Not only 

is the routine unable to recover from this error, it is not even able to identify 

it and issue an appropriate error message. Thus, it is important that the user’s 

program never allow “promisciious~’ receives to interfere with barrisrO in this 

way. 

During the execution of barrier0, it is also important that the message queue 

of each node processor not contain a ‘~non-synchToniZation~’ message with a type 

parameter that falls in the range used by bmrier0. In this case barrier0 will 

not deadlock, but the program will not execute correctly from this point on. The 

user can ensure that this does not occur by using only message types that are 

smaller than baaeltype (as described in Section 7 for each target machine). L ‘5’ lnce 
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basetype is near the high end of the range of legal message types, portability 

can be enhanced by keeping user-defined message types smaller than basetype 

for all machines on which the program is likely to be executed. 
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beast0 

bcastQ brvladmsts a vector fmm one pmessor  to every node processor currently 

in use, The brcmdcast is monolithic in that each processor mceives the message 

and completes all forwarding of it before the p m s s o r  restimes computation. In 

particular, the processors do not to interrupt the bmdcast to perform cornputa- 

tiom with incoming bmdcast data before  for^^^^^^ the data. 

Environment 

host, node 

Synapsis 

void bcastQ(buf bytes, type root) 

char *buf ;  

int bytes, type ,  root; 

Input parameters 

buf - On the root processor, buf points to a buffer containing the 

message to be broadcast. On processors other than the m o t ,  

buf points to the buffer where the broadcast message is to 

be stored. 

On the soot processor, bytea is the length (in bytes) of the 

message to be broadcast. On processors other than the root, 

bytes is the length (in bytes) of the buffer in which the broad- 

cast message is to be placed. 

type is the message type used when sending and receiving 

the individual messages that constitute the broadcast. 

roo% i s  the processor ID number of the source of the broad- 

cast message. Note that root can be the host. 

bytes  

t Y P  

root - 

Output parameters 

None 



- 51 - 

Discussion 

This routine broadcasts data from one processor, designated as the root, to every 

node processor declared in use by the most recent call to setarco. Note that 

the host or any node processor currently in use can be the root. To perform 

a global broadcast from a node processor, each node processor in use must call 

bcastO with the appropriate input parameters. As the processors enter bcast0, 

they cooperate in moving the data from the root to the other node processors in 

use, using the interconnection topology set by the most recent cdl  to setarcQ. 

After the last processor has exited bcast0, every node processor in use contains 

the broadcast data in the buffer pointed to by buf. 

When a node processor is the root, the host does not participate in any way 

in the broadcast. Indeed, the host can never receive broadcast data; only node 

processors in use can receive broadcast data. Thus, it never makes sense to call 

bcastO on the host with root set to a node processor ID number. We have 

nevertheless found it convenient to allow the host to be the root of a broadcast. 

To broadcast from the host, the host and every node processor in use must call 

bcastO with the parameter root set t o  the host ID number. When this is done, 

the host first sends the broadcast data to node 0, then the broadcast proceeds 

just as if i t  were initially rooted at node 0. (Note that the host ID number is 

a large negative number that can be obtained from open0 or who€). For more 

details consult the manual pages for these routines.) 

A call to  bcastO must be preceded by a call to openQ to open interprocessor 

communication, and by a call to setarc0 to declare the number of node processors 

in use and to indicate what interconnection topology to use. For details on how 

the various architecture options affect the way the broadcast is performed, consult 

the manual page for setarc0. 

bcastO performs a “synchronous” broadcast in the sense that it does riot allow 

processors to perform computations with incoming broadcast data before their 

participation in the broadcast is complete. In contrast, the routine bcastl per- 

forms an “asynchronous” broadcast designed to allow each processor to  perform 

computation with incoming broadcast data before resuming participation in the 
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broadcast. Some algorithms use pipelining techniques that require immediate 

processing of incoming broadcast data. These pipelining techniques can he eas- 

ily implemented using bcaatl .  For more details, consult the manual page for 

bcast 1 * 

Valid values for the input parameters bytes and type are machine-dependent. 

Though the rautine bcastO performs no machine-dependent parameter checking, 

these two parameters are routinely checked for validity in the low-level communi- 

cation routines recvO and ~~~~0 to which they are passed unchanged. For each 

target machine, the range of valid values for each of these two parameters is given 

in Section 7. 

As with most of the high-level communication routines, certain rules for “consis- 

tency” among the input parameters must be followed to ensure successful com- 

pletion of the operation. First, the user must make sure that each non-root 

processor provides a buffer large enough to hold the broadcast message. In par- 

ticular, bytes on the root  processor must not exceed bytes on any non-root 

processor in use. If this condition i s  not met, then at least one processor will fail 

inside the native receive routine because there is insufficient buffer space to han- 

dle the incoming broadcast message (or on some systems the message i s  simply 

truncated if the buffer provided is too small). Second, since the input parame- 

ter type i s  used to identify the individual messages that constitute a particular 

broadcast, each processor must call bcasx0 with the same type parameter. Fail- 

ure to do so is likely to result in one or more processors “hanging” inside bcastQ 

because an expected incoming broadcast message is missing. 

During the execution of bcast0, it is important that the message queue on each 

processor in use not contain a %on-broadcast” message with the same message 

type as that used by the bcast0, If bcast0 happens to receive such a non- 

broadcast message, then the results are unpredictable. The simplest way to 

avoid this problem is to avoid the broadcast -type value as a message 

type anywhere else in the code. It is also important that a broadcast message 

generated by a call to bcast8 be removed from the message queue only by a call 

to bcast0. Thus it is dangerous when a call to bcastQ is immediately preceded 

by a call to recvO with a type  parameter whose value is -1. In this situation, 
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the "promiscuous" receive is likely to receive the broadcast message, causing the 

processor to "hang" in bcastO due to the missing message. Not only is the routine 

unable to recover from this error, it  is not even able to identify it and issue an 

appropriate error message. 
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bcast P 

Used in eonjuction with racv0, bcastl broadcasts a wector from one processor to 

every node yroeessor currently in use. In bsast i  the reception and forwarding 

of the message am demupkd in order to pernit the pmessors  to perform wm- 

piutations tuith incoming bnwrdcast data before the processor’s participation in the 

broadcast is complete. 

Environment 

host, node 

Synopsis 

void bcastl(buf, bytes, type, root) 

char *buf; 

int bytes, type,  root; 

Input parameters 

buf - On the root processor, buf points to a buffer containing the 

message to be broadcast. On processors other than the root ,  

buf points to a buffer containing the message previously re- 

ceived (with recvo), and which is to be forwarded to subse- 

quent processors in the broadcast. 

On the root  processor only, bytes is the length (in bytes) of 

the message to be broadcast. On processors other than the 

root, bytes i s  the length (in bytes) of the buffer in which 

the broadcast message is to be placed. 

type i s  the message type used when sending and receiving 

the individuaa messages that constitute the broadcast, 

root is the processor ID nuixiber of the source of the broad- 

cast message. Note that root can be the host. 

bytes -- 

type - 

root - -  
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0 ut p ut parameters 

None 

Discussion 

Used in conjuction with recvo, this routine broadcasts data from one processor, 

designated as the root,  to every node processor declared in use during the most 

recent call to setarc0. Note that the host or any node processor currently in use 

can be the root.  To perform a global broadcast from a node processor, each node 

processor in use, except the root ,  must first call recvO to receive the broadcast 

data, and then each node processor in use, including the root ,  must call bcas t l  

to send the data on to other processors. bcas t i  issues none of the calls to  recvO 

that constitute the “receiving half” of a broadcast; it performs only the calls to 

send0 that constitute the “sending half” of the operation. When using recvO 

and bcas t l  to perform the broadcast, the user’s program need not wait until its 

participation in the broadcast is over before performing computation with the 

new data. After using recvO to receive the broadcast data, the user’s program 

can use the new data to generate results and send them where they are urgently 

needed, before resuming its participation in the broadcast with a call to bcast l .  

Typical use of the routine is illustrated below. 

whoO(&numproc, &me, &host) ; 

i f  ( root  != me) recvO(buf, bytes,  type) ; 

Use new data in *buf to compute new results. 

Send new results where they are uryently needed. 

bcast i (buf , bytes,  type,  root)  ; 

In contrast, bcastO contains both the recv0’s and sendo’s that constitute the 

broadcast. While its use is more straightforward, bcastO gives a processor no 

opportunity to use the data until after it has completed its participation in the 

broadcast. 



As the processors enter r a w 0  and, subsequently, bcas-tl, they cooperate in mov- 

ing the data from the root to the other node processors in use, using the inter- 

connection topology set during the mast recent call to satarc0. After the last 

processor has exited bcastl., every node processor in use contains the broadcast 

data in the buffer pointed to by buf. 

When a node processor is the root, the host does not participate in any way 

in the broadcast. Indeed, the host can never receive broadcast data; only node 

processors in use c m  receive broadcast data. Thus, it  never makes sense to call 

bcastl  on the host with root  set to a node processor ID number. We have 

nevertheless found it convenient to allow the host to he the root of a broadcast. 

To broadcast from the host, the host must call only bcastl ,  while every node 

processor in use must first call recv0, then bcastl. When this is done, the host 

first sends the broadcast data to node 0, after which the broadcast proceeds just 

as if it were initially rooted at  node 0. (Note that the host ID number is a large 

negative number that can be obtained from open0 or w ~ Q Q .  For more details 

consult the manual pages for these routines.) 

A call to  bcast l  must be preceded by a call to open0 to open interprocessor 

communication, and by a call to setarc0 to  declare the number of processors in 

use and to indicate what  interconnection topology to use. For details on how the 

various architecture options affect the way the broadcast is performed, consult 

the manual page for setarco. 

Valid values for the input parameters bytes and type are machine-dependent. 

Though the routine bcast 1 performs no machine-dependent parameter checking, 

these two parameters are routinely checked for validity in the low-level communi- 

cation routine send0 to which it is passed unchanged. For each target machine, 

the range of valid values for each of these two parameters is given in section 7. 

As with most of the high-level communication functions, certain rules for “consis- 

tency” among the input parameters must be followed to ensure successful comple- 

tion of the operation. First, the user’s code must make sure that each non-root 

processor provides a buffer large enough to hold the broadcast message. In par- 

ticular, bytes in bcastl on the root processor must not exceed bytes  in recvQ 

on any non-root processor in use. If this condition is not met, then at  least one 
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processor will fail inside recvO because there is insufficient buffer space to handle 

the incoming broadcast message (or on some systems the message is simply trun- 

cated if the buffer provided is too small). Second, since the input parameter type 

is used to  identify the individual messages that constitute a particular broadcast, 

each processor must call recw0 and bcast 1 with the same type parameter. Fail- 

ure to do so is likely to result in one or more processors “hanging” inside recv0 

because an expected incoming broadcast message is missing. 

During the execution of the recvO that precedes a call to  bcastl ,  it is important 

that the message queue on each processor in w e  not contain a “non-broadcast” 

message with the same message type as that used by the bcastl .  If this call 

to sew0 happens to receive such a non-broadcast message, then the results are 

unpredictable. The simplest way to  avoid this problem is to avoid “reusing” the 

broadcast type value as a message type anywhere else in the code. It is also im- 

portant that a broadcast message generated by a call to bcastl be removed from 

the message queue only by the call to recvO associated with the call to  bcastl .  

Thus it is dangerous when the recvO/bcast 1 pair is immediately preceded by 

a call to recvO with a type parameter whose value is -1. In this situation, 

the “promiscuous” receive is likely to receive the broadcast message, causing the 

processor to “hang” in the receive portion of the recvO/bcaetl pair due to the 

missing message. Not only is the routine unable to recover from this error, it is 

not even able to identify it and issue an appropriate error message. 
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gandO, gmax0, grninO, gor0, gprod0, gsum0, gxorO 

These mutines compute the component-wise %nd”, “rnazimum”, “minimum”, 

“or”, “ p d u c t ” ,  “sum”, and “exclusive or”, mspctively, of a distributed set of 

vectors . 

routine function binary operation I 

gprodQ 

gsumo 

gxorO 

+ arithmetic multiplication 

Environment 

host, node 

Synopsis 

o v  1 = 1 , O V O  = 0 

c = ab 

c = u + b  

1 @ 1 = 0 , 1 @ 0  = 1, 

0 8  1 = 1 , o m o  = 0 

valid 

data types 

0,1,2,3,4,5 

0, 1,2,3,4,5 

0,1,2,3 

void g-O(buf, item, datatype, msgtype, root) 

char *buf; 

i n t  items a datatype msgtype, root ; 
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Input parameters 

buf - buf points to the first element of a vector. Warning: This 

vector will be ovem'tten. 

items is the number of elements in the vector. it ems - 

datatype - datatype indicates the data type of the elements of the vec- 

tor: 

0 = char, 
1 = short, 
2 = int ,  

3 = long, 
4 = f loa t ,  

5 = double. 

msgtype - msgtype is the message type used when sending and receiving 

the individual messages generated by the $lobal combining 

operation. 

root - root is the processor ID number of the destination of the 

final result vector. Note that root can be the host. 

Output parameters 

buf - On the root processor only, buf points to the buffer contain- 

ing the vector resulting from the global combining operation. 

On the other processors, the contents of the buffer pointed 

to  by buf is overwritten with intermediate results. 

Discussion 

The routines documented here use various binary operations to compute a single 

vector from a set of vectors distributed among the processors declared in use 

by the most recent call to  setarc0. Each of the routines assumes the following 

situation. Let P be the number of node processors declared in use during the 

most recent call to setarc0. Let vo,vl,. , . , vP-l be a set of P vectors, each with 

the same number of elements (items) and of the same data type (datatype). 
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Assume that the vectors are distributed among the node processors in use, with 

each processor “owningn a unique vector from the set. Let g-0 represent one 

of the routines, and let Q represent the binary operator associated with g-0. 

Then g-0 computes the vector p1 whose i-th component is 

and stores 71 on the root processor. For example, the routine gsum0 is used 

to sum the vectors vo, vl, w2,. . . , 8-’ and store the resulting sum on the root 

processor. 

