
MARTIN MARIETTA ENERGY SYSTEMS LIRRARIFS

3 4 4 5 b 0335906 3

1

OAK RIDGE
NATIONAL
LABORATORY

ORNL/TM-11637

Modeling Histogram Data
with Piecewise Polynomials

P. H. Worley

OPERATED BY
MARTIN MARIRTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (6 15) 576-840 1, FTS 626-840 1.

Available to the public from the National Technical Infomation Service, US.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTIS price codes-Printed Copy: A03 Microfiche A01

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

4

t

ORNL/TM-11637

Engineering Physics and Mathematics Division

Mathematical Sciences Section

M O D E L I N G H I S T O G R A M DATA W I T H PIECEWISE POLYNOMIALS

Patrick 11. Worley

Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, T N 37831-8083
P.O. BOX 2009, Bldg. 9207-A

Date Published: August, 1990

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

ITS. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400

%search was supported by the
Applied Mathematical Sciences Research Program

of t,he Ofice of Energy Research,
U.S. Department of Energy.

3 4956 0315906 L

Contents

1 Introduction 1

2 Problem formulat ion 2

3 Algorithm formulation
3.1 Calculation of the partition .
3.2 Calculation of the least-squares fit .
3.3 Calculation of the piecewise polynomial model
3.4 Complexity .

4 Examples

4.1 Parallel algorithm for solving a linear partial differential equation
4.1.1 Piecewise constant models .
4.1.2 Piecewise: linear models .
4.1.3 Piecewise quadratic models .
4.1.4 Summary .

4.2 Parallel algorithm for solving a symmetric positive-definite matrix equation . .
4.2.1 Piecewise constant models .
4.2.2 Piecewise linear models .
4.2.3 Piecewise quadratic models .
4.2.4 Sunlmary .

5 General izat ions

5.1 Heuristic for generating a mixed model .

5.2.1 Differential equation example .
5.2.2 Matrix equation example .

5.2 Examples .

5

5
7

10
10

12
13
14
14
17
17
17

19
20
20
23

23

23
25
25
25

6 Conclusions 28

Acknowledgments 29

References 29

...
111

MODELING HISTOGRAM DATA W I T H PIECEWISE POLYNOMIALS

Patrick H. Worley

Abstract

As part of a research project on the performance characterization of parallel pro-
grams, piecewise polynomials are used to model histogram data that represents the
processor utilization curve. In this paper an algorithm is described that generates
a discontinuous piecewise polynomial model in time proportional to the amount of
data.

V

1. Introduction

As part of a research project at Oak Ridge National Laboratory on the performance character-

ization of parallel programs, we are developing tools for the generation of scalable performance

models. The rationale for this effort is that scalable models can be used to predict performance

when problem or architecture parameters change. Similarly, a scalable model can be used to

analyze the sensitivity of performance to a given parameter.

One focus of our research is on incorporating empirical performance data early in the mod-

eling effort, We believe that the cotnplexity of the model, and of the modeling process, can be

minimized by modeling only the observed behavior. For example, the complexity of a typical

scientific application code can make it dificult to use for prediction or sensitivity analysis. But

much of this complexity may be independent of performance, for example, reflecting instead the

complexity of the physics being simulated or simply poor coding. Thus, if the observed behav-

ior is simple over a range of problem and architecture parameters, then a simple performance

model may be sufficient, regardless of the complexity of the application code.

While observed performance is rarely simple, much of the detailed behavior is unimportant

when measuring performance, and can be treated as “noise.” Also, many programs whose

performance is a complex function of many parameters can be adequately modeled as a sequence

of relatively simple t ime-dependeni models, possibly representing a sequence of subroutine calls

or other logical features of the program. Thus, identifying these phases of relatively simple

behavior allows us to reduce the complexity of generating and using a performance model.

In this paper, we describe one of the tools we have developed for identifying phases in the

processor utllizaiion curve. The processor utilization curve is a histogram describing the number

of processors that are computing at any given time. (If a processor is not computing, then either

it is idle or it is actively involved in sending or receiving a message.) The processor utilization

curve allows us to measure many of the important features in algorithm behavior: local and

global speed-up arid efficiency, and total execution time. Since the processor utilization curve

does not explicitly take into account either interprocessor cornmunication patterns or the logical

structure of the program, it is unlikely that a phase analysis of the processor utilization curve

will suffice to model the performance of a parallel program, but it is an important first step.

The goal of phase identification in the processor utilization curve is to break the curve

into segments each of which can be well-approxirnated by a simple function. Thus, we need

to identify the beginning and ending time of each phase and the underlying trend, or simple

behavior, within the phase. We are currently pursuing two approaches t o this problem: the

first is a statistical analysis of the data to identify phase changes, and the second is a piecewise

polynomial fit to the processor utilization data. In this paper, we describe one variant of the

latter approach. For the rest of this paper, we will use the term model to refer to the piecewise

polynomial fit, arid not to the performance model that is the ultimate goal of this research.

Fitting piecewise polynomials to empirical data has a long history, but most standard tech-

niques do not appear to be appropriate since our goal is to preserve abrupt changes in behavior,

not smooth them away. In particular, there is no reason to require that a model be continuous

across phases. The overall process is more complicated as well. Since we normally don’t know

how many phases there are, we generate fits assuming first that there is only one phase, then

2

two, then three, etc. To identify the correct number of phases requires a sensitivity analysis with

respect to the number of assumed phases. A correct analysis will take into account how much

the fit changes when an additional phase is assumed, and what features of the approximation

are preserved when additional phases are assumed. Currently, the modeler simply picks the fits

he/she likes best, using whatever heuristics seem natural at the time. While this technique for

choosing the number of phases can be improved upon, the tools described here will never be

more than aids to the modeler, and heuristics and user-interaction will always play a large role

in the modeling process.

The simpler problem of fitting a piecewise polynomial with n pieces, or phases, to the

histogram data representing the processor utilization curve is still a computationally difficult

nonliuear problem. For example, if the error in the approximation is measured using the

standard Lz norm, then the problem is a nonlinear least-squares problem where both the

breakpoints separating phases and the coefficients of the polynomial representing each phase

must be calculated. We will refer to this as the least-squares problem. Previous work on the

least-squares problem includes Friedman and Silverman [5], Hawkins [10],[11], and Vose [13].

Friedman and Silverman describe a linear complexity heuristic for solving the least-squares

problem. Their heuristic adds one breakpoint at a time when generating an n-phase model,

and, once a breakpoint has been placed, it is rarely moved. We have observed this to be a poor

heuristic for our application since the optimal choice of breakpoints can vary wildly as a function

of the number of phases. Hawkins uses a dynamic programming algorithm to solve the least,-

squares problem. The complexity of Hawkins' algorithm is quadratic in the amount of data,

which can be too expensive for large data sets, especially for use in an interactive environment.

In other work at Oak Ridge National Laboratory, Vose uses a hill-climbing solution technique

to approximately solve the least-squares problem. Given a reasonable initial estimate of the

breakpoints, Vose's algorithm is acceptably fast for small n, and it places no restrictions on

the locations of the breakpoints. More importantly, he has proposed a new formulation of the

least-squares problem that is more appropriate for our application. We refer the reader to his

paper for more information.

In this paper, we develop a computationally efficient technique for fitting an n-phase piece-

wise polynomial to histogram data by using a special metric to define the error. This metric has

no special suitability for our application other than that it is a metric, but it is intuitively no

less meaningful than the Lz norm that is traditionally used. The new technique is well-suited

for computing fits for a sequence of n values, which is how the algorithm is used in practice.

It is also simple to include many different types of functions in the fit with only a moderate

increase in the computation time.

2. Problem formulation

Let T be a finite positive constant. Consider a nonnegative piecewise constant function h with

a finite number of pieces that is defined on the interval [O,T]. This is our generic description

of the processor utilization curve. Consider the metric space of vector-valued functions f =
(fl , . . . , fn), where each fi is a real-valued L2 function on the domain [0, TI, with the metric

3

Let = (h , . . . , h) , i.e. the vector of n copies of h.
Consider the set Pk of vector-valued functions fi = (P I , . . . ,pn) defined in the following way:

1) With each p is associated an ordered set of n - 1 numbers {XI,. - e , z,,-~] in [O, T] repre-

senting the endpoints of a (possibly degenerate) n-element partition of 10, TI. Let zo = 0
and let = T .

