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Abstract 

This paper describes two rnethods for computing the invariant subspace of a 
matrix. Tlie first iiivolves using transformations to interchange the eigenvalues; 
the second involves direct cornpirt.atiori of the vectors. 
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1. Introduction 

In this paper we consider the computation of the invariant subspace of a matrix corre- 
sponding to some given group of eigenvalues. 

Potentially, the Schur factorization provides a method for computing such invariant 
subspaces, with the important numerical property that it provides an orthonormal basis 
for such spaces. Let us denote the Schur factorization of the real matrix A as 

A = QTQT, 

where Q is orthogonal and T block upper triangular, with 1 x 1 and 2 x 2 blocks on 
the diagonal, the 2 x 2 blocks corresponding to  complex conjugate pairs of eigenvalues. 
Since 

AQ = QT, 

Q, of course, provides an orthonormal basis for the invariant subspace of the complete 
eigenvalue spectrum of A. Numerically, Q is a much more satisfactory basis than the 
eigenvectors and principal vectors of A,  which may well be almost linearly dependent. 
If we partition Q and T as 

then 

ACZl = QlTll, 

and Q1 gives an orthonormal basis for the invariant subspace of A correspoiiding to 
the eigenvalues contained in TI*. It is therefore a common requirement to reorder T 
so that 7’11 has cigcnvalues with some desired property. J?or example, we might require 
T11 to  contain all the stable eigenvalues. 

Unfortunately, unless we know the required group of eigenvalues in advancc and 
accordingly modify the standard shift strategy of the QH algorithm, will not nor- 
mally contain the required eigenvalues on completion of the computation of the Schur 
factorization. We must therefore perform some further computation to reorder the 
eigenvalues. Indeed in most applications we perform an initial Schur factorization in 
order to compute the eigenvalues, which then gives 11s information on the required 
grouping. 

An example of the application is the computation of niatrix functions via the block 
diagonal form of a matrix. In computing the block diagonal form it is essential to 
include “close” eigenvalues in the same diagonal block [3]. 

To this end, Stewart [GI has described an iterative algorithm for interchanging 
consecutive 1 x 1 and 2 x 2 blocks of tlie block triangular matrix. The first block is 
used to determine an implicit Q l i  shift. An arbitrary QR step is performed on both 
blocks to eliminate tlie uncoupling bctween them. Then a sequence of Q R steps using 
the previously determined shift is performed on both blocks. Except in  ill-conditioned 
cases, the two blocks will interchange their positions. 

In this paper, we present two other methods for constructing the invariant subspace. 
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The first involves applying transformations directly to interchange the eigenvalues. The 
second method involves direct computation of the vectors. 

2. Interchanging Eigenvalues 

The reordering of the eigenvalues can be achieved by successively interchanging neiglr- 
boring blocks in the Schur factor ?’. 

Suppose, in a given T, one has decided to group A,, X4, A, together. We know that 
there exists a unitary matrix 0 such that 2; = a T Q H  is still upper triangular but 
has A,, A,, A, in the first three positions. Such a Q can be readily determined as the 
product of a finite number of plane rotations. We merely need an algorithm which 
will enable us to  interchange consecutiw blocks on the diagonal by means of a plane 
rotation. Repeated application of this algorithm can then bring any selected set of 
eigenvalues into the leading positions. 

The algorithm we describe could be used on a complex triangular matrix. However, 
since we are interested here in real matrices, and since complex conjugate eigenvalues 
will be represented by 2 x 2 real diagonal blocks, we describe fiist the algorithm for 
interchanging two consecutive real eigenvalues. 

2.1. Single past single 

Suppose X and p a,re in positions p and p +  1. A similarity rotation in planes p and p +  1 
will alter only rows and columns p and p + 1 and will retain the triangular form apart 
from the possible introduction of a non-zero in position ( p +  1,p). The rotation can be 
chosen so as to  interchange X and p while retaining the zero in ( p +  1,p). Clearly the 
rotation is determined solely by the 2 x 2 matrix, which we denote by 

We have 

T i.e., ( a , p  - A) is the eigenvector corresponding to p. If Q is chosen so that 

then 

Q ( /L: x ) = ( ; ) 7 
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and hence, using (2) and dividing by r ,  we have 

This states that  the first column of the transformed 2 x 2 is in the required form. Hence 
we may write 

Since the tra.ce and Frobenius norm are invariant, 

x t p = p t 7, X2 + p 2  t a!2 = p 2  t y2 +B2, 
giving 

y = X and /3 = fa. 

