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MODELING HISTOGRAM DATA W I T H  PIECEWISE POLYNOMIALS 

Patrick H. Worley 

Abstract 

As part of a research project on the performance characterization of parallel pro- 
grams, piecewise polynomials are used to model histogram data  that represents the 
processor utilization curve. In this paper an algorithm is described that  generates 
a discontinuous piecewise polynomial model in time proportional to the amount of 
data. 

V 





1. Introduction 

As part of a research project at  Oak Ridge National Laboratory on the performance character- 

ization of parallel programs, we are developing tools for the generation of scalable performance 

models. The rationale for this effort is that scalable models can be used to  predict performance 

when problem or architecture parameters change. Similarly, a scalable model can be used to  

analyze the sensitivity of performance to a given parameter. 

One focus of our research is on incorporating empirical performance data early in the mod- 

eling effort, We believe that the cotnplexity of the model, and of the modeling process, can be 

minimized by modeling only the observed behavior. For example, the complexity of a typical 

scientific application code can make it dificult to  use for prediction or sensitivity analysis. But 

much of this complexity may be independent of performance, for example, reflecting instead the 

complexity of the physics being simulated or simply poor coding. Thus, if the observed behav- 

ior is simple over a range of problem and architecture parameters, then a simple performance 

model may be sufficient, regardless of the complexity of the application code. 

While observed performance is rarely simple, much of the detailed behavior is unimportant 

when measuring performance, and can be treated as “noise.” Also, many programs whose 

performance is a complex function of many parameters can be adequately modeled as a sequence 

of relatively simple t ime-dependeni models, possibly representing a sequence of subroutine calls 

or other logical features of the program. Thus, identifying these phases of relatively simple 

behavior allows us to reduce the complexity of generating and using a performance model. 

In this paper, we describe one of the tools we have developed for identifying phases in the 

processor utllizaiion curve.  The processor utilization curve is a histogram describing the number 

of processors that are computing at any given time. (If a processor is not computing, then either 

it is idle or it is actively involved in sending or receiving a message.) The processor utilization 

curve allows us to measure many of the important features in algorithm behavior: local and 

global speed-up arid efficiency, and total execution time. Since the processor utilization curve 

does not explicitly take into account either interprocessor cornmunication patterns or the logical 

structure of the program, it is unlikely that a phase analysis of the processor utilization curve 

will suffice to model the performance of a parallel program, but it is an important first step. 

The goal of phase identification in the processor utilization curve is to break the curve 

into segments each of which can be well-approxirnated by a simple function. Thus, we need 

to identify the beginning and ending time of each phase and the underlying trend, or simple 

behavior, within the phase. We are currently pursuing two approaches t o  this problem: the 

first is a statistical analysis of the data to  identify phase changes, and the second is a piecewise 

polynomial fit to  the processor utilization data. In this paper, we describe one variant of the 

latter approach. For the rest of this paper, we will use the term model to refer to the piecewise 

polynomial fit, arid not to the performance model that is the ultimate goal of this research. 

Fitting piecewise polynomials to empirical data has a long history, but most standard tech- 

niques do not appear to  be appropriate since our goal is to preserve abrupt changes in behavior, 

not smooth them away. In particular, there is no reason to require that a model be continuous 

across phases. The overall process is more complicated as well. Since we normally don’t know 

how many phases there are, we generate fits assuming first that there is only one phase, then 
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two, then three, etc. To identify the correct number of phases requires a sensitivity analysis with 

respect to  the number of assumed phases. A correct analysis will take into account how much 

the fit changes when an additional phase is assumed, and what features of the approximation 

are preserved when additional phases are assumed. Currently, the modeler simply picks the fits 

he/she likes best, using whatever heuristics seem natural at the time. While this technique for 

choosing the number of phases can be improved upon, the tools described here will never be 

more than aids to  the modeler, and heuristics and user-interaction will always play a large role 

in the modeling process. 

The simpler problem of fitting a piecewise polynomial with n pieces, or phases, to the 

histogram data representing the processor utilization curve is still a computationally difficult 

nonliuear problem. For example, if the error in the approximation is measured using the 

standard Lz norm, then the problem is a nonlinear least-squares problem where both the 

breakpoints separating phases and the coefficients of the polynomial representing each phase 

must be calculated. We will refer to this as the least-squares problem. Previous work on the 

least-squares problem includes Friedman and Silverman [5], Hawkins [10],[11], and Vose [13]. 

Friedman and Silverman describe a linear complexity heuristic for solving the least-squares 

problem. Their heuristic adds one breakpoint at a time when generating an n-phase model, 

and, once a breakpoint has been placed, it is rarely moved. We have observed this to  be a poor 

heuristic for our application since the optimal choice of breakpoints can vary wildly as a function 

of the number of phases. Hawkins uses a dynamic programming algorithm to solve the least,- 

squares problem. The complexity of Hawkins' algorithm is quadratic in the amount of data, 

which can be too expensive for large data sets, especially for use in an interactive environment. 

In other work at Oak Ridge National Laboratory, Vose uses a hill-climbing solution technique 

to approximately solve the least-squares problem. Given a reasonable initial estimate of the 

breakpoints, Vose's algorithm is acceptably fast for small n, and it places no restrictions on 

the locations of the breakpoints. More importantly, he has proposed a new formulation of the 

least-squares problem that is more appropriate for our application. We refer the reader to  his 

paper for more information. 

In this paper, we develop a computationally efficient technique for fitting an n-phase piece- 

wise polynomial to histogram data by using a special metric to define the error. This metric has 

no special suitability for our application other than that it is a metric, but it is intuitively no 

less meaningful than the Lz norm that is traditionally used. The new technique is well-suited 

for computing fits for a sequence of n values, which is how the algorithm is used in practice. 

It is also simple to include many different types of functions in the fit with only a moderate 

increase in the computation time. 

2.  Problem formulation 

Let T be a finite positive constant. Consider a nonnegative piecewise constant function h with 

a finite number of pieces that is defined on the interval [O,T]. This is our generic description 

of the processor utilization curve. Consider the metric space of vector-valued functions f = 
(fl ,  . . . , fn), where each fi is a real-valued L2 function on the domain [0, TI, with the metric 
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Let = ( h , .  . . , h ) ,  i.e. the vector of n copies of h.  
Consider the set Pk of vector-valued functions fi = ( P I , .  . . ,pn) defined in the following way: 

1) With each p is associated an ordered set of n - 1 numbers {XI,. - e  , z,,-~] in [O,  T ]  repre- 

senting the endpoints of a (possibly degenerate) n-element partition of 10, TI. Let zo = 0 
and let = T .  

2) Each pi is a kth-degree polynomial in the interval [zi-l, z,] and is identical to h in the 

rest of the interval [O,T]. 

