P

MARTIN MARIETTA ENERGY SYSTEMS LARARES

R

3 445k 031L552 &

ORNL/TM-11816

A Users’ Guide to PICL

A Portable Instrumented
Communication Library

G. A Geist
M. T. Heatn
8. W. Peyton
P H. Woriey

AR EY |
WARTIN MARIETTA ENERGY SYSTEMS WL
R THE UNTED STAES
- DEPARTMENT OF ENERCY

1ris repoit as been reproaguced ety from the best availatlz copy.
Available t~ from e Giinz of Scientfic and
Techiizal Inforimation, 2. Box 82, Moz, TN 37831; pric
froin \u1 U a7 > 5 i
bBla to the wutlis from the National srmation Service, U.S.
ice, 5285 Port royan Rd . Surinafis!s, VA 221681
5 price codes-— Frintad Copy: A3 M
This report wee pregaied as an accoint of SES By an agency of
the Linited Sialzs Gove Meither the U maent nor any
thareot, nor any of
impled, or 2 any isgal liablity or reanons
! 2 of any wiormation, ape
g thai its use would not
orOness, of sarvics by
’ aamc, lia
! e o Imgly 8 . reconwviendalion. o favonng by ihe Unite

Covernn The yiawn

ORNL/TM-11616
Engineering Physics and Mathematics Division

Mathematical Sciences Section

A USERS’ GUIDE TO PICL
A PORTABLE INSTRUMENTED COMMUNICATION LIBRARY

G. A. Geist
M. T. Heath
B. W. Peyton
P. H. Worley

Oak Ridge National Laboratory
Mathematical Sciences Section
P.O. Box 2009, Bldg. 9207-A

Oak Ridge, TN 37831-8083

Date Published: October 1990

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
opera‘ted by MARTIN MARETTA ENERGY SYSTEMS LIBRAFIES

perin vt e sasems e (U AARRINAD

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400 3 445k 03Lb552 b

Contents

DN W N

Introduction L e e e 1
Low-Level Routines @ i it i et 2
High-Level Routines it 6
Tracing Routines e e e 10
Appendix L e e e e e e e e e e e e 15
5.1 FortranExamples. i e 15
5.2 Obtaining PICL i ittt 21
5.3 Obtaining ParaGraph 22
References i i e e 22

- i -

A USERS’ GUIDE TO PICL
A PORTABLE INSTRUMENTED COMMUNICATION LIBRARY

G. A. Geist
M. T. Heath
B. W. Peyton
P. H. Worley

Abstract

This report is the PICL user’s guide. It contains an overview of PICL and how
it is used. Examples in C and Fortran are included.

PICL is a subroutine library that can be used to develop parallel programs that
are portable across several distributed-memory multiprocessors. PICL provides a
portable syntax for key communication primitives and related system calls. It also
provides portable routines to perform certain widely-used, high-level communica-
tion operations, such as global broadcast and global summation. Finally, PICL
provides execution tracing that can be used to monitor performance or to aid in

debugging.

1. Introduction

PICL. is a portable instrumented communication library designed to provide portability,
ease of programming, and execution tracing in parallel programs.

PICL provides portability between many machines and multiprocessor environ-
ments. It is fully implemented on the Intel iPSC/2, the Intel iPSC/860, and the
Ncube/3200 families of hypercube multiprocessors and on the Cogent multiprocessor
workstation. A subset of the library is provided for each of the following distributed-
memory multiprocessors -and multiprocessor programming environments: the Intel
iPSC/1, the Symult $2010, the Cosrnic Environment, Linda, Unix Systemn V, and
the X Window System. Full implementations of the library will be available on most
of these target machines and environments in the near future. The list is expected
to grow as new machines and programming environments appropriate for the library
appear, such as the Ncube/6400.

In addition to supplying low-level communication primitives, such as send and re-
cetve, PICL simplifies parallel programming by providing a set of high-level communi-
cation routines such as global broadcast, global maximum, and barrier synchronization.
These routines can help the novice user avoid common synchronization and program-
ming errors and save programming time even for the veteran user. These high-level
routines also facilitate experimentation and performance optimization by supporting a
variety of interconnection topologies.

Execution tracing has been built into the PICL routines, and routines are provided
to control the type and amount of tracing. A separate package called ParaGraph [2]
is available to display the tracing output graphically. The tracing facility is useful for
performance modeling, performance tuning, and debugging.

This document contains examples and information needed for straightforward use
of most of PICL’s basic features. Full documentation of all PICL options and the
various ways the library can be used is contained in a separate report [1].

The library is made up of three distinct sets of routines: a set of low-level com-
munication and system primitives described in section 2, a set of high-level global
communication routines whose use is deseribed in section 3, and a set of routines for
invoking and controlling the execution tracing facility, which is described in section 4.

Each section contains examples in C showing typical uses of the respective routines. In

- 9.

addition, the Appendix contains FORTRAN versions of the examples and instructions

for obtaining PICL and ParaGraph.

2. Low-Level Routines

The 12 low-level communication and system interface routines, described in Table 1,
provide a portable syntax for message-passing programs.