A rotation giving (2) is defined by 

(3) 
2 1/2 case = a / T , s i I l ~  = (11 - A ) / T , T  = t [a2 + ( p  - A )  ] , 

and it will readily be verified that this gives p = $-a. 
If the original T has been determined from a matrix A by means of an orthogonal 

transformation, the matrix defining this transformation must be updated by multi- 
plication with the plane rotations used in the reordering process. Note that in this 
method, wherever two eigenvalues that we have decided to  place in the same group 
are interchanged, a selected eigenvalue is moved up only past eigenvalues with which 
i t  is not to  be associated. Moreover, having determined the rotation, we shall apply 
it to rows and columns p and p + 1 but not to the 2 x 2 itself. There we shall merely 
interchange X and p and do no computation. Moving 1 x 1 blocks is discussed in [SI. 

2.2. Single past double 

In bringing a selected real eigenvalue to a leading position we shall, in general, need to  
pass 2 x 2 blocks on the diagonal corresponding to complex conjugate pairs. IIence we 
must be able t o  interchange a real eigenvalue with a real 2 x 2 block by mea>ns of an 
orthogonal similarity transformation. Obviously, the transformation is determined by 
the relevant 3 x 3 diagonal block whicli, for simplicity, we write as 

(4) 

The same principle may be used as in the single past single case. If 

(:) ( 5 )  
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denotes the eigenvector corresponding to A3 then we require a Q such that 

and then, as before, 

Note that the general principle we are using is the one commonly employed to establish 
the Schur canonical form by induction. The 2 x 2 matrix C in the bottom of (6) is not 
the same as B in (41, but it will, of course, have the same eigenvalues. However, B and 
C will not, in general, be orthogonally similar. 

The matrix Q can be determined as one Householder matrix or as the product of 
two Givens rotations. Since A3 is real and R has complex conjugate eigenvalues, B 
can have no eigenvalues in common with A S ;  hence, a unique eigenvector of the form 
(5) will exist. As the two eigenvalues of  R approach the real X3, their imaginary parts 
become small, and the eigenvector (5) will have progressively larger components in the 
first two positions; i.e., the normalized version will have a progressively smaller third 
component. 

2.3. Double  past single 

When a pair of complex conjugate eigenvalues is included in the selected group, the 
associated 2 x 2 diagonal block has to be moved into a leading position on the diagonal. 
On the way up  it will, in general, pass both single eigenvalues and 2x2 blocks with wliich 
it is not to be associated. We consider first taking a complex pair past a real eigenvalue. 
In other words, in terms of the relevalit 3 x 3 matrix, we require an orthogonal Q such 

Here the selected eigenvalues are those of R ,  a complex conjugate pair. The eigenvalues 
of C will be the same pair, but in general C and B will be different matrices and will not 
be orthogonally similar” If we think in terms of moving X I  to the bottom we may use 
much the same principle as before but now we work i n  terms of a left-hand eigenvector. 
If 

y ~3 = ~y ’ ,  wit11 yT = (1, yz, ys), T 

we determine a Q such that 
T y Q = ( O , O ,  3:) .  

‘Then QT 1; Q has ( O , O ,  A,) as its last row, and the objective has been achieved. 
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2.4. Double past double 

Finally, we may need to  move a selected 2 x 2 matrix past an unrelated 2 x 2. If we 
denote the relevant 4 x 4 rnatrix T4 by 

then we require an orthogonal Q so that 

where B and C have the same eigenvalues as 6 arid c", respectively. 

subspace corresponding to C in the form 
The same general principle may be used. We compute generators of the invariant 

by solving 

This gives us four equations for the four top components in (2, y). If we now determine 
a Q such tha,t 

Q(xc,y/)= [: 4 = ( t ) ,  
0 0  

then QTziQT will be of the required form. Such a Q may be determined as the product 
of two Householder matrices or four Givens rotations. 