The table at  the beginning of this section lists all of the “‘global combining” rou- 

tines, along with the name and a precise definition of the binary operation on 

which it is based. This table contains all the information specific to a partic- 

ular “global combining” routine that the user needs to know. The discussion 

below presents only material that applies to a11 of the routines documented here. 

Throughout we will continue to refer to an arbitrary “global combining” routine 

by €5--0 

To “globally combine” a distributed set of vectors and store the result on a node 

processor, each node processor in use must call g-0 with the appropriate input 

parameters. As the processors enter g-0, they cooperate in combining the data 

and moving partial results from all node processors in use in toward the root, 

using the interconnection topology set during the most recent call to setarc0.  

Upon exit from g--O, the root processor contains the final result in the buffer 

pointed to by buf. 

When a node processor is the root ,  the host does not participate in the “global 

combining” operation. Thus, it never makes sense to call g--O on the host with 

roo t  set to a node processor ID number. We have nevertheless found it convenient 

to allow the host to be the root of a combining operation in the sense that the 

result is sent there. Rut the host never “owns” a vector to be “conibined’’ with 

those on the nodes. If the host is the root, then g--0 performs exactly as if the 

root  were node 0 until the result has been calculated. At this point, the result is 

sent from node 0 to the host. (Note that the host ID number is a large negative 
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number that c m  be obtained from open0 or uho0. For more details consult the 

manual pages for these routines.) 

A call to g-0 must be preceded by a call to  open0 to  open interprocessor com- 

munication, and by a call to s e t a e 0  to declare the number of node processors in 

use and to  indicate what interconnection topology to use. For details on how the 

various architecture options affect the way the “combine” operation is performed, 

consult the manual page for setarc0. 

Valid values for the input parameters items and msgtype are machine-dependent. 

Though the routine g-0 performs no machinedependent parameter checking, 

these two parameters axe routinely checked for validity in the low-level communi- 

cation routines recvO and send0. The parameter msgtype is passed unchanged 

to these routines; the parameter items is scaled to obtain the number of bytes 

required t o  store the vector, and that number is checked for validity when it is 

passed to the send0 routine. To determine the range of valid values f o T  each of 

these two parameters, consult Section 7. 

As with most of the high-level communication routines, certain rules for “consis- 

tency” among the input parameters must be followed to  ensure successful com- 

pletion of the operation. First, the user must make sure that every participating 

processor calls g-0 with the same values in items and datatype. In other 

words, the vector lengths and data types have to be the same on every processor. 

If they are not, then it is likely that at least one processor will fail inside the na- 

tive receive routine because there is insufficient buffer space to hold an incoming 

vector (or on some systems the message is simply truncated if the buffer provided 

is too small). Second, since the input parameter msgtype is used to  identify the 

individual messages generated by the “combining’ operation, each processor must 

call g-0 with the same msgtype parameter. Failure to  do this is likely to result 

in one or more processors “hanging” inside gl10 because an expected incoming 

vector is missing. 

During the execution of g-0, it is important that the message queue on each 

processor not contain a message with type msgtype from some source other than 

the combining operation. If g-0 happens to  receive a message not intended for 

it, then the results are unpredictable. The simplest way to avoid this problem is 
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to avoid “reusing” a combining operation msgtype as a message type anywhere 

else in the code. I t  is also important that a “combining” message generated by a 

call to g-0 be removed from the message queue only by a call to  g-0. Thus it 

is dangerous when a call to g--O is immediately preceded by a call to r e m 0  with 

a type parameter whose value is -1. In this situation, the “promiscuous” receive 

is likely to receive the “combining” message, causing the processor to “hang” in 

g-0 due to  the missing message. Not only is the routine unable to recover from 

this error, it  is not even able to identify it and issue an appropriate error message. 
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gcornb0 

gcomb0 computes a specified component-wise binary combination of a distributed 

set of vectors. 

Environment 

host, node 

Synopsis 

void gcombO(buf, items, datatype, msgtype, root, comb) 

char *buf; 

i n t  items, datatype, msgtype, root; 

void (*comb) 0 ; 

Input parameters 

- buf 

items - 

datatype - 

msgtype - 

root - 

buf points to the first element of a vector. Warning: This 

vector will be overwritten. 

items is the number of elements in the vector. 

datatype indicates the data type of the elements of the vec- 

tor: 

0 = char, 
1 = short, 
2 = int, 
3 = long, 

4 = f loa t ,  

5 = double. 

msgtype is the message type used when sending and receiving 

the individual messages generated by the global combining 

operation. 

root is the processor ID number of the destination of the 

final result vector. Note that root  can be the host. 
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comb - comb is (a pointer to) a binary “combining” routine that op- 

erates on the indicated data type. The opmt ion  defined b y  

comb must be associative and Commutative in oder for the 

result to be well-defined independent of the virtual multipm- 

C~SSOF and of the order of the vectors. 

Output parameters 

buf - On the root processor only, buf points to  the buffer contain- 

ing the vector resiilting from the global combining operation. 

On the other processors, the contents of the buffer pointed 

to by buf is overwritten with intermediate results. 

Discussion 

The routine gcomb0 uses the routine comb to compute a single vector from a set 

of vectors distributed among the processors declared in use by the most recent 

caJl to setarc0.  gcomb0 assumes the following situation. Let P be the number 

of node processors declared in use during the most recent call to setarc0.  Let 

DO, d ,  . . . , wp-* be a set of P vectors, each with the same number of elements 

(items) and of the same data type (datatype). Assume that the vectors are 

distributed among the node processors in use, with each processor “owning” a 

unique vector from the set. Let 0 represent the binary operator that is imple- 

mented by the function comb. Then gcomb0 computes the vector u whose i-th 

component is 

‘21; f vo 0 2s; @ v;2 @ . . . @ w f - 1  , 

and stores u on the root processor. For exaniple, if comb sums two numbers, 

then the call to gcomb0 is equivalent to the routine gsum0, which, in fact, is how 

gsumQ is implemented. 

The routine comb takes four parameters as follows: 

void cornb(p1, p2, items, datatype) 

char *PI, *p2; 

int items, datatype; 
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The first two parameters, p i  and p2, are pointers to  the beginning of the two 

vectors to be combined. items specifies the number of element in the vector, and 

datatype specifies the type of each element. comb then “combines” corresponding 

elements of the two vectors, overwriting the contents of vector pi .  As an example, 

Figure 5 contains the source code for orO, the routine that is passed to gcomb0 

inside of gor0. Note that a switch is used to distinguish between the different 

data types, and that not all cases are represented. The “OR’, function for the 

other data types was deemed less interesting, and those types we ignored. The 

user determines which data types itre understood by comb, and it i s  the user’s 

responsibility to use only these data types in his appticatian codes. Also note 

that the function datasize0 is used to identify the number of bytes in data of 

type datatype. This is an undocumented internal routine of PICL, anld can be 

used by user-written combining routines. 

To “globally combine” a distributed set of vectors and store the result on a node 

processor, each node processor in use must call gcomb0 with the appropriate input 

parameters. As the processors enter gcomb0, they cooperate in combining the 

data and moving partial results from all node processors in w e  toward the root 

using the interconnection topology set during the most recent call to setarc0. 

Upon exit from gcombo, the root processor contains the final result in the buffer 

pointed to by buf. 

When a node processor is the root, the host dues not participate in the “global 

combining” operation. Thus, it  never makes sense to call gcornb0 on the host 

with root set to a node processor ID number. We have nevertheless found it 

convenient to  allow the host to  be the root of a combining operation in the sense 

that the result is sent there. But the host never “owns” a vector to be “combined” 

with those on the nodes. If the host is the root, then gcomb0 performs exactly 

as if the root  were node 0 until the result has been calculated. At this point, 

the result is sent from node 0 to the host. (Mote that the host ID number is a 

large negative number that can be obtained from open0 or uho0. For more details 

coiisult the manual pages for these routines.) 

A call to gcomb0 must be preceded by a call to open0 to open interprocessor 

communication, and by a call to setarc0 to declare the number of node processors 
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void orO(p1, p2, items, datatype) 
char *p i ,  *p2; 
i n t  items datatype; 

char *c1, *c2; 
sho r t  *si, *s2; 
i n t  *il, * i2 ,  i, bytes ,  s i z e ,  d a t a s i z e 0 0 ;  
long *ll, *12; 

s i z e  = datasizeO(datatype) ; 
bytes = items*size; 
switch (datatype) { 

f o r  (i = 0; i < bytes;  i += s i z e )  { 
case 0: 

c l  = (char *) (p l  + i); 
c2 = (char *)(p2 + i); 
*cl  I =  *c2;  

3 
break; 

for ( i  = 0;  i < bytes;  i += s i z e )  { 
case 1: 

si = ( shor t  * ) (p i  + i); 
s2 = ( shor t  *)(p2 + i); 
*si I=  *s2; 
3 

break; 

f o r  (i 0 ;  i < bytes;  i += size) { 
case 2: 

ii = ( i n t  * > ( p i  + i); 
i 2  = ( i n t  *)(p;! 4 i); 
* i d  I=  *i2; 
1 

break; 

fa- ( i  = 0;  i < bytes;  i *= s i z e )  { 
case 3 :  

11 = (long *) (p l  + i); 
12 = (long *)(p2 + i); 
*11 I =  *12; 
1 

break; 
3 

3 

Figure 5: Soiirce code for “combining” operator used to implement gor0. 
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in use and to indicate what interconnection topology to use. For details on 

how the various architecture options affect the way the “combine” operation is 

performed, consult the manual page for setarco. 

Valid values for the input parameters items and msgtype are machine-dependent. 

Though the routine gcomb0 performs no machinedependent parameter checking, 

these two parameters are routinely checked for validity in the low-level communi- 

cation routines recvO and send0. The parameter msgtype is passed unchanged 

to these routines; the parameter items is scaled to obtain the number of bytes 

required to  store the vector, and that number is checked fot validity when it is 

passed to  the send0 routine. To determine the range of valid values for each of 

these two parameters, consult Section 7. 

As with most of the high-level communication routines, certain rules for “consis- 

tency” among the input parameters must be followed to ensure successful com- 

pletion of the operation. First, the user must make sure that every participating 

processor calls gcomb0 with the same values in items and datatype. In other 

words, the vector lengths and data types have to be the same on every processor. 

If they are not, then it is likely that at least one processor will fail inside the na- 

tive receive routine because there is insufficient buffer space to hold an incoming 

vector (or on some systems the message is simply truncated if the buffer provided 

is too small). Second, since the input parameter msgtype is used to  identify 

the individual messages generated by the “combining, operation, each processor 

must call gcomb0 with the same msgtype parameter. Failure to do this is likely 

to result in one or more processors “hanging” inside gcomb0 because an expected 

incoming vector is missing. 

During the execution of gcomb0, it is important that the message queue on each 

processor not contain a message with type msgtype from some source other than 

the combining operation. If gcomb0 happens to receive a message not intended 

for it, then the results are unpredictable. The simplest way to avoid this problem 

is to  avoid “reusing” a combining operation msgtype as a message type anywhere 

else in the code. It is also important that a gcombining” message generated by a 

call to  gcomb0 be removed from the message queue only by a call to gcomb0. Thus 

it is dangerous when a call to gcomb0 is immediately preceded by a call to recvO 
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with a type parameter whose value is -1. In this situation, the “promiscuous” 

receive is likely to receive the “combining” message, causing the processor to 

‘‘hang” in gcomb0 due to the missing message. Not only is the routine unable to 

recover from this error, it is not even able to identify it and issue an appropriate 

error message. 
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getarc0 

getarc0 mturns the number of p m s o r s  and the intemonnection topology cur- 

rently being used by the high-level global communication routines. 

Environment  

host, node 

Synopsis 

void getarcO(nproc8, top, ord, dir)  

in t  *nprocs, *top, *ord, *dir; 

Inpu t  parameters 

None 

0 u tp  ut parameters 

nprocs - nprocs points to the number of node processors currently in 

US@. 

top - top points to a value that indicates the network interconnec- 

tion topology to  be used: 

1 = hypercube, 

2 = full connectivity, 

3 = unidirectional ring, 

4 = bidirectional ring. 

ord - ord points to a vdue that indicates the order of the nodes in 

a ring. The same ordering is also used by a broadcast when 

using the “fully-connected’’ topology option to determine the 

order of the sendo’s that comprise the broadcast. 

0 = natural ordering, i.e, 0,1,2,3, .  . . ,nprocs - 1, 

1 = Gray code ordering, i.e, 0,1,3,2, .  . .. 
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d i r  - dir points to a value that indicates the orientation of a uni- 

directional ring. It also indicates whether a broadcast using 

the “fully-connected” topology option proceeds from back to 

front or front to back through the list of sendo’s that com- 

prise the broadcast. 

-1 = backward, 

1 = forward. 

Discussion 

The routine get arc0 returns the “virtualn multiprocessor parameters that are 

set or returned by setarc0. This routine i s  included so that this information can 

he conveniently obtained by subroutines that do not call setarc0, The output 

parameters will be meaningless if setarc0 has not been called before calling 

getarc0. 
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ginvo 

ginvO computes the inverse binary mflmted G a y  code function; ix., given an 

integer argument i, ginv0 computes the integer j such that grayO(j) = i .  

Environment 

host, node 

Synopsis 

int  ginv0 ( i 1 
int  i ;  

Input parameters 

i - integer whose inverse Gray code value is to be computed. 

0 ut put parameters 

None 

Function value 

ginvO returns the value of the integer for which the Gray code function is equal 

to the input integer. 

Discussion 

This function is useful when embedding rings and meshes in certain architectures, 

such as hypercubes. In particular, the consecutive members of a Gray code 

sequence are immediate neighbors in a binary hypercube. 
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E P Y Q  

gray0 computes the binary reflected Gmy code value of a given integer argument. 