Thus, if p E 4, then 

For any p E Pk and i E { 1, e , n} ,  we will refer to 

as the i th local error of approximating h by p .  

By (l), the best approximation to h by a member of Pk can be calculated by finding a 

piecewise polynomial of degree IC and at most n phases that minimizes the maximum "piecewise" 

(or local) La error. Since this is a metric in the space described above, the question of best 

approximation is well defined. Moreover, if n is large enough, then h E pk. The advantage 

of using this formulation is that we can use an eqiiidistribution property to identify a best 

approximation. First, we show that there exists a best approximation to 6 in pk. 
Let X represent the ( n  - 1)-dimensional cube nyz: [0, TI. Then each f E X represents a 

(possibly degenerate) n-element partition of [O,T] upon ordering its components, and all n- 

element partitions of [O,T] can be represented by some 3 E X .  For any i;. E X ,  let pk,s be 
the set of all functions p E Pk associated with the partition corresponding to  2. Then there 

is a unique best approximation p to  h in pk,r defined by p i ( z )  being the (unique) best L2 

approximation to h ( z )  by a kth-degree polynomial in the interval [ x i - l , z i ] .  (The standard 

existence and uniqueness proofs for the best L2 approximation to a continuous function [1],[3] 
also prove this result.) Call this function pr, and let represent its i th component. The 

following lemma establishes that there is a best approximation to L in 9. 

Lemma 2.1" If € = infFepk - hlln, then there exists a ij E Pk such that E = IIq- hlln. 
- 

Proof. Let {py) represent a sequence such that 
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Since each pv  i s  associated with a given partition 3, E X, and since jiEv is at least as good an 

approximation to h as is py, 

Equality holds in (2) by the definition of E .  Since X is compact, this implies that  the infinum 

is achieved for some 2, E X and, thus, E = llpz. - Alln. 0 
A similar argument proves the following lemma. 

Lemma 2.2. If q is any best approximation to in 9, then 5 = pz for some x E X 

Prooj If q f 4, then there is an associated partition Z E X. Since ]Ips - hlln _< IIq - h11,, 
= 4, this proves the lemma. 0 

The following theorem states tha.t there exists some best approximation to 6 in Pk that 

aid since equality holds only if 

satisfies an equidistribution principle. 

Theorem 2.3. Let E = infPEp, IIp -- hlln. 'Then there cxists a best a.pproxirnation 4 to 6 in 

Pr, such that E = IIq - hlJ,,i for all i E (1,. . . , n}. 

Prooj. First, note that the ith local error ofapproximating h by afunction p + ,  J-$:', ( p i ? * ( z ) -  

h(z))' d x ,  is a continuous function of zi that increases (decreases) monotonically as z i  increases 

(decreases). This follows from pi ,z  being the best Lz approximation to the piecewise const,ant 

function h in  [xi-l , xi]. In particular, if xi is sinal1 enough, then the error is zero since h will be 

constant on the interval Ixi-1, xi] and the constant funct,ion is Eth-degree polynomial. Similarly, 

for fixed zj, the error increases (decreases) monotonically as xi-1 decreases (increases). 

Next, let q be a best approximation to h in 9. Let 2 E X represent the partition corre- 

sponding to n, where the components of 2 are ordered. (By Lemmas 2.1 and 2.2, q exists and 

@ = p5.) Let E = IIq - hlln. Assume that 

J = , - 1  

for some i E 11, ... , n). In particular, let i, be an index such that 

and either 

or 

If (3) holds, i.e. that the next partition to the right has a local error less than 6 ,  then decrease 

xi,, leaving all other partition endpoints fixed and recalculating the best J12 f i ts over the 

intervals [zj.-1,zi,] and [x,., zi.+1]; trritil either the local error in  [xi.-l,zi*] is lass than 6 or 

the local error in [zi., is equal to E .  If (4) holds, then increase .ct..-l until either the local 
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error in [ q 9 - 1 , z i g ]  is less than E or the local error in [ ~ ; . - 2 , z i . - 1 ]  is equal to E .  Repeat this 

process until either all local errors are the same, or until the global error llp3sz, - hlln for the 

new partition 5' is less than 6 .  One of the two conditions must occur within n - 1 steps of this 

process. If the global error is less than e ,  then this contradicts the assumption that q is a best 

approximation to h. If all local errors are the same, then j j 5 d  has the same global error as the 

original q ,  and itself represents a best approximation to h in Pk. 0 
The following theorem represents a converse to  the previous theorem, establishing that the 

equidistribution principle is sufficient to characterize a best approximation. In the next section, 

we will use this property to generate a best approximation. 

- 

Corollary 2.4. Let 5 E X represent an n-element partition of [O,a. If there exists a fixed 

E 2 0 such that the function p5 satisfies the condition c = lipz; - hlln,i for all i E ( 1 , .  . . , n) ,  
then pE is a best approximation to h in 4. 

Proof. Assume that there exists an n-element partition of [O, T ] ,  represented by if, such 

that j& satisfies the equidistribution property but is not a best approximation to  h in Pk. Let 

6 = II&-hlln. By Theorem 2.3 and Lemma 2.2, there does exist an n-element partition of [0, T ] ,  
represented by y, such that pg is a best approximation and does satisfy the equidistribution 

property. Let 6 = - hll,,. Therefore, E < 5 .  In particular, 

IIFij - hlli,n 5 6 < 6 = Ilpz - &lli,n 

for all i .  

are ordered. Since 

the local error of pz; in the interval [0, z 1 ]  is strictly greater than the local error of & in the 

interval [0, yl], y1 < q. This follows from the monotonic dependence of the local error on 21, as 
described in the proof of Theorem 2.3. In consequence, the best L 2  fit to h in the interval [yl, zz] 
has an error that  is at  least as big as the local error of fje in the interval [q, ~ 2 1 .  Therefore, y2 

must be strictly less than x2 for the local error of fig in [yl, y2] to be less than the local error of 

j je in [XI, 221 .  Continuing this argument, it is clear that yi < xi for all i E (1,. . , n - 1). But, 

this then implies that the best L 2  fit to h in the interval [yn-1,TI is strictly less than the best 

L2 fit to h in the interval [zn-l ,q even though y,-l < z n - l .  By the monotonic dependence 

of the local error on xn-l, this is impossible. Thus, our assumption is incorrect, and j j z  must 

itself be a best approximation to h in Pk. 0 

Without loss of generality, assume that the components of both i? and 

3. Algorithm formulation 

3.1. Calculation of the partition 

The algorithm to  generate a best approximation is based on the following coniputational kernel, 

where the number of phases (n ) ,  the degree of the polynomials (k), and an estimated minimum 

error ( e )  have already been specified: 
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a) Set 20 = 0 and i = 1. 

b) If i = 7a or if the best L z  fit of a tth-degree polynomial to h in the interval [z,-l,T] is less than 
E ,  then stop. Otherwise, find the largest z such that the best L g  fit of a kth-degree polynomial 
to h in the interval [ z i - l ,  21 has an error of e.  Set z, = 2. 

c) Set i = i + 1 and go to b). 