To see how is related to C ,  we observe that (7) implies that  

giving 

&T4QT ( f ) = ( ) c'; 
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that  is, 

This last equation states that  the first two columns of QTQT are 

and hence 2; = RCR-'. We shall not, of course, compute 2; via R! 

3. Numerical Considerations 

In each of the four cases discussed above we determine either an eigenvector or two 
independent generators of an invariant subspace. 

3.1. Single past single 

When taking a single past a. single, the formulae giving the components of the vectors 
are of a particularly simple form. For consistency with the other three cases, the 
eigenvector in equation (1) should perhaps have been expressed in the form 

This emphasizes the fact that when p - X is very sinal1 compared with CY,  the first 
component of the eigenvector is very large i.e., in the normalized form, the second 
component is very small. However, in this case X and p should almost certainly have 
been associated together, and we should not be trying t o  interchange them! 

This remark has more force than might be imagined when the full n x n quasi- 
triangular matrix has been produced from a general matrix A by an ortliogonal simi- 
larity transformation. In this case the elements below the diagonal elements are in no 
sense true zeros. They are a t  best negligible to working accuracy. 

As an example, consider the matrix 

A perturbation -c2 in the (2 , l )  element gives modified eigenvalues = 1 2  = 1, and 
the matrix is defective. Suppose we are working on a 10-digit computer and E = 
We may not think of 1 f 1W6 as unduly close, but a perturbation of gives 
coincident eigenvalues, and this perturbation is well below the negligible level. If we 

thiiik in terms of perturbations of order 10-l' (;.e., coiiiputer noise level), all we can 
say is that the true eigenvalues are (roughly) i n  a disk centered on X = 1 and of radius 

in (2,1) gives eigenvalues 1 iz i ( .99) l /*10-~ ,  w ~ e  a 
perturbation of -lo-'' gives eigenvalues 1 + ( ~ o l ) ' / ~ l O - ~ .  To attempt to  distinguish 
between 1-1- and 1 - and to interchange them, makes no sciise. They have no 

~ 1 i u s  a perturbatioii 
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separate identity, and different rounding errors in the triangularization program giving 
T might well have led to complex eigenvalues and have a 2 x 2 block rather than that 
in (8). 

For several moderately close eigenvalues, the remark has even greater force. Thus, 
if 

XI = 1 - E ,  A2 = 1, X I  = 1 + c, and E = 
in (3,l) gives three eigenvalues of the form 1 + 0 This problem is discussed in 
considerable detail in [7,9,10]. Clearly, deciding which eigenvalues should lie grouped 
together cannot be done on the superficial basis of “looking at the separations.” 

The remarkable fact is that in the single past single case, the cos0 and sin6 are 
always given with very low relative errors on a computer with correct rounding or 
chopping. On such computers, p - X is always computed without rounding errors even 
when severe cancellation takes place. Thus, if 

A perturbation even as small as 

.832569 ) ’ ( .83:67 .912863 

we have on a six-digit computer p - X = .000002, aiid this has no error. (This will be 
true even when, e.g., A = .go9999 and 1.1 = 101(.lOOOO1), that is, when close X and p 
have different exponents.) Six-figure floating-point computation using (3) gives 

cos 6 = 1O1(.100000),sin B = 10-5(.219091), 

and both of these have relative errors on the order of machine precision (IO-”) in spite 
of severe cancellation having taken place. IIcnce, if we actually do the computation of 
the 2 x 2 matrix (in practice we would not, we could merely insert p, A, and a in the 
appropriate places), we find that the coupled (1,1), (l ,2),  and (2,2) elements are correct 
to  working accuracy and that the (2 , l )  element is well below the negligible level. This 
is comforting because we sliall be applying the traiisforinatioti to the rest of the matrix 

This is an  impressively good result. In many situations, not dissimilar from this, 
one would have to be satisfied with a matrix wliich is exactly similar to a T with a 
perturbation of order lo-‘ in  its elements and such a matrix could have eigenvalues 
agreeing with X and p in only tlie first three figures, a disaster from the point of view 
of effecting an intercliange of X and p !  