E nviro n rnent 

host, node 

Synopsis 

int  grayO(i) 

int  i ;  

Input parameters 

i - is the integer argument whose Gray code value is to be com- 

puted. 

Out put parameters 

None 

Function value 

gray0 returns the Gray code value of the given integer input. 

Discussion 

This function is useful when embedding rings and meshes in certain architectures, 

such as hypercubes. In particular, the consecutive members of a Gray code 

sequence are immediate neighbors in a binary hyperciibe. 
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setarc0 

setarc0 sets the number of processors and the interconnection topology to be used 

by the high-level global communication routines. 

Environment 

host, node 

Synopsis 

void setarcO(nprocs, t op ,  ord, dir)  

in t  *nprocs, *top, *ord, *dir; 

Parameters 

On the host each of the four parameters described below is an input parameter; On 

the node processors, each is an output parameter. The host sends the information 

to the nodes. 

nprocs - nprocs points to the number of node processors in use during 

subsequent calls to any of the high-level communication rou- 

tines. This number must be less than or equal to  the number 

of node processors in the user’s current allocation (as deter- 

mined by open0 or uh00). A node processor will not return 

from a call to setarc0 until the number of processors in use 

is greater than its processor ID or is zero. 

top - top points to  a value that indicates the network interconnec- 

tion topology to  be used: 

1 = hypercube, 

2 = full connectivity, 

3 = unidirectional ring, 

4 = bidirectional ring. 
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ord - ord points to a vahe that indicates the order of the nodes in 

a ring. The same ordering i s  also used by a broadcast when 

using the “fully-connected” topology option to determine the 

order of the ssndQ’s that comprise the broadcast. or61 is 

ignored when the hypercube topology if used (*top = 1). 

0 = natural ordering, Le, 0, 1,2,3, .  . . ,nproca - 1, 

1 = Gray code ordering, Le, 0,1,3,2, .  . .. 

dir - dir points to  a value that indicates the orientation of a unidi- 

rectional ring. It also determines whether a broadcast using 

the “fully-connected” topology caption proceeds from back to 

front or front to back through the list of sendo’s that com- 

prise the broadcast. dir is ignored when top = 1. 

-1 I= backward, 

1 = forward. 

Discussion 

Thc routine setarcQ prescribes to the high-level communication routines the 

“virtual” multiprocessor architecture on which they are to be carried out and, 

implicitly, the algorithm used to perform the operation, By “virtual” multigro- 

cessor system we mean that there is no assumption that the architecture declared 

with setarc0 is physically realized by the machine on which the program is run- 

ning. With automatic routing between arbitrary pairs of processors, algorithms 

designed for any network topology will work, independent of the network used by 

the machine. For example, a global broadcast can be programmed as if the ma- 

chine were fully-connected, though this topology is not physically realized by any 

of our current target multiprocessing environments. Performing a global broad- 

cast with bcastO after specifying a fully connected topolog~ (*tap = 2) with 

setarc0 provides the user with such a global broadcast. 

To prescribe a “virtual9’ multiprocessor architecture, the host and every node 

processor currently allocated to the aser must call setarc0. On the host, the 

four parameters of setarc0 are input parameters. These suffice to determine 

the number of nude processors deemed to  be in use, and the interconnection 
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topology to  be associated with these processors. While in SetarcO, the host 

program sends the input parameters to  the designated node processors in the 

user’s allocation. Each node processor in this ”virtual” multiprocessor records 

and returns to the user the parameters it receives from the host while executing 

setarc0. If a node processor is not in this “virtual” multiprocessor, then it does 

not exit from setarc0. To release these idled processors before the end of the 

host program, setarc0 should be called on the host with *nprocs set equal to 0. 

The following high-level communication routines should not be used until after 

setarc0 has been called: barrier0, bcast0, bcastl ,  gand0, gcomW, gmax0, 

gminO, gor0, gprod0, gsum0, gxor0. Only the two routines that perform no in- 

terprocessor communication, ginvO and gray0, do not depend on prior execution 

of setarc0. Also note that before setarc0 can be called, the user must open 

interprocessor communication with a call to open0. (For more information on 

how to use open0 consult its manual page in Section 3.) 

The message type used internally by setarc0 to send the “virtual” multiprocessor 

parameters to the node processors is machine-dependent. The value used for a 

given target machines is described in Section 7. A call to  setarc0 on a node may 

fail if it is immediately preceded by a call to recvO with a type para,meter of 

-1. In this situation, the “promiscuous” receive may receive the message from 

setarc0 on the host, causing the node processor to “hang” in setarc0 waiting 

for the now missing message. Not only is the routine unable to recover from this 

error, it is not even able to identify it and issue an appropriate error message. 

Thus, it is important that the user’s program never allow ”promiscuous” receives 

to interfere with setarc0 in this way. 

During the execution of setarc0, it is also important that the message queue of 

each node processor not contain a “non-setarc0” message with the same message 

type as that used by setarc0. In this case the node processor will not hang, but 

the message received by setarc0 may not contain the desired “virtual” multi- 

processor parameters, and anomalous behaviour can result. The user can ensure 

that this does not occur by not using this particular message type. (See Section 7 

for the value on a given target machine.) Since the setarc0 message type is near 

the high end of the range of legal message types, portability can be enhanced by 
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keeping user-defined message types smaller than this vdue for all machines that 

the program is likely to be executed on. 

The remainder of this section is devoted to discussing the input parameters in 

more detail. 

nproes. When setarc0 is called on all processors to ‘set” the architecture, 

all node processor in the current allocation with a processor ID number higher 

than +ngrocs - 1 are disabled until a subsequent call to setarc0 changes the 

value of *nproca. After it call to  satzarc0, we refer to  the node processors 

0, 1,2,. . . , tnprocs - 1 as being in we. The high-level communication routines 

use the value pointed to  by nproca to determine which node processors to use to  

complete the indicated operation. 

Historically, the purpose for allowing the number of processors in t ~ e  to vary 

in this way while the node allocation remains unchanged is to provide a conve- 

nient tool for making multiple runs of parallel algorithms on different numbers of 

processors during a single run of the host and node programs. Typically, unused 

processors remain “hung” in their call to set=&, awaiting the next case in which 

they will be used. Since the correct execution of the host and node programs de- 

pends on each node program calling d o s a Q  at some point before terminating its 

execution, the host program should Uwake-upn any idled processors before itself 

calling close8. When the host calls setarc0 with lrnpracs set to 0, then all 

node processors calling setarc0 will return from the call with mprocs set to 0. 

This special value can be used by an application program to recognize that the 

use of a “virtual” multiprocessor is no longer in force, and that the high-level 

communication routines should no longer be used. 

Plestrictions. Note that if the Gray code ordering is in effect (i.e., *ord = l), 

then the number of processors in iise must be an integer power of two. Note also 

that, contrary to what one might expect, choosing the hypercube option does not 

restrict *nprocs to be an integer power of two. The algorithms for the high-level 

communication roiltines have been designed to work on “incomplete” hypercubes 

with any positive number of processors. 
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Cuweuts. While the high-level communication routines use the value pointed to 

by nprocs to decide what processors to use, the low-level routines do not. Thus 

a processor can still use send0 to send (or recvO to receive) a message to (from) 

a processor whose ID is larger than or equal to *nprocs. In most circumstances, 

this represents a logical error, and the program will not perform correctly. Since 

a node processor whose ID is larger than or equal to  *nprocs will “hang” only if 

it cads setarc0, it is possible to specify a virtuad multiprocessor for use with the 

high-level communication routines and still use the other processors. But then 

it is the user’s responsibility to ensure that only the node processors in use issue 

calls to  the high-level routines and that any allocated node processors not in w e  

issue no calls to any high-level communications routine. 

top. We assume the reader is familiar with the network options we have included. 

Figure 4 shows how the data flows out through the network away from the root 

during a global broadcast. Figure 4 shows how the data flows in through the net- 

work toward the root during a “global combining” operation, such as computing 

a global sum, product, minimum, or maximum. In both figures, we assume that 

processor 0 is the root; in practice, any processor can act as a root. It should 

be clear from the figures that in our routines data flows along the usual paths 

of choice through the networks offered by the package. Note that we anticipate 

offering grids in some future upgrade of PICL. 

dir and ord. Together, dir  and ord prescribe how to arrange the node processors 

into a ring, and how to order the sendo’s of a global broadcast using the “fully- 

connected” topology option. In the discussion that follows, P denotes the number 

of processors in use. Note that the dir and ord parameters are ignored when the 

hypercube topology option is chosen. 

*dir: forward, Jlord: natural. In this case a unidirectional ring is given by: 

*dir:  backward, *ord: natural. In this case a unidirectional ring is given by: 
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Hypercube 
(minimum spanning tree) 

Fully- Connected 
(star graph) 

Unidirectional Ring Bidirectional Ring 
(Gray code ordered chain) (Gray code ordered double-chain) 

Figure 6: Example data flow of a global broadcast an different interconnection topolo- 
gies. 
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Hypercube Fully-Connected 
(minimum spanning tree) (star graph) 

Unidirectional Ring 
(Gray code ordered chain) 

Bidirectional Ring 
(Gray code ordered double-chain) 

Figure 7: Example data flow of a global "combine" operation on different interconnec- 
tion topologies. 
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*dir: forward, *ord: Gray. In this case the nodes of a unidirectional ring are 

ordered by their numbering in the Gray code mapping of the processor ID num- 

bers in use. When the Gray code option is used, the number of processors in use, 

*nprocs, must be an integer power of two. The following shows how this choice 

for these parameters arranges a unidirectional ring with 8 processors. 

0 + 1 - + 3 - +  2 + 6 4 7 4 5 + 4 - +  0 .  

*dir: backward, *ord: Gray. In this case the nodes of a unidirectional ring are 

ordered in reverse oder by their numbering in the Gray code mapping of the 

processor ID numbers in U S F .  When the Gray code option is used, the number 

of processors in use, *nprocs, must be an integer power of two. The following 

shows how this choice for these parameters arranges a unidirectional ring with 8 

processors. 

4 - + 5 - + 9 - - t  6 - - + 2 - + 3 - + 1 - t & - - +  4 .  

In all cases, a bidirectiorial ring is arranged in the same way as a unidirectional 

ring, but with bidirectional arrows. The sendO’s from the root of a global broad- 

cast using the “fully-connected9’ topology option are performed in the same order 

as that indicated by the associated unidirectional example. For example, if *dir 

= forward, if *ord = natural, and if the root is processor i, then processor i first 

sends to  processor i -f 1, then to processor i + 2, etc. 
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5. Execution tracing routines 

When using the low-level primitive or high-level communication routines, the 

user can produce time-stamped records that detail the course of execution on 

each processor. The tracing routines &ow the user to control the generation 

of these trace records. Since ezecution tracing con be intrusive, it is important 

that the user understand how the tracing routines may alter the behavior of his 

program. 

Machines and Multiprocessing Environments  

Implementations of the execution tracing routines are available for the following 

machines and multiprocessing environments: 

iPS C/2 hypercube iPSC/860 hypercube Ncube/3200 hypercube 

Synopsis 

The host and node programs should be linked, respectively, with host and node 

libraries containing the tracing routines listed below. All routines except three 

are available on both host and node. The routines traceenable and tracehost 

are available only on the host; the routine tracenode is available only on node 

processors. 

void traceenablecchar *tracefile, int verbose) 

void tracehost(int tracesize, int flush) 

void tracenode(int tracesize, int flush, int sync) 

void traceexit 0 

void tracelevelcint event, int compstats, int commstats) 

void traceinfocint remaining, int event, int compstats, 

int commstats) 
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void traceaiark(iat marktype) 

void tracemsg(char message) 

void traceflush0 

With one exception, programs that use PICI, will not fail due to incorrect usage 

of these routines. While incorrect usage may cause loss of trace information 

or degradation in performance, it should not cause wrong answers or abnormal 

termination. The one exception to this rule is that misuse of the synchronization 

option in tracenode will cause deadlock. Set! the mamud pages for eracanode 

for further information. 

S t anda rd  Usage 

To collect trace data for the entire run of a n  application code, it is sufficient to 

follow these steps: 

1) Insert calls to traceenable, tracelevel, and tracehost at the beginning 

of the host program. For example, 

traceenable( ' ' tracef ila' ' 
tracelevel (3, 3, 3) ; 

tracehost (1OOO80, 0) ; 

1) ; 

2) Insert calls to traceexit and traceflush at the end of the host program. 

For example, 

traceexit (1 ; 
traceflush( ; 

3) Insert calls to tracelevel and tracenode at the beginning of the node 

program. For example, 

tracelevel(3, 3, 3); 

tracensde(i00000, 0, 0); 

If trace data is needed only from the node program, then the steps become even 

simpler: 
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2) Insert calls to tracelevel and tracenode at the beginning of the node 

program. For example, 

tracelevel (3, 3, 3) ; 

tracenode( 100000, 0 ,  0) ; 

1) Insert a call to traceenable at the beginning of the host program. For 

example, 

traceenable("tracefile", 1); 
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traceenable 

tracseenatrle is used to open a trace file and to select one of two auadabze formats 

for the trace reconis. 

E nv iro 11 men t 

host 

Synopsis 

void trac~enable(tracefila, verbose) 

char *tracef ila; 

int verbose ; 

Input parameters 

tracef i l o  - tracefile points to a character string containing the name 

of the new trace file to be opened. 

If verbose i s  1, then trace records are written into the trace 

file in “verbose” form, i.e., with a keyword labeling each 

numeric value in the record, Otherwise, each trace record 

is simply a sequence of numerical values. information. 

verbose - 

Output parameters 

None 

Discussion 

The traceenable routine is used to open a new trace file and to specify whether 

trace records should be written in the verbose or compact format. Trace records 

written in the verbose format are easy to read because each data item is preceded 

by a descriptive keyword. However, verbose trace files require approximately 

three times more disk space than compact files. Though more difficult to read 

because they contain no keywords, compact trace files can always be transformed 
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into verbose trace files later. See Section 6 for instructions on how to do this. 