Figure 1: Algorithm K 

Call this Algorithm K (for kernel). Note that the partition generated by Algorithm K may 

have fewer than t i  elements, but it will never have more than n. By Theorem 2.4, Algorithm K 
will generate the partition for a best approximation if the partition has the required n elements 

and if the local error in the last partition element is equal to E .  The g o d  is to find the value of 

E for which this is true. We will refer to  this “optimal” value of E by E * .  

Consider two error tolerances 6 and E ,  where 6 > E .  Let 2 represent the partition generated 

by using 6 in Algorithm K, and let m(6) be the number of (nontrivial) partition elements. Let 

y represent the partition generated by using E in Algorithm K ,  and let m ( ~ )  be the number of 

partition elements. By the same argument used to prove Theorem 2.4, it is clear that yi < 2; 
for all i 5 min{rn(6), r n ( c ) } .  Therefore, either m ( ~ )  > m(6), or m(c) = m(6) arid the local error 

in the interval. [ ~ ~ ( ~ ) - l ,  T ]  is greater than or equal to the local error in the interval [ E ~ ( ~ ) - I ,  TI. 
This “monotonic behavior” of the number of partition elements and the local error in the last 

partition element as a function of E means that we can use a bisection type algorithm on E to  

find the best approximation. 

Let n be the desired number of phases. For a given c 2 0, let m ( ~ )  be the number of 

partition elements and let ~ ( c )  be the local error in the last partition element generated by 

Algorithm K .  Define the objective function f ( ~ )  by 

(n - m ( ~ )  + 1) - ( T ( E ) / E ) ,  if E > 0; 

if E = 0 and T ( C )  # 0. 
if E = 0 and T ( E )  = 0; (5) 

If E* generates the partition for the best approximation to 6, then m ( ~ * )  = n, ~ ( c , )  = E + ,  and 

f ( ~ , )  = 0. If E < E * ,  then m ( ~ )  = n, T ( E )  > E ,  and f ( ~ )  < 0. If E > E * ,  then either m ( ~ )  < n or 

T ( E ) / C  < 1, and f(c) > 0. Thus, the sign o f f  differs depending on whether E is too large or too 

small, and bisection can he used, once upper and lower bounds for E* have been calculated. 

Let €1 and c,, represent upper and lower bounds, respectively, for E * .  It is clear that zero is 

a lower bound, so set c1 = 0. For E,, we use the L2 error in the best Lz approximation to h by 

a single kth-degree polynomial. Thus, f ( c 1 )  = --n and f (cu)  = n - 1. At this point, we can 

now call a bisection routine to  calculate E * .  In practice, we use a modified version of bisection, 

zeroin by Brent [2], to find E * ,  since it often converges faster than bisection. To use zeroin, 

the user must also specify the amount of error that will be tolerated when calculating e+ .  We 

will refer to  this value by <I.’ The best choice for E 1  halances computational cost with the 

‘The tolerance actually used by zeroin is ( 2 .  macheps .  F* + 0 . 5 .  E l ) ,  where macheps i s  the relative machine 
= 0 will precision, or m<:hine epsilon, and t. is the approximation to e, cdculated by zeroin. Thus, setting 

still work. 
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“sensitivity” of the equidistribution principle when calculating the “optimal” partition, which 

is problem dependent. We currently set & = .01. This value is very conservative for our data 

since the minimum separation between successive times in the histogram data is normalized to 

be greater than or equal to  one, and E ,  is significantly greater than one for all of our numerical 

experiments to  date. Even for this small value of €1, the cost of the search for c+ is reasonable. 

3.2. Calculation of the least-squares fit 

In this section, we briefly describe the algorithm used to find the best Lz fit of a kth-degree 

polynomial to histogram data in a given interval [ z ; - 1 ,  z;], and how this is used in Algorithm K .  
We assume that the histogram data is represented by a set of M ordered pairs { ( z j ,  q j )  I j  = 
0, .  ,M - 1) that have been ordered by their first coordinate, denoting that h ( z )  = qj for 

z E [zj  , z j + l ]  for all j. Here zo is assumed to be 0 and ZM is defined to be T. 
Consider approximating the histogram data on an interval [ z i - l ,  zi ]  by a polynomial2 

p ; ( z )  = X I - ,  - at (z - ~ i - 1 ) ~ .  Then, the square of the L2 error in this approximation is 
k 

where zj ,  is defined to be the element of the set { z j }  that is closest, but still less than, 3,. 

Since p ; ( z )  is (at most) a kth-degree polynomial, the expression ( p i ( z )  - q j ) 2  is (at most) a 

(2k)th-degree polynomial for each j .  Thus, each integral in the right-hand side of ( 6 )  can be 

evaluated exactly using a Newton-Cotes quadrature formula [l] with 2k + 1 sampling locations 

in the corresponding interval. Let the weights and sample locations of the quadrature formula 

over [ x j , z j + l ]  be {wmj,i} and {&,,,j,i}, respectively, for m E {0,...,2k} . Similarly, let the 
weights and sample locations over [zi-l, zj,++1] be { ~ ~ , , , - ~ , i }  and {(m,j,-l,i}, respectively, 

and let the weights and sample locations over [ z j , ,  z i ]  be {wm,j,,;} and { & j , , i } ,  respectively. 

Then, ( 6 )  becomes 

j , - 1  / 28 \ 

2k 

m=O 

21n practice, we deal only with low degree polynomials, so we do not need to worry about the ill-conditioning 
associated with using the basis functions {(z - z,)‘} to represent the polynomial approximation. 



Since pi(.) is a linear function of its coefficients {q}, finding the coefficients of pj(z) that 

minimize (7) is a linear weighted least-squares problem if the weighis wm,j are all posit ive.  