The PICL programming model assumes that the multiprocessor can send messages
between arbitrarily chosen pairs of processors. The time required to send a message
between two processors is a function of the interprocessor communication network, and
a user will need to be aware of such machine dependencies in order to write efficient
programs. Our model distinguishes one processor, the host, from the rest. The user has
access to the remaining processors, called node processors (or simply nodes), through
the host. Typically, an application code consists of one program that runs on the host
and another program that runs on each of the nodes. The host program calls PICL
routines to allocate node processors, load the node program (or programs) onto the
nodes, send input data required by the node programs, and receive results from the
nodes.

Figures 1 and 2 give a template of typical host and node programs that use only
low-level PICL routines. The host must call open0 to allocate nodes and enable in-
terprocessor communication. It then must call load0 to load the node program(s)
onto the processors. The node program must also call open0O to enable interprocessor
communication. Subsequently, send0 and recv0 are used to pass messages between
ProCessors.

Both host and node programs must call close0 to disable interprocessor commu-
nication. On the node, close0 must be the last executable statement. On the host,
close0(1) waits until all the nodes have executed close0 and then releases the allo-
cated nodes. The routines clock0 and checkO have the distinction that they can be
called outside the bracket of open0O and close0. All other low-level routines generate
an error message and cause the program to terminate if called before open0 or after
closeO.

In our programming model, a program returns from the send0 command as soon

as the user’s message buffer can be reused safely, even if the message has not yet

void checkO(int checking)
- disables parameter checking if checking = 0, and enables param-
eter checking in PICL routines if checking = 1. By default, pa-
rameter checking is enabled.

double clock0()
- returns the local system clock time in seconds.

void close0(int release)
- disables interprocessor communication. On the host, allocated pro-
cessors are also released if release = 1.

void loadO(char *file, int node)
- loads a program on node number node. If node = -1, then the
program is loaded on every node. (Host only)

void messageO(char *message)
- prints a short message (< 80 characters) on the standard output
device of the host.

void open0O{int *numproc, int *me, int *host)
- On the host, open0 allocates numproc node processors, enables
interprocessor communication, and returns the host’s ID number.
On a node, open0 enables interprocessor cornmunication and re-
turns the number of allocated processors, the node’s ID number,
and the host’s ID number.

int probeO(int msgtype)
- returns the value 1 if a message of the specified type has arrived,
and returns 0 otherwise. If msgtype = —1, then probe0 checks for
messages of any type. (Nonblocking)

void recvO(char *buf, int bytes, int msgtype)
- receives a message of the specified type into a buffer of size bytes
(in bytes). If msgtype = —1, then any type is accepted. (Blocking)

void recvinfoO(int *bytes, int *msgtype, int *source)
- returns information about the most recent recv0 or successful
probe0 call.

void sendO(char *buf, int bytes, int msgtype, int dest)
- sends a message of length bytes (in bytes) to processor number
dest. The msgtype must be > 0.

void sync0()
- executes barrier synchronization of all allocated processors. (Node

only)

void whoO(int #*numproc, int *me, int *host)
- returns the number of allocated node processors, the ID number of
the processor calling whoO, and the ID number of the host.

Table 1: PICL Low-Level Primitives

main()

{
int nproc, me, host, bytes, msgtype, node,
double time[2], result, data[100], clock0(),

time[0] = clock0() ;

/* Allocate 32 processors and enable PICL communication */
nproc = 32 ;

open0(&nproc, &me, &host) ;

/* Load node program onto all nodes */
load0("nodeprogram", -1) ;

bytes = sizeof(data) ;

msgtype = 1 ;

node = 0 ;

send0(data, bytes, msgtype, node) ;

/* wait for results from nodes */
bytes = sizeof(result) ;

msgtype = 2 ;

racvO(&result, bytes, msgtype) ;

time[1] = clock0() ;
printf("host took %f seconds to finish"”, time[1]-time[0]) ;

/* release allocated processors and disable communication */
close0(1) ;

Figure 1: Host program template using only low-level routines.

main()

{
int nproc, me, host, bytes, msgtype, node,
double time, result, data[100], clock0(),

/* Enable PICL communication %/
openO(&nproc, &me, &host) ;

/* Receive data from host and distribute */
bytes = sizeof(data) ;
msgtype =1 ;
if(me == 0)
{
recvO(data, bytes, msgtype) ;
for(i=1 ; i<nproc ; i++) sendO(data, bytes, msgtype, i) ;
}
else
recvO(data, bytes, msgtype) ;

time = clock0() ;
user_routine() ;
result = clockO{)-time ;

/* Send timing result to host */

if(me == 0)
{
bytes = sizeof(result) ;
msgtype = 2 ;
send0(&result, bytes, msgtype, host) ;
}
[——mmmeen End user program -------- */

/* Disable PICL communication */
close0() ;

Figure 2: Node program template using only low-level routines.

-6-

arrived at the destination processor. On the receiving end, the processor is idle (or
blocked) from the time it issues the recvO command until a message satisfying the
request arrives and is copied into the specified user buffer. Note that a program will
not terminate if a recvO command is never satisfied by an arriving message of the
correct type. Moreover, only the type field distinguishes different messages in PICL. A
common mistake made by new users is not using enough distinct types in their send0
and recvO calls to uniquely identify different messages in their program. This often

leads to nondeterministic behavior of the user’s algorithm.