2) Each pi is a kth-degree polynomial in the interval [zi-l, z,] and is identical to h in the

rest of the interval [O,T].

Thus, if p E 4, then

For any p E Pk and i E { 1, e , n} , we will refer to

as the i th local error of approximating h by p .

By (l), the best approximation to h by a member of Pk can be calculated by finding a

piecewise polynomial of degree IC and at most n phases that minimizes the maximum "piecewise"

(or local) La error. Since this is a metric in the space described above, the question of best

approximation is well defined. Moreover, if n is large enough, then h E pk. The advantage

of using this formulation is that we can use an eqiiidistribution property to identify a best

approximation. First, we show that there exists a best approximation to 6 in pk.
Let X represent the (n - 1)-dimensional cube nyz: [0, TI. Then each f E X represents a

(possibly degenerate) n-element partition of [O,T] upon ordering its components, and all n-

element partitions of [O,T] can be represented by some 3 E X . For any i;. E X , let pk,s be
the set of all functions p E Pk associated with the partition corresponding to 2. Then there

is a unique best approximation p to h in pk,r defined by p i (z) being the (unique) best L2

approximation to h (z) by a kth-degree polynomial in the interval [x i - l , z i] . (The standard

existence and uniqueness proofs for the best L2 approximation to a continuous function [1],[3]
also prove this result.) Call this function pr, and let represent its i th component. The

following lemma establishes that there is a best approximation to L in 9.

Lemma 2.1" If € = infFepk - hlln, then there exists a ij E Pk such that E = IIq- hlln.
-

Proof. Let {py) represent a sequence such that

4

Since each pv i s associated with a given partition 3, E X, and since jiEv is at least as good an

approximation to h as is py,

Equality holds in (2) by the definition of E . Since X is compact, this implies that the infinum

is achieved for some 2, E X and, thus, E = llpz. - Alln. 0
A similar argument proves the following lemma.

Lemma 2.2. If q is any best approximation to in 9, then 5 = pz for some x E X

Prooj If q f 4, then there is an associated partition Z E X. Since]Ips - hlln _< IIq - h11,,
= 4, this proves the lemma. 0

The following theorem states tha.t there exists some best approximation to 6 in Pk that

aid since equality holds only if

satisfies an equidistribution principle.

Theorem 2.3. Let E = infPEp, IIp -- hlln. 'Then there cxists a best a.pproxirnation 4 to 6 in

Pr, such that E = IIq - hlJ,,i for all i E (1,. . . , n}.

Prooj. First, note that the ith local error ofapproximating h by afunction p + , J-$:', (p i ? * (z) -

h(z))' d x , is a continuous function of zi that increases (decreases) monotonically as z i increases

(decreases). This follows from pi ,z being the best Lz approximation to the piecewise const,ant

function h in [xi-l , xi]. In particular, if xi is sinal1 enough, then the error is zero since h will be

constant on the interval Ixi-1, xi] and the constant funct,ion is Eth-degree polynomial. Similarly,

for fixed zj, the error increases (decreases) monotonically as xi-1 decreases (increases).

Next, let q be a best approximation to h in 9. Let 2 E X represent the partition corre-

sponding to n, where the components of 2 are ordered. (By Lemmas 2.1 and 2.2, q exists and

@ = p5.) Let E = IIq - hlln. Assume that

J = , - 1

for some i E 11, ... , n). In particular, let i, be an index such that

and either

or

If (3) holds, i.e. that the next partition to the right has a local error less than 6 , then decrease

xi,, leaving all other partition endpoints fixed and recalculating the best J12 f i ts over the

intervals [zj.-1,zi,] and [x,., zi.+1]; trritil either the local error in [xi.-l,zi*] is lass than 6 or

the local error in [zi., is equal to E . If (4) holds, then increase .ct..-l until either the local

5

error in [q 9 - 1 , z i g] is less than E or the local error in [~ ; . - 2 , z i . - 1] is equal to E . Repeat this

process until either all local errors are the same, or until the global error llp3sz, - hlln for the

new partition 5' is less than 6 . One of the two conditions must occur within n - 1 steps of this

process. If the global error is less than e , then this contradicts the assumption that q is a best

approximation to h. If all local errors are the same, then j j 5 d has the same global error as the

original q , and itself represents a best approximation to h in Pk. 0
The following theorem represents a converse to the previous theorem, establishing that the

equidistribution principle is sufficient to characterize a best approximation. In the next section,

we will use this property to generate a best approximation.

-

Corollary 2.4. Let 5 E X represent an n-element partition of [O,a. If there exists a fixed

E 2 0 such that the function p5 satisfies the condition c = lipz; - hlln,i for all i E (1 , . . . , n) ,
then pE is a best approximation to h in 4.

Proof. Assume that there exists an n-element partition of [O, T] , represented by if, such

that j& satisfies the equidistribution property but is not a best approximation to h in Pk. Let

6 = II&-hlln. By Theorem 2.3 and Lemma 2.2, there does exist an n-element partition of [0, T] ,
represented by y, such that pg is a best approximation and does satisfy the equidistribution

property. Let 6 = - hll,,. Therefore, E < 5 . In particular,

IIFij - hlli,n 5 6 < 6 = Ilpz - &lli,n

for all i .

are ordered. Since

the local error of pz; in the interval [0, z 1] is strictly greater than the local error of & in the

interval [0, yl], y1 < q. This follows from the monotonic dependence of the local error on 21, as
described in the proof of Theorem 2.3. In consequence, the best L 2 fit to h in the interval [yl, zz]
has an error that is at least as big as the local error of fje in the interval [q, ~ 2 1 . Therefore, y2

must be strictly less than x2 for the local error of fig in [yl, y2] to be less than the local error of

j je in [XI, 221 . Continuing this argument, it is clear that yi < xi for all i E (1,. . , n - 1). But,

this then implies that the best L 2 fit to h in the interval [yn-1,TI is strictly less than the best

L2 fit to h in the interval [zn-l ,q even though y,-l < z n - l . By the monotonic dependence

of the local error on xn-l, this is impossible. Thus, our assumption is incorrect, and j j z must

itself be a best approximation to h in Pk. 0

Without loss of generality, assume that the components of both i? and

3. Algorithm formulation

3.1. Calculation of the partition

The algorithm to generate a best approximation is based on the following coniputational kernel,

where the number of phases (n) , the degree of the polynomials (k), and an estimated minimum

error (e) have already been specified:

6

a) Set 20 = 0 and i = 1.

b) If i = 7a or if the best L z fit of a tth-degree polynomial to h in the interval [z,-l,T] is less than
E , then stop. Otherwise, find the largest z such that the best L g fit of a kth-degree polynomial
to h in the interval [z i - l , 21 has an error of e. Set z, = 2.

c) Set i = i + 1 and go to b).

Figure 1: Algorithm K

Call this Algorithm K (for kernel). Note that the partition generated by Algorithm K may

have fewer than t i elements, but it will never have more than n. By Theorem 2.4, Algorithm K
will generate the partition for a best approximation if the partition has the required n elements

and if the local error in the last partition element is equal to E . The g o d is to find the value of

E for which this is true. We will refer to this “optimal” value of E by E * .

Consider two error tolerances 6 and E , where 6 > E . Let 2 represent the partition generated

by using 6 in Algorithm K, and let m(6) be the number of (nontrivial) partition elements. Let

y represent the partition generated by using E in Algorithm K , and let m (~) be the number of

partition elements. By the same argument used to prove Theorem 2.4, it is clear that yi < 2;
for all i 5 min{rn(6), r n (c) } . Therefore, either m (~) > m(6), or m(c) = m(6) arid the local error

in the interval. [~ ~ (~) - l , T] is greater than or equal to the local error in the interval [E ~ (~) - I , TI.
This “monotonic behavior” of the number of partition elements and the local error in the last

partition element as a function of E means that we can use a bisection type algorithm on E to

find the best approximation.