(For example, see Golub and Van Loan [9].) For k 5 3, the weights will be positive if the 

sample locations are equidistributed in the corresponding interval [4, pp. 885-8861. S' ince we 

are only interested in using low degree polynomials in our piecewise models, equidistributed 

sample locations are sufficient for this app l i~a t ion .~  

The weighted linear least-squares problem can be described as finding a vector 

that minimizes the error (in the least-squares sense) of a matrix equation A ii = 6, where & 
is a vector and A is a rectangular matrix with k + 1 columns. We apply Givens rotations [9] 

t.0 both sides of the matrix equation to  zero all elements of A except for the upper triangular 

matrix residing in the first E +  1 rows of the matrix, after which the solution 6 can be evaluated 

by solving the resulting triangular matrix equation. 'The advantage of using Given rotations 

over Householder transformations when introducing the zeroes into A is the ease by which the 

solution can he updated when adding new rows to A .  
until the 

lcast,-squares error over [z ' i - l ,  xi] is equal to  the stipulated value E ,  or until zi = T .  In practice, 

we set 2, eqnal to  z j  for an increasing sequence of j until the squared error exceeds the squared 

error tolerance. Each step of this process involves adding 2E + 1 extra rows to  the bottom of A 
and. b,  zeroing these new elements in A using Givens rotations (which also alters the element,s 

in the upper triangle of the first E f 1 rows in A ,  the first k + 1 elements of b, and the lnqt 

(2k -1- 1) elements of b ) ,  and calculating the new squared error. The squared error is the sum 

of squares of all but the first k +- 1 elements of b ,  and is easily updated as each new interval is 

brought into the approximation. 

Once the error tolerance has been exceeded, we know how to bracket the desired value of 

z, by two successive z j  values, and we also know the values of j ,  and r l j ,  that correspond to 

this value of ti. Trying different zi values within this iuterval corresponds to changing the last 

2k + 1 rows of A and b and updating the error accordingly. The changes in the values of the 

last rows is a continuous function of zi alone since z j ,  and qj,  are now determined, and the 

error is (still) a continuous monotonic function of x i .  Thus, bisection can be used to find x i .  

As in 53.1, we use zeroin,  the variant, of bisection developed by Brent [2]. We again need to 

set an error tolerance when calling zeroin. We will refer to this value by .J2. The best value 

for .J' is again problem dependent. We currently use = .l, which is relatively conservative 

since zj, - zj,+1 2 1 for our data. 

To summarize, the algorithm used to implement Step 1)) of Algorithm K is described in 
Fig. 2. 

In Step b) of Algorithni K ,  zi-1 is fixed and we keep increasing the value of 

3For largrr k, \vc ran sample at. thc zeroes of the kth-order Legendie polynomials, translated and scaled for 
the correct interval, in ordrr to get positive weights [4, p. 8871. Using these sampling locat~ons, we need only k 
sampling locations since we would then be using a Gaussian quadrature formula. 
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i) 

ii) 

iii) 

iv) 

v) 
vi) 

VS) 

Calculate the first 2k + 1 rows of A and 6, corresponding to using a Newton-Cotes quadrature 
rule to calculate the integral 

J ” r - - I  

Use Givens rotations to reduce the matrix A to upper triangular form. Set T = 0 and set j = 
Set j = j +  1. 

If zj = T, then go to vii). 

Add 2k + 1 rows to the bottom of A and 6, corresponding to using a Newton-Cotes quadrature 
rule to calculate the integral 

Use Givens rotations to zero these new elements in A. Calculate the squared sum of the last 
2k + 1 elements of b, and add this value to r .  

If r < 6’ or i = n, then go to ii). 

Use zeroin to find such that r = E’. This value is know to lie between z, and x J + l .  Trying 
different values corresponds to modifying the last 2k + 1 rows of A and 6 to be consistent with 
using a Newton-Cotes quadrature rule to calculate the integral 

using Givens rotations to zero out the modifications in A, and recalculating T. 

If i = n or zj = T, then set T = fi and stop. 

Figure 2: Step b) of Algorithm K 
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3.3. Calculation of the piecewise polynoniial model 

The algorithm described in $3.1 and $3.2 generates the partition associated with a n  optimal 

piecewise polynomial model for a given set of histogram data, where optimality is defined in 

terms of minimizing the error function (1). The algorithm calculates a zero of the function 

f ( c )  defined by (5) by first calculating an upper bound on the zero, and then using zeroin to  

determine the zero. 

Each evaluation of f requires the execution of Algorithm K, described in Fig. 1. Figure 2 
describes the logic used to implement Step b) of Algorithm K.  This logic involves solving and 

updating solutions to  a weighted linear least-squares problem and using zeroin to  identify the 

endpoints of the partition generated by Algorithm K. 
Evaluating f ( f )  at its zero automatically generates both the desired partition and n tri- 

angular matrix equations whose solutions describe the coefficients of the optimal piecewise 

polynoixrial model. Thus, upon determining the zero using zeroin, determining the model 

requires only the solution of these triangular matrix equations. We will refer to  the resulting 

algorithm as Algorithm M (for model). 

3.4. Complexity 

In this section, we calculate a simple upper bound on the number of “primitive” floating point 

operations in Algorithm hl ,  which we will refer to as the floating point complexity. The set of 

primitive operations is made up of floating point addition, subtraction, multiplication, division, 

and square root. The floating point complexity represents the dominant term in the execution 

time of the algorithm. For brevity, we will also refer to  the floating point complexity simply as 

the complexity. 

As before, let [O, T ]  be the interval over which the processor utilization curve i s  defined, and 

let M be the nuiriber of ordered pairs in the histogram data. Let A represent the maximum 

separation between siiccessive ordered pairs in the histogram data, 

where z~ is again defined to  be 7‘. Let Sl represent the maximum height in the histogram data, 

Let 1 be the 1’2 norm of the data, 

Let n be the number of phases in the piecewise polynomial to  be fit to  the data. Let €1 be the 

error tolerance used in the call to zesain when calculating 6,. Let (2 be the error tolerance 

used in the call to zero in  when calculating 2, in Algorithm IC. 
‘The basic operation in Step b) of Algorithm K is the addition of 2k + 1 rows to the matrix 
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A and the vector b ,  and the elimination of the new entries in A using Givens rotations. We 

will refer to this operation as the least-squares update .  The complexity of the calculation of the 

entries is linear in the number of entries, which, in this case, is ( 2 k +  1). (k+2). For example, 2 
floating point operations4 are sufficient when k = 0, 10 floating point operations are sufficient 

when k = 1, and 27 floating point operations are sufficient when k = 2. The elimination of 

the (2k + 1) . (k + 1) new entries in A and the update to the squared error requires 4 . k3 
multiplications, 2 + k3 additions, and O(k2) multiplications, divisions, additions, and square 

root calculations. Thus, for fixed k, the floating point complexity of the least-squares update is 

a constant, which we will refer to as c ( k ) .  The complexity of adding and triangularizing 2k + 1 
rows, as in Step i) of Fig. 2, is strictly less than this value. 