3.2. Single past double or double past single 

When we turn to the other three cases, the situatioii is not bo simple. 1,ct us consider 
the algorithm for moving a single past a double. If we denotc the eigenvector in  (5) by 

.2‘ = ( .c , , .c ‘L,  1) II‘ , 
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then T ~ x  =5 X3x gives 

(tll - X3)xl + tlZz2 + t13 = 0 

t 2 1 z l  + ( i 2 2  - X 3 ) x 2  -k t 2 3  = 0. 

The matrix of coefficients '? of this system of equations is 

i l l  - A3 tl2 
t 2 1  t 2 2  - A3 

(9) 

which can be singular only if A3 is an eigenvalue of the leading 2 x 2 matrix of T3. This 
possibility is specifically excluded since A3 is real. and the 2 x 2 has complex eigenvalues 
(otherwise we would have triangidarized it). When A3 is very well separated from the 
two complex eigenvalues, f will be very well conditioned and x1 and x2 will not be 
large; hence, in the normalized version of 2 the third component will not be small. If 
we compute the transformation and apply it to  the full 3 x 3 matrix, the top element 
will be A3 to high accuracy, the two complex eigenvalues will be accurately preserved, 
and the (3 , l )  and (3,2) elements will be negligible. The computed results will be very 
close to those derived by exact arithmetic. 

As A3 approaches an eigenvalue of tlie 2 x 2 block, however (notice that this means 
that the imaginary parts of the complex eigenvalues must be small since X 3  is real, 
and hence we are redly moving towards a triple eigenvalue), the matrix 2; will become 
progressively more ill conditioned, and in general x 1  and 2 2  will be larger. In the 
limiting situation, the eigenvector will have a zero third component and will be an 
eigenvector of the leading 2 x 2 matrix rather than one corresponding to A3 in the 3 x 3 
matrix. The matrix Q is merely a plane rotation in the (1,2) plane and does not affect 
X3.  I t  is difficult to  view this in ternis of bringing the (3,3) element into the leading 
position! Indeed, we are merely recognizing tlie fact that the upper 2 x 2 now has a 
double real root, and we are triangulariziilg i t .  Sinre the real roots that it has are 
the same as X3, however, the illusion of having moved A3 into thc leading position is 
preserved. Thus, if 

T3=-( ~ 1 ~ ) , X 1 - = X 2 = X 3 = 0 ,  

the only eigenvector is (1,1,0)"; there is no eigenvector of the form (2, 2, l)T. For the 
rotation in the (1.2) plane 8 - ~ / 4  and the transformed matrix is 

The matrix is in the required form, with X3 in the leading position, zeros in the first 
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column, and C given by 

0 l/& 
c = ( o  0 ) ,  

which is similar to  the original 2 x 2, but certainly not orthogonally similar since it has 
a diirerent Euclidean norm. However, when one considers how it has come about, it 
would be perverse to describe it as “bringing As past the 2 x 2.,, 

Suppose now we pertub the (2 , l )  entry of the matrix by c2 to give 

( l’.. ; ) , A I , & .  = 3% A3 = 0. 

Then there is an eigenvector 2 corresponding to A3 of the form 

X T  = ( - 1 / c 2 , - 1 / 2 , 1 )  
= (-1/2)(1,1,-2). 

The normalized version of this vector has a very small third component. If wc perform 
our algorithm exactly, it  gives a (2,s) rotation witli an angle of order t2 (the corre- 
sponding matrix is almost the identity matrix) while the ( l ,2 )  rotation has an angle of 
almost exactly x/4. The resulting matrix has A3 = 0 in the leading position and the 
2 x 2 matrix C is almost exactly as in ( lo ) ,  hut has small perturbations that make its 
eigenvalues kc. 

The siniplicity of this discussion is slightly obscured by the use of plane rotations and 
their introduction of irrationals. If we think in terms of nonorthogonal traiisforrnations, 
then to convert 