Let n be the desired number of phases. For a given c 2 0, let m (~) be the number of

partition elements and let ~ (c) be the local error in the last partition element generated by

Algorithm K . Define the objective function f (~) by

(n - m (~) + 1) - (T (E) / E) , if E > 0;

if E = 0 and T (C) # 0.
if E = 0 and T (E) = 0; (5)

If E* generates the partition for the best approximation to 6, then m (~ *) = n, ~ (c ,) = E + , and

f (~ ,) = 0. If E < E * , then m (~) = n, T (E) > E , and f (~) < 0. If E > E * , then either m (~) < n or

T (E) / C < 1, and f(c) > 0. Thus, the sign o f f differs depending on whether E is too large or too

small, and bisection can he used, once upper and lower bounds for E* have been calculated.

Let €1 and c,, represent upper and lower bounds, respectively, for E * . It is clear that zero is

a lower bound, so set c1 = 0. For E,, we use the L2 error in the best Lz approximation to h by

a single kth-degree polynomial. Thus, f (c 1) = --n and f (cu) = n - 1. At this point, we can

now call a bisection routine to calculate E * . In practice, we use a modified version of bisection,

zeroin by Brent [2], to find E * , since it often converges faster than bisection. To use zeroin,

the user must also specify the amount of error that will be tolerated when calculating e+ . We

will refer to this value by <I.’ The best choice for E 1 halances computational cost with the

‘The tolerance actually used by zeroin is (2 . macheps . F* + 0 . 5 . E l) , where macheps i s the relative machine
= 0 will precision, or m<:hine epsilon, and t. is the approximation to e, cdculated by zeroin. Thus, setting

still work.

7

“sensitivity” of the equidistribution principle when calculating the “optimal” partition, which

is problem dependent. We currently set & = .01. This value is very conservative for our data

since the minimum separation between successive times in the histogram data is normalized to

be greater than or equal to one, and E , is significantly greater than one for all of our numerical

experiments to date. Even for this small value of €1, the cost of the search for c+ is reasonable.

3.2. Calculation of the least-squares fit

In this section, we briefly describe the algorithm used to find the best Lz fit of a kth-degree

polynomial to histogram data in a given interval [z ; - 1 , z;], and how this is used in Algorithm K .
We assume that the histogram data is represented by a set of M ordered pairs { (z j , q j) I j =
0, . ,M - 1) that have been ordered by their first coordinate, denoting that h (z) = qj for

z E [zj , z j + l] for all j. Here zo is assumed to be 0 and ZM is defined to be T.
Consider approximating the histogram data on an interval [z i - l , zi] by a polynomial2

p ; (z) = X I - , - at (z - ~ i - 1) ~ . Then, the square of the L2 error in this approximation is
k

where zj , is defined to be the element of the set { z j } that is closest, but still less than, 3,.

Since p ; (z) is (at most) a kth-degree polynomial, the expression (p i (z) - q j) 2 is (at most) a

(2k)th-degree polynomial for each j . Thus, each integral in the right-hand side of (6) can be

evaluated exactly using a Newton-Cotes quadrature formula [l] with 2k + 1 sampling locations

in the corresponding interval. Let the weights and sample locations of the quadrature formula

over [x j , z j + l] be {wmj,i} and {&,,,j,i}, respectively, for m E {0,...,2k} . Similarly, let the
weights and sample locations over [zi-l, zj,++1] be { ~ ~ , , , - ~ , i } and {(m,j,-l,i}, respectively,

and let the weights and sample locations over [z j , , z i] be {wm,j,,;} and { & j , , i } , respectively.

Then, (6) becomes

j , - 1 / 28 \

2k

m=O

21n practice, we deal only with low degree polynomials, so we do not need to worry about the ill-conditioning
associated with using the basis functions {(z - z,)‘} to represent the polynomial approximation.

Since pi(.) is a linear function of its coefficients {q}, finding the coefficients of pj(z) that

minimize (7) is a linear weighted least-squares problem if the weighis wm,j are all posit ive.

(For example, see Golub and Van Loan [9].) For k 5 3, the weights will be positive if the

sample locations are equidistributed in the corresponding interval [4, pp. 885-8861. S' ince we

are only interested in using low degree polynomials in our piecewise models, equidistributed

sample locations are sufficient for this app l i~a t ion .~

The weighted linear least-squares problem can be described as finding a vector

that minimizes the error (in the least-squares sense) of a matrix equation A ii = 6, where &
is a vector and A is a rectangular matrix with k + 1 columns. We apply Givens rotations [9]

t.0 both sides of the matrix equation to zero all elements of A except for the upper triangular

matrix residing in the first E + 1 rows of the matrix, after which the solution 6 can be evaluated

by solving the resulting triangular matrix equation. 'The advantage of using Given rotations

over Householder transformations when introducing the zeroes into A is the ease by which the

solution can he updated when adding new rows to A .
until the

lcast,-squares error over [z ' i - l , xi] is equal to the stipulated value E , or until zi = T . In practice,

we set 2, eqnal to z j for an increasing sequence of j until the squared error exceeds the squared

error tolerance. Each step of this process involves adding 2E + 1 extra rows to the bottom of A
and. b, zeroing these new elements in A using Givens rotations (which also alters the element,s

in the upper triangle of the first E f 1 rows in A , the first k + 1 elements of b, and the lnqt

(2k -1- 1) elements of b) , and calculating the new squared error. The squared error is the sum

of squares of all but the first k +- 1 elements of b , and is easily updated as each new interval is

brought into the approximation.

Once the error tolerance has been exceeded, we know how to bracket the desired value of

z, by two successive z j values, and we also know the values of j , and r l j , that correspond to

this value of ti. Trying different zi values within this iuterval corresponds to changing the last

2k + 1 rows of A and b and updating the error accordingly. The changes in the values of the

last rows is a continuous function of zi alone since z j , and qj, are now determined, and the

error is (still) a continuous monotonic function of x i . Thus, bisection can be used to find x i .

As in 53.1, we use zeroin, the variant, of bisection developed by Brent [2]. We again need to

set an error tolerance when calling zeroin. We will refer to this value by .J2. The best value

for .J' is again problem dependent. We currently use = .l, which is relatively conservative

since zj, - zj,+1 2 1 for our data.

To summarize, the algorithm used to implement Step 1)) of Algorithm K is described in
Fig. 2.

In Step b) of Algorithni K , zi-1 is fixed and we keep increasing the value of

3For largrr k, \vc ran sample at. thc zeroes of the kth-order Legendie polynomials, translated and scaled for
the correct interval, in ordrr to get positive weights [4, p. 8871. Using these sampling locat~ons, we need only k
sampling locations since we would then be using a Gaussian quadrature formula.

9

i)

ii)

iii)

iv)

v)
vi)

VS)

Calculate the first 2k + 1 rows of A and 6, corresponding to using a Newton-Cotes quadrature
rule to calculate the integral

J ” r - - I

Use Givens rotations to reduce the matrix A to upper triangular form. Set T = 0 and set j =
Set j = j + 1.

If zj = T, then go to vii).

Add 2k + 1 rows to the bottom of A and 6, corresponding to using a Newton-Cotes quadrature
rule to calculate the integral

Use Givens rotations to zero these new elements in A. Calculate the squared sum of the last
2k + 1 elements of b, and add this value to r .

If r < 6’ or i = n, then go to ii).

Use zeroin to find such that r = E’. This value is know to lie between z, and x J + l . Trying
different values corresponds to modifying the last 2k + 1 rows of A and 6 to be consistent with
using a Newton-Cotes quadrature rule to calculate the integral

using Givens rotations to zero out the modifications in A, and recalculating T.

If i = n or zj = T, then set T = fi and stop.

Figure 2: Step b) of Algorithm K

10

3.3. Calculation of the piecewise polynoniial model

The algorithm described in $3.1 and $3.2 generates the partition associated with a n optimal

piecewise polynomial model for a given set of histogram data, where optimality is defined in

terms of minimizing the error function (1). The algorithm calculates a zero of the function

f (c) defined by (5) by first calculating an upper bound on the zero, and then using zeroin to

determine the zero.

Each evaluation of f requires the execution of Algorithm K, described in Fig. 1. Figure 2
describes the logic used to implement Step b) of Algorithm K. This logic involves solving and

updating solutions to a weighted linear least-squares problem and using zeroin to identify the

endpoints of the partition generated by Algorithm K.
Evaluating f (f) at its zero automatically generates both the desired partition and n tri-

angular matrix equations whose solutions describe the coefficients of the optimal piecewise

polynoixrial model. Thus, upon determining the zero using zeroin, determining the model

requires only the solution of these triangular matrix equations. We will refer to the resulting

algorithm as Algorithm M (for model).