3. High-Level Routines

The high-level routines, which are built on top of the low-level routines, are global com-
munication functions that have proven useful in the development of parallel algorithms
and application programs. Users who require an unsupplied variant or generalization
of one or more of the high-level routines in the library should be able to save a sig-
nificant amount of work and obtain portability by modeling the new routine on the
corresponding library routines.

The high-level routines, summarized in Table 3, are designed to run on various
network topologies so that the user can take advantage of the physical interconnection
network and algorithm characteristics. ‘The routine setarc0 must be called by the host
and nodes before any of the other high-level routines, as illustrated in Figures 3 and
4. The host’s setarcO sets the architectural parameters to be used by the high-level

routines, while the node’s call to setarcO retrieves these parameters, which are:

nprocs - the number of processors in use. It must be between 0 and the
number of nodes allocated by open0 on the host.
top - topology flag, where 1=hypercube, 2=full connectivity,

3=unidirectional ring, 4=bidirectional ring.

ord - numbering of the nodes in a ring, where O=natural ordering, i.e., 0,
. 1, 2,3, ... and 1=Gray code ordering, i.e., 0, 1, 3, 2, ...
dir - direction of broadcast in unidirectional ring, where 1=forward (i.e.,

from lower to higher numbered nodes) and —1 =backward.

The use of hypercube topology or Gray order requires that nprocs be a power of two.

The routine setarcO can be called several times during a single run to vary the topology

void barrier0()
- executes barrier synchronization of all nodes specified by setarco0.

void bcastO(char *buf, int bytes, int msgtype, int root)
- broadcasts a message.

void gandO(char *buf, int items, int datatype, int msgtype, int root)
- computes the componentwise “AND” of a distributed set of vectors.
Datatypes for logical operations are: (O=char, l=short, 2=int,

3=long.

void gcombO(char *buf, int items, int datatype, int msgtype, int root,
void (#comb)())
- computes a user-defined componentwise combination of a dis-
tributed set of vectors. Datatypes for arithmetic operations are:

O=char, 1=short, 2=int, 3=long, 4=foat, 5=double.

void getarcO(int *nprocs, int *top, int *ord, int *dirx)
- returns the number of processors and architecture parameters spec-
ified by the most recent call to setarco.

int ginv0(int i)
- returns the inverse binary reflected Gray code of i.

void gmax0(char *buf, int items, int datatype, int msgtype, int root)
- computes the componentwise maximura of a distributed set of vec-
tors.

void gminO(char *buf, int items, int datatype, int msgtype, int root)
- computes the componentwise minimum of a distributed set of vec-
tors.

void gorO(char #buf, int items, int datatype, int msgtype, int root)
- cormputes the componentwise “OR” of a distributed set of vectors.

void gprodO(char *buf, int items, int datatype, int msgtype, int root)
- computes the componentwise product of a distributed set of vec-
tors.

int grayO(int i)
- returns the binary reflected Gray code of i.

void gsumO(char *buf, int items, int datatype, int msgtype, int root)
- computes the componentwise sum of a distributed set of vectors.

void gxorO{(char *buf, int items, int datatype, int msgtype, int root)
- computes the componeéntwise exclusive “OR” of a distributed set
of vectors.

void setarcO{(int #*nprocs, int *top, int *ord, int *dir)
- sets the number of processors and the interconnection topology to
be used by the high-level communication routines.

Table 2: PICL High-Level Communication Routines

main(}

{

int nproc, me, host, bytes, datatype, msgtype, node,
float results[100],

nproc = 32 ;
openO(&nproc, &me, &host) ;
load0("nodeprogram", -1) ;

/* set architectural parameters used by high level routines.

i}

top 1 ; /% set topology to hypercube x/
ord 1 ; /% set node order to gray code x/
dir = 1 ; /* set ring direction to forward */
setarcO(&nproc, &top, &ord, &dir) ;

/% Broadcast problem size */

n = 100 ;

bytes = sizeof(u) ;

msgtype = 0 ;

bcastO(&n, bytes, msgtype, host) ;

/* Collect global sum of node’s results #*/
datatype = 4 ; /* set data type to float */
mnsgtype 10

gsunO(results, n, datatype, msgtype, host) ;

close0(1) ;

*/

Figure 3: Host program template using high- and low-level routines.

main()

{
int nproc, me, host, bytes, datatype, msgtype, top, ord, dir, n,
int vec[100],
float results[100],

openO(&nproc, &me, &host) ;

/* get architectural parameters used by high level routines. */
setarcO(&nproc, &top, &ord, &dir) ;

/* Receive and participate in broadcast of problem size */
bytes = sizeof(n) ;

msgtype = 0 ;

bcast0(&n, bytes, msgtype, host) ;

/* Collect global maximum of vec and broadcast result to all nodes */

datatype = 2 ; /* set datatype to int */
msgtype = datatype ;
Toot = 0 ;

gmax0{ vec, n, datatype, msgtype, root) ;
bytes = n*sizeof(float) ;
bcast0(vec, bytes, msgtype, root)

/* Participate in global sum sending results to host */
datatype = 4 ; /* set datatype to float */
msgtype = 10 ;

gsumO(results, n, datatype, msgtype, host) ;

Figure 4: Node program template using high- and low-level routines.

