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ABSTRACT 

An internally consistent model for particle transport in an open divertor geometry 

has been developed. Embodied in a new code, pre-VORTEX, the model couples the 

particle balance in the plasma core, the scrape-off layer, the open divertor channels, and 

the “vacuum” regions. This mutual coupling is particularly important in determining the 

conditions required for high recycling in the divertor. The plasma core is considered to 

have a relatively quiescent core region and a less well confined “edge-localized mode” 

(ELM) region. The scrape-off layer is modeled with one-dimensional parallel and 

prependicular transport. A two-point divertor channel model is used; it is similar to 

previous models, but with the addition of new physical processes: hydrogen charge 

exchange, impurity thermal charge exchange, and flux-limited parallel transport. Wall 

recycling data are required to describe the differing recycling properties of the wall 

regions and the divertor plates. Given local plasma diffusivities and wall recycling 

properties, the model predicts the volume-averaged density and global particle 

confinement time. The input data are uncertain, and a major use for the model is to 

permit comparison with data. The final model, VORTEX, is intended for application to 

the analysis of divertor confinement experiments; it is coupled to a one-and-one-half- 

dimensional transport code and uses detailed geometric input from equilibrium fitting 

codes, experimentally measured core profiles, and such parameters as can be measured 

in the scrape-off layer. The pre-VORTEX model is compared as a stand-alone code with 

typical data from the DIII-D experiment and applied to the proposed DIII-D Advanced 

Divertor Project. 

V 





1. INTRODUCTION 

The divertor has been the object of study for some time. As described by the 

ASDEX group, the divertor creates a localized recycling vortex, in which a large particle 

flux (typically an order of magnitude greater than that of the core plasma efflux) is 

established at the divertor plate.1 The conditions for maintaining this high-recycling state 

are critical for the design of a practical divertor in future devices.2 

Quantitative analysis of particle confinement in open divertors requires the 

establishment of a self-consistent, empirically based model for recycling processes. 

Unlike the previously analyzed case of closed divertors, the typical single-null open 

divertor allows the exchange of particle flux from one divertor channel directly to the 

other through the "private flux" region. There are many additional pathways for particle 

flows, and they are strongly coupled during the typical pulse length (1-30 s) of present 

tokamaks. (See Fig. 1.) In addition, schemes such as that envisaged for the DIII-D 

Advanced Divertor Project3 seek to control the density through active pumping at the 

outer divertor (region 7 in Fig. 1). Analysis of such effects requires a self-consistent 

model for the global particle flows. 

The model described here incorporates a global description of the particle 

balance in a single-null open divertor and is intended to complement detailed modeling 

of neutrals using three-dimensional Monte Carlo codes and two-dimensional plasma 

scrape-off layer modeling. While the latter incorporate a high degree of geometric 

realism, the plasma codes are still under development, and coupling of the 

multidimensional codes is required to make a self-consistent model. This has rarely been 

done in the past, primarily because of the computational resources required. Also, 

significant changes are observed in the plasma particle balance that correspond to 

changes in the wall conditioning method, and detailed models are not required for this 

problem. 

This report describes the pre-VORTEX code, in which the models for the scrape- 

off layer, divertor channels, and wall recycling are coupled to a simplified plasma model. 

This development has been carried out as a precursor to the creation of a model in which 

the plasma is treated with a one-and-one-half-dimensional code, with a detailed 

description of geometry, plasma core transport, heating, and impurity efects. 

Pre-VORTEX treats the parallel mass, momentum, and energy transport for the 

divertor channels. The scrape-off layer is treated with one-dimensional radial and 

parallel diffusivities. Neutral gas balance is calculated for the various regions accessible 
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Region Description 

0 Plasmacore 
1 ELMregion 
2 InboardSOL 
3 Outboard SOL 
4 Inner Divertor Channel 
5 Outer Divertor Channel 
6 Divertsr Recycle 
7 Baffle Chamber 
8 InnerPlenum 
9 Outer Plenum 

point point 

Fig. 1. Schematic view of regions described in the VORTEX code @HI-D 

global divertor model). 
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for neutrals inside the vessel, and exchange with the wall is treated. The core plasma is 

divided into a central region and an edge-localized mode (ELM region, and the particle 

efflux is expressed in terms of the conventional diffusivity and the ELM frequency and 

amplitude. Section 2 describes the semi-analytical model, and Sect. 3 presents results. 

2. MODEL 

The most important requirement for the model is to delineate the conditions 

required for the establishment of a low-temperature, high-density, high-recycling 

divertor. Thus, the divertor channel model is described in Sect. 2.1. Then we describe the 

scrape-off layer equations, which couple the inner and outer channels of the divertor, and 

the plasma equations for both the core and the ELM region and the wall model. 