The compact option can be very helpful if one must produce trace files when disk 

space is at a premium. 

traceenable also prepares the host to receive and process trace information as 

it arrives from the nodes. Without a prior call to tracenable, the host simply 

disposes of incoming trace records, and such records disappear without being 

written into a trace file. To avoid losing trace data, it is good practice to call 

traceenable before executing loado. In general, it is good practice to make 

traceenable one of the first executable instructions in the host program any 

time execution tracing is to  be used on the host or on any node. 

Until traceenable is called, calling the following tracing routines on the host does 

nothing: tracehost, traceexit,  tracef lush, tracemark and tracemsg. The 

only exceptions are tracelevel and traceinf 0 ,  whose function do not depend 

in any way on prior execution of traceenable. 

Multiple calls to  traceenable in a host program can be used to change the file 

to which the trace information is written. This is useful when a single run of the 

host program generates either multiple runs on the nodes or a distinct sequence of 

computational phases on the nodes that need to  be analyzed separately. In either 

situation it is often convenient, if not necessary, for the trace information from 

separate runs or computational phases to be stored in separate trace files. Some 

care is required to make sure that the host program switches from one trace file to 

another only after the first file is complete. Use the following technique to ensure a 

clean switch. Immediately after the end of the current run or phase on the nodes, 

use sync0 to synchronize all the nodes. Next, issue a call to  traceexit ,  followed 

by a call to traceflush. Finally, have each node send a message to  the host, 

indicating that it has finished sending its trace information to the host, and call 

tracenode again to restart the collection of trace data. The host program should 

wait until it has received all of the messages from the nodes before executing 

traceenable again to set up a new trace file. 
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traceexit 

traceexit  stops the collection of trnce information. 

Environment 

host, node 

Synopsis 

void traceexit  0 

Input parameters 

None 

Output parameters 

None 

Discussion 

On the host, the routines traceenable and tracehost are used to start the 

collection of trace information, while on the nodes, tracenode alone performs 

this function. Once these routines have been executed, code is activated in the 

low-level and high-level PICL routines to accumulate busy/idle time and com- 

munication statistics, such as number and total volume of the messages sent and 

received. They also enable the user to activate (with a call to trace leve l )  code 

that records specified events in the trace file. Calling traceexit  deactivates the 

accumulation of statistics and the ability to generate trace records. 

If tracing has been initiated, traceexit places a “traceexit” record in the trace 

buffer. On the nodes, traceexit  is automatically called within close0 if it is 

not called explicitly in  the node program, and a “traceexit” record will always 

be generated. On the host, close0 does not call traceexit ,  and a “traceexit” 

record is not automatically generated. 

After calling traceexit ,  cal!ing the following tracing routines does nothing: 

tracemark, tracernsg, traceexit ,  tracehost (on the host) and tracenode (on 
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a node). The routine traceflush cm be called one more time before it, too, is 

disabled. This allows the user to place a traceexit record at the end of the trace 

data before using traceflush to send trace information to  the trace file. 

One of the primary features associated with the traceexit routine is that it 

can be used on the nodes in conjuction with the traceenable and traceflush 

routines to create more than one trace file during a single run. How this can be 

done is described in the manual pages for traceenable. 
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traceflush 

tracef lush writes the l ~ c o l l  tmce information to the tmee file. 

E nvironment 

host, node 

Synopsis 

void tracef lush0 

Input parameters 

None 

Out put parameters 

None 

E) isc ussion 

The routine tracef lush writes into the trace file all trace records currently held 

in the user-supplied trace buffer. Under certain circumstances discussed below, it 

is an important tool for controlling when node trace data will be sent to the host 

to be printed into the trace file. This control should be handled judiciously, since 

an interprocessor communication network saturated with a high volume of trace 

data can seriously degrade performance when useful computation is in progress 

at the same time. 

It is important to realize that on the nodes it is usually not necessary or desirable 

to use traceflush to write the trace data into the trace file. The simplest and 

most straightforward way to use the trace facility is to generate a single trace file 

that records the behavior of a single run on the host and on the nodes. When the 

trace facility is used in this manner, no explicit calls to tracef lush are necessary 

on the nodes to write the data to the file. The routine close0 automatically 
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performs this function before i t  closes interprocessor communication. The host 

and node versions of close0 cooperate to handle this task a8 follows. After 

entering closeo, the node program waits until close0 is executed on the host, 

at which time the host will prompt the node for the trace information. Then, 

and only then, does it send the trace data to  the host. Moreover, since close0 

on the host does not prompt for trace information until all nodes have entered 

close0, the nodes will not contaminate the network with trace data while useful 

Computation is in progress. 

However, when using the execution tracing facility to create more than one trace 

file in a single run, the user must explicitly control the movement of trace data 

from the nodes to the trace file. The manual page for traceenable describes 

how this is done and what role traceflush plays in the procedure. 

On the nodes, there are other cases when the trace information must be sent 

back before close0 is executed. For example, a programming error in a node 

program may cause it to  terminate before it reaches closeo. To gain access to 

trace data for debugging purposes, the user must call tracef lush on the node 

before failure occurs. Another reason for calling traceflush is a full (or nearly 

full) trace buffer. The user’s program can call traceinfo to find out how much 

space remains available in the trace buffer. If there is insufficient space to hold 

the trace records generated by the next computational phase, then it may be best 

to flush the contents of the trace buffer to  the trace file between phases, rather 

than allowing the trace data to flood the network in the middle of the next phase 

(assuming automatic flushing is enabled) or losing trace information because the 

buffer fills up. 

On the host, execution of close0 does not automatically route the host’s trace 

data to the trace file as it does on a node processor. The routine traceflush 

must be called to do this; otherwise, the trace data is simply lost. 

Since traceflush can significantly degrade the performance of both node and 

host programs, the user should carefully choose when traceflush is to be ex- 

ecuted. In general, if performance measurements are being made it is best to 

synchronize all processors with a call to sync0 before a call to traceflush in 

order to make sure that the execution of traceflush on one processor does not 
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flood the network with trace data that will degrade the performance of other 

processors still doing useful work, 
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tracehost 

tracehost starts the collection of trvrce information on the host. 

Environment 

host 

Synopsis 

void tracehost(tracesize,  f lush) 

i n t  tracesize,  f lush;  

f lush 

Input parameters 

- tracesize tracesize is the size (in bytes) of the buffer to be allocated 

€or collecting trace records in main memory. If it is too 

small to record the minimum amount of trace information, 

a default amount will be allocated. 

f lush indicates whether or not the trace buffer should be 

automaticul!y flushed when the buffer fills up. If flush is 

1, then all data in the trace buffer is immediately written 

to the trace file when the buffer fills up. If flush contains 

any value other than 1, then the generation of trace records 

stops after the buffer fills up. 

- 

0 utp ut parameters 

None 

Discussion 

The routine tracehost is used to start the collection of trace idormation on the 

host. Once tracehost has been executed, code is activated in the host version of 

the low-level and high-level PICL routines to accumulate busy/idle time statistics 

and communication statistics, such as the number and volume of messages sent 
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and received. Calling tracehost also enables the user to activate (with a call 

to tracelevel)  code that records specified events in the trace file, tracenode 

performs virtually the same functions on the nodes. 

Host trace records are collected in the main memory of the host before they are 

written in the trace file. The parameter tracesize is used to determine the size 

of the trace buffer malloc’ed by tracehost for this purpose. It is usually best if 

tracesize is large enough to allow the trace buffer to contain all trace records 

the host processor generates during the run. Of course, it must also be small 

enough to  allow the executable to be loaded on the host. Trace records (stored in 

memory) average between five and six long integers in length. Thus, if the user 

has a rough idea how many trace records his code will generate during a given 

run, it is easy to calculate a reasonable upper bound on the required size of the 

buffer. Note that a minimum amount of buffer space is required for tracing to 

work, and at  least this amount will be allocated no matter how much is specified 

by tracesize.  Currently, this minimum amount is 208 bytes. 

The f lush parameter prescribes what action to  take if the trace buffer becomes 

full before the host program ends. When f lush is 1, the contents of the full trace 

buffer are immediately written into the trace file and tracing continues as before; 

otherwise, the generation of trace records is halted until the contents of the buffer 

are explicitly written into the trace file via a call to  the traceflush routine. Note 

that the calculation of the performance statistics continues in either case. As a 

rule, f lush should be set to 1 only when debugging. It should definitely not be 

set to 1 when performance is being measured. 

On the host, both traceenable and tracehost must be called before tracing 

will begin. Calling tracehast does nothing unless there has been a prior call to 

traceenable, and the following routines do nothing unless both traceenable and 

tracehost have been called (in that order): traceflush, tracamark, tracemsg, 

and traceexit.  The only exceptions are tracelevel and traceinfo, whose 

function do not depend in any way on prior execution of either traceenable or 

tracehost. 

Note that tracing on the host is completely independent of tracing on the nodes. 

For example, the user may 



- 93 - 

1) start tracing on the host and on one or more node processors, 

2) start tracing on the host but leave tracing "off"' on all node processors, 

3) leave tracing "off" on the host but start tracing on one or more node pro- 

cessors, or 

4) leave tracing "off" on the host and on all node processors. 
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t raceinfo 

traceinfo returns the current values assigned to the pamnaeters that control the 

type and amount of tmce data genemted. 

Environment 

host, node 

Synopsis 

void traceinfo(remaining, event, compstats, commstats) 

int *remaining, *event, wompstats, *comstats; 

Input parameters 

None 

0 utput parameters 

remaining - 

- event 

compstats - 

cornstats - 

Discussion 

remaining points to a a lower bound on the number of 

trace records that can be added to the trace buffer before 

it becomes full. 

event points to a value that indicates which events will 

generate “event” trace records. 

compstats points to a value that indicates which events will 

generate cumulative busy/idle time records. 

cornstats points to a value that indicates which events will 

generat e communi cation stat is tics records. 

The traceinfo routine returns the current values of the variables used to deter- 

mine which events generate trace records. See the manual pages for tracelevel 

for a de tded  description of what these values mean. There are four distinct types 

of trace records generated, and three of these have their own “level” indicators to 
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control the level of detail recorded. The meaning of the level vdues are essentially 

the same for all three types, except that an “event” trace record is always gener- 

ated for calls to  tracehost, tracenode, tracelevel ,  tracef lush, traceexit ,  

openo, and close0. The routine traceinfo also returns a Bower bound on how 

many more trace events can be recorded before the trace buffer becomes full. A 

full description of the types of trace records is given in the discussion of the trace 

data format in Section 6. 
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t racelevel 

tracelevel sets the parameters that mntml the type and amount of trace data 

genemted. 

Environment. 

host, node 

Synopsis 

void tracelevel(event , compstats, comtats) 
int event, compstata, comstats; 

Input parameters 

9VeRL - 

cormpstats - 

commstats - 

event determines which events will generate “event” trace 

records. 

compstats determines which events will generate cumula- 

tive busy/idle time records. 

commstats determines which events will generate comrnu- 

nicat ion stat i s  tics records. 

The following table interprets the values that the event “level” variable can take 

on. 
r 

level. value I events to be traced 

and calls to send0 and recvO not issued by a high-level com- 

munication routine. 

level communication routine. 
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- < O  

2 1  

2 2  

2 3  

The following table interprets the values that the other two trace “level” variables, 

compstats and commstats, can take on. 

none 

includes calls to tracemark, tracelevel,  ogen0, and close0 

also includes calls to any high-level communication routine 

and calls to send0 and recvO not issued by a high-level com- 

munication routine 

also includes ca l ls  to send0 and recvO from within a high- 

I l eve l  value 1 events to be traced I 

I I level communication routine I 
Output parameters 

None 

Discussion 

The tracelevel  routine sets the variables that determine which events generate 

trace records. There are four distinct types of trace records generated, and three 

of these have their own “level” indicators to  control the level of detail recorded. 

The meaning of the level values are essentially the same for all three types, ex- 

cept that an “event” trace record is always generated for calls to tracehost, 

tracenode, tracelevel ,  tracef lush, traceexit,  open0, and close0. A full 

description of the types of trace records is given in the discussion of the trace file 

format at the beginning of this section. 

Note that the number of trace records generated by a single PICL subroutine call 

varies from routine to routine. For example, a single call to r e m 0  often generates 

two “event” trace records: a recv-blocking record and a recv-waking record, 

but a call to open0 always generates a single “event” trace record. Thus, there 

is not a one-to-one correspondence between trace records and PICL subroutine 

calls. 

Tracing is started on the host by calling both traceenable and tracehost; it  is 

started on a node processor by calling tracenode. On host or node, if tracing 
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has not been started or if it has been disabled with a call to traceexit, then 

tracelevel still records the input parameters for possible future use. Thus, the 

routine can be used to set the "level" parameters at any time during a program's 

execution. 
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tracemark 

tracemark is used to “mark” a user-specified event in the tmce bufler. 

Environment 

host, node 

Synopsis 

void t racemark (type) 

in t  type; 

Inpu t  parameters  

type - type is an identifying integer printed in the trace record 

generated by this routine. It should be a user-chosen value 

that signifies the occurence of some user-specified event. 

0 u t  p u t  parameters 

None 

Discussion 

The tracemark routine is used to record a user-defined event. The actual trace 

records generated by tracemark depend on the tracing levels requested by the 

most recent call to tracelevel.  A call to  tracemark can generate a record 

showing the total busy/idle time at the time of the call, a record showing the 

cumulative send/receive message counts and volumes at the time of the call, 

and/or a time-stamped record of the call to tracemark containing the associated 

type, which should be used to identify the event signified by the record. If more 

than one integer field is needed to  specify the event, then two or more successive 

calls to tracemark can be used to fully specify what happened. 

On the host, calling this routine does nothing unless tracing has been started with 

successive calls to traceenable and tracehost. On a node, calling tracemark 
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does nothing unless tracing has been started with a call to tracenode. On both 

host and node, a call to traceexit disables tracemark. 
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t racemsg 

tracemsg m'tes  a string into the trace file immediately. 