- 10 -

and number of processors. A node will not return from setarcO until nprocs is either
0 or greater than its node ID. (The special case nprocs= 0 is intended to be used as
an “end of run” flag.)

To operate correctly, the high-level routines (with the exception of gray0 and ginvo0)
must be called by all the nodes in use. For example, to broadcast a vector, vec, of size
bytes from node 5 to the other nodes in use, all the nodes specified by setarc0 would

call
bcastO(vec, bytes, type, 5) ;

On return, every node’s vec would match vec on node 5.

All the nodes must know either implicitly or from a previous message the root of
a particular high-level call. For example, in Figure 4 all the nodes call gmax0 with
root= (). After this, only node 0 knows the maxima, so all the nodes then call becast0
with root= 0, after which they all know the maxima. Figures 3 and 4 also illustrate

the use of the host as the root of a high-level call.

4. Tracing Routines

When the user requests execution tracing, code is activated within PICL routines that
produces time-stamped records detailing the course of the computation on each pro-
cessor. One of the key quantities captured is the time each processor spends blocked
while waiting for messages from other processors. With this and similar data, the user
can evaluate the performance of his code and locate possible performance bottlenecks.
Execution tracing is controlled by the routines described in Table 3.

Assuming the user wishes to trace only the execution on the nodes (host execu-
tion tracing is also possible but seldom used), three tracing routines are required:
traceenable on the host, and tracelevel and tracenode on the node(s). Examples
of their use can be seen in Figures 5 and 6. Traceenable is typically the first exe-
cutable statement in the host program. This routine specifies the name of the trace
file, enables tracing, and sets the output format used for the trace records. If format
= 1, then keywords are inserted into each trace record to help the user read the trace
file. If format = 0, then the trace records are written out as a compact set of integers

that can then be input into the ParaGraph package for display after proper sorting.

-11 -

void traceenable(char *tracefile, int format)
- opens a trace file and sets the trace record format. Set format = 0
for use with ParaGraph. Set format = 1 to label trace records
with keywords. (Host only)

void traceexit()
- stops tracing.

void traceflush()
- sends local trace information to the trace file.

void tracehost(int tracesize, int flush)

- starts tracing on the host and specifies how large a buffer to reserve
for trace information. If flush = 1, then traceflush is called
automatically if the trace buffer fills up. If flush = 0, then tracing
stops if the trace buffer fills up. (Host only)

void traceinfo(int remaining, int event, int compstats, int commstats)
- returns the current tracing parameters, as set by tracelevel, and
an estimate of the number of trace records that will fit in the re-
maining space in the trace buffer.

void tracelevel{int event, int compstats, int commstats)
- sets the parameters that control the amount of trace data generated
for three types of trace records. A zero value denotes the least

amount of information generated, while > 3 denotes the most.

void tracemark(int marktype)
- generates a trace record marking a user-specified event.

void tracemsg(char *message)
- sends a short message (< 80 characters) to the host that will au-
tomatically be written into the trace file.

void tracenode(int tracesize, int flush, int sync)

- starts tracing on a node and specifies how large a buffer to reserve
for trace information. ' If flush = 1, then traceflush is called
automatically if the trace bufler fills up. If flush = 0, then tracing
stops if the trace buffer fills up. If sync = 1, then node system
clocks are synchronized before tracing begins. (Node only)

Table 3: PICL Execution Tracing Routines

_12.-

The following Unix command performs this sort:
sort +1n -2 +2n -3 +0n ~1 tracefile > ParaGraph.input

The routine tracenode is called by the node program to create a local trace buffer
and start tracing. The synchronization option (sync = 1) should be used for trace files
that are to be analyzed with ParaGraph, and all nodes must call tracenode with sync
set to this value. The effect of setting sync is to synchronize node clocks so that time
stamps will be consistent. Thus, the user should be careful where tracenode is called
because it entails a barrier synchronization. If trace information is needed on only one
or a few nodes (for example, to do debugging), then these nodes must call tracenode
with sync = 0, and the other nodes should not call tracenode.

There are four distinct types of trace records generated: event, computation statis-
tics, communication statistics, and trace message. The routine tracelevel sets the
amount of trace data generated for the first three trace record types. The value of event
determines which PICL routines will generate “event” trace records. If event = 0, then
only calls to open0, close0, tracelevel, tracenode, traceflush, traceexit, and
tracehost are recorded. If event = 1, then records are also generated for tracemark.
If event = 2, then records are also generated for the high-level routines as well as
sendO and recvO events outside the high level routines. Finally, if event > 3, then
records are also generated for send0 and recv0 events embedded inside the high-level
routines. The values for compstats and commstats similarly control which events
generate statistical records.

When the tracing logic is not activated, there is very little overhead incurred by
using the PICL routines on the nodes. Due to the possibility of tracing, recv0 on the
host is two to three times slower than the native command. Since the host tends to be
significantly slower than the nodes even when not using PICL, most application codes
should minimize the use of the host.