Step b) of Algorithm K adds and eliminates (or triangularizes) 2k+ 1 rows for every ordered 

pair in the histogram data, representing a complexity of no more than M - c ( k ) .  It also modifies 

and eliminates 2k + 1 rows every time x; is modified within a call to zeroin. Using bisection 

to calculate zj requires at most log2(A/&) modifications [I, pp. 42-44], and zeroin is called 

at most n - 1 times during Algorithm K. Every modification of zi  in zeroin also incurs a 

small fixed computational cost not related to modifying the rows of A and b .  If we denote this 

“overhead” by C ,  then the complexity of Algorithm K is bounded from above by 

Using bisection to calculate E* requires at  most log2(I/&) evaluations of f ( ~ ) .  This bound 

on the number of evaluations comes from setting cu = I and E {  = 0, i.e. assuming that the 

zero function is the best kth-degree polynomial approximation to h. Each evaluation of f ( ~ )  
involves executing Algorithm K and computing 3 additions and a division. Calculating the best 

kth-degree polynomial approximation to h,  in order to calculate E , ,  requires M . c( k) floating 

point operations. Thus, the complexity of calculating E ,  is no more than 

Once we have calculated E * ,  all that is left is to calculate the coefficients of the piecewise 

polynomial model. This requires the solution of n triangular matrix equations, at a cost of k.n2 
floating point operations [9]. Thus, the floating point complexity of Algorithm M is bounded 

from above by 

(9) 

where 

Assume that (1 and €2 are fixed, and that k and s2 are bounded independent of the histogram 

data. (The constants €1 and (2 are usually chosen by the modeler to be appropriate for the 

‘In all cases, the operation count includes exactly one square root calculation, with the rest of the operations 
being floating point additions, multiplications, or divisions. 
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underlying resolution of the data, and are independent of any particular data set. The constant 

k is never more than three in our applications because we are looking for “simple” phases. The 

constant Q is bounded by the maximum number of processors in the multiprocessor used to  

generate the processor utilization curve.) Since n 5 M ,  A < T ,  and I <  Os., the complexity 

of Algorithm M is O ( M  IogiT). This follows directly from (9) and (10). For most of our 

applications, A4 >> n ,  A is bounded from above independent of T, and 

In this case, the second term in (9) can be ignored when estimating the complexity, and the 

complexity grows as O(M . log, T) .  The log, T factor in this expression can be eliminated if a 

relative error bound is used for E l ,  but this may affect the robustness of the algorithm. 

Note that the constants in (9) and (10) are very conservative, as noted by the following 

examples: 

a The routine zeroin often converges faster than bisection. 

s The interval [z,, , zj ,+l] can be significantly shorter than A, decreasing the complexity of 

calculating .ti in zeroin. 

For a given E ,  fewer than n phases may be generated, reducing the number of “inner” 

calls to zeroin. 

e Usually, the constant I is a very poor approximation to the actual value used for c,,. 

Moreover, when solving for E* for an increasing sequence of n,  E* for the previous value of 

n is an upper bound on E ,  for the current value of n. Thus, we can continually improve 

our value for cU,  which decreases the complexity of calculating E ,  in zeroin. 

4. Examples 

This section describes applications of our algorithm to two examples. Both are processor 

utilization curves for parallel programs that were executed on the 1024-processor Ncube/3200 

multiprocessor at  Sandia National Laboratories in Albuquerque. The progranis are written 

in C and use PICL [7], [8], a portable instrumented communication library, for interprocessor 

coniiriunication and to collect performance data. The first example represents a relatively small 
data set where the underlying histogram nature of the data is still visible. We show that a 

piecewise constant model (k = 0) leads to a very good model for this example, and that higher 

degree piecewise polynomials do not significantly improve upon the piecewise constant model. 

The second example represents a larger data set, with a different nature. The data appears 
t o  describe a smooth function, but with a fair amount of “noise” that, may or may not be 

important. We show that higher degree polynomials are necessary to  adequately model this 

data. 
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Figure 3: Processor utilization curve for differential equation example. 

The piecewise polynomial models were generated on an IBM RS/SOOO workstation. Per- 

formance statistics were collected, verifying that the complexity estimates made in $3.4 are 

valid. 

Note that vertical lines are added to the graphs of all piecewise polynomial models t o  connect 

the pieces of the model. This makes the models easier to interpret. 

4.1. Parallel algorithm for solving a linear partial differential equation 

The first program is a parallel implementation of a large timestep algorithm for numerically 

solving the homogeneous wave equation in one space dimension with periodic boundary condi- 

tions and Dirichlet initial conditions: 

d2 8 2  
- - u ( x , t )  - ---u(z,t) = O 
dt2 8x2 

for ( z , t )  E [O,1] x [ O , l ]  

u(0,t) = u(1,t) for t E [0,1] 

U(E,O) = UO(Z) for 3: E [ 0 1 1 ] -  

Values for the initial data u o  are given on a mesh of equally spaced locations in [0,1], and a 

second-order approximation in space is used when advancing the solution in time. A single 

timestep can be used to calculate the solution at  time t = 1.00, but, if the solution is needed 

at intermediate times, then multiple timesteps are calculated, with the solution at the previous 

timestep used as the data for calculating the next timestep. The complexity of the serial 

algorithm is a linear function of the number of mesh locations and of the number of timesteps. 

Figure 3 contains the processor utilization curve for this program when 2048 mesh locations 

and 1024 processors are used to  calculate the solution at times t = .25, .50,  .75,1.00. The 

histogram data  is made up of 1208 ordered pairs, where the first coordinate is in microseconds. 

The algorithm takes T = 205,824 microseconds to execute, the maximum separation between 

consecutive data is A = 9216 microseconds, and the average separation is approximately 200 
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microseconds. 

The eficiency of this parallel program is very low because the amount of interprocessor 

communication Lr roughly equal to the complexity of the serial algorithm for this ratio of the 

number of processors to the number of mesh locations. Despite the low efficiency, this number 

of processors minimizes the execution time on this multiprocessor. An initialization phase and 

the four timesteps are easily identified in the processor utilization curve. One requirement for 

any reasonable model of this curve is that it duplicate this structure. 

4.1.1. Piecewise constant models 

We begin by modeling the processor utilization curve with piecewise constant functions. 

The smallest number of phases needed to  accurately represent the structure of the processor 

utilization curve is eleven. This model is depicted in Fig. 4. Depending on the desired detail of 

the performance model, this type of representation may be suficient guidance for generating a 

performance model. One useful feature of the piecewise constant model is the “preservation” of 

featiires in the model when more phases are calculated. This can be seen in the twenty-phase 

model depicted in Fig. 5. The additional detail does not mask the features that are present in 

the eleven-phase model. 

Figure 6 describes the execution time, the optimal error tolerance, the number of objective 

function evaluations (in the outer call t o  zeroin), and the number of least-squares updates 

when calculating a sequence of models. Since a sequence was calculated, E* for the n-phaqe 

model was used as an upper bound when calculating E* for the ( n  -t- 1)-phase model. This 

causes the cost per phase to remain relatively constant as the number of phases increases. In 

comparison, Fig. 7 describes the cost of calculating the 20-phase model directly, which is greater 

than the cost of calculating any single model in Fig. 6. Note that, for the piecewise constant 

model, zero in  was not needed to  calculate z; since an ana!ytic expression for this value exists. 