Environment 

host, node 

Synopsis 

void tracemsg(8tring) 

char *string; 

Input parameters 

string - string points to a character string to be printed in the 

trace file. Only the first 80 characters will be printed. 

0 ut put parameters 

None 

Discussion 

Used primarily for debugging, tracemsg sends a string to the trace file immedi- 

ately. When used in conjunction with sprintf (used to  fill a character buffer) it 

provides the same functionality as fprintf ,  but for small messages only (5  80 

characters). In particular, a node processor does not wait until the local trace 

buffer is flushed before sending the message to the host to be written in the 

trace file. However, for purposes other than debugging, tracemsg should be used 

sparingly to avoid excessive network traffic that can degrade performance. Our 

experience indicates that moderate use of tracerasg does not noticeably degrade 

performance. 
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tracenode 

tracenode starts the collection of tmce information on a node processor. 

Environment 

node 

Synopsis 

void tracenode(tracesize, f lu sh ,  sync) 

int tracesize, f l u s h ,  sync; 

f l u s h  

Input parameters 

- tracesize tracesize is the size (in bytes) of the buffer to be all* 

cated for the collection of trace records in main memory. 

If it is too small to record the minimiim amount of trace 

information, a default amount will be allocated. 

f l u s h  indicates whether the trace buffer should be auto- 

matically Pushed when the buffer is fall. If f l u s h  is 1, then 

dl data in the trace buffer is immediately written to the 

trace file when the buffer fills up. If f l u s h  contains any 

value other than 1, then the generation of trace records 

stops after the buffer fills up. 

If sync is 1, then the node processors synchronize before 

continuing. This permits the trace record time-stamps on 

the different processors to be normalized with respect to 

the same approximate starting time. All node processors 

must use the same value for sync; otherwise, some of the 

processors may never return from the call to  tracenode, 

- 

- 

Output parameters 

None 
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Discussion 

The routine tracenode is used to start the collection of trace information on a 

node. Once tracenode has been executed, code is activated in the node version of 

the low-level and high-level PICL routines to accumulate busy/idle time and com- 

munication statistics, such as number and volume of messages sent and received. 

Calling tracenode also enables the user to activate (with a call to tracelevel)  

code that records specified events in the trace file. tracehost performs virtually 

the same functions on the host. 

Node trace records are collected in the main memory of the node processor before 

they are sent to the host to be written in the trace file. The parameter tracesize 

is used to  determine the size of the trace buffer malloc’ed by tracenode for this 

purpose. It is usually best if tracesize is large enough to allow the trace buffer 

to contain d l  trace records the node processor generates during the run. Of 

course, it must also be small enough to allow the executable to be loaded and 

run on a node processor. Trace records (stored in memory) average between five 

and six long integers in length. Thus, if the user has a rough idea how many 

trace records his code will generate during a given run, it is easy to calculate a 

reasonable upper bound on the required size of the buffer. Note that a minimum 

amount of buffer space is required for tracing to work, and at least this amount 

will be allocated no matter how much is specified by tracesize. Currently, this 

minimum amount is 208 bytes. 

The flush parameter prescribes what action to  take if the trace buffer becomes 

full before the node program ends. When f lush is 1, the contents of the full 

trace buffer are immediately sent to the host and tracing continues as before; 

otherwise, the generation of trace records is halted until the contents of the buffer 

are explicitly sent to the host via a call to the traceflush routine. Note that 

the calculation of the performance statistics continues in either case. A s  a rule, 

flush should be set to 1 only when debugging. It should definitely not be set to 

1 when performance is being measured. 

When sync is 1, the node processors are synchronized before they exit from 

tracenode. As with sync0, Q I I  node processors must participate in the synchro- 
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nization. If some processors request synchronization while others do not, then 

the “synchronizing” processors will never exit the call to tracenode. 

It is often desirable to compare the time-stamps of two trace records generated by 

different processors. The fact that each processor has its own independent clock 

makes it difficult to produce time-stamps on different processors whose compari- 

son is guaranteed to  be very meaningful. The primary use of the sync option is to  

attempt to ‘kychronize” time-stamps from different node processors. Whether or 

not the sync option has been used, the timestamps produced on each node pro- 

cessor are normalized by subtracting off the time at  which tracenode is called. 

When the sync option is used, the processors are approximately synchronized 

immediately before each determines the time it will use to normalize subsequent 

time-stamps, and thus, all subsequent time-stamps are normalized against the 

same approrimate starting time. Comparability of time-stamps then depends 

both on the amount of “clock drift” during the computation and on the sharp- 

ness of the synchronization technique (which is Inachine-dependent). Note that 

PICL does not provide an option for automatically synchronizing the time-stamps 

produced on the host with those produced on the nodes. 

Tracing may be enabled on any subset of the allocated nodes. In other words, an 

arbitrary subset of the allocated nodes can call tracenode, while the remaining 

nodes do not, provided, of course, none of the calls to tracenods invoke the sync 

option. Only nodes that cd1 tracenode will generate trace data. For example, 

tracing only a single node sometimes provides sufficient information to understand 

the performance of a parallel algorithm, while generating much less trace data 

(which can be important). 

Note also that tracing on the host is completely independent of tracing OA the 

nodes. For example, the user may 

1) start tracing on the host and on one or more node processors, 

2) start tracing on the host but leave tracing “OF’ on all node processors, 

3) leave tracing ‘‘off- on the host but start tracing on one or more node pro- 

cessors, or 

4) leave tracing “offn on the host and on all node processors, 
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6. Trace data format 
c 

' -  

There are two possible formats for the trace file: verbose and compact. Both are ASCII, 

but the verbose format can be more easily read because the type of each trace record is 

identified by a keyword, and all numeric data is preceded by a descriptive keyword. The 

compact format has no keywords. The record type in the compact format is represented 

by an integer, and the data items are in the same order as in the verbose format, but 

without the keywords. While the compact format is more difficult to read, it takes up 

approximately one third the space r e q u i d  by the verbose format, and it is simple to  

transform a trace file from a one format to the other. The choice of trace file format is 

made via the verbose parameter in the traceenable command. See the manual pages 

for traceenable for a complete discussion of this parameter. 

There are four types of trace records: event, computation statistics, communication 

statistics, and trace messages. All four types have a timestamp indicating when they 

were generated. All time-stamps and other measures of time are displayed as two integer 

values, the first representing the number of seconds and the second representing the 

number of microseconds that have elapsed since tracing was initiated. They .also have 

a field identifying the processor on which they were generated. If the processor is a 

node, then the identifying integer is between 0 and Y - 1, where P is the number of 

node processors allocated. If the processor is the host, then the identifying integer is 

-32,768. 

6.1. Event records 

The event records are either associated with a specific PICL routine or mark an un- 

avoidable change of behavior in the tracing {like the trace buffer filling up). Whether 

or not a given routine generates the associated trace record is a function of the value of 

the event parameter in tracelevel.  See the manual pages for tracelevel  for details 

on how different values of this parameter prescribe different levels of event tracing. The 

following list describes the verbose format event trace records: 

a The t r a c e s t a r t  record marks when tracing begins on the host or on a node 

processor. I t  is generated by the tracehost and tracenode routines. I t  has a 

clock field that is always zero since all time-stamps are normalized with respect 
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to the time at which tracing was initiated. It also has fields for the tracing level 

parameters that are in effect at  the time that tracing starts. See the manual 

pages for tracelevel €or a description of the meaning of these d u e s .  Example: 

trace-start clock 0 0 node 17 event 0 compstats 0 c o r n t a t s  0 

e The open record marks when open0 i s  executed ou the host or on a node processor. 

If it  is generated on a node, then it records only the timestamp and the node 

ID. If it is generated on the host, then it also indicates the number of processors 

that were allocated by the host. Examples: 

open 

open clock Q 1000 nods -32768 allocating 64 processors 

clock Q 329 node 24 

m The load record marks when load0 is executed on the host. It also records 

the value of the node parameter passed to loadQ, which indicates which node 

processor was loaded. A value of "-1" for node means that all allocated processors 

were loaded by this call. Example: 

load clock 0 2000 node -32768 loading node 23 

e The send record marks when send0 is executed on the host or on a node. It 

records the message destination, the message type, and the leiigth of the message 

(in bytes). Example: 

send clock 2 524347 node 12 t o  -32768 type 8 Ith 256 

The recu record marks when rem0 is executed on the host or on a node and the 

message that it is seeking is immediately found. It records the message source, 

the message type, and the length of the message (in bytes). Example: 

r e m  clock 24 772354 node 63 from 0 type I 6  I t h  329 
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0 The recv-blocking record marks when recvO is executed on the host or on a 

node and the message that it is seeking is not immediately found. It records the 

message type being sought. If this value is -1, then any message will satisfy the 

request. Example: 

recv-blocking clock 14 897000 node -32768 type 0 

0 The recv-waking record marks when a recvO call (executed on the host or on 

a node) that has been blocked finally receives the message it has been waiting 

for. The timestamp records when the program exits from recv0. It records 

the message source, the message type, and the length of the message (in bytes). 

Example: 

recv-waking clock 15 145000 node -32768 from 0 type 0 lth 420 

0 The message record marks when message0 is executed on the host or on a node. 

Example: 

message clock 0 986454 node 56 

0 The sync record marks when sync0 is executed on a node. Note that it only 

indicates when the routine is entered, not when it is exited. Example: 

sync clock 429 616 node 15 

0 The close record marks when close0 is executed on the host or on a node. 

Example: 

close clock 13 534666 node 3 

0 The trace-level record marks when tracelevef is executed on the host or on a 

node. It records the new values of the tracing level parameters (set by this call). 

Example: 

trace-level clock 3 11 node 6 event 3 compstats 3 commstats 3 
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e The traceaark record marks when tracemark i s  executed on the host or on a 

node. It records the user-specified type amociated with this cad to tracemark. 

Example: 

trace-mark clock 3215 465799 node 22 type 67 

e The t races top  record marks when the trace buffer Is up and automatic flush- 

ing i s  turned ~ f l ( o n  the host or a node). (See the manual pages for tracahost 

and tracanoda for a description of this option.) In this case, no trace records 

are generated after the trace buffer fills up until either a traceflush is executed 

or the program ends. (A few trace records are always generated near the end of 

a program. The t r x e  buffer is managed so that there is always enough space for 

these final records.) Example: 

trace-stop clock 15 333453 node 2 : ran out of xmcannory 

a The trace-flush record marks a call to traceflush on the host or node. Note 

that traceflush can be called either explicitly by a.n application program or 

implicitly when a trace buffer fills up and the automatic flushing i s  turned one 

(See the manual pages for tracehost and tracenode for a description of this 

option.) Since flushing a trace buffer can significantly perturb the execution of a 

program, this record also marks when the program exits traceflush. Example: 

trace-flush clock 82 990361 nods 77 finished 13 6645 

e The trace-exit record marks a call to traceexit  on the host or node. It also 

records the total number of bytes of trace data generated, which is useful in 

djusting the amount of storage allocated for tracing in subsequent runs of a 

program. Note that traceaxit is called autonmtically within close0 on a node 

processor if it isn’t called explicitly in the node program. This is part of the 

logic that ensures that All trace data is sent to the host before interprocessor 

communication is disabled. Example: 

trace-exit clock 25 442678 node 8 spate 145024 
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0 The blockbegin record marks the entry into a high-level communication routine 

executed on the host or on a node. I t  records a b h k  type, normally used to iden- 

tify the routine being called, a h t i o n  type, normally used to  identify which call 

to the routine is being recorded, and a pammeter type, normally used to identify 

some attribute of the parameter values used in this call. The current interpreta- 

tion of these values for the high-level routines is described in Table 4. Mote that 

all  "global combining" routines use the same block type. The user will need to 

specify a distinct message type for each "global combining" routine in order to  

be able to  distinguish between them in the trace file. The high-level routines are 

meant to be examples of user mutines that are built using the PICL primitives. 

Any additions to the set of high-level routines will also generate blockbegin 

(and blockend) records if they are modeled after the current routines, but the 

choice of values for block type, location type, and p m m e t e r  type must be made 

by the programmers of the new routines. Example: 

block-begin clock 33 Ill node 8 block-type 3 location-type 41 

parameter-type 0 

0 The block-end record marks the exit from a high-level communication routine 

executed on the host or on a node. Its parameters and their interpretations are 

the same as those of a block-begin record. Example: 

block-end clock 33 844 node 8 block-type 3 location-type 41 

parameter-type 0 

6.2. Computa t ion  statistics record 

There is a single type of trace record for recording computation statistics. This 

compstats record has two fields in addition to the usual time-stamp and processor 

ID: cumulative busy time and cumulative idle time. The correct interpretation of busy 

and idle times is a matter of semantics. For example, idle time is sometimes defined to 

be the time during which a program is blocked inside recv0, and this can be calculated 

from the event trace records. However, the busy/idle times recorded in a cornpatats 
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routine 
barrier0 
bcast0 
bcastl  
gandQ 
gcomb0 

PmQ 
grnin0 
gorO 
sod0 

gSW& 
gxorQ 

block type 
-1 
-2 
-3 
-4 
-4 
-4 
-4 
-4 
-4 
-4 
-4 

parameter type 
0 

root 
root 
TOCC 

root  
root  
root 

- 

root  
root 
root 
root 

Table 4: blockbegin and blockand field values for high-level routines. 

record are defined as follows: A processor is idle if it i s  execisting system mutines that 

would not be necesay i f  executed on a serial wmputer; otherwise, it i s  busy. By this 

definition, idle time is all of the time spent in a call to recv0, not just the time spent 

blocked waiting for a message. I t  a l s ~  includes all of the time spent in open0, loado, 

and aend0, if on the host or on a node, in message0 and sync0 if on a node, and in 

close0 if on the host. The “highest level” of tracing generates a cornpatats record 

whenever the idle time is modified, which is precisely whenever one of the routines 

listed above is called. In this case, the routine generates two cornpatats records, one 

immediately before the system call and one immediately after. In the first record, only 

the cumulative busy time changes with respect to the previous cornpstats record, while, 

in the second record, the idle time also changes. Depending on the level of tracing, a 

compstats record may also be generated in tracemark, at the beginning and end of 

a high-level communication routine, and at  the end of the program. The compstats 

parameter to tracelevel  is used to specify exactly when compstats records are gen- 

erated. See the manual pages for t sacs l sva l  for details on how to use this parameter 

to control the recording of computation statistics in the trace file. Example: 

compstats clock 4 66978 node 23 busy 2 997566 id le  1 69412 

6.3. Communication statistics record 

There is a single type of trace record for recording communication statistics. The 

cornstats record has five fields in addition to the usual time-stamp and processor 
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ID: cumulative number of messages received, cumulative number of bytes in messages 

received, cumulative number of messages sent, cumulative number of bytes in messages 

sent, and cumulative number of probes of the message queue. The last field is impor- 

tant because the time required to  probe the message queue is usually too short to  

measure accurately by simply calling the system clock before and after the routine. 