If the tracing logic is enabled and the trace information is sent to the trace file at
arbitrary points in the node (or host) programs, then the additional cost due to tracing
can be very high, and might cause an unacceptable perturbation in the behavior of
the program under study. This can occur when flush = 1 in the call to tracenode (or
tracehost). If flush = 0 and traceflush is not used, then trace information is sent

back only at the end of the node program, and the resulting cost is quite reasonable. To

- 13 -

avoid the need for large trace buffers, it is recommended that tracelevel be used as
shown in Figure 6 to trace only those portions of the code in which the user is interested.
This has the added benefit of reducing the size of the trace files. ParaGraph displays
can be improved by positioning the tracenode call near the point of interest. This
avoids long blank displays between the call to tracenode and the interesting part of

the code.

main()

{
int nproc, me, host, bytes, type, top, ord, dir,
double x,

/* Open tracefile and use compact ParaGraph format */
traceenable("tracefile", 0) ;

nproc = 8 ;
openO(&nproc, &me, &host) ;
load0("nodeprogram", -1) ;

top = 3 ; /% set topology to ring */
ord = 0 ; /* set node order to natural */
dir =-1 ; /* set ring direction to backward */
setarcO(&nproc, &top, &ord, &dir) ;

recvO(x, sizeof(x), 3) ;
[* —mmmmmee End user program ---=----- */

close0(1) ;

Figure 5: Host program template for tracing node execution.

- 14 -

main()

{
int nproc, me, host, bytes, datatype, msgtype, top, ord, dir, n,
double x,

/* Start tracing using 100K local buffer */
tracenode(100000, 0, 1) ;
tracelevel(0, 0, 0) ;

openO(&nproc, &me, &host) ;
setarcO(&nproc, &top, &ord, &dir) ;

/* Set trace levels to typical values used for ParaGraph) */
tracelevel(4, 4, 0) ;

/* Calculate global product with result on node nproc-1 */

datatype = 5 ; /* set datatype to double */
msgtype = 1 ;
To0ot = nproc-1 ;

gprodO(&x, 1, datatype, msgtype, root) ;

/* Turn off tracing for uninteresting sections */
tracelevel(0, 0, 0) ;

if(me == nproc-1) send0(x, sizeof(x), 3, host) ;
/¥ —emommemee End user program -------- */

/* Stop tracing */
traceexit() ;

/* close0 flushes local buffer to tracefile on host */
close0() ;

Figure 6: Node program template with tracing.

- 15 -

5. Appendix

5.1. Fortran Examples

integer nproc, me, host, bytes, msgtype, node,
double precision time(2), result, data(100), clockO,

time(0) = clock0()

¢ Allocate processors and enable PICL communication
nproc = 32
call openO(nproc, me, host)

¢ Load node program onto all nodes
call load0('"nodeprogram", -1)
c ------- Begin user program --------

bytes = n*8

msgtype = 1

node =0 ‘

call sendO(data, bytes, msgtype, node)

¢ wait until nodes are finished
bytes = 8
msgtype = 2
call recvO(result, bytes, msgtype)

time(1) = clock0()
print *,"host took", time(1)-time(0)," seconds to finish"

C - End user program --------

¢ release allocated processors and disable communication
call close0(1)
stop
end

Figure 7: Fortran host programn template using only low-level routines.

- 16 -

integer nproc, me, host, bytes, msgtype, node,
double precision time, result, data(100), clock0(),

c Enable PICL communication
call openO(nproc, me, host)

¢ Recelve data from host and distribute
bytes = n*8
msgtype = 1
if(me .eq. O) then
call recvO(data, bytes, msgtype)
do 10 i=1, nproc-1
call sendO(data, bytes, msgtype, i)
10 continue
else
call recvO(data, bytes, msgtype)
endif

time = clock0{()
call user_routine()
result = clockO()-time

c Send results to host
if(me .eq. 0) then

bytes = 8
msgtype = 2
call sendO(result, bytes, msgtype, host)
endif
€ mommemee— End user program --------

c Disable PICL communication
call close0()
stop
end

Figure 8: Fortran node program template using only low-level routines.

- 17 -

integer nproc, me, host, bytes, datatype, msgtype, node,
real results(100),

nproc = 32
call openO(nproc, me, host)

call loadO("nodeprogram", -1)

set architectural parameters used by high level routines.

top = 1
ord = 1
dir = 1

call setarcO(nproc, top, ord, dir)

Broadcast problem size
n = 100
bytes = 4
msgtype = 0
call bcastO(n, bytes, msgtype, host)

Collect global sum of node’s results
datatype = 4
msgtype = 10
call gsumO(results, n, datatype, msgtype, host)

call close0(1)
stop
end

Figure 9: Fortran host program template using high- and low-level routines.

- 18 -

integer mproc, me, host, bytes, datatype, msgtype
integer top, ord, dir, n, vec(100),
real results(100),

call openO{ nproc, me, host)

¢ get architectural parameters used by high level routines.
call setarcO(nproc, top, ord, dir)

¢ Receive and participate in broadcast of problem size
bytes = sizeof(int)
msgtype = 0
call bcastO(n, bytes, msgtype, host)

¢ Collect global maximum of vec and broadcast result to all nodes

datatype = 2
msgtype = n+b
root =0

call gmaxO(vec, n, datatype, msgtype, root)
bytes = n*4
call bcast0(vec, bytes, msgtype, root)

¢ Participate in global sum sending results to host
datatype 4
msgtype = 10
call gsumO(results, n, datatype, msgtype, host)

C e mmme- End user program --------
call close0()

stop
end

Figure 10: Fortran node program template using high- and low-level routines.