3.4. Complexity

In this section, we calculate a simple upper bound on the number of “primitive” floating point

operations in Algorithm hl , which we will refer to as the floating point complexity. The set of

primitive operations is made up of floating point addition, subtraction, multiplication, division,

and square root. The floating point complexity represents the dominant term in the execution

time of the algorithm. For brevity, we will also refer to the floating point complexity simply as

the complexity.

As before, let [O, T] be the interval over which the processor utilization curve i s defined, and

let M be the nuiriber of ordered pairs in the histogram data. Let A represent the maximum

separation between siiccessive ordered pairs in the histogram data,

where z~ is again defined to be 7‘. Let Sl represent the maximum height in the histogram data,

Let 1 be the 1’2 norm of the data,

Let n be the number of phases in the piecewise polynomial to be fit to the data. Let €1 be the

error tolerance used in the call to zesain when calculating 6,. Let (2 be the error tolerance

used in the call to zero in when calculating 2, in Algorithm IC.
‘The basic operation in Step b) of Algorithm K is the addition of 2k + 1 rows to the matrix

11

A and the vector b , and the elimination of the new entries in A using Givens rotations. We

will refer to this operation as the least-squares update . The complexity of the calculation of the

entries is linear in the number of entries, which, in this case, is (2 k + 1). (k+2). For example, 2
floating point operations4 are sufficient when k = 0, 10 floating point operations are sufficient

when k = 1, and 27 floating point operations are sufficient when k = 2. The elimination of

the (2k + 1) . (k + 1) new entries in A and the update to the squared error requires 4 . k3
multiplications, 2 + k3 additions, and O(k2) multiplications, divisions, additions, and square

root calculations. Thus, for fixed k, the floating point complexity of the least-squares update is

a constant, which we will refer to as c (k) . The complexity of adding and triangularizing 2k + 1
rows, as in Step i) of Fig. 2, is strictly less than this value.

Step b) of Algorithm K adds and eliminates (or triangularizes) 2k+ 1 rows for every ordered

pair in the histogram data, representing a complexity of no more than M - c (k) . It also modifies

and eliminates 2k + 1 rows every time x; is modified within a call to zeroin. Using bisection

to calculate zj requires at most log2(A/&) modifications [I, pp. 42-44], and zeroin is called

at most n - 1 times during Algorithm K. Every modification of zi in zeroin also incurs a

small fixed computational cost not related to modifying the rows of A and b . If we denote this

“overhead” by C , then the complexity of Algorithm K is bounded from above by

Using bisection to calculate E* requires at most log2(I/&) evaluations of f (~) . This bound

on the number of evaluations comes from setting cu = I and E { = 0, i.e. assuming that the

zero function is the best kth-degree polynomial approximation to h. Each evaluation of f (~)
involves executing Algorithm K and computing 3 additions and a division. Calculating the best

kth-degree polynomial approximation to h, in order to calculate E , , requires M . c(k) floating

point operations. Thus, the complexity of calculating E , is no more than

Once we have calculated E * , all that is left is to calculate the coefficients of the piecewise

polynomial model. This requires the solution of n triangular matrix equations, at a cost of k.n2
floating point operations [9]. Thus, the floating point complexity of Algorithm M is bounded

from above by

(9)

where

Assume that (1 and €2 are fixed, and that k and s2 are bounded independent of the histogram

data. (The constants €1 and (2 are usually chosen by the modeler to be appropriate for the

‘In all cases, the operation count includes exactly one square root calculation, with the rest of the operations
being floating point additions, multiplications, or divisions.

12

underlying resolution of the data, and are independent of any particular data set. The constant

k is never more than three in our applications because we are looking for “simple” phases. The

constant Q is bounded by the maximum number of processors in the multiprocessor used to

generate the processor utilization curve.) Since n 5 M , A < T , and I < Os., the complexity

of Algorithm M is O (M IogiT). This follows directly from (9) and (10). For most of our

applications, A4 >> n , A is bounded from above independent of T, and

In this case, the second term in (9) can be ignored when estimating the complexity, and the

complexity grows as O(M . log, T) . The log, T factor in this expression can be eliminated if a

relative error bound is used for E l , but this may affect the robustness of the algorithm.

Note that the constants in (9) and (10) are very conservative, as noted by the following

examples:

a The routine zeroin often converges faster than bisection.

s The interval [z,, , zj ,+l] can be significantly shorter than A, decreasing the complexity of

calculating .ti in zeroin.

For a given E , fewer than n phases may be generated, reducing the number of “inner”

calls to zeroin.

e Usually, the constant I is a very poor approximation to the actual value used for c,,.

Moreover, when solving for E* for an increasing sequence of n, E* for the previous value of

n is an upper bound on E , for the current value of n. Thus, we can continually improve

our value for cU, which decreases the complexity of calculating E , in zeroin.

4. Examples

This section describes applications of our algorithm to two examples. Both are processor

utilization curves for parallel programs that were executed on the 1024-processor Ncube/3200

multiprocessor at Sandia National Laboratories in Albuquerque. The progranis are written

in C and use PICL [7], [8], a portable instrumented communication library, for interprocessor

coniiriunication and to collect performance data. The first example represents a relatively small
data set where the underlying histogram nature of the data is still visible. We show that a

piecewise constant model (k = 0) leads to a very good model for this example, and that higher

degree piecewise polynomials do not significantly improve upon the piecewise constant model.

The second example represents a larger data set, with a different nature. The data appears
t o describe a smooth function, but with a fair amount of “noise” that, may or may not be

important. We show that higher degree polynomials are necessary to adequately model this

data.

13

1000

750

P 500

250

Time (in seconds)

Figure 3: Processor utilization curve for differential equation example.

The piecewise polynomial models were generated on an IBM RS/SOOO workstation. Per-

formance statistics were collected, verifying that the complexity estimates made in $3.4 are

valid.

Note that vertical lines are added to the graphs of all piecewise polynomial models t o connect

the pieces of the model. This makes the models easier to interpret.

4.1. Parallel algorithm for solving a linear partial differential equation

The first program is a parallel implementation of a large timestep algorithm for numerically

solving the homogeneous wave equation in one space dimension with periodic boundary condi-

tions and Dirichlet initial conditions:

d2 8 2
- - u (x , t) - ---u(z,t) = O
dt2 8x2

for (z , t) E [O,1] x [O , l]

u(0,t) = u(1,t) for t E [0,1]

U(E,O) = UO(Z) for 3: E [0 1 1] -

Values for the initial data u o are given on a mesh of equally spaced locations in [0,1], and a

second-order approximation in space is used when advancing the solution in time. A single

timestep can be used to calculate the solution at time t = 1.00, but, if the solution is needed

at intermediate times, then multiple timesteps are calculated, with the solution at the previous

timestep used as the data for calculating the next timestep. The complexity of the serial

algorithm is a linear function of the number of mesh locations and of the number of timesteps.

Figure 3 contains the processor utilization curve for this program when 2048 mesh locations

and 1024 processors are used to calculate the solution at times t = .25, .50, .75,1.00. The

histogram data is made up of 1208 ordered pairs, where the first coordinate is in microseconds.

The algorithm takes T = 205,824 microseconds to execute, the maximum separation between

consecutive data is A = 9216 microseconds, and the average separation is approximately 200

14

microseconds.

The eficiency of this parallel program is very low because the amount of interprocessor

communication Lr roughly equal to the complexity of the serial algorithm for this ratio of the

number of processors to the number of mesh locations. Despite the low efficiency, this number

of processors minimizes the execution time on this multiprocessor. An initialization phase and

the four timesteps are easily identified in the processor utilization curve. One requirement for

any reasonable model of this curve is that it duplicate this structure.

4.1.1. Piecewise constant models

We begin by modeling the processor utilization curve with piecewise constant functions.

The smallest number of phases needed to accurately represent the structure of the processor

utilization curve is eleven. This model is depicted in Fig. 4. Depending on the desired detail of

the performance model, this type of representation may be suficient guidance for generating a

performance model. One useful feature of the piecewise constant model is the “preservation” of

featiires in the model when more phases are calculated. This can be seen in the twenty-phase

model depicted in Fig. 5. The additional detail does not mask the features that are present in

the eleven-phase model.