(1, 1, -c2)  to W , O ) ,  

we perform a similarity with the unit lower triangular matrix 

and obtain a,s our transformed matrix 

The 
in a 

zero eigenvalue is brought to the top and the eigenvalues kic nioved to tlie bottom 
transparently obvious way. When E = 0, the transformation operates only 011 row 
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and column 1 and 2, and A3 is not involved. Nevertheless, the transformed matrix is 

and our “objective” (inappropriate though it is) has been achieved. 
The relevance of this discussion to the performance of our algorithm is the follow- 

ing. When we attempt to  bring a single past a double having eigenvalues that are fairly 
close t o  i t ,  the danger arises that too much reliance is placed on the effect achieved 
by the very small third component in the normalized version of the unique eigenvector 
corresponding to  X3. In the analogous single past single case, the solution was deter- 
mined with considerable accuracy. Here, however, the solution is not nearly as simple. 
Moreover, when the transformation has been computed, we shall need to apply it to 
the 3 x 3 matrix itself, as well as to  the remainder of those relevant rows and columns, 
since the new 2 x 2 is not determined in a trivial manner as were the elements in the 
single past single case. 

Clea.rly the set of equations must be solved with some care. I t  is essential that the 
normalized version of 

(xI ,x2 ,1)  i.e., (ZI,.?2,23) 

should be such that 

be true with tl and € 2 ,  which are at  noise level relative to  the coefficients on the left- 
hand side (€1 and € 2  would be zero with exact computation). The solution of the system 
by Gaussian elimination with pivoting ensures just that; it produces 21 and 22 with 
errors that  are so correlated that the normalized versions give residuals a t  noise level. 

In place of Gaussian elimination with pivoting, we could use any stable direct 
method to solve the systexn- eg . ,  Givens triangulation. However, if we were to  solve 
the system by an unstable method such as Cramer’s rule in staudard floating-point 
arithmetic, we woiild obtain a computed z1 and 22 with errors that are uncorrelated, 
and the residual corresponding to the normalized vector woidd not then be at  noise 
level. 

Assuming, then, that we have a normalized eigenvector giving negligible residuals, 
the process is satisfactory. Indeed, it is rnerely the method of deflation by orthogonal 
sirnilarity transformations that is used after finding an eigenvector of a general matrix 
(see, e.g., Section 20, Chapter 9 of [SI. This is a stable deflation in that provided the 
eigenvector has negligible residuals (independent of its absolute accuracy); the deflated 
matrix is exactly orthogonally similar to a matrix that differs from the original by a 

matrix E ,  which is a t  noise level relative to it.  This is true even when we insert (without 
computation) the computed eigenvalue in the leading position and zero in the rest of 
the first column. Such a rcsult is the most we can reasonably expect, though it falls 
somewhat short of the super-stability of the single past single case. 

We have naturally concentrated on the case when we are attempting to  move a 
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real eigenvalue A3 past a complex conjugate pair each of which is near AJ, because 
numerical stability there needs serious investigation. Of course, when A3 is “too close,” 
we usually include all three eigenvalues in the same space. However, when we niove 
a single eigenvalue AJ past a complex conjugate pair X f zp such that X - A3 is not 
small but p is small, that pair will be close, and hence, in gcneral, very sensitive to 
perturbations. The 2 x 2 block will itself be subjected to a similarity transformation, 
and small rounding errors will make substantial changes in the eigenvalues. Thus, if 
we have the matrix 

) 

1 
) 

.431263 -516325 
-.000003 .431937 ( 

( 

( 

with the ill-conditioned eigenvalues .431600 f i(.OO1198), and subject it to a plane 
rotation with angle x/4, the exact transform gives 

,659761 .2.58501 
-.257827 .173439 

with, of course, precisely tlie same eigenvalues. If rounding errors produced 

,689760 258501 
-.257527 .173440 

(i.e., changes of -1 and +1 in the last figures of the (1,l) and (2,2) elements) the 
eigenvalucs become .431600 f i( .001397), a substantial change in the imaginary parts. 
Yet in this example we have used an orthogonal similarity transformation that is fa- 
vorable to iiuniericczl stability. In general, the bypassed matrix will be subjected to a 
non-ort hogonal si niilari ty transformation. 