- 19 -

integer nproc, me, host, top, ord, dir,
double precesion x,

Open tracefile and use compact ParaGraph format
call traceenable("tracefile", 0)

nproc = 8
call openO(nproc, me, host)
call load0('"nodeprogram", -1)

top = 3
ord = 0
dir =-1

call setarcO(nproc, top, ord, dir)

call recvO(x, 8, 3)
————————— End user program --------

call close0(1)

stop
end

Figure 11: Fortran host program template for tracing node execution.

- 20 -

integer nproc, me, host, bytes, datatype, msgtype
integer top, ord, dir, n,
double precision x,

Start tracing wusing 100K local buffer
call tracenode(100000, 0, 1)
call tracelevel(O, 0, 0)

call openO(nproc, me, host)
call setarcO(nproc, top, ord, dir)

Set trace levels to typical values used for ParaGraph)
call tracelevel(4, 4, 0)

Calculate global product with result on node nproc-1
datatype = 5
msgtype = 1
root = nproc-1
call gprodO(x, 1, datatype, msgtype, root)

Turn off tracing for uninteresting sections
call tracelevel(0, 0, 0)

if(me .eq. nproc-1) call sendO(x, 8, 3, host)
————————— End user program --------

Stop tracing
call traceexit()

close0 flushes local buffer to tracefile on host
call close0()
stop
end

Figure 12: Fortran node program template with tracing.

- 21 -

5.2. Obtaining PICL

The source code for PICL is available from netlib. The PICL source is written in
C, but Fortran-to-C interface routines are also supplied on those machines where it is
feasible. Currently, netlib contains the following files:

picl.shar low-level primitives and execution tracing routines

port.shar high-level communication routines

cogent.shar machine-dependent routines for the Cogent, including
FORTRAN-to-C interface routines
ipsc2.shar machine-dependent routines for the iPSC/2, includ-
ing FORTRAN-to-C interface routines

ipsc860.shar machine-dependent routines for the iPSC/860, in-
cluding FORTRAN-to-C interface routines

ncube3200.shar machine-dependent routines for the Ncube/3200, but
without FORTRAN-to-C interface routines
userguide.shar latex source of the PICL user guide (this document)

creference.shar latex source of the reference manual for the C version
of PICL.

More machine-dependent code will be added to this list in the near future.

To create PICL, you need the following shar files from the picl subdirectory on
netlib: picl.shar,port.shar, and the appropriate machine-dependent code. Unpack
all three in the same (empty) directory. A README file describing how to create the
library is bundled with the machine-dependent shar file. For example, to get the
source code for creating an iPSC/2 version of PICL, send the following message to

netlib@ornl.gov:

send picl.shar from picl
send port.shar from picl

send ipsc2.shar from picl

The source code will arrive as one or more messages per shar file. Each message will
contain a header describing what to remove and how to concatenate messages in order
to recover a legal shar file. Once these instructions are done, the following in an empty

directory:

sh picl.shar

99 .

sh port.shar

sh ipsc2.shar

You will now have a file README, a file makefile, and three subdirectories: picl, port,
and ipsc2. The README file discusses how to compile the PICL routines and how to

make the libraries hostlib.a and nodelib.a.

5.3. Obtaining ParaGraph

ParaGraph is also available from netlib. For information about this package send the

following message to netlib@ornl.gov.
send index from paragraph

A short description of ParaGraph and instructions on how to build the package will be
returned.
The source files are available in the shar file paragraph.shar. To receive this file

send the message:

send paragraph.shar from paragraph

6. References

[1] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A portable
instrumented communication library, C reference manual. Technical report, Oak

Ridge National Laboratory, July 1990. ORNL/TM-11130.

[2] M. T. Heath. Visual animation of parallel algorithms for matrix computations. In
D. Walker, editor, Proceedings of the Fifth Distributed Memory Computing Confer-
ence. IEEE, 1990.

- 23 -

ORNL/TM-11616

INTERNAL DISTRIBUTION

1. B. R. Appleton 27. G. Ostrouchov
2. E.F. D’Azevedo 28-32. B. W. Peyton
3. J.B. Drake 33. W.M. Post
4. T. H. Dunigan 34-38. S. A. Raby
5. R. E. Flanery 39-43. R. C. Ward
6-10. G. A. Geist 44-48. P. H. Worley
11-12. R. F. Harbison 49. Central Research Library
13-17. M. T. Heath 50. ORNL Patent Office
18. E. R. Jessup 51. K-25 Plant Library
19. M. R. Leuze 52. Y-12 Technical Library
20-24. F. C. Matenschein /Document Reference Station
25. E.G. Ng 53. Laboratory Records - RC
26. C. E. Oliver 54-55. Laboratory Records Department

56.

LY S

58.

59.

60.

61.

62.

63.