4.1.2. Piecewise h e a r  models 

Next, we model the processor utilization curve with piecewise linear functions. Only six phases 

are required to  model the structure of the curve. Rut, by using an eight-phase model, we are 

also able to capture the shape of the curve corresponding to each tiniestep of the algorithm, 

as shown in Fig. 8. This eight-phme model better represents the positions of these features of 

the curve than does the the eleven-yha5e piecewise constant model. But the piecewise linear 

model also takes on negative values, which never occurs in the data. Moreover, while the phase 

information is not lost for larger numbers of phases, it can be obscured as more phases are 

added to the piecewise linear modcls. 

The cost of calculating the piecewise linear models is consistent with the cost of calculating 
the piecewise constant models and with the model of the complexity described in 53.4. The 

execution time to  calculate the piecewise linear models lies between 1.576 seconds and 1.966 
seconds when calculating two-phase through twenty-phase models, consecutively. The number 

of f evaluations is between 22 and 26, and the nuinber of least-squares updates is between 

29,632 and 33,734. The execution time is fairly constant over the range of numbers of phases, 

when calculated consecutively, possibly increasing slightly for large numbers of phases. 
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Figure 4: Eleven-phase piecewise constant model for differential equation exa,mple. 
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Figure 5: Twenty-phase piecewise constant model for differential equation example. 
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Phases seconds c* f evaluations least-squares updates 
1 0.011 83109.4 1 1208 
2 0.248 
3 0.248 
4 0.239 
5 0.239 
6 0.220 
7 0.230 
8 0.231 
9 0.231 
10 0.242 
11 0.233 
12 0.242 
13 0.233 
14 0.249 
15 0.244 
16 0.225 
17 0.245 
18 0.246 
19 0.235 
20 0.237 

58761.1 
47913.8 
40414.8 
36784.3 
33807.9 
31050.0 
28064.5 
25772.7 
24066.5 
22054.7 
18030.0 
14960.6 
13369.3 
12163.9 
11891.1 
10664.7 
10359.8 
10 156.3 
10116.7 

25 
25 
24 
24 
22 
23 
23 
23 
24 
23 
24 
23 
23 
24 
22 
23 
23 
22 
22 

30225 
30249 
29064 
29087 
26685 
27921 
27945 
27968 
29207 
28013 
29256 
28059 
28082 
29327 
26906 
28152 
28174 
2697 1 
26993 

Figure 6: Performance statistics for calculating successively larger piecewise constant models 
for the differential equation example. 

Phases seconds E* f evaluations least-squares updates 
1 0.011 83109.4 1 1208 

20 0.266 10116.7 26 31854 

Figure 7: Performance statistics when calculating a 20-phase piecewise constant model for the 
differential equation example. 
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The increase in the execution time over that of the piecewise constant models is primarily 

due to the increase in c ( k ) ,  the cost of a single least-squares update. For example, calculating 

a one-phase linear model requires the same number of least-squares updates as cdciilating a 

one-phase constant model, but is six times more expensive (0.066 seconds for the one-phase 

linear model and .011 seconds for the one-phase constant model). The number of least-squares 

updates also increases somewhat since zeroin is required to calculate x i .  

4.1.3. Piecewise quadratic models 

Finally, we model the processor utilization curve with piecewise quadratic models. Six phases 

are required t o  represent the structure of the curve, while nine-phases are sufficient t,o represent 

the shape and position of the internal features, as shown in Fig. 9. This model is not obviously 

better than the eight-phase linear model. The quadratic models also take on negative values, 

but they seem less prone to introducing detail that obscures structure as the number of phases 

increases than the linear models are. 

The execution time to calculate the piecewise quadratic models lies between 5.881 seconds 

and 6.792 seconds when calculating two-phase through twenty-phase models, consecutively. 

The number o f f  evaluations is between 22 and 25, and the number of least-squares updates is 

between 29,307 and 32,778. The execution time is fairly constant over the range of numbers 

of phases, when calculated consecutively. 

The increase in the execution titne over that of the piecewise constant and piecewise linear 

models is again due to the increase in c ( k ) ,  the cost of a single least-squares update. The cost 

of calculating a one-phase quadratic model is 0.278 seconds, which is approximately four times 

the cost of calculating a one-phase linear model. 

4.1.4. Summary 

In summary, Algorithm M behaves as predicted. The models expose the unnderlying structure 

of the processor utilization curve once the correct number of phasea has been identified. The 

piecewise constant model is the most robust in the sense that the number of phases calculated is 

not important to identifying the important features once the number of phases is large enough. 

The piecewise linear and quadratic models do bring out added detail, but they are aignificantly 

more expensive to calculate without being particularly illuminating. 

4.2. Parallel algorithm for solving a symmet r i c  positive-definite matrix equation 

The second program is a parallel implementation of a numerical algorithm to solve a linear 

system A .  3 = b where A is a dense symmetric positive-definite matrix and 2 and 6 are vectors. 

The algorithm first factors A into L . L', where I; is a lower triangular matrix, and then solves 

the triangular systems 

~ . g = a  and ~ ~ . f = j j ,  

called the forward solve and backward solve, respectively. See Geist and Heath [SI for a descrip- 

tion of the parallel implementation of the factorization, and see Heath and Romine [12] for a 

description of the parallel implementation of the forward and backward solves. 
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Figure 8: Eight-phase piecewise linear model for differential equation example. 
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Figure 9: Nine-phase piecewise quadratic model for differential equation example. 
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Figure 10: Processor utilization curve for matrix equation example. 

Figure 10 contains the processor utilization curve for this program when 256 processors are 

used to solve a problem where the matrix A has 1024 rows (and columns). The histogram 

data is made up of 7865 ordered pairs, where the first coordinate is in microseconds. The 

algorithm takes T = 78,640,281 microseconds to execute and the maximum separation between 

consecutive data is A = 10,000 microseconds, which is also the average separation. 

The appawnt underlying trend is much smoother than for the example in $4.1, but it also is 

contaminated by what looks like noise. Logicaily, there are 3 phases: the factorization phase, 

the forward solve phase, and the backward solve phase. The processor utilization curve also 

indicates a short start-up phase. From knowledge of the algorithm, we expect the part of the 

curve corresponding to the factorization to be quadratic, and so expect higher degree piecewise 

polynomial models to  do better on this example. 