3.3. Double past double 

Finally, we turn to the problem of moving a doublc past a double. Since two pairs 
of complex conjugate eigenvalues X I  f p 1  and f ipz are involved, it is not possible 
for just one eigenvalue in the lower pair to agree with one in the upper pair. If, for 
convenience, we denote tlie relevant 4 x 4 matrix and the invariant subspace by 

respectivcly, where Til, T12, 1722 and X a,re 2 x 2 niatrices, theti we have 

It is well known that if 
non-singular system. 

and T’22 have no eigenvalue in common, then this is a. 
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For the case when TI1 and T22 share ail eigenvalue, consider the matrix 

If we try to  find an invariant subspace of the form , we fa.il; the elements of X 

turn out to  be infinite. There is no invariant subspace of dimension two of the required 
form. (The particular form chosen for T I 2  is not critical-though, of course, if we take 
’1;2 t o  be null, such an invariant subspace does exist with X = 0; T is then derogatory.) 
However. 

and hence we now have an invariant subspace which we think of as belonging to T I I .  

Hence 

i.e., 

T (  QoT)  = ( tT)  (: i2) E ( “ ; ’ ) M .  

and hence 

i.e., 
T ( Q T f - L  ) = ( Q ~ D - ~  ) !Liz. 

are orthogonal, but not orthonormal. It looks as though The columns of 

we have an orthogonal basis of an invariant subspace “belonging to 752,” but we should 
not really speak i n  these terms. 
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Nevertheless, if we consider 

then there is a subspace of the form ( xF’ ) which we c6uld justifiably describe as 

“belonging to  Tzz(E),” provided E # 0. The elements of X ( E )  will teiid to m as c --+ 0 so 
that  any normalized version of this invariant subspace will have very small components 

in its lower 2 x 2 matrix. In fact, since T(e)  ( Q ~ R - ’  ) = T (  Q ~ : - ~  ) , we observe 

that 
T ( 4  ( QTD-1 ) - ( *T;-l ) T22(4 

= (  0 )(:z e ) .  

QTL)-1 

T22 ( E )  
= T  Q7‘D-l 

= T  [ Q+ 1: 1 Q+’ 1 (.;?,+ ( -2 O 0 ) )  0 

Q T  11-1 

When E is small, this invariant subspace gives negligible residuals “corresponding to 

Can we expect X ( C )  to be QQ-’ apart from a scale factor? Unfortunately we 
T22 ( E ) ” .  

cannot. In fact, we have 

4. A Direct Method for Computing Invariant Subspaces 

In this section we consider the construction of an invariant subspace by a direct coin- 
putation of the vectors, rather than by applying transformations to move the desircd 
eigenvalues to the top of the matrix 7’. We assime that the matrix T is derived from 
some square generaa matrix A .  Suppose Xk is the k t’l eigenvahie along the diagonal 
of T and T k k  is the leading k x k minor in  the matrix T .  

If Xk is a simple eigenvalue, we just solvc 

(T - &l)Z = 0. 
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This gives zk+l, zk+2, . . , 5 ,  = 0. Next, we take zk = 1 and solve 

Now suppose CY is a multiple eigenvalue, say a triple, such that 

CY = A, = A, = A , ,  ( p  < q < r ) .  

In general, there will be only one eigenvector corresponding to  CY (unless 1' is deroga- 
tory). First, we find the eigenvector z corresponding to A, by solving 

Next, we attempt to find y corresponding to A, by taking y, = 1 and attempting to 
solve 

( l b ,  - & I )  y = 0, i.e., ( l b ,  - C Y I )  y = 0. 

All is fine until we reach the determination of yp. We have 

OY, + t,,,+lYp+l t- - ' . + t,,q-1yq-1 + t,,, = 0. 

If we let 

t,,,.tlyp+l + . . * + t,,q-1yq-1 + tp,q = d ,  

09, + d = 0. 
then 

If d happens to  be zero, then y, is arbitrary. 
It is simplest to take yp = 0. Hence, when d = 0, we obtain 

2 = (z1,22, * - .  ,xp-l,l, 0, . * *  O , O , * - , O ) ~  

y =  ( y l ,  Y2, ' * '  , ! /p- l ,  0, !&l, yq--1,1,***70)T 

These two vectors are obvioiisly linearly independent. Hence we have two eigenvectors 
corresponding to  a.  Both satisfy (T - a l ) z  = 0, and (T - a T ) y  = 0. 

If we had taken yp to  be m instead of zero, the solution would have been y + mx. 
This is fine since y + m z  is also an eigenvector. We could have chosen y+7nz orthogonal 
to 2, 

H H  z N ( y  + nzz) I- 0, T/Z = (-x y/z  3;) .  