Figure 6 describes the execution time, the optimal error tolerance, the number of objective

function evaluations (in the outer call t o zeroin), and the number of least-squares updates

when calculating a sequence of models. Since a sequence was calculated, E* for the n-phaqe

model was used as an upper bound when calculating E* for the (n -t- 1)-phase model. This

causes the cost per phase to remain relatively constant as the number of phases increases. In

comparison, Fig. 7 describes the cost of calculating the 20-phase model directly, which is greater

than the cost of calculating any single model in Fig. 6. Note that, for the piecewise constant

model, zero in was not needed to calculate z; since an ana!ytic expression for this value exists.

4.1.2. Piecewise h e a r models

Next, we model the processor utilization curve with piecewise linear functions. Only six phases

are required to model the structure of the curve. Rut, by using an eight-phase model, we are

also able to capture the shape of the curve corresponding to each tiniestep of the algorithm,

as shown in Fig. 8. This eight-phme model better represents the positions of these features of

the curve than does the the eleven-yha5e piecewise constant model. But the piecewise linear

model also takes on negative values, which never occurs in the data. Moreover, while the phase

information is not lost for larger numbers of phases, it can be obscured as more phases are

added to the piecewise linear modcls.

The cost of calculating the piecewise linear models is consistent with the cost of calculating
the piecewise constant models and with the model of the complexity described in 53.4. The

execution time to calculate the piecewise linear models lies between 1.576 seconds and 1.966
seconds when calculating two-phase through twenty-phase models, consecutively. The number

of f evaluations is between 22 and 26, and the nuinber of least-squares updates is between

29,632 and 33,734. The execution time is fairly constant over the range of numbers of phases,

when calculated consecutively, possibly increasing slightly for large numbers of phases.

15

1000 - -

750 - -

P 500 - - -

250 -
I I I I I I I 1

-

I I I I

-
I - -
-

- r > I I 1
1

Figure 4: Eleven-phase piecewise constant model for differential equation exa,mple.

1000

750

P 500

250

Time (in seconds)

Figure 5: Twenty-phase piecewise constant model for differential equation example.

16

Phases seconds c* f evaluations least-squares updates
1 0.011 83109.4 1 1208
2 0.248
3 0.248
4 0.239
5 0.239
6 0.220
7 0.230
8 0.231
9 0.231
10 0.242
11 0.233
12 0.242
13 0.233
14 0.249
15 0.244
16 0.225
17 0.245
18 0.246
19 0.235
20 0.237

58761.1
47913.8
40414.8
36784.3
33807.9
31050.0
28064.5
25772.7
24066.5
22054.7
18030.0
14960.6
13369.3
12163.9
11891.1
10664.7
10359.8
10 156.3
10116.7

25
25
24
24
22
23
23
23
24
23
24
23
23
24
22
23
23
22
22

30225
30249
29064
29087
26685
27921
27945
27968
29207
28013
29256
28059
28082
29327
26906
28152
28174
2697 1
26993

Figure 6: Performance statistics for calculating successively larger piecewise constant models
for the differential equation example.

Phases seconds E* f evaluations least-squares updates
1 0.011 83109.4 1 1208

20 0.266 10116.7 26 31854

Figure 7: Performance statistics when calculating a 20-phase piecewise constant model for the
differential equation example.

17

The increase in the execution time over that of the piecewise constant models is primarily

due to the increase in c (k) , the cost of a single least-squares update. For example, calculating

a one-phase linear model requires the same number of least-squares updates as cdciilating a

one-phase constant model, but is six times more expensive (0.066 seconds for the one-phase

linear model and .011 seconds for the one-phase constant model). The number of least-squares

updates also increases somewhat since zeroin is required to calculate x i .

4.1.3. Piecewise quadratic models

Finally, we model the processor utilization curve with piecewise quadratic models. Six phases

are required t o represent the structure of the curve, while nine-phases are sufficient t,o represent

the shape and position of the internal features, as shown in Fig. 9. This model is not obviously

better than the eight-phase linear model. The quadratic models also take on negative values,

but they seem less prone to introducing detail that obscures structure as the number of phases

increases than the linear models are.

The execution time to calculate the piecewise quadratic models lies between 5.881 seconds

and 6.792 seconds when calculating two-phase through twenty-phase models, consecutively.

The number o f f evaluations is between 22 and 25, and the number of least-squares updates is

between 29,307 and 32,778. The execution time is fairly constant over the range of numbers

of phases, when calculated consecutively.

The increase in the execution titne over that of the piecewise constant and piecewise linear

models is again due to the increase in c (k) , the cost of a single least-squares update. The cost

of calculating a one-phase quadratic model is 0.278 seconds, which is approximately four times

the cost of calculating a one-phase linear model.

4.1.4. Summary

In summary, Algorithm M behaves as predicted. The models expose the unnderlying structure

of the processor utilization curve once the correct number of phasea has been identified. The

piecewise constant model is the most robust in the sense that the number of phases calculated is

not important to identifying the important features once the number of phases is large enough.

The piecewise linear and quadratic models do bring out added detail, but they are aignificantly

more expensive to calculate without being particularly illuminating.

4.2. Parallel algorithm for solving a symmet r i c positive-definite matrix equation

The second program is a parallel implementation of a numerical algorithm to solve a linear

system A . 3 = b where A is a dense symmetric positive-definite matrix and 2 and 6 are vectors.

The algorithm first factors A into L . L', where I; is a lower triangular matrix, and then solves

the triangular systems

~ . g = a and ~ ~ . f = j j ,

called the forward solve and backward solve, respectively. See Geist and Heath [SI for a descrip-

tion of the parallel implementation of the factorization, and see Heath and Romine [12] for a

description of the parallel implementation of the forward and backward solves.

18

P

Time (in seconds)

Figure 8: Eight-phase piecewise linear model for differential equation example.

l0OC

750

500
P

250

0 L
I 1 I 1

.05 * 10 .15 .2

Time (in seconds)

Figure 9: Nine-phase piecewise quadratic model for differential equation example.

19

1

P

2oo[150

15 30 45 60 75

Time (in seconds)

Figure 10: Processor utilization curve for matrix equation example.

Figure 10 contains the processor utilization curve for this program when 256 processors are

used to solve a problem where the matrix A has 1024 rows (and columns). The histogram

data is made up of 7865 ordered pairs, where the first coordinate is in microseconds. The

algorithm takes T = 78,640,281 microseconds to execute and the maximum separation between

consecutive data is A = 10,000 microseconds, which is also the average separation.

The appawnt underlying trend is much smoother than for the example in $4.1, but it also is

contaminated by what looks like noise. Logicaily, there are 3 phases: the factorization phase,

the forward solve phase, and the backward solve phase. The processor utilization curve also

indicates a short start-up phase. From knowledge of the algorithm, we expect the part of the

curve corresponding to the factorization to be quadratic, and so expect higher degree piecewise

polynomial models to do better on this example.

4.2.1. Piecewise constant models

The piecewise constant approximations are not very satisfactory models for this curve. For

example, Figure 11 contains the twenty-phase model. This model does a good job of approxi-

mating the curve, but it doesn’t provide much insight into the behavior of the curve, with the

exception that the forward and backward solves are correctly identified. To the extent that

the piecewise constant curve does do a good job approximating the curve, the resulting model

might be used as the input for a more expensive approximation.

The cost of calculating the piecewise constant models lies between 1.490 seconds and 1.823

seconds when calculating two-phase through twenty-phase models, consecutively, and the vari-

ation in execution time diminishes as the number of phases increases. The increase over the

cost of calculating the piecewise constant models for the example in $4.1 corresponds almost

exactly to the increase in the amount of histogram data. Thus, in correspondence with the

complexity analysis in 53.4, the complexity varies most strongly as a linear function of the

amount of histogram data when k is fixed.

20

, O O i i c n 7
A ” ” l I 1
loo! 50 L

I I I I I I

15 30 45 60 75
Time (in seconds)

Figure 11: Twenty-phase piecewise constant model for ina.trix equation example.

4.2.2. Piecewise linear models

The piecewise linear models are more interesting for this processor utilization curve. The

first one to capture all of the relevant details is the five-phase model depicted in Fig. 12: the

start-up, factorieation, forward solve, and backward solve are all identified as distinct phases.