4.2.1. Piecewise constant models 

The piecewise constant approximations are not very satisfactory models for this curve. For 

example, Figure 11 contains the twenty-phase model. This model does a good job of approxi- 

mating the curve, but it doesn’t provide much insight into the behavior of the curve, with the 

exception that the forward and backward solves are correctly identified. To the extent that 

the piecewise constant curve does do a good job approximating the curve, the resulting model 

might be used as the input for a more expensive approximation. 

The cost of calculating the piecewise constant models lies between 1.490 seconds and 1.823 

seconds when calculating two-phase through twenty-phase models, consecutively, and the vari- 

ation in execution time diminishes as the number of phases increases. The increase over the 

cost of calculating the piecewise constant models for the example in $4.1 corresponds almost 

exactly to the increase in the amount of histogram data. Thus, in correspondence with the 

complexity analysis in 53.4, the complexity varies most strongly as a linear function of the 

amount of histogram data when k is fixed. 
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Figure 11: Twenty-phase piecewise constant model for ina.trix equation example. 

4.2.2. Piecewise linear models 

The piecewise linear models are more interesting for this processor utilization curve. The 

first one to  capture all of the relevant details is the five-phase model depicted in Fig. 12: the 

start-up, factorieation, forward solve, and backward solve are all identified as distinct phases. 

Fig. 13 contains the twenty-phase model. While this is not particularly useful when generating 

a performance model, it does demonstrate that the higher degree piecewise polynomial models 

do a good job of approximating “smooth” functions, and are a reasonable way of smoothing 

noisy data. 

The cost of calculating the piecewise linear models lies between 10.116 seconds and 12.516 

seconds when calculating two-phase through twenty-phase models, consecutively. The execution 

time is fairly constant over the range of numbers of phases. The relative increase over the 

execution time of calculating piecewise linear models in $4.1 again agrees with the relative 

increase in the amount of histogram data. 

4.2.3. Piecewise quadratic models 

We expected the piecewise quadratic model to  he well suited for modeling this curve. For 

small numbers of phases, this is true. In particular, even the one-phase model, depicted in 

Fig. 14, does a reasonable job of capturing the overall behavior of the curve. The five-phase 

model depicted in Fig. 15 makes clear each of the 4 logical phases, as well as identifying a 

possible change of behavior during the factorization. It is unclear from the data whether the 

break is due to the large amount of “noise” at that point in the curve, or whether the behavior 

actually does change. It does indicate that someone generating a performance model for this 

algorithm should look closely at the behavior of the program at that point in time. For larger 

numbers of phases, the approximation to the factorization part of the curve is improved only 

marginally, while the approximation to  the rest of the curve becomes more difficult t o  interpret. 

In particular, a piecewise quadratic model does not seem well-suited for approximating the 
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Figure 32: Five-phase piecewise linear model for matrix equation example. 
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Figure 13: Twenty-phase piecewise linear model for matrix equation example 
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Figurc? 14: One-phase piecewise quadratic model for matrix equation example. 

P 

Time (in seconds) 

Figure 15: Five-phase piecewise quadratic model for matrix equation example. 
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forward and backward solves. 

The cost of calculating the piecewise quadratic models lies between 35.521 seconds and 

41.133 seconds when calculating two-phase through twenty-phase models, consecutively. This 

is relatively expensive compared to  the other models for this example and for the models 

for the previous example, but it is consistent with the complexity being (primarily) a linear 

function of M . c(E).  For example, on the average, 24 least-squares updatm are required per 

histogram datum for all models for these two examples. A good rule-of-thumb estimate for 

the execution time is 24. &I c ( k ) ,  where the following values for c ( k )  are derived from our 

numerical experiments. 

4.2.4. Summary 

.000057 seconds 

For the matrix equation example, the higher degree piecewise polynomial approximations gen- 

erate better models, at least for small numbers of phases. The large amount of data  makes 

the cost of the piecewise quadratic model relatively expensive, without providing significantly 

more information than does the piecewise linear model. The piecewise quadratic model does 

seem to verify that the factorization part of the curve is essentially quadratic in nature. An 

empirically-derived model of the execution time indicates that a good approxima.tion to the 

complexity of modeling both the differential equation example and the matrix equation exam- 

ple is 24 . M - c ( k )  for each number of phases, when they are computed consecutively. This is 

in general agreement with the complexity analysis described in $3.4. 

5. Generalizations 

For the example in $4.1, the piecewise constant models seem most appropriate, while higher 

degree piecewise polynomials are needed to adequately model the example in $4.2. If we consider 

a processor utilization curve that is a concatenation of both of these, scaled in a reasonable 

way, none of the models using fixed k may produce satisfactory models. What we want is some 

way to vary k within the same model. 

5.1. Heuristic for generating a mixed rnodel 

In any direct comparison between two polynomial approximations with different degrees, the 

polynomial with the higher degree will have the lower error when approximating a given curve. 

What this comparison does not take into account is that an even better approximation may 

result from breaking up the curve into two pieces and using a different low degree polynomial 

to approximate each of the two pieces. This is a reasonable approach if the resulting piecewise 

model is no more complex than the single high degree approximation. Thus, what we want to  

do is to take into account the “simplicity” of the model as well as the ability to approximate 

the data. 
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For piecewise polynomials, the obvious nieasure of simplicity is the number of parameters 

needed to  define the polynomial. Thus, a piecewise constant function requires two parameters 

to  define each piece, the starting location and the function value. A piecewise: linear function 

requires three parameters per phase, the starting location and the parameters of the linear 

function, a . x -k b. Similarly, a piecewise quadratic function requires four parameters per 

phase. We currently incorporate the following heuristic into Step b) of Algorithm K )  in order 

to  generate a “mixed” constant/linear/quadratic piecewise polynomial model: 

0 Given t, the current error tolerance, and zi ,  the position of the beginning of the ith 

element of the partition, do the following to calculate xi+l: 

1) Find the largest value x, such that the best Lz fit of a constant function to  h in the 

interval Ixi, z,] has a squared error of c2/2. 

2) Find the largest value x( such that the best L z  fit of a linear function to h in the 

interval [zi, q] has a squared error of 3 . c 2 / 4 .  

3) Find the largest value zq such that the best L2 fit of a quadratic function to  h in 

the interval [ x i ,  x q ]  has a squared error of E’.  

4) If ( rq  ..- xi) > 2 1: (zc - cl> and ( x q  - z i )  > 4 1: 4x1 - z i ) / 3 ,  then use the quadratic fit 

to h in the interval [tl, x q ] ,  and set xi+1 = x q .  Go to 7). 

5) If ( 2 1  - z i )  > 3 * (zc - 2,)/2, then use the linear fit to  h in the interval [xi, 211, and 

set z;+1 = 21. Go to 7). 

6) Use the constant fit to  h in the interval [ z i ,  xc], and set zi+l = 2,. 
7) Set i = i +  1. 