That the matrix will be derogatory is much less probable than that it will be 
defective. In fact, even if A were exactly derogatory, T would probably not be, even if 
it still had exact multiple eigenvalues. 
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Suppose now d # 0. To get y,, we would need to  solve 

Hence we cannot get a second eigenvector. Notice that if A, were A, + E instead of A,, 
we would be solving 

typ = -d 

at this stage, giving an erroneous value of yp. Obviously, in this case the first p com- 
ponents of y would be essentially 9% + (vector that is not too large). As c -+ 0, the 
vector y tends to a multiple of I with a relatively negligible amount of interference. 
In the limit we find that y and z are in exactly the same direction; tlie last q - p 
components of y are negligible compared with the rest when q is small, and arbitrarily 
vanish altogether in the normalized y. 

We cannot find a second eigenvector. We ca.n, however, find a vector y such that 

(T - AyI)y = dx. 

Hence the determination of y proceeds as before, from y, to  yp+l, since 2 is zero in 
these components. We now have 

oy, + t,,p+lyp+l + - - .  + t,,,-1y,-1 + t p , ,  = dx ,  = 4 
tp,*+lYp+l + * - * + tp,,-1y,-1 + tp,y = d,  

$0 that 

giving 
oyp = 0. 

Again yp is arbitrary, and i t  is simplest to take yp to be zero. There are no further 
problems, and we have 

2 = ( 2 1 , 2 2 ,  ,X,-l,l,O, ...O,O,O,*.*,O)T 
y = ( Y l ,  Y2, ... ,Yp-1, 0, Y p t l ,  . * *  Y y - 1 7 ~ 7 0 ? * * . , 0 ) T  

with (1' - NI) x = 0, (Y' - CYI)  y = dz, or  

Now for the third vector, we shall ignorp thc possibility of its being derogatory for 
tlie moment. We attempt to solve 

starting with z ,  = 1. We proceed as usual until w e  reach 2,. At this stage we have 
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Hence, we solve 
(Trr - a I ) z  = ey. 

This does not affect the components already computed since yi = 0, ( i  > q ) .  

For convenience we then take zq = 0. We continue until reaching zp.  We now have 

l .C, 

t,,,+12,+1 + . . . + tp,r.--l&-l + t p , r  = f. 
I f f  # 0, we would get zp = 0. To avoid this situation, we solve 

(Trr - CYI) Z = ey -f fa. 

‘This does not affect previous components since z; = 0 for i > p .  The equation for zp 
then becomes 

OZ, = 0. 

If we ta,ke zp = 0 and then determine z,-1, zp-2, - , 21, we then have 

( T -  a1)z = 0 
( T -  QI)Y = dz 
( T - a l ) z  = e y + f z  

Clearly, z, y, z are linearly independent, and they span the three-dimensional in- 
variant subspace a.ssociated with CY. They are not orthogonal, in  general, but we could 
develop an orthogonal basis from this. Specifically, if 

(T - a I )  Q3R3 = Q3R3Ta 

or 
(T - (1.1) Q3 = Q3[R3T,Rg1] = Q g M .  

Q3 is now an orthogonal basis, and M has Q as a triple eigenvalue. 
A deroga.tory matrix will be revealed by zero values among d , e , f .  Thus if d = e = 
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f = 0, we get three independent eigenvectors, and 

If d = f = 0 and e # 0, we have 

Then we have a linear divisor ( A  - a )  and one quadratic, ( A  - 
If all computations arc exact and T comes from exact computation, then we ;tsso- 

ciate only the eigenvalues that are truly equal, and the vectors obtained in the way we 
have described are truly independent. In practice, however, T will rarely be a11 exact 
matrix. Usually it will have been obtained front a matrix il by, say, the QR algorithm. 
Even if ’4 had defective eigenvalues, T will usually not have any repeated diagonal 
elements. A real problem is to decide whiclt diagonal elements to  associate together. 
We may need to  associate eigenvalues that are by no means pathologically close. If 
we have decided which eigenvdues we wish to  associate, then we proceed exactly as 
described. 