As a result, the time spent probing the message queue is not recorded as idle time, 

and, cumulatively, can represent a significant amount of “hidden” idle time. The cu- 

mulative number of probes can be used to determine whether the recorded idle time 

is significantly underestimated. The “highest level” of tracing generates a cornstats 

record whenever any of the fields is modified, which is whenever send0, recv0, sync0, 

or message0 is called. For this case, two commstats records are generated, one immedi- 

ately before the system call and one immediately after. Thus, the first record is exactly 

the same as the previous commstats record except for the time-stamp. In the second 

record, all of the fields are updated. Depending on the level of tracing, a compstats 

record may also be generated in tracemark, at  the beginning and end of a high-level 

communication routine, and at the end of the program. The commstats parameter to 

tracelevel  is used to specify exactly when conunstats records are generated. See the 

manual pages for tracelevel for details on how to use this parameter to control the 

recording of communication statistics in the trace file. Example: 

commstats clock 18 445645 node 1 received 202 volume 20556 sent 109 

volume 4056 probed 39 

6.4. Trace message record 

The final type of trace record is that produced by a call to tracemsg on the host 

or the node. The routine tracemsg sends a string of length no more than 80 bytes 

that is placed directly into the trace file a soon as it is received by the host. The 

traceaessage record has three fields: time-stamp, node ID, and character string. 

The time-stamp reflects when tracemsg was called. Example: 

traceglessage clock 0 514332 node 10 This is a t e s t  of tracemsg. 
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6.5. Compact trace record format 

Each compaet trace record begins with an integer that identifies the type of trace 

record. Each of these integers corresponds to one of the keywords used in the verbose 

format to identify the record type, as indicated in Table 5.’ 

compact format integer verbose format keyword 
1 
2 
3 
4 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

tracest  a t  
open 
load 
send 
recv 
recv-bPock ing 
F e C V - V a k i n g  

me a ~a age 
sync 
compst at e? 

CloFae 
trace-level 
tracemaark 
tracemessage 
traces top  
t r a c e f l u s h  

19 trace-exit 
20 block-begin 

Table 5: Verbose and compact format trace record type identifiers. 

In general, to produce: a compact trace record from a verbose trace record, replace 

the “type” keyword by the integer value described above, and then remove all other 

keywords. To produce a verbose trace record from a compact trace record, replace 

the “type” integer by the keyword described above, and insert keywords before (and 

possibly after) the integer data fields as indicated by the description of the appropriate 

type in Sections 6.1, 6.2, 6.3, and 6.4. 

The one exception to this rule i s  that the compact compstats record does not ex- 

plicitly record the cumulative busy time. I t  contains, in order, an integer indicating 

the record type, two integers specifying the time-stamp, an integer specifying the pro- 

‘Note that the number 5 is  not currently used as a compact format record type. It has been reserved 
for a probe record type in case we axe ever able to instrument probeh) unobtrusively. 
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cessor ID number, and two integers specifying the cumulative busy time. The following 

example corresponds to  the verbose compstats example in Section 6.2: 

11 4 66978 23 169412 

To calculate the cumulative busy time, subtract the cumulative idle time from the 

time-stamp. For this example, the cumulative busy time is 2 997566. 

6.6. Order of trace records 

The trace file will usually contain trace records that are sorted first by node ID number, 

and then by time-stamp, but this is not guaranteed. For example, traee-message 

records are placed in the trace file as soon ils tracemsg is called, modulo the time it 

takes for the message to reach the host and the time it takes for the host to  process it. 

Most of the other trace records are not received by the host until the end of all node 

programs. Moreover, if tracef lush is used, then almost any order of the trace records 

is possible. If desired, the trace records can easily be (relsorted by post-processing the 

trace file. 
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7. Machine dependencies 

This section describes the machine-dependent aspects of PICL. For each machine, we 

first describe the valid range of values for each machine-dependent input parameter. 

Second, we document the additional execution time incurred when using PICL routines. 

Third, we describe how to link the library with a user-application code. This part of 

the documentation will receive periodic updates when more target machines are added, 

and when changes in the implementation of the library deet the overhead of using the 

routines. 
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7.1. iPSC/2 

7.1.1. Legal parameter values 

In this section, we indicate what values for each machine-dependent PICL input param- 

eter are valid on the iPSC/2. We also describe any machine-dependent interpretations 

of the parameter values. If a parameter is not mentioned in the following list, then 

it is not machine-dependent, and its range of valid values should be clear from its 

description earlier in this manual. 

An Intel iPSCI2 multiprocessor can have no more than 128 node processors, but 

the maximum number of processors a t  a particular site is installation-dependent. We 

use the variable P to refer to the number of processors allocated to  a user. 

The default integer size is 32 bits, and the possible values span the range from 

-2,147,483,648 to 2,147,483,647. 

open0 

a The node version of open0 has no input parameters. The host version of open0 

has one input parameter, numproc. Valid values for numproc are 

-2,147,583,648 I numproc 5 128. 

If numproc is positive, then open0 will attempt to allocate that many processors. 

If numproc is less than or equal to zero, then open0 will attempt to use a previously 

allocated set of processors. 

probe0 

a probe0 has one parameter, type. Valid values for type are 

-1 5 type < 900,000,000. 
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e recvO has three parame-xs: bu bytes, and type. bu, must be a legal memory 

address and bytes must be a d d  positive integer. Vdid values for type are 

send0 

e send0 has four parameters: buf, bytes, types and dcast. buf must be a legal 

memory address. When sending to a node processor from a node processor, bytes 

must he a valid positive integer. When sending to the host or from the host, valid 

values for bytes are 

1 5 bytes 5 256,000. 

Valid values for type are 

0 5 type < 900,008,000. 

Valid valves for dest are 

(-1 5 deat _< P -- 1) or asst = -32,768. 

If dast  is nonnegative, then send0 sends the message to the indicated node 

processor. If das t  is -1, then send0 sends the message to ad1 allocated node 

processors. If dest  is -32,768, then send0 sends the message to the host. 

7.1.2. Other machine dependencies 

B If load0 is used to load a process onto a node processor on which there is already 

an active process, then the original process on the processor is killed, and the 

new process begins execution normally. 

s The routines barrier0 and setarc0 of the high-level PICL routines use default 

machine-dependent message types. Since the high-level routines are meant to 

represent typical user extensions to the library, these message types are within 
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the range permitted to any user application code. In consequence, the user has 

the ability to write seemingly correct code that will still execute incorrectly. For 

more information on what to watch out for, see the documentation for barrier0 

and setarc0. To be safe when using the high-level routines, a user application 

program should use message types that are strictly smaller than those used by 

barrier0 and setarc0. On the iPSC/2, use message types that are smaller than 

800,000,000. 

0 The resolution of the default iPSC/2 system clock on the node processors is 1 

millisecond, which is too coarse to resolve the ordering of many important events 

in an application code. But, if traceenable is called before load0 is used to load 

the node programs, then a high-resolution clock routine is used that returns the 

time in microseconds. Otherwise, the default system clock is used. 

Using the high-resolution clock routine has the side-effect of turning off memory 

protection in the node operating system. This may be unacceptable when de- 

bugging a node program. If so, simply call traceenable after load0 to  leave the 

memory protection unimpaired. 

7.1.3. Performance 

When the tracing logic is not activated, there is very little overhead incurred by using 

the PICL routines on the lade  processors. The very possibility of tracing causes recvO 

on the host to be 2-3 times slower than the native commands. This is the only major 

difference in the PICL overhead between the host and the node processors when not 

tracing. Since the host tends to be significantly slower than the nodes even when not 

using PICL, most application codes minimize the use of the host.. In our experience, 

the additional overhead on the host is not important. 

If the tracing logic is enabled and the trace information is sent to  the trace file 

a t  arbitrary points in the node and host programs, then the additional cost due to  

tracing can be extremely high. But, if trace information is sent back only at  the end 

of the node processes, then the cost is reasonable. The tables below provide empirical 

measures of this cost on a 64 processor iPSCI2. 
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Send/receive costs. Table 6 gives the time required to send one byte of data to 

an immediate neighbor and receive another byte back. Thus, this time represents the 

minimum cost associated with exchanging information. The table gives the time for 

this operation using the native commands CSB and crecv (iPSC/2) and using the 

PICL routines send0 and secvO with tracing off (notrace), with tracing on but no trace 

records generated (t000), with tracing on and “event” trace records generated (t30 

with tracing on and “compstatsn trace records generated (t030), with tracing on and 

‘ 6 ~ ~ m m ~ t a t ~ 9 ’  trace records generated (t003), and with tracing on and all possible tram 

records generated (t333), respectively. 

iPSC/2 notrace tO0 t3Q0 to30 to03 t333 
480.0 580.0 827.7 944.4 864.2 875.9 1032.6 

Table 6: Time spent exchanging one byte messages between neighboring nodes on the 
iPS@/2 (in microseconds). 

Simply using the PICL routines increases the execution time very little, while tracing 

increases the execution time anywhere from 74 percent to 118 percent. Note that the 

tracing overhead is independent of message length. Thus, when larger messages are 

exchanged, the percentage overhead will decrease. For example, Table 7 gives the time 

required to exchange 1000 byte messages between neighboring processors. 

iPSC/2 notrace too0 t300 to30 to03 t333 
1460.0 1480.0 1820.0 1951.4 1859.3 1885.1 2060.7 

Table ‘I: Time spent exchanging 1000 byte messages hetween neighboring aodes on the 
iPSC/’E (in microseconds). 

Similarly, the percentage overhead will decrease if the processors are not synchronized 

and one of them is “blocked” waiting for the message. 

Basic PICL node routine costs. Table 8 contains the minimum times required 

to execute the low-level and tracing PICL routines on a node processor, as compared 

with the minimum time required to execute the corresponding native commands. The 

first colurnn of execution times contains the times required when calling the native 

commands (iPSC/2). The other columns contain the times required to call the PICL 

routines with tracing off (notrace), with tracing on but only the minimum number 

of trace records generated (tOQQ), with tracing on and “event” trace records generated 
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(t300), with tracing on and “compBtats” trace records generated (t030), with tracing on 

and “commstats” trace records generated (t003), and with tracing on and all possible 

trace records generated (t333), respectively. An iPSC/2 time is marked as na if there 

is no native iPSC/2 command corresponding to the specified function. 

function 
open 
clock 
probe 
recvinfo 
message 
who 
t racenode 
tracelevel 
traceinfo 
t racemark 
tracemsg 
t r aceflus h 
t raceexi t 

iPSC/2 
na 

44.0 
40.0 
90.0 

35000.0 
18.0 

na 
na 
na 
na 

23000.0 
na 
na 

notrace 
50.0 

124.0 
41.9 
92.0 

1400.0 
6.6 
na 

20.0 
10.0 
5.0 
5.0 
5.0 
5.0 

two 
268.0 
124.0 
41.9 
92.0 

1418.0 
6.6 

335.0 
87.0 
14.5 
70.0 

770.0 
376.0 
98.0 

t300 
275.0 
124.0 
41.9 
92.0 

1446.0 
6.6 

335.0 
87.0 
14.5 
81.5 

770.0 
376.0 
98.0 

to30 
280.0 
124.0 
41.9 
92.0 

1494.0 
6.6 

335.0 
99.7 
14.5 
83.2 

770.0 
376.0 
98.0 

to03 
290.0 
124.0 
41.9 
92.0 

1537.0 
6.6 

335.0 
103.1 
14.5 
86.7 

770.0 
376.0 

98.0 

t333 
305.0 
124.0 
41.9 
92.0 

1555.0 
6.6 

335.0 
123.1 
14.5 

105.1 
770.0 
376.0 
98.0 

Table 8: 
iPSC/2 nodes (in microseconds). 

Cost of machine-dependent and machine-independent primitives on the 

Note that the iPSC/2 tracemsg time refers to the time required to use f p r i n t f  

to write directly to the trace file. Note also that the execution times for any function 

that communicates with the host, like tracemsg, t racef lush ,  and message, can vary 

wildly. All measurements reported here are the smallest times observed over a small 

number of runs. 

sync0 costs. The sync0 routine attempts to  synchronize all of the node processors 

in the sense that all node programs exit the routine a t  approximately the same time. 

The sharpness of the synchronization depends somewhat on when, and in what order, 

the processors call the routine, but we have found our algorithm to  be surprisingly 

effective. This is very important since sync0 is used to normalize time-stamps in trace 

records generated on different node processors when the sync option is specified in 

tracenode. We have yet to observe trace records normalized in this way whose time 

stamps violate the true partial order of e v p t s  in an application code, for example, by 

messages appearing to  be received before they are sent. 
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A very conservative upper bound on the difference between the time the first pro- 

cessor exits the routine and the last processor exits the routine i s  the time a processor 

spends in sync0 when the processors are already synchronized. This time is reported 

in Table 9 as a function of the number of processors. The first column of execution 

times contains the times required when calling the native command gsync (iPSC/2). 