2.1 DIVERTOR CHANNEL 

The divertor channel model is based on earlier work on simplified divertor 

models.4 The mass balance equation for the inner divertor channel (region 4 in Fig. 1) is 

the simplest, since there is no external pump to be applied to this segment, The axial 

particle balance is as follows: 

mass, 

momentum, 

----[b(Z)n(v2 i a  +$)I = --, nv . 
b(1) a1 zcx 

Here n, T, and v are the plasma density, temperature, and parallel flow speed; So is the 

production rate of cold ions; Eplasma is the efflux from the plasma into the scrape-off 

layer; a is the energy loss per ion-electron pair created (which can be enhanced to model 
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l o w 2  impurity radiation); and zcx is the charge-exchange lifetime, The flux tube is 

assumed to have a width b(l), taken from magnetic analysis. The poloidal sound speed is 

The global model requires the net fluxes; thus, integrating from the divertor 

throat to the plate, 

where Pi is the neutral influx for the channel region from adjacent zones (6 and 8, for the 

inner channel), L, is the poloidal extent of the area through which neutrals enter the 

divertor channel (which has poloidal length L),  N is the total number of regions that 
contribute a neutral flux to this divertor channel, OpLte and (Dthroat are the particle fluxes 

(particles per unit area per second) at the divertor plate and throat, and 6 is the fraction of 

ions striking the plate that escape from the reflux stream, either through absorption into 

the divertor plate, escape to the pump, or transit to regions 6 or 8 in Fig. 1. This fraction 

is expressed, for channel 4, as 

where R q  is the reflection probability and q46 and q48 are the probabilities of escape 

into the central vacuum area (6) and the inner vacuum area (8), respectively. 

The corresponding quantity for the outer divertor channel is 

The perpendicular (A) and parallel (h)  mean free paths for ionization are 

computed from the plate and throat temperatures and densities, 
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Integration of these equations leads to solutions for the plate and throat 

The flux amplification factor is 

temperatures and densities required for a steady state. 

where 

I-& 

and 

G = 2 1 I R L Z ( q ) ( % ) .  N r,P 
i=l 

The expression for the plate temperature is 

where Qthroat is the power per unit area entering the throat, yis the secondary electron 

emission coefficient, R is the average major radius for this divertor channel, and 6b is the 

variation of the divertor channel width. In this pre-VORTEX model, the channel width is 
taken as b(l) = b,,,, + &(E - lkoat)/l . The throat temperature is 

where H = [A(1- 6) Ti + (G/@thoat)T2], with 

exp(-L/h)+ I - -  ( 31 
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and 

r- -l 

2.2 SCRAPE-OFF LAYER 

The mass, momentum, and energy balance equations are used to connect the 

inner and outer divertor channels through the scrape-off layer. No explicit assumption is 

made with respect to the existence of a “watershed,” or symmetry, point. Instead, the 

inlier and outer scrape-off layer solutions are matched by requiring continuity. This 

approach is suggested both by the observed asymmetry in particle and energy fluxes in 

divertor experiments and by the plan to bias the divertor plates in the DIII-D Advanced 

Divertor Project to influence scrape-off layer properties. 

The resulting equations are 

@5-B4=rg2+r93+c f + c  
P 3  P 

and 

where Q4 and Q4 are negative (counter-clockwise) for a symmetric case. These 

equations thus express the requirement that the total particle flux (C, ) and heat flux 

(Pi,,/27cRb), modified for ionization of the neutral influxes T,, and rg3, must be 

transported in steady state. 

regions: 

P 

The momentum and energy balance equations couple the inner and outer throat 
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and 

The scrape-off layer density is determined by a balance between parallel and per- 

pendicular particle fluxes, 

where 'plasma is the efflux from the plasma into the scrape-off layer, Sioniz is the particle 

source due to neutrals from the wall or divertor impinging on the scrape-off layer, D, is 

the cross-field diffusivity, and NJzII  is the parallel flow loss of scrape-off layer particles 

to the divertor throats. This gives the solution 

where Nsep is the plasma density at the separatrix (which is determined from the core 

solution) and aELM is the radius outside which ELM behavior is assumed to dominate 

transport (aELM enters because the effective density gradient at the edge depends on it). 

2.3 PLASMA CORE 

The plasma core model is 

VDcore d2N,Jd? = Efuel, O < r  <aELM 

P ~ J Z L M  d2Ne/dp = NeNoSioniz , 

Vo aWddr = -NeNgioniz , 

%M < I < a 

aELM<r<a 

where DEL, is a time-averaged diffusion coefficient based on the ELM frequency and 

amplitude, No is the neutral density in the core, Sioniz is the rate coefficient for electron 

impact ionization ((cTv)), Vo is the neutral velocity in the core, and all core ionization is 

assumed to be localized in the ELM region. 