Fig. 13 contains the twenty-phase model. While this is not particularly useful when generating

a performance model, it does demonstrate that the higher degree piecewise polynomial models

do a good job of approximating “smooth” functions, and are a reasonable way of smoothing

noisy data.

The cost of calculating the piecewise linear models lies between 10.116 seconds and 12.516

seconds when calculating two-phase through twenty-phase models, consecutively. The execution

time is fairly constant over the range of numbers of phases. The relative increase over the

execution time of calculating piecewise linear models in $4.1 again agrees with the relative

increase in the amount of histogram data.

4.2.3. Piecewise quadratic models

We expected the piecewise quadratic model to he well suited for modeling this curve. For

small numbers of phases, this is true. In particular, even the one-phase model, depicted in

Fig. 14, does a reasonable job of capturing the overall behavior of the curve. The five-phase

model depicted in Fig. 15 makes clear each of the 4 logical phases, as well as identifying a

possible change of behavior during the factorization. It is unclear from the data whether the

break is due to the large amount of “noise” at that point in the curve, or whether the behavior

actually does change. It does indicate that someone generating a performance model for this

algorithm should look closely at the behavior of the program at that point in time. For larger

numbers of phases, the approximation to the factorization part of the curve is improved only

marginally, while the approximation to the rest of the curve becomes more difficult t o interpret.

In particular, a piecewise quadratic model does not seem well-suited for approximating the

21

200

I I I I I I 1

Time (in seconds)

15 30 45 60 75

Figure 32: Five-phase piecewise linear model for matrix equation example.

150 iyIl
'rime (in seconds)

Figure 13: Twenty-phase piecewise linear model for matrix equation example

22

200

150

P 100

50

'rime (in seconds)

Figurc? 14: One-phase piecewise quadratic model for matrix equation example.

P

Time (in seconds)

Figure 15: Five-phase piecewise quadratic model for matrix equation example.

23

forward and backward solves.

The cost of calculating the piecewise quadratic models lies between 35.521 seconds and

41.133 seconds when calculating two-phase through twenty-phase models, consecutively. This

is relatively expensive compared to the other models for this example and for the models

for the previous example, but it is consistent with the complexity being (primarily) a linear

function of M . c(E). For example, on the average, 24 least-squares updatm are required per

histogram datum for all models for these two examples. A good rule-of-thumb estimate for

the execution time is 24. &I c (k) , where the following values for c (k) are derived from our

numerical experiments.

4.2.4. Summary

.000057 seconds

For the matrix equation example, the higher degree piecewise polynomial approximations gen-

erate better models, at least for small numbers of phases. The large amount of data makes

the cost of the piecewise quadratic model relatively expensive, without providing significantly

more information than does the piecewise linear model. The piecewise quadratic model does

seem to verify that the factorization part of the curve is essentially quadratic in nature. An

empirically-derived model of the execution time indicates that a good approxima.tion to the

complexity of modeling both the differential equation example and the matrix equation exam-

ple is 24 . M - c (k) for each number of phases, when they are computed consecutively. This is

in general agreement with the complexity analysis described in $3.4.

5. Generalizations

For the example in $4.1, the piecewise constant models seem most appropriate, while higher

degree piecewise polynomials are needed to adequately model the example in $4.2. If we consider

a processor utilization curve that is a concatenation of both of these, scaled in a reasonable

way, none of the models using fixed k may produce satisfactory models. What we want is some

way to vary k within the same model.

5.1. Heuristic for generating a mixed rnodel

In any direct comparison between two polynomial approximations with different degrees, the

polynomial with the higher degree will have the lower error when approximating a given curve.

What this comparison does not take into account is that an even better approximation may

result from breaking up the curve into two pieces and using a different low degree polynomial

to approximate each of the two pieces. This is a reasonable approach if the resulting piecewise

model is no more complex than the single high degree approximation. Thus, what we want to

do is to take into account the “simplicity” of the model as well as the ability to approximate

the data.

24

For piecewise polynomials, the obvious nieasure of simplicity is the number of parameters

needed to define the polynomial. Thus, a piecewise constant function requires two parameters

to define each piece, the starting location and the function value. A piecewise: linear function

requires three parameters per phase, the starting location and the parameters of the linear

function, a . x -k b. Similarly, a piecewise quadratic function requires four parameters per

phase. We currently incorporate the following heuristic into Step b) of Algorithm K) in order

to generate a “mixed” constant/linear/quadratic piecewise polynomial model:

0 Given t, the current error tolerance, and zi , the position of the beginning of the ith

element of the partition, do the following to calculate xi+l:

1) Find the largest value x, such that the best Lz fit of a constant function to h in the

interval Ixi, z,] has a squared error of c2/2.

2) Find the largest value x(such that the best L z fit of a linear function to h in the

interval [zi, q] has a squared error of 3 . c 2 / 4 .

3) Find the largest value zq such that the best L2 fit of a quadratic function to h in

the interval [x i , x q] has a squared error of E’.

4) If (rq ..- xi) > 2 1: (zc - cl> and (x q - z i) > 4 1: 4x1 - z i) / 3 , then use the quadratic fit

to h in the interval [tl, x q] , and set xi+1 = x q . Go to 7).

5) If (2 1 - z i) > 3 * (zc - 2,)/2, then use the linear fit to h in the interval [xi, 211, and

set z;+1 = 21. Go to 7).

6) Use the constant fit to h in the interval [z i , xc], and set zi+l = 2,.
7) Set i = i + 1.

Using this logic, if a two-phase piecewise constant function approximates h to within an

error tolerance of c over an interval [t ; , ~ 2 ~] , if a single quadratic function approximates h to

within an error tolerance of 6 over an interval [x ; , zq] , and if xzC > z q l then the two-phase

piecewise constant function is considered the better fit. The same number of parameters are

required by both models, but the two-phase piecewise constant model covers a longer irkerval

when satisfying the same error bound. A similar analysis holds when comparing coilstant fits

to linear fits and linear fits to quadratic fits. The heuristic is more general than this comparison

implies since the best two-phase fit of the data may have one constant piece and one quadratic

piece. That is, constant (or linear) fits need not he “bundled” together when generating the

approximation.

The heuristic as stated is not complete since the fit in the final element of the partsition is

not treated. If xq = T , then the quadaratic fit is used only if its squared error is less than half
the squared error of the constant fit and less than three-fourths the squared error of the linear

fit, If xl = T and the quadratic fit is not used, then the linear fit i s used only if its squared

error is less than two-thirds the squared error of the coilstant fit.
The coinplexity of evaluating f (~) aftPr this modification to Algorithm K is at least as great

as the total complexity of evaluating f (c / d) for k = 0, evaluating j(&. 6/21 for C = 1, and

evaluating j (6) for k = 2 in the original algorithm. It can be greater since choosing a constant

25

model for a given phase may require the linear and quadratic models to reprocess some of the

histogram data they used when generating their own candidate models for the phase. But even

in the worst case, the complexity of the modified algorithm is never more than n times as great

as the sum of the three “simple” evaluations, where n is again the desired number of phases.

Thus, for fixed n, this upper bound has the same form as that described in $3.4, with only the

constant fact,ors being different.

5.2. Examples

In this section we repeat the modeling of the examples described in $4.1 and $4.2 using mixed

constant/linear/quadratic piecewise polynomial models.

5.2.1. Differential equation example

A seven-phase mixed model is required to capture the nature of the processor utilization

curve for the differential equation example, while a nine-phase model also correctly captures

information about the shape and locations of the features of the curve, as shown in Fig. 16.

The nine-phase mixed model is a slight improvement over the nine-phase quadratic model in

that the beginning and end of the curve are better characterized, the models for the internal

features are consistent, and fewer negative values are generated. Unfortunately, the mixed

models seem to be more sensitive to choosing the “correct” number of phases than are the

piecewise quadratic models, in the sense of sometimes obscuring the underlying structure when

increasing the number of phases. But, when the number of phases is chosen correctly, the mixed

models are very illuminating. For example, the seventeen-phase model is depicted in Fig. 17.
While this model “tries” very hard to resolve the detail in the beginning of the curve, and

generates some very large positive and negative numbers in the process, resolving this part of

the curve does not contaminate the model over the rest of the curve. In particular, the fact

that simple models characterize the major features in the model strongly indicates that these

features are real and should be incorporated into a performance model. Thus, the mixed model

can improve the approximation over any of the “pure” models, but the identification of the

correct nuniber of phases to use in the model is crucial.