The other columns contain the times required to call sync0 with tracing off (notrace), 

with tracing on but only the minimum number of trace records generated (t0 

tracing on and Uevent” trace records generated (t300), with tracing on and ‘k~mp- 

stats” trace records generated (tQ30), with tracing on and ucommstatsn trace records 

generated (t003), and with tracing on and all possible trace records generated (t333), 

respectively. 

processors 
2 
4 
8 
16 
32 
64 

iPSC/2 notrace to00 t30Q to30 t003 t333 
474.9 501.8 647.0 656.0 668.3 687.1 706.6 

-- I_. 

949.9 983.8 1135.9 1142.7 1147.0 1171.8 1194.6 
1495.0 1477.9 1623.2 1634.8 1641.9 1649.2 1688.4 
2089.1 1964.0 2115.6 2120.1 2135.9 2151.9 2180.7 
2658.6 2476.5 2617.5 2629.4 2648.6 2667.3 2683.1 
3190.0 2960.0 3114.1 3128.2 3141.2 3174.6 3188.9 

‘Table 9: Cost of machine-dependent and machine-independent synchronization primi- 
tives on the iPSC/2 nodes (in microseconds). 

Note that sync0 does not call the native synchronization command gsync, and it is 

faster than gsync when eight or more processors are used. 

7.1.4. Compiling and linking 

PICL comes in two parts, a host library and a node library. We will refer to the host 

library as hast l ib  I a and to the node library as nodelib.  a. 

hostlib. a should be linked in whenever compiling a host program. For example, 

to compile a. host program called hostprogr . c  and link in the library routines use 

cc -0 hostprogram ho8tprograna.c host1ib.a -host 

Similarly, to compile a host program called hastprogrm-f and link in the library 

routines use 

277 -0 hostprogram hostprogrm.f host1ib.a -hast 
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nodelib. a should be linked in whenever compiling a node program. For example, 

to compile a node program called n0deprogram.c and link in the library routines use 

cc -0 nodeprogram nodepr0gram.c node1ib.a -node 

Similarly, to compile a node program called nodepr0gram.f and link in the library 

routines use 

f77 -0 nodeprogram nodepr0gram.f node1ib.a -node 

Note that a user may wish to use compiler and loader switches that are not indicated 

in the above examples. 





- 125 - 

7.2. iPSC/86Q 

7.2.1. Legal parameter values 

In this section, we indicate what d u e s  for each machine-dependent PICL input pa- 

rameter are valid on the iPSC/860. We also describe any machine-dependent interpre- 

tations of the parameter values. If a parameter is not mentioned in the following list, 

then it is not machine-dependent, and its range of valid values should be clear from its 

description earlier in this manual. 

An Intel iPSC/SSO multiprocessor can have no more than 128 node processors, but 

the maximum number of processors at a particular site is installation-dependent. We 

use the variable P to  refer to the number of processors allocated to a user. 

The default integer size is 32 bits, and the possible values span the range from 

-2,147,483,648 to  2,147,483,647. 

open0 

0 The node version of open0 has no input parameters. The host version of open0 

has one input parameter, numproc. Valid values for numproc are 

-2,147,583,648 5 numproc 5 128. 

If numproc is positive, then open0 will attempt to allocate that many processors. 

If numproc is less than or equal to  zero, then open0 will attempt to use a previously 

allocated set of processors. 

probe0 

0 probe0 has one parameter, type. Valid values for type are 

-1 5 type < 900,000,000. 
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recv.8 

0 raw0 has three parameters: buf, bytes, and type. buf must be a legal memory 

address and bytes must be a valid positive integer. Valid values for type are 

send0 

o send0 has four parameters: buf, bytes, type, and derst. buf must be a legal 

memory address. When sending to  a node processor from a node processor, bytes 

must be a valid positive integer. When sending to the host or from the host, valid 

values for bytes  are 

1 5 bytes 5 256,000. 

Valid values for type are 

0 5 type < 900,000,080. 

Valid values for dest are 

(-1 5 dest 5 P- 1) or a s t  = -32,768. 

If dest  is nonnegative, then send0 sends the message to the indicated node 

processor. If dest  is -1, then sand0 sends the message to  all allocated node 

processors. If dest i s  -32,768, then send0 sends the message to tho host. 

7.2.2. Other machine dependencies 

a If load0 is used to load a process onto a node processor on which there is already 

an active process, then the original process on the processor is killed, and the 

new process begins execution normally. 

o The routines barrier0 and s e t a r c 0  of the high-level FICL routines use default 

machine-dependent message types. Since the high-level routines are meant to 

represent typical user extensions to the library, these message types are within 
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the range permitted to any user application code. In consequence, the user has 

the ability to write seemingly correct code that will still execute incorrectly. For 

more information on what to watch out for, see the documentation for barrier0 

and setarc0. To be safe when using the high-level routines, a user application 

program should use message types that are strictly smaller than those used by 

barrier0 and setarc0. On the iPSC/860, use message types that are smaller 

than 800,000,000. 

7.2.3. Performance 

When the tracing logic is not activated, there is very little overhead incurred by using 

the PICL routines on the node pmessors. The very possibility of tracing causes recvO 

on the host to be 2-3 times slower than the native commands. This is the only major 

difference in the PICL overhead between the host and the node processors when not 

tracing. Since the host tends to be significantly slower than the nodes even when not 

using PICL, most application codes minimize the use of the host. In our experience, 

the additional overhead on the host is not important. 

If the tracing logic is enabled and the trace information is sent to  the trace file 

at  arbitrary points in the node and host programs, then the additional cost due to 

tracing can be extremely high. But, if trace information is sent back only at the end 

of the node processes, then the cost is reasonable. The tables below provide empirical 

measures of this cost on a 128 processor iPSC/SSO on which the node processors have 

a 40 Mhz clock. 

Send/receive costs. Table 10 gives the time required to send one byte of data to 

an immediate neighbor and receive another byte back. Thus, this time represents the 

minimum cost associated with exchanging information. The table gives the time for 

this operation using the native commands csend and crecv (iPS@/SSO) and using the 

PICL routines send0 and recvO with tracing off (notrace), with tracing on but no trace 

records generated (t000), with tracing on and “event” trace records generated (t300), 

with tracing on and “compstats” trace records generated (t030), with tracing on and 

“commstats” trace records generated (t003), and with tracing on and all possible trace 

records generated (t333), respectively. 
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iPSC/SSO notrace tOOO t30 to30 to03 t333 
99.7 113.5 141.5 171.6 161.1 172.9 222.9 

Table 10: Time spent exchanging one byte messages between neighboring nodes on the 
iPSC/SSO (in microseconds). 

Simply using the PICL routines increases the execution time very little, while tracing 

increases the execution time anywhere from 42 percent to 124 percent. Note that the 

tracing overhead is independent of message len h. Thus, when larger messages are 

exchanged, the percentage overhead will decrease. For example, Table 11 gives the 

time required to  exchange 10 byte messages between neighboring processors. Note 

that the absolute overhead also decreaw for this case, reflecting the overlap of the 

overhead with the time spent in interprocessor communication. 

iPSC/S6O notram to00 t300 t030 to03 t333 
807.9 814.4 836.6 847.1 846.7 855.4 876.4 

Table 11: Time spent exchanging 1000 bytes messages between neighboring nodes on 
the iPSC/SSO (in microseconds). 

Similarly, the percentage overhead will decrease if the processors are not synchronized 

and one of them is “blocked” waiting for the message. 

Basic PICL node routine costs. Table 12 describes the minimum times required 

to execute the low-level and tracing PlCL routines on a node processor, as compared 

with the minimum time required to execute the corresponding native cornmands. The 

first column of execution times contains the times required when calling the native 

commands (iPSC/S60). The other columns contain the times required to  call the PICL 

routines with tracing off (notrace), with tracing on but only the minimum number of 

trace records generated (t000), with tracing on and “event” trace records generated 

(t300), with tracing on and “compstat~’~ trace records generated (tO30), with tracing 

on and “commstats” trace records generated (t003), and with tracing on and all possible 

trace records generated (t333), respectively. An iPSC/SSO time is marked as na if there 

is no native iPSC/S60 command corresponding to the specified function. 

Note that the iPSC/SSO tracernsg time refers to the time required to use fp r in t f  

to write directly to the trace file. Also note that the execution times for any function 

that communicates with the host, like tracemsg, traceflush, and message, can vary 
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function 
open 
clock 
probe 
recvinfo 
message 
who 
tracenode 
t racelevel 
t r acein fo 
tracemark 
tracemsg 
traceflush 
traceexit 

iPSC/860 notrace tOOO t300 to30 t003 t333 
na 36.7 77.9 80.4 90.8 86.1 96.5 
2.8 3.0 3.0 3.0 3.0 3.0 3.0 
5.0 5.5 5.5 5.5 5.5 5.5 5.5 
2.6 5.3 5.3 5.3 5.3 5.3 5.3 

30571.4 217.6 235.1 239.9 247.9 253.3 255.0 
2.7 0.8 0.8 0.8 0.8 0.8 0.8 
na na 27.5 27.5 27.5 27.5 27.5 
na 1.2 4.7 5.5 6.6 7.6 9.4 
na 1.1 1.4 1.4 1.4 1.4 1.4 
na 0.6 2.2 3.7 4.8 5.1 9.2 

14419.6 0.6 170.3 165.0 160.9 162.1 159.7 
na 0.6 70.2 68.8 71.4 69.3 74.5 
na 0.6 7.7 7.7 7.7 7.7 7.7 

Table 12: Cost of machine-dependent and machine-independent primitives on the 
iPSC/860 nodes (in microseconds). 

wildly. All measurements reported here are the smallest times observed over a small 

number of runs. 

sync0 costs. The sync0 routine attempts to  synchronize all of the node processors 

in the sense that all node programs exit the routine at  approximately the same time. 

The sharpness of the synchronization depends somewhat on when, and in what order, 

the processors call the routine, but we have found our algorithm to  be surprisingly 

effective. This is very important since sync0 is used to normalize time-stamps in trace 

records generated on different node processors when the sync option is specified in 

tracenode. We have yet to observe trace records normalized in this way whose time 

stamps violate the true partial order of events in an application code, for example, by 

messages appearing to be received before they are sent. 

A very conservative upper bound on the difference between the time the first pro- 

cessor exits the routine and the last processor exits the routine is the time a processor 

spends in sync0 when the processors are already synchronized. This time is reported 

in Table 13 as a function of the number of processors. The first column of execution 

times contains the times required when calling the native command gsync (iPSC/SSO). 

The other columns contain the times required to  call sync0 with tracing off (notrace), 

with tracing on but only the minimum number of trace records generated (tOOO), with 

tracing on and “event” trace records generated (t300), with tracing on and “comp- 
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stiltsn trace records generated (t030), with tracing on and %ommstats” trace records 

generated (t003), and with tracing on and all possible trace records generated (t333), 

respec ti vely. 

processors 
2 
4 
8 
16 
32 
64 
128 

iPSC/S60 
107.7 
218.6 
361.0 
521.7 
666,3 
809.4 
941.9 

not race 
115.6 
218.3 
331.3 
449.3 
559.9 
681.5 
763.1 

to00 
127.7 
232.2 
350.7 
464.0 
582.8 
696.9 
786.7 

t300 
131.3 
238.5 
350.2 
467.2 
584.6 
704.7 
790.4 

to30 
139.4 
242.6 
362.1 
478.7 
591.2 
708.6 
804.5 

to03 
143.5 
247.9 
364.6 
480.6 
601.8 
716.2 
802.7 

t333 
158.6 
263.8 
384.1 
498.0 
618.2 
735.6 
824.4 

Table 13: Cost of machine-dependent and machine-independent synchronization prim- 
itives on the iPSC/860 nodes (in microseconds). 

Note that sync0 does not call the native synchronization command gaync, and it is 

faster than gsync when four or more processors are used. 

7.2.4. Compiling and linking 

PICL comes in two parts, a host library and a node library. We will refer to the host 

library as host1ib.a and to the node library as node1ib.a. 

hostlib,a should be linked in whenever compiling a host program. For example, 

to compile a host program cdled hostpr0gram.c and link in the library routines use 

cc -0 hostprogram h0stprogram.e hostlib,a -host 

Similarly, to compile a host program called hostpssgram.f and link in the library 

routines use 

f77 -0 hostprogram hostprogram,f ho9tlib.a -host 

nodelib. a should be linked in whenever compiling a node program. For example, 

to compile a node program called nodeprogram.& and link in the library routines use 

cc -i86Q -0 nodeprogram nodeprogram.c nodel ib ,a  -node 

Similarly, to compile a node program called nodepr0gram.f and link in the library 

routines use 
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f77 -1860 -0 nodeprogram nodepr0gram.f node1ib.a -node 

Note that a user may wish to use compiler and loader switches that are not indicated 

in the above examples. 
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7.3. Ncube/3200 

7.3.1. Legal parameter values 

In this section, we indicate what values for each machine-dependent PICL input pa- 

rameter are valid on the Ncube/3200 (previously known as the Ncube/ten). We also 

describe any machinedependent interpretations of the parameter values. If a param- 

eter is not mentioned in the following list, then it is not machine-dependent, and its 

range of valid values should be clear from its description earlier in this manual. 

An Ncube/3200 multiprocessor can have no more than 1024 node procesfiors, but 

the maximum number of processors at a particular site is installation-dependent. We 

use the variable P to  refer to  the number of processors allocated to a user. 

The default integer size on the node processors is 32 bits, and the possible values 

span the range from -2,147,483,648 to 2,147,483,647. The default integer size on the 

host processor is 16 bits, and the possible values span the range from -32,768 to 32,767. 

open0 

0 The node version of open0 has no input parameters. The host version of open0 

has one input parameter, numproc. Valid values for numproc are 

-32,768 5 numproc 5 1024. 

If numproc is positive, then open0 will attempt to allocate that many processors. 