The solution for the plasma model relates the volume-average density (hence the 

particle confinement time) to the separatrix density: 
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and 

2.4 NEUTRAL BALANCE 

To form a self-consistent model the neutral balance is calculated for regions 6-9 

in Fig. 1. Thus in region 6 (private flux), 

in region 7 (pumping chamber), 
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3. RESULTS 

The pre-VORTEX model has been applied to a DIII-D divertor case to predict 

the range of values to be expected when divertor pumping is applied, as is proposed for 

the DIII-D Advanced Divertor Project. Using a data set originally compiled for DIII-D,S 

we consider the effects of applying up to 50,000 L*s of pumping to a plasma with 5 Mw 

of injected power and 50 to 250 A of central fueling. The data required for this case are 

shown in Table 1. 
The wall reflection coefficients R,, R ,  and Rg are taken as 0.98, the wall 

reflection coefficient in the pump region R ,  is 0.99, and the divertor reflection 

coefficients R4 and R,  are also assumed to be 0.98. The gap at the pump inlet is 3.5 cm, 

and room-temperature particles are assumed to be recycled there. 

5 x lo3 cm-2/s. The plasma efflux is assumed to be predominantly distributed to the 
outside U; = 0.7). 

With this reference data set, the variation of plasma core, SOL, divertor, and 

pump parameters is calculated for the nominal range of pumping speeds available for 

DIII-D: S = M0,OOO Us. Results for a sample case are given in Table 2. The results of 

the analysis for variation in pumping speed are shown in Figs. 2-5. 

Figure 2(a) shows the variation in the outer divertor flux amplification factor 

with pumping speed. The amplification factor decreases from 10 to -5 without 

significant core fueling but is maintained in the high-recycling condtion (A - 10) with 

core fueling of 150 to 250 A. The core density decreases by up to 50% without core 

The plasma diffusivities Doand DEL, = 5 x 10 3 2  cm- /s; xELM = 1.0, and D, = 

Table 1. Data required for applying pre-VORTEX 

Divertor Scrape-off layer 

Inner Outer Inner Outer 

Region (see Fig. 1) 4 5 2 3 

Channel width b, cm 4.0 2.0 1 .o 1 .o 
Poloidal length L, cm 30 40 200 260 

BTIBpol 33 33 33 33 

Reflection coefficient 

R (cm) 1.5 1.9 1.5 1.9 

0.9 0.9 0.9 0.9 
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Table 2. Results for sample case 
Power = 6.0 M W ,  pumping speed = 6 x lo4 Us, 

average core density = 0.49 x lom m-3 = 0.238 s ’ zP 

Region 
Q, MW 
1, A 

1020 m-3 
throat 7 1020 m-3 

A 
Neutral pressure, torr 
Particle flux, A 

To plate 
From plate 
To private 
From plenum 
To scrape-off layer 

Particle flux, A 
From plenum 
From plate 
Plasma efflux 

Particle flux, A 
Fuel 
Reflux, region 4 
Reflux, region 5 
Influx, region 8 
Influx, region 9 
Efflux, region 2 
Efflux, region 3 

Divertor 

Outer 
5 
4.23 
777.0 
0.45 
0.8 1 
37.4 
41.2 
7.1 
0.0003 

469.4 
4532.4 
11 1.8 
16.5 
777.3 

Scrape-off layer 

Outer 

81.1 
7.01 
689.2 

Plasma core 

Inner 
4 
-1.77 
-296.0 
0.0 1 
0.01 
366 
366 
1.1 
0.0003 

3 13.9 
16.1 
2.0 
0.27 
296.3 

- Inner 

0.45 
0.52 
295.4 

40 
260.4 
28.5 
225.7 
330.1 
689.2 
295.4 
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Table 2 (continued) 

Pump 

Neutral pressure, torr 
Particle flux, A 

To plate 
To private 
Pumped 
Back, region 5 
Back, region 6 
Wall pumped 

Neutral pressure, torr 

Fraction diverted, % 
Fraction trapped, % 
Exhaust fraction, % 

Private flux 

Global efficiencies 

0.362 

396 
27.7 
226.9 
35.3 
99.9 
61.6 

0.002 

6.9 
58.4 
23.1 

fueling [Fig. 2(b)] and is relatively constant with 150 to 130 A of core fueling. 'Thus, the 
density profile should be strongly modified by pumping. 

The divertor plasma parameters are shown in Fig. 3. The plate temperature rises 

to -50 eV without core fueling (as the amplification factor drops to 5) but is in the 10- to 

20-eV range for core fueling rates of 150 to 250 A. Likewise, the divertor electron 

density can be kept at a high value (to reduce backflow of recycled neutrals) for the 

higher core fueling rates. 

The core plasma behavior is shown in Fig. 4. The average core electron density 

drops significantly With pumping rates of 30,000 to 50,000 L/s with low core fueling, but 

can be maintained with 150 to 250 A. The particle confinement time is calculated to 

improve with high pumping and core fueling. 

Finally, the overall exhaust efficiency of the pumping is shown in Fig. 5. The 

efficiency rises with an increase in pumping speed and core fueling, reaching values 

around 25%. 
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Fig. 2. (a) Variation in the outer divertor flux amplification factor with pumping 

speed. (b) Change in core density with pumping speed. 
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Fig. 4. Core plasma behavior. 
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Fig. 5. Exhaust efficiency as a function of pumping speed. 
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