EXTERNAL DISTRIBUTION
Dr. Loyce M. Adams, Department of Applied Mathematics, University of Washington,
Seattle, WA 98195

Dr. Christopher R. Anderson, Department of Mathematics, University of California, Los

Angeles, CA 90024

Dr. Donald M. Austin, 6196 EECS Bldg, University of Minnesota, 200 Union St., S.E.,
Minneapolis, MN 55455

Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Grad-
uate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

Dr. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet
Field, CA 94035

Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Dr. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

Dr. Robert E. Benner, Parallel Processing Division 1413, Sandia National Laboratories,

P. O. Box 5800, Albuquerque, NM 87185

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

- 94 -

Dr. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012

Prof. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkoping,
Sweden

Dr. John H. Bolstad, L-16, Lawrence Livermore National Laboratory, P. O. Box 808,
Livermore, CA 94550

Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,

TX 78712

Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P. O. Box 3000, Boulder, CO 80307

Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, University
of Michigan, Ann Arbor, MI 48109

Mr. Brian M. Carlson, Computer Science Department, Vanderbilt University, Nashville,

TN 37235

Dr. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles, 405
Hilgard Avenue, Los Angeles, CA 90024

Dr. Jagdish Chandra, Army Research Office, P. O. Box 12211, Research Triangle Park,
NC 27709

Dr. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington, DC
20550

Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY

14853

Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

Lawrence Cowsar, Department of Mathematics, University of Houston, Houston, TX

77204-3476

Dr. Jane K. Cullum, IBM T. J. Watson Research Center, P. O. Box 218, Yorktown
Heights, NY 10598

Dr. George Cybenko, Center for Supercomputing Research and Development, University
of Illinois, 104 South Wright Street, Urbana, IL 61801-2932

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

.95 -

Ms. Helen Davis, Computer Science Department, Stanford University, Stanford, CA
94305

Dr. Yuefan Deng, Applied Mathematics Department, SUNY at Stony Brook, Stony
Brook, NY 11794-3600

Dr. J. J. Dongarra, 107 Ayres Hall, Department of Computer Science, University of
Tennessee, Knoxville, TN 37996-1301

Dr. J. J. Dorning (EPMD Advisory Committee) Department of Nuclear Engineering
Physics, Thornton Hall, McCormick Rd., University of Virginia, Charlottesville, VA
22901

Prof. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, TN
37235

Dr. Tain Duff, Numerical Analysis Group, Central Computing Department, Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. O. Box 2158
Yale Station, New Haven, CT 06520

Dr. Howard C. Elman, Computer Science Department, University of Maryland, College
Park, MD 20742

Dr. Ian Foster, Mathematics and Computer Science Division, Argonne National Labora-

tory, 9700 South Cass Avenue, Argonne, IL 60439

Prof. Geoffrey C. Fox, Department of Physics, Room 229.1, Syracuse University, Syra-
cuse, NY 13244-1130

Dr. Chris Fraley, Department of Mathematics and Statistics, Utah State University,
Logan, UT 84322-3900

Dr. Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moffet
Field, CA 94035
Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-

versity, Raleigh, NC 27650

Prof. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-

ton, IN 47401

De. W. Morven Gentleman, Division of Electrical Engineering, National Research Coun-

cil, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A 0RS

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

- 926 -

Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305
Dr. Joseph F. Grear, Division 8331, Sandia National Laboratories, Livermore, CA 94550

Dr. William D. Gropp, Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, 1L 60439
Dr. Eric Grosse, 2C 471, 600 Mountain Avenue, Murray Hill, NJ 07922

Prof. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Towa State University,
Ames, 1A 50011-3020

Prof. Robert M. Haralick (EPMD Advisory Committee) Department of Electrical En-
gineering, Director, Intelligent Systems Lab, University of Washington, 402 Electrical
Engr. Bldg. FT-10, Seattle, WA 98195

Dr. Philip J. Hatcher, Department of Computer Science, College of Engineering and
Physical Sciences, Kingsbury Hall, Durham, NH 03824

Dr. Gerald W. Hedstrom, L-71, Lawrence Livermore National Laboratory, P. O. Box 808,
Livermore, CA 94550

Dr. Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P. O. Box 481, Houston, TX 77001

Dr. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

Dr. N. J. Higham, Department of Mathematics, University of Manchester, Gtr Manch-
ester, M13 9PL, ENGLAND

Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National Lab-

oratory, P. O. Box 808, Livermore, CA 94550

Dr. llse Ipsen, Department of Computer Science, Yale University, P. O. Box 2158 Yale
Station, New Haven, CT 06520

Dr. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-
1214

Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of

Colorado, Boulder, CO 80309

112.

113.

114.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

- 27 -

Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87

Umea, Sweden

Prof. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cor-
nell University, Ithaca, NY 14853-3901

Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National Labo-
ratory, 9700 South Cass Avenue, Argonne, IL 60439

. Dr. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304
. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,

Livermore, CA 94550

Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77001

Dr. Thomas Kitchens; ER-7, Applied Mathematical Sciences, Scientific Computing Staff,
Office of Energy Research, Office G-437 Germantown, Washington, DC 20585

Prof. Clyde P. Kruskal, Department of Computer Science, University of Maryland, Col-
lege Park, MD 20742

Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

Dr. Robert L. Launer, Army Research Office, P. O. Box 12211, Research Triangle Park,
NC 27709

Dr. Scott A. von Laven, Mission Research Corporation, 1720 Randolph Road, SE, Albu-
querque, NM 87106-4245

Prof. Tom Leighton, Lab for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

Dr. James E. Leiss (EPMD Advisory Committee) 13013 Chesnut Oak Drive, Gaithers-
burg, MD 20878

Dr. John . Lewis, Boeing Computer Services, P. O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Dr. Ted Lewis, Research Director, Oregon Advanced Computing Institute, 19500 SW
Gibbs Dr. #101, Beaverton, OR 97006

Dr. Heather M. Liddell, Center for Parallel Computing, Department of Computer Science
and Statistics, Queen Mary College, University of London, Mile End Road, London El
4NS, England

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

S 98 .

Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
Downsview, Ontario, Canada M3J 1P3

Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

Dr. Thomas A. Manteuffel, Department of Mathematics, University of Colorado - Denver,

Denver, CO 80202

Dr. Anita Mayo, IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights,
NY 10598

Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 808,
Livermore, CA 94550

Dr. John Meissen, Oregon Advanced Computing Institute, 19500 SW Gibbs Dr., Suite
110, Beaverton, OR 97006-6907

Dr. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd. Pasadena, CA 91125

Dr. Cleve B. Moler, MathWorks, 325 Linfield Place, Menlo Park, CA 94025

Dr. Jorge J. More, Mathematics and Computer Science Division, Argonne National Lab-

oratory, 9700 South Cass Avenue, Argonne, IL 60439

Prof. Neville Moray (EPMD Advisory Committee) Department of Mechanical and In-
dustrial Engineering, University of Illinois, 1206 West Green St., Urbana, IL 61801

Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland, College
Park, MD 20742

Dr. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

Prof. James M. Ortega, Department of Applied Matheratics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Dr. Peter Pacheco, Mathematics Department, University of San Francisco, San Francisco,

CA 94117

Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Dr. James C. Patterson, Boeing Computer Services, P.O. Box 24346, MS 7L-21, Seattle,
WA 98124-0346

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

-29 - !
Dr. Peter C. Patton, Patton Associates, Inc., 101 International Plaza, 7900 lnternation:al
Drive, Minneapolis, MN 55425 !

Dr. Linda R. Petzold, L-316, Lawrence Livermore National Laboratory, P. O. Box 808,
Livermore, CA 94550 |

Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, Nort:h

Carolina State University, Raleigh, NC 27650

Dr. Angela Quealy, Sverdrup Technology, Inc., 2001 Aerospace Parkway, Brook Park,
OH 44142 !

Prof. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

Dr. John K. Reid, Numerical Analysis Group, Central Cornputing Department, Atl%ls
Centre, Rutherford Appleton Laboratory, Dideot, Oxon OX11 0QX, England ‘

Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette, IN
47907

Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Lab-

oratory, Livermore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Dr. Joel Saltz, ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA
23665

Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana, IL

61801

Dr. Jorge Sanz, IBM Almaden Research Center, Department K53/802, 650 Harry Roajd,
San Jose, CA 95120

Prof. Robert B. Schnabel, Department of Computer Science, University of Colorado fit
Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, CO 80309-0430

Dr. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Fiel}d,
CA 94035 |

Dr. Martin H. Schultz, Department of Computer Science, Yale University, P. O. Box 2158
Yale Station, New Haven, CT 06520 |
|

Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beavezr-
ton, OR 97006

161.

162.

163.

164.

165.

166.

167.

168.

169.

171.

172.

173.

175.

- 30 -

The Secretary, Department of Computer Science and Statistics, The University of Rhode
Island, Kingston, RI 02881

Prof. Charles L. Seitz, Department of Computer Science, California Institute of Technol-
ogy, Pasadena, CA 91125 '

Dr. Andrew Sherman, Department of Computer Science, Yale University, P. O. Box 2158
Yale Station, New Haven, CT 06520

Dr. Horst D. Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035

Dr. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

Dr. Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

Dr. Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. O. Box 218,
Yorktown Heights, NY 10598

Prof. Larry Snyder, Department of Computer Science and Engineering, FR-35, University
of Washington, Seattle, WA 98195

Dr. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. O.

Box 1892, Houston, TX 77251

. Dr. Rick Stevens, Mathematics and Computer Science Division, Argonne National Lab-

oratory, 9700 South Cass Avenue, Argonne, IL 60439

Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Mr. Steven Suhr, Computer Science Department, Stanford University, Stanford, CA
94305

Dr. Paul N. Swartztrauber, National Center for Atmospheric Research, P. O. Box 3000,
Boulder, CO 80307

. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada N21 3G1

Dr. Lloyd N. Trefethen, Department of Mathematics, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139

. Dr. Raymond S. Tuminaro, Parallel Processing Division, 1413, Sandia National Labora-

tories, Albuquerque, NM 87185

-31-

177. Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

178. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

179. Dr. Michael D. Vose, 107 Ayres Hall, Department of Computer Science, University of
Tennessee, Knoxville, TN 37996-1301

180. Mr. Thomas Wagner, Computer Science Department, Vanderbilt University, Nashville,
TN 37235

181. Prof. Mary F. Wheeler (EPMD Advisory Committee) Rice University, Department of
Mathematical Sciences, P.O. Box 1892, Houston, TX 77251

182. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los Alamos,
NM 87545

183. Office of Assistant Manager for Energy Research and Development, U.S. Department of
Energy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN 37831-8600

184-193. Office of Scientific & Technical Information, P. O. Box 62, Qak Ridge, TN 37831