If numproc is less than or equal to zero, then open0 will allocate the maximum 

number of processors currently available. 

probe0 

probe0 has one parameter, type. Valid values for type are 

-1 5 type < 32,000. 
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m recvO has three parameters: buf , bytes, and type. buf must be a legal memory 

address and bytes must be a valid positive integer. Valid values for type are 

send0 

e send0 has four parameters: buf, bytes, type, and deet. buf must be a legal 

memory address. When sending from a node, valid values for bytas are 

0 5 bytes 5 27,OQO. 

When sending from the host, valid values for bytes are 

0 5 bytes 5 65,527. 

Valid values for type axe 

0 5 typa < 32,000. 

Valid values for dest are 

(0 5 dest 5 - 1) or dest = -32,768. 

If dast is nonnegative, then sendQ sends the message to the indicated node 

processor. If d e s t  is -32,768, then sendQ sends the message to the host. 

7.3.2. Other machine dependencies 

e If load0 is used to load a process onto a node processor on which there is already 

a n  active process, then the original process on the processor is kilied, and the 

new process begins execution normally. 

o The routines barrier0 and s a t a r c 0  of the high-level FICL routines use default 

machine-dependent message types. Since the high-level routines are meant to 
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represent typical user extensions to the library, these message types are within 

the range permitted to any user application code. In consequence, the user has 

the ability to write seemingly correct code that will still execute incorrectly. For 

more information on what to  watch out for, see the documentation for barrier0 

and setarc0. To be safe when using the high-level routines, a user application 

program should use message types that are strictly smaller than those used by 

barrier0 and setarc0. On the Ncube/3200, use message types that axe smaller 

than 30,000. 

a The resolution of the Ncube/3200 system clock is a function of the hardware 

clock, which is installation-dependent. To correctly normalize the clock times 

produced by clock0 and tracing for a given installation, it may be necessary to 

modify PICL header files and recompile the source. See Section 9 for a source of 

more detailed information. 

0 It is nontrivial to write C routines that can be called from FORTRAN on the 

Ncube/3200, and we will not support FORTRAN language calls to PICL routines 

until PICL has been implemented in FORTRAN. 

7.3.3. Performance 

When the tracing logic is not activated, there is very little overhead incurred by using 

the PICL routines on the node processors. The very possibility of tracing causes recvO 

on the host to be 2-3 times slower than the native commands. This is the only major 

difference in the PICL overhead between the host and the node processors when not 

tracing. In practice, the host tends to  be slower than the nodes even when not using 

PICL, and most application codes minimize the use of the host. In our experience, the 

additional overhead on the host is not important. 

If the tracing logic is enabled and the trace information is sent to the trace file 

at arbitrary points in the node and host programs, then the additional cost due to 

tracing can be extremely high. But, if trace information is sent back only at the end 

of the node processes, then the cost is reasonable. The tables below provide empirical 

measures of this cost on a 1024 processor,Ncube/3200 on which the node processors 

have an 8 Mhz clock. 
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Send/receive costs. Table 14 gives the time required to send one byte of data to 

an immediate neighbor and receive another byte back. Th116, this time represents the 

minimum cost associated with exchanging information. The table gives the time for 

this operation using the native commands nvrite and mead (Ncube) and using the 

PICL routines send8 and ram0 with tracing off (notrace), with tracing on but no trace 

records generated (tOOO), with tracing on and %vent” trace records generated (t300), 

with tracing on and Ucompstats” trace records generated (tQ30), with tracing on and 

“commstats” trace records generated (tQ03), and with tracing on and dl possible trace 

records generated (t333), respectively. 

Ncube notrace t 008 t300 to30 to03 t333 
683.5 881.3 1003.5 1159.7 1136.6 1214.7 1496.3 

Table 14: Time spent exchanging one byte messa.ges between neighboring nodes on the 
Ncube/3200 (in microseconds). 

Simply using the PICI, routines increases the execution time by approximately 17 

percent, representing the cost of two extra levels of subroutine calls per send0 and 

recvO call, Tracing increases the execution time anywhere from 47 percent to 119 

percent. Note that the tracing overhead is independent ‘of message length. Thus, when 

larger niessages are exchanged, the percentage overhead will decrease. For example, 

Table 15 gives the time required to exchange 1000 byte messages between neighboring 

processors. 

Ncube notrace too0 t3QO to30 t003 t333 
2899.2 2987.5 3147.5 3248.6 3234.6 3284.5 3503.4 

Table 15: Time spent exchanging 1800 byte messages between neighboring nodes on 
the Ncube/3200 (in microseconds). 

Similarly, the percentage overhead will decrease if the processors are not synchronized 

and one of them is “blocked” waiting for the message. 

Basic PICL node routine costs. Table 16 describes the minimum times required 

to execute the low-level and tracing PICL routines on a node processor, its compared 

with the niinimiim time required to execute the corresponding native commands. The 

first column of execution times contains the times required when calling the native 

commands (Ncube). The other columns contain the times required to call the PICL 
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routines with tracing off (notrace), with tracing on but only the minimum number 

of trace records generated (t000), with tracing on and “event” trace records generated 

(t300), with tracing on and “compstats” trace records generated (t030), with tracing on 

and “commstats” trace records generated (t003), and with tracing on and all possible 

trace records generated (t333), respectively. An Ncube time is marked as na if there is 

no native Ncube command corresponding to the specified function. 

function 
open 
clock 
probe 
recvinfo 
message 
who 
t racenode 
t racelevel 
t raceinfo 
t racemark 
t racemsg 
t raceflush 
traceexit 

Ncube notrace to00 
na 256.0 384.0 

34.0 
51.2 
na 
na 

41.3 
na 
na 
na 
na 
na 
na 
na 

63.1 
98.6 
49.9 

4352.0 
30.3 

na 
34.6 
47.0 
16.6 
16.6 
16.6 
16.6 

63.1 
98.6 
49.9 

4352.0 
30.3 

409.6 
141.4 
47.0 
81.9 

3200 .O 
384.0 
184.3 

t300 
384.0 
63.1 
98.6 
49.9 

4480.0 
30.3 

409.6 
141.4 
47.0 

112.6 
3200.0 
384.0 
184.3 

to30 to03 t333 
384.0 512.0 640.0 

63.1 
98.6 
49.9 

4480.0 
30.3 

409.60 
177.9 
47.0 

117.8 
3200.0 
384.0 
184.3 

63.1 
98.6 
49.9 

4608.0 
30.3 

409.6 
195.8 
47.0 

135.7 
3200.0 
384.0 
184.3 

63.1 
98.6 
49.9 

4608.0 
30.3 

409.6 
234.2 

47.0 
202.2 

3200.0 
384.0 
184.3 

Table 16: Cost of machine-dependent and machine-independent primitives on the 
Ncube/3200 nodes (in microseconds). 

Note that the execution times for any function that communicates with the host, 

like tracemsg, traceflush, and message, can vary wildly. All measurements reported 

here are the smallest times observed over a small number of runs, 

sync0 costs. The sync0 routine attempts to  synchronize all of the node processors 

in the sense that all node programs exit the routine at  approximately the same time. 

The sharpness of the synchronization depends somewhat on when, and in what order, 

the processors call the routine, but we have found our algorithm to be surprisingly 

effective. This is very important since sync0 is used to normalize time-stamps in trace 

records generated on different node processors when the sync option is specified in 

tracenode. We have yet to observe trace records normalized in this way whose time 

stamps violate the true partial order of evFnts in an application code, for example, by 

messages appearing to be received before they are sent. 
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A very conservative upper bound on the difference between the time the first pro- 

cessor exits the routine and the last processor exits the routine is the time a processor 

spends in sync0 when the processors are already synchronized. This time is reported in 

Table 17 as a function of the number of processors. The first column of execution times 

contains no times since there is no native synchronization primitive on the Ncube/3200. 

The other columns contain the times required to call sync0 with tracing off (notrace), 

with tracing on but only the minimurn number of trace records generated (t000), with 

tracing on and “event” trace records generated (t300), with tracing or! and “comp- 

stilts’’ trace records geenerated (t030), with tracing on and ‘komrnstats” tram records 

generated (t003), and with tracing on and all possible trace records generated (t333), 

respectively. 

processors 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

Ncube notrace to00 t300 to30 to03 t333 
na 769.3 880.6 907.5 945.9 980.5 1071.4 
na 1466.9 1.578.2 1600.0 1643.5 1684.5 1774.1 
na 2170.9 2281.0 2307.8 2350.1 2387.2 2479.4 
na 2872.3 2983.7 3010.6 3054.1 3092.5 3183.4 
na 3575.0 3687.7 3712.0 3758.1 3793.9 3887.4 
na 4277.8 4390.4 4414.7 4458.2 4495.4 4591.4 
na 4977.9 5091.8 5117.4 5162.2 5198.1 5291.5 
na 5680.6 5795.8 5818.9 5863.7 5900.8 5994.2 
na 6380.8 6497.3 6520.3 6565.1 6602.2 6695.7 
na 7082.2 7197.4 7220.5 7265.3 7303.7 739.5.8 

Table 17: Cost; of machine-dependent and niachine-indeperideIit synchronization prim- 
itives on Ncube/3200 nodes (in microseconds). 

7.3.4. Compiling and linking 

PICL comes in two parts, a host library and a node library. We will refer to the host 

library as h0stlib.a and to the node library as nade1ib.a. 

hostlib. a shoinld be linked in whenever compiling a host program. For example, 

to compile a host program called hostprogram-c and link in the library routines use 

ucc -X -khNH42 -C h0st.c 

Id -r -g -xl -0 host.lt1 /lib/main42.o h0at.o host1ib.a /Iib/ucc42.lib 

IC - B  host hast.ltl 
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L 

nodelib. a should be linked in whenever compiling a node pragram. For example, 

to compile a node program c d e d  nodeprogram. c and link in the library routines use 

ucc -K -khlYll -c n0de.c 

ldn -0 node.lt1 -b -r2 /lib/main.on n0de.m node1ib.a /lib/uccn.Pib 

/lib/f77n.lib /lib/end.on 

lcn -e node node.lt1 

Note that a user may wish to use compiler and loader switches that are not indicated 

in the above examples. 
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8. Getting PICL 

The source code for PICL is available from netlib [Don87]. The PICL source is cur- 

rently written in C, but Fortran-to-C interface routines are also supplied on those 

machines where it is feasible. Currently, netlib contains the following files: 

low-level primitives and execution tracing routines 

machine-dependent routines for the iPSC/2, includ- 
ing FORTRAN-to-C interface routines 

machine-dependent routines for the iPSC/860, in- 
cluding FORTRAN-to-C interface routines 

machine-dependent routines for the Ncube/3200, but 
without FORTRAN-to-C interface routines 
latex source of the user guide for the C version of 
PICL 
latex source of the reference manual for the C version 
of PICL. 

picl.shar 

port .shar high-level communication routines 

ipsc2.shar 

ipsc860.shar 

ncube3200.shar 

cuserguideshar 

creferenceshar 

More machine-dependent code will be added to  this list in the near future. 

To create PICL, you need the following shar files from the picl subdirectory on 

netlib: picl . shar ,  port .shar,  and the appropriate machine-dependent code. Unshar 

all three in the same (empty) directory. A README file describing how to  create the 

library is bundled with the machine-dependent shar file. For example, to get the 

source code for creating an iPSC/2 version of PICL, send the following message to 

netlibQorn1. gov: 

send p i c l .  shar from picl 

send port.shar from picl 

send ipsc2.shar from picl 

The source code will arrive as one or more messages per shar file. Each message will 

contain a header describing what to remove and how to concatenate messages in order 

to  recover a legal shar file. Once this is done, do the following in an empty directory: 

sh picl.shar 

sh port.shar 

sh ipsc2. shar  
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You will now have a file READIIE, a file makefile, and three subdirectories: picl, port, 

and ipsc2. The README file discusses how to compile the PICL routines and how to 

make the libraries hostlib.  a and nodelib. a. 
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9. Further Information 

If your need additional information, or if you have suggestions or complaints, contact: 

Patrick H. Worley 

Mathematical Sciences Section 

Oak Ridge National Laboratory 

P. 0. Box 2009, Bldg. 9207A 

Oak Ridge, T N  37831-8083 

Dr. Worley can also be contacted via electronic mail at 

worZeyQmsr. epm. ornZ.gov 
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11. Quick Reference List 

P I C L  Low-Level Primitives 

void checkO(int checking) 

double clockO() 

void closeO(int release) 

void loadO(char *file, int node) 

void messag&(char *message) 

void openO(int *numproc, int *me, int *host) 

int probeO(int type) 

void recvO(char "buf, int bytes, int type) 

void recvinfoO(int *bytes, int *type, int *source) 

void sendO(char *buf, int bytes, int type, int dest) 

void s y n c 0 0  

void whoO(int *numproc, int *me, int *host) 

P I C L  High-Level Communicat ion Rout ines  

void barrier00 

void bcastO(char *buf, int bytes, int type, int root) 

void bcastl(char *buf, int bytes, int type, int root) 

void gandO(char *buf, int items, int datatype, int msgtype, int root) 

void gcombO(char *buf, int items, int datatype, int rnsgtype, int root, void (*comb)()) 

void getarcO(int *nprocs, int *top, int *ord, int *dir) 

int ginvO(int i) 

void gmaxO(char *buf, int items, int datatype, int msgtype, int root) 

void gminO(char *buf, int items, int datatype, int msgtype, int root) 

void gorO(char *buf, int items, int datatype, int msgtype, int root) 

void gprodO(char *buf, int items, int datatype, int msgtype, int root) 

int grayB(int i) 

void gsumO(char *buf, int items, int datatype, int msgtype, int root) 

void gxorO(char *buf, int items, int datatype, int msgtype, int root) 

void setarcO(int "nprocs, int *top, int *ord, int *dir) 
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PICL Execution Tracing Routines 

void traceenable(cha.r *tracefile, int verbose) 

void traceexit() 

void t racefi us h() 

void tracehost(int tracesize, int flush) 

void traceinfo(int remaining, int event, int eompstats, int commstats) 

void tracelevel(int event, int compstats, int commstats) 

void tracemark(int marktype) 

void tracemsg(char *message) 

void tracensde(int tracesize, int flush, int sync) 
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