Performance statistics for calculating these modcls are listed in Fig. 18. The iiiimber of

least-squares updates were measured for the quadratic model only, but this value will generally

represent an upper bound on the number of least-squares updates in generating the linear and

constant modcls. The number of least-squares updates is never more than 2000 more than

the corresponding calculation for the “pure” piecewise quadratic model, and the execution

time is never more than f wice that of generating the piecewise quadratic model over the range

examined. But, the cost is increasing as a function of n, unlike that of generating the piecewise

quadratic model.

5.2.2. Matrix equation example

Even thongh the piecewise quadratic model does a good job of approximating the processor

utilization curve for the matrix equation example, the mixed model provides additional insight.

26

looO r
750

500
Y

250

0
I I I I I

.05 .10 .15 .20
Time (in seconds)

Figure 16: Nine-phase mixed constant/linear/quadratic model for differential equation example.

P

I Time (in seconds)

Figure 17: Seventeen-phase mixed constant/linear/quadratic model for differential equation
exatriple.

27

Phases seconds €* f evaluations least-squares updates
1 0.346 117534.4 1 1208
2 7.629 67833.1 26 31739
3 8.818 56146.5 26 32084
4 8.413 43531.2 25 31182
5 8.107 32303.6 24 30273
6 5.004 29091.8 24 30596
7 8.263 22103.8 24 30873
8 8.305 19661.5 24 31176
9 8.149 17450.5 24 31436
10 9.611. 17450.5 23 30503
I1 8.412 12599.6 22 29513
12 8.622 12475.9 23 31127
13 8.923 12405.9 23 31486
14 9.423 11369.9 23 31689
15 9.494 10153.6 23 32014
16 8.452 9442.2 22 30926
17 9.863 9096.4 22 31325
18 9.489 8824.0 22 31617
19 10.100 8362.1 23 33390
20 10.010 7965.7 22 32150

Figure 18: Performance statistics for calculating successively larger inked con-
stant/linear/quadratic modcls for the differential equation example.

28

200 r 1

P

Time (in seconds)

Figure 19: Nine-phase mixed constsnt/linear/quadratic model for matrix equation example.

For example, the nine-phase model depicted in Fig. 19 is as good as any of the other pure or

mixed models. The start-up, the forward solve, and the backward solve are all well approxi-

mated by simple (linear) functions, and the factorization phase is well approximated by a small

number of linear and quadratic models. Larger numbers of phases only lead to attempts to

model the “noise,” and do not add additional insight into the behavior of the algorithm.

The cost of generating the mixed models for this example is somewhat less than twice that of

calculating the corresponding piecewise quadractic model, between 45 seconds and 66 seconds

per model. Unlike the previous example, the execution time is not an increasing function of n

for this example.

6. Conclusions

We described an algorithm designed to approximate histogram data by discontinuous piecewise

polynomials. The complexity of the algorithm is linear in the amount of data, and different

types of approximations can be mixed in a single model with only a moderate increase in the

complexity of the algorithm. The models generated by the algorithm have proven to be useful

when attempting to understand parallel programs from their processor utilization curves.

In practice, we generate the models in increasing order of model complexity. This follows

from our desire to identify phases with simple behavior. Thus, we generate piecewise constant

models first. Only if these prove unsatisfactory do we, first, generate piecewise linear models,

and then generate mixed constant/linear/quadratic piecewise models. If the miwd models are

not too expensive to compute, they generally produce better models than do the piecewise

quadratic models.

The algorithm described here can also be used to generate models based on other functions,

with the same general complexity, as long as there exists a quadrature rule with positive weights
that exactly determines the integral of the square of the expression “function minus constant”.

29

Acknowledgments

We thank George Ostrouchov and Michael Leuze for their helpful suggestions on the presenta-

tion of the material in this paper.

References

[l] K. E. ATKINSON, A n Introduction i o Numerical Analjrsis, John Wiley, New York, 1978.

[2] R. P. BRENT, Algorithms for minimization without derivatives, Prentice-Hall, Englewood

Cliffs, NJ, 1973.

[3] E. W. CHENEY, Introduction to Approximation Theory, Chelsea Publishing Company,

New York, Second Edition, 1982.

[4] P. J . DAVIS A N D I. POLONSKY, Numerical interpolation, differentiation, and integration,
in Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., Dover

Publications, New York, 1972, Ch. 25, pp. 875-924.

[5] J. H. FRIEDMAN AND R. W. SILVERMAN, Flexible parsimonious smoothing and addttive
modeling, Technometrics, 31 (1989), pp. 3-21.

[6] G . A. GEIST AND M. T. HEATH, Malrixfactorization on a hypercube multiprocessor, in

Hypercube Multiprocessors 1987, M. T. Heath, ed., Philadelphia, PA, 1987, Society for

Industrial and Applied Mathematics, pp. 161-180.

[7] G . A. GEIST, M. T. HEATH, B. W. PEYTON, AND P. H. WORLEY, PICL: a portable
instrumented communication library, C reference manual, Tech. Rep. ORNL/TM-11130,

Oak Ridge National Laboratory, Oak Ridge, T N , July 1990.

[81 - , A users’guide to PICL: Q portable instrumented communication library, Tech. Rep.

ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, T N , August 1990.

[9] G. H. GOLUB AND C . F. VAN LOAN, Matrit Computations, The John Hopkins University

Press, Baltimore, Maryland, 1983.

[lo] D. M. HAWKINS, Point estimation of the parameters of piecewise regression models, Appl.

Statist., 25 (1976), pp. 51-57.

[ll] -, Discussaon, Technometrics, 31 (1989), pp. 31-34.

[12] M. T. HEATH AND c. € 3 . ROMINE, Parallel solution of triangzrkar system,s on distributed-

memory multiprocessors, SIAM J . Sci. Statist. Comput., 9 (1988), pp. 558-588.

[13] M. D. VOSE, Piecewise linear models of processor utilization, Tech. Rep. ORNL/TM-

11566, Oak Ridge National Laboratory, Oak Ridge, T N , May 1990.

31

ORNL/TM-1163?

INTERNAL DISTRE3UTION

1.
2.
3.
4.
5.
6 .

7-8,
9.

10.

11.
12-16.

17.
18.
19.
20.

21-25.

B. R. Appleton
E. F. D'Axevedo
J. J . Dongarra
J. B. Drake
T. H . Dunigan

6. A. Geist
R. F. Harbison
W. T. Heath

M. R. Leuze
F. C. Msienschein
E. G . Ng
C. E . Oliver
GI Bstro~rchov
u. w. Peyton

S. A . h b y

E. n. Jesslap

26.
27.

28-32.
33-37.

38.
39.
40.
41.
42.
43.
44.
45.
46.

47.
48-49.

C. H . Romine
T. H . Rowan
R. C. Ward

J. J. Doming (EPMD Advisory Committee)

R. M. Haralick (EPMD Advisory Committee)
J . E. Leks (EPMD Advisory Committee)
N. Moray (EPMD Advisory Committee)
M. F. Wheeler (EPMD Advisory Committee)

Central Research Library
BRNE Patent Office
K-25 Plant Library
Y-12 Technical Library
/Documeat Reference Station
Labcsatcry Records - RC

Laboratory Records Department

E X T E R N A L DIST

50. DP. Loyce M. Ada,ms, Department of Applied Mathematics, University of Washington,

Sea.ttle, WA 98195

51. Dr. Christopher R. Andmon, Department of Mathematics, University of California, Los

Angeles, CA 90024

52. Dr. Robert G. Rabb, Department of Computer Science and Engineering, Oregon Graduate

Center, 19600 N.W. Walker Road, Reaverton, OR 97006

53. Dr. David I i . Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet

Field, CA 94035

S4. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,

University Park, PA 16802

55. Dr. Edward H. Bar&, Computer Science and Mathematics, P. 0. Rox 5800, Sandia

National Laboratory, Albuquerque, N M 87185

56. Dr. Robert E. Benner, Parallel Processing Division, 1413, Sandia National Laboratories,

Albuquerque, NM 87185

57. Dr. Marsha J. Berger, Courant Institute of Mathematical Sciences] 251 Mercer Street,

New York, NY 10012

32

58. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 58183,
Sweden

59. Dr. John H. Bolstad, L-16, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

60. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,

TX 78712

61. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric Re-
search, P. 0. Box 3000, Boulder, CO 80307