So far in this section we have tacitly assumed that T is exactly triangular, hut the 
QR algorithm may give 2 x 2’s on the diagonal. If a 2 x 2 corresponds to a pair of real 
eigenvalues, we can get rid of it by an orthogonal transformation. If it corresponds to  
a complex conjugate pair, we cannot. We assume theri that all 2 x 2’s correspond to 
complex conjugate eigenvalues. 

We turn now to  the case of 2 x 2 blocks. If we associate only real eigenvalues in an 
invariant subspace, there are no real new points. We mercly need to know how to get 
the two components of any of our vectors in the position of a 2 x 2 block in the matrix. 
Clearly we solve a 2 x 2 system of equations for the two components. The tcclinique 
for getting the generators and the M is unchanged. 

Now, consider obtaining a pair of vectors spanning the two-space associated with 
complex conjugate pairs of eigenvalues, assuming for the moment that we are not 
associating i t  with any othcr eigenvalues. For T ,  illustrated by 

* 

T =  1 * 
* 

* 
* 
* 

* ’  
* 
* Ij 



- 18 - 

we merely solve the equations 

and take 

so that they are certainly independent. The two back substitutions for determining z p  

and zp+l are done as before. We determine 2:’) and z?’-l) from the pair of equations 
obtained by equating row i on both sides of (12). This gives a well-separated pair of 
vectors even when the two eigenvectors are close, provided the eadier eigenvalues are 
well separated from them. Thus, for 

the eigenvalues are lrti10-5; they are close, but well separated from the other eigenvalue 
A 1 - ._.. 3. The components 21 a.nd y1 satisfy 

321 1 = 5 1  - 1O--lo?Jl 
3y1 t 2 = IC1 t y1. 

To eight decimals, 21 = -1/2 and y1 = -5/4. The vectors are extremely well separated 
and 

If, when computing the two vectors corresponding to a complex pair, we encounter 
aiiuther 2 x 2 block, say in position i , i  + 1, then components i and i + 1 of 2 and y 
are determined by solving a set of four linear equations derived by equating rows i and 
i + 1 of (12). This will be a well-conditioned 4 x 4 system if A,, A,+1 are well separated 
from A,, A, tl. 

When we wish to associate ( A p ,  A p + l )  with some of the earlier eigenvalues (for 
which we have already done the back substitution), the solution is quite clear. When 
we encounter a real eigenvalue A, that is to be associated with them, we solve from 
that point on: 
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and we chose dl and d2 so that the i th component of xp and xp+l are zero. This gives 
us a pair of equations for dl and 4. If A,, &+I, and A; were the only three to be 
associated, we would have for the invariant 3-space 

0 t*+l,P tP+l,P+l d2 ) ( 
ti,; di 

T ( z i , x p ,  X p s d  = 0 tp,p tp,p+1 * 

If during the back substitution for xp, zp+l we encounter a pair A,, X z + l  which we wish 
to associate with them, we solve from that point on 

where the four d's axe chosen so as to make components i and i + 1 of z p  and zP+l 
equal to zero. 

For example, suppose we group (Ag, A,), A67 (Ad,  A,), where (h, As) and (A4)  A,) 
are complex pairs. We have 

and finally 

The eleriiertts named d:% and d.16 would haw been determined when computing x6 when 
we reached rows 3 and 4; the elements 1/68 and de9  would have been determined when 
computing 28 and zg wl-ien we reached element 6; and the elements d48, d49, d38, d39 

would have been determined when wc r~aclied elements 4 and 3. 
If we have made a good decision about our grouping, rows of the vectors will not 

be large, though this would not be sufficient to decide that the grouping is complete. 
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First, there may be some A; which should also be associated with these five. Second, 
the vectors 23, 2 4 ,  5 6 ,  28, and x9 might not be as linearly independent as we would 
like. 

5 .  Conclusions 

The methods described in Section 2 has been improved and generalized by Ng and Par- 
lett [4] and implemented in LAPACK [l]. The LAPACK implementation includes tol- 
erance checks and scaling to ensure numerical stability [2]. This is essentially achieved 
by not swapping blocks that are regarded as being too close. 

We have discussed numerical issues concerned with the computation of invariant 
subspaces and proposed two methods related to their computation. The method dis- 
cussed for swapping diagonal blocks can readily be extended to the generalized eigen- 
value problem. 
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