Using this logic, if a two-phase piecewise constant function approximates h to  within an 

error tolerance of c over an interval [ t ; , ~ 2 ~ ] ,  if a single quadratic function approximates h to  

within an error tolerance of 6 over an interval [x ; , zq] ,  and if xzC > z q l  then the two-phase 

piecewise constant function is considered the better fit. The same number of parameters are 

required by both models, but the two-phase piecewise constant model covers a longer irkerval 

when satisfying the same error bound. A similar analysis holds when comparing coilstant fits 

to  linear fits and linear fits to quadratic fits. The heuristic is more general than this comparison 

implies since the best two-phase fit of the data may have one constant piece and one quadratic 

piece. That is, constant (or linear) fits need not he “bundled” together when generating the 

approximation. 

The heuristic as stated is not complete since the fit in the final element of the partsition is 

not treated. If xq = T ,  then the quadaratic fit is used only if its squared error is less than half 
the squared error of the constant fit and less than three-fourths the squared error of the linear 

fit, If xl = T and the quadratic fit is not used, then the linear fit i s  used only if its squared 

error is less than two-thirds the squared error of the coilstant fit. 
The coinplexity of evaluating f ( ~ )  aftPr this modification to Algorithm K is at  least as great 

as the total complexity of evaluating f ( c / d )  for k = 0, evaluating j(&. 6/21 for C = 1, and 

evaluating j ( 6 )  for k = 2 in the original algorithm. It can be greater since choosing a constant 
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model for a given phase may require the linear and quadratic models to  reprocess some of the 

histogram data they used when generating their own candidate models for the phase. But even 

in the worst case, the complexity of the modified algorithm is never more than n times as great 

as the sum of the three “simple” evaluations, where n is again the desired number of phases. 

Thus, for fixed n, this upper bound has the same form as that described in $3.4, with only the 

constant fact,ors being different. 

5.2. Examples 

In this section we repeat the modeling of the examples described in $4.1 and $4.2 using mixed 

constant/linear/quadratic piecewise polynomial models. 

5.2.1. Differential equation example 

A seven-phase mixed model is required to capture the nature of the processor utilization 

curve for the differential equation example, while a nine-phase model also correctly captures 

information about the shape and locations of the features of the curve, as shown in Fig. 16. 

The nine-phase mixed model is a slight improvement over the nine-phase quadratic model in 

that the beginning and end of the curve are better characterized, the models for the internal 

features are consistent, and fewer negative values are generated. Unfortunately, the mixed 

models seem to be more sensitive to choosing the “correct” number of phases than are the 

piecewise quadratic models, in the sense of sometimes obscuring the underlying structure when 

increasing the number of phases. But, when the number of phases is chosen correctly, the mixed 

models are very illuminating. For example, the seventeen-phase model is depicted in Fig. 17. 
While this model “tries” very hard to resolve the detail in the beginning of the curve, and 

generates some very large positive and negative numbers in the process, resolving this part of 

the curve does not contaminate the model over the rest of the curve. In particular, the fact 

that simple models characterize the major features in the model strongly indicates that these 

features are real and should be incorporated into a performance model. Thus, the mixed model 

can improve the approximation over any of the “pure” models, but the identification of the 

correct nuniber of phases to  use in the model is crucial. 

Performance statistics for calculating these modcls are listed in Fig. 18. The iiiimber of 

least-squares updates were measured for the quadratic model only, but this value will generally 

represent an upper bound on the number of least-squares updates in generating the linear and 

constant modcls. The number of least-squares updates is never more than 2000 more than 

the corresponding calculation for the “pure” piecewise quadratic model, and the execution 

time is never more than f wice that of generating the piecewise quadratic model over the range 

examined. But, the cost is increasing as a function of n, unlike that of generating the piecewise 

quadratic model. 

5.2.2. Matrix equation example 

Even thongh the piecewise quadratic model does a good job of approximating the processor 

utilization curve for the matrix equation example, the mixed model provides additional insight. 
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Figure 16: Nine-phase mixed constant/linear/quadratic model for differential equation example. 
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Figure 17: Seventeen-phase mixed constant/linear/quadratic model for differential equation 
exatriple. 
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Phases seconds €* f evaluations least-squares updates 
1 0.346 117534.4 1 1208 
2 7.629 67833.1 26 31739 
3 8.818 56146.5 26 32084 
4 8.413 43531.2 25 31182 
5 8.107 32303.6 24 30273 
6 5.004 29091.8 24 30596 
7 8.263 22103.8 24 30873 
8 8.305 19661.5 24 31176 
9 8.149 17450.5 24 31436 
10 9.611. 17450.5 23 30503 
I1 8.412 12599.6 22 29513 
12 8.622 12475.9 23 31127 
13 8.923 12405.9 23 31486 
14 9.423 11369.9 23 31689 
15 9.494 10153.6 23 32014 
16 8.452 9442.2 22 30926 
17 9.863 9096.4 22 31325 
18 9.489 8824.0 22 31617 
19 10.100 8362.1 23 33390 
20 10.010 7965.7 22 32150 

Figure 18: Performance statistics for calculating successively larger inked con- 
stant/linear/quadratic modcls for the differential equation example. 
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Figure 19: Nine-phase mixed constsnt/linear/quadratic model for matrix equation example. 

For example, the nine-phase model depicted in Fig. 19 is as good as any of the other pure or 

mixed models. The start-up, the forward solve, and the backward solve are all well approxi- 

mated by simple (linear) functions, and the factorization phase is well approximated by a small 

number of linear and quadratic models. Larger numbers of phases only lead to  attempts to  

model the “noise,” and do not add additional insight into the behavior of the algorithm. 

The cost of generating the mixed models for this example is somewhat less than twice that of 

calculating the corresponding piecewise quadractic model, between 45 seconds and 66 seconds 

per model. Unlike the previous example, the execution time is not an increasing function of n 

for this example. 

6. Conclusions 

We described an algorithm designed to  approximate histogram data by discontinuous piecewise 

polynomials. The complexity of the algorithm is linear in the amount of data, and different 

types of approximations can be mixed in a single model with only a moderate increase in the 

complexity of the algorithm. The models generated by the algorithm have proven to be useful 

when attempting to understand parallel programs from their processor utilization curves. 

In practice, we generate the models in increasing order of model complexity. This follows 

from our desire to  identify phases with simple behavior. Thus, we generate piecewise constant 

models first. Only if these prove unsatisfactory do we, first, generate piecewise linear models, 

and then generate mixed constant/linear/quadratic piecewise models. If the miwd models are 

not too expensive to  compute, they generally produce better models than do the piecewise 

quadratic models. 

The algorithm described here can also be used to  generate models based on other functions, 

with the same general complexity, as long as there exists a quadrature rule with positive weights 
that  exactly determines the integral of the square of the expression “function minus constant”. 
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