62. Dr. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical

Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20545

63. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405
Wilgard Avenue, Los Angeles, CA 90024

64. Dr. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,

North Carolina 27709

65. Dr. Melvyn Cirnent, National Science Foundation, 1800 G Street, NW, Washington, DC
20550

66. Prof. Tom Coleman, Department of Computer Science, Cornell University, Tthaca, NY

14853

67. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

68. Dr. Jane K . Cullum, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown

Heights, NY 10598

69. Dr. George Cybenko, Center for Supercomputing Research & Development, 104 South

Wright Street, Urbana, IL 61801-2932

70. Ms. Helen Davis, Computer Science Department, Stanford University, Stanford, C h 94305

71. Professor Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,

T N 37235

72. Dr. lain Duff, CSS Division, Harwell Laboratory, Didcot, Oxon OX11 ORA, ENGLAND

73. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Station, New Haven, CT 06520

74. Professor Geoffrey C. Fox, Physics Department, MS 356-48, California Institute of Tech-

nology, Pasadena, CA 91 125

75. Dr. Chris Fraley, Department of Mathematics and Statistics, Utah State University, Lo-
gan, UT 84322-3900

33

76. Dr. Pard 0. fiederickson, WACS, NASA Ames Research Center, Moffet Field, CA 94035

77. Dr. Robeat E. Funderlic, Department of Computer Science, North Carolina State Univer-

sity, Raleigh, NC 27850

78. Professor h n n k B. Gammon, Computer Science Department, Indiana University, Rloom-

ington, HN 47401

79. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research Council,

Building ha-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A OR8

80. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of

Waterloo, Waterloo, Ontario, Canada N2L 3G1

81. DE.. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

82. Dr. Joseph F. Grcar, Division 8331, Sandia National I,aboratories, Livermore, CA 94550

83. DP. William D. Gropp, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 S0ut.h Cass Avenue, Argonne, IL 60439

84. Dr. Eric Grosse, 2C 1171, 600 Mountain Avenue, Murray Hill, N J 07922

85. Prof. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,

A ~ c s , 1A 50011-3020

86. Dr. Gerald W. Hedstrorn, 1,-71, Lawrence Livermore National Laboratory, P. 0. Box 808,

Livermasre, CA 91550

87. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development, Co.,
P. 0. Box 482, Houston: T X 77001

88. Dr. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

89. Dr. N. J . Higharn, Department of Mathernatics, University of Manchester, Gtr Manch-

ester, MI3 9PL, ENGLAND

90. Dr. Charles J. Holla.nd, Air Force Office of Scientific Research, Building 410, Bolling Air
=e, Washington, DC 20332

91. Dr. Robert E. Muddleston, Computation Department, Lawrence Livermore National Lab-

oratory, P. 0. Box 808, Livermore, CA 94550

92. Dr. Leanart S. J d ~ n s s o n ~ Department of Computer Science, Yale University, P. 0. Box

2158 Yale Station, New Haven, CT 06520

93. DP. lrarsy Jordan, Ikpartment of Electrical and Computer Engineering, University of

Coioratdo, Boulder, CO PO509

94. Dr. Bo Kagstrorn, Institute of Information Processing, University of Urnea, 5-901 87

Umea, Sweden

34

95. Professor Malvyn Kalos, Courant Institute for Mathematical Sciences, New York Univer-

sity, 251 Mercer Street, New York, NY 10012

96. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National Labe-

ratory, 9700 South Cass Avenue, Argonne, IL 60439

97. Dr. Alan H . Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

98. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77001

99. Dr. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff,

Office of Energy Research, Office G-437 Germantown, Washington, DC 20545

100. Prof. Michael Langston, Department of Computer Science, University of Tennessee,

Knoxville, T N 37996-1301

101. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

102. Dr. Robert L. Launer, Army Research Office, P. 0. Rox 12211, Research Triangle Park,

North Carolina 27709

103. Prof. Tom Leighton, Lab for Computer Science, Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

104. Dr. Randall J . LeVeque, Department of Mathematics, University of Washington, Seattle,

WA 98195

105. Dr. John G. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 7L-21, Seattle, WA
98124-0346

106. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com-

puter Science and Statistics, Queen Mary College, University of London, Mile End Road,

London E l 4NS, ENGLAND

107. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,

Downsview, Ontario, Canada M3J 1P3

108. Dr. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY

14853

109. Dr. Thomas A . Manteuffel, Computing Division, Los Alamos National Laboratory, Los

Alamos, NM 87545

110. Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

111. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena, CA

91125

112. Dr. Cleve B. Moler, Mathworks, 325 Linfield Place, Menlo Park, CA 94025

35

113. Dr. William A. Mulder, Koninklike Shell Exploratk en Produktie Laboratorium, Pwtbus

60, 2280 AB Rijswijk, THE NETHERLANDS

114. Dr. Dianne P. O'Leary, Computer Science Department, University of Maryland, College

Park, MD 20742

115. Dr. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA

94305

116. Professor James M. Ortega, Department of Applied Mathematics, Thornton Hall, Uni-

versity of Virginia, Charlottesville, VA 22901

117. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC

27706

118. Dr. Linda R. Petzold, L-316, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

119. Dr. Robert 9. Plemmons, Departments of Mathematics and Computer Science, North

Carolina State University, Raleigh, NC 27650

120. Dr. David A. Poplawski, Department of Computer Science, Michigan Technological Uni-

versity, Houghton, MI 49931

121. Professor Daniel A. Reed, Computer Science Department, University of Illinois, Urbana,

IL 61801

122. Dr. John K . &id, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon OX11 ORA,
ENGLAND

123. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, IN

47907

124. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Lab-
oratory, Livermore, CA 94550

125. Dr. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

126. Dr. Ahmed H . Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,

IJniversity of Illinois, Ilrbana, IL 61801

127. Dr. Jorge Sanz, IBM Almaden Research Center, Department K53/802, 650 Harry Road,

San Jose, CA 95120

128. Prof. Rnbert €3. Schnabel, Department of Computer Science, University of Colorado at

Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, Colorado 80309-0430

129. Dr. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA
94035

36

130. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P. 0. Box 2158
Yale Station, New Haven, CT 06520

131. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-

ton, OR 97006

132. The Secretary, Department of Coniputer Science and Statistics, The University of Rhode

Island, Kingston, RI 02881

133. Prof. Charles L. Seitz, Department of Computer Science, California Institute of Technol-

ogy, Pasedena, CA 91125

134. Dr. Horst D. Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA

94035

135. Dr. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

136. Dr. Burton Smith, Teracomputer Company, 400 North 34th Street, Suite 300, Seattle,

WA 98103

137. Dr. Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. 0. Box 218,
Yorktown Heights, NY 10598

138. Prof. Larry Snyder, Department of Computer Science, FR-35, University of Washington,

Seattle, W.4 98195

139. Dr. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0.
Box 1892, Houston, TX 77251

140. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College

Park, MD 20742

141. Mr. Steven Suhr, Computer Science Department, Stanford University, Stanford, CA 94305

142. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada N21 3G1

143. Dr. Lloyd N. Trefethen, Department of Mathematics, Massachusetts Institute of Technol-

ogy, Cambridge, MA 02139

144. Prof. Charles Van Loan, Depart.ment of Computer Scienc,e, Cornel1 University, Ithaca,

NY 14853

145. Dr. Robert 6. Voigt, ICASE, MS 1 3 2 4 , NASA Langley Research Center, Hampton, VA

23665

146. Dr. Michael D. Vose, 107 Ayres Hall, Department of Computer Science, University of

Tennessee, Knoxville, T N 37996 1301

147. Dr. A. J . Wathen, School of Mathematics, University Walk, Bristol BSR lTW, ENG-
LAND

37

148. Dr. Andrew B. White, Los Alamoa National Laboratory, P. 0. Box 1663, MS-265, Los
Alamos, NM 87545

149. Office of Assistant Manager for Energy Research and Development, US. Department of
Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, TN 37831-8600

150-159. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, TM 37831

