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BAYESIAN APPROXIMATION OF SOLUTIONS 
TO LINEAR ORDINARY DTFFERENTIAL EQUATIONS 

Karole Herzog, Max Moms, and Toby Mitchell 

ABSTRACT 

An approach to numerically solving linear ordinary differential equations, based on statistical 

Bayesian prediction, is described. Preliminary results on the details of choice of correlation 

parameters and experimental design are given, using first- and second-order example problems. 

Key Words: Bayesian prediction, collocation methods, correlation function, experimental design, 

interpolation, spline, stochastic process. 
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1. INTRODUCTION 

We describe here a general method for approximating the solution of a linear ordinary differential 

equation of form 

&xj(t)Y"'(t) = f(t), 
j=o 

for all t in a specified interval T, where necessary side conditions are supplied. Here we shall 

consider only first and second-order equations (n I 2), but the approach is easily generalized to 

higher orders. There exists a large collection of methods that are applicable to problems of the 

form (1); see Isaacson and Keller (1966, Chapter 8) and Gear (1971) for a review of many of 

these. In contrast to previous approaches, the method we present here is based on a Bayesian 

statistical formulation, under which uncertainty about the solution function y is expressed by 

means of the random function (equivalently, stochastic process) Y. This is a direct generalization 

of the Bayesian use of a random variable to represent uncertainty about a scalar quantity. The 

datu on which we shall base the estimate of y consists of the side conditions and a finite number 

of enforcements of the differential equation at selected values of t. The conditional stochastic 

process given these data, or Bayesian posterior process, provides a predictive distribution for y at 

each value o f t  in T, and we take the mean of this process as the approximation 9 of the function 

Y. 

It should be noted that this is a report of preliminary research results. If this methodology is to 

eventually become part of the practical body of numerical tools for solving differcntial equations, 

it will need to be made computationally competitive with methods presently used. Howcver, our 

work to this point has concentrated simply on the feasibility of the approach, rather than on its 

competitiveness. Thus, for example, we have not yet compared the computational effort required 

with the requirements of methods currently in use. 

This kind of approach was used in a different context by Cunin, Mitchcll, Morris, and Ylvisaker 

(1988) and Sacks, Welch, Mitchell, and Wynn (1989) for predicting an unknown function y on 

domain T, given y(t) at a set of design sites D = (ti, i=l, ..., n}. (We shall often refer to particular 

values o f t  as sites, following a common practice in geological applications of similar methods.) 

There, prior knowledge of y was represented by a Gaussian stochastic process Y, usually taken to 

be stationary to express prior impartiality. Thus E[Y(t)] = p and Var[Y(t)] = (T ', where p and o2 
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are the same for all t in T, and, for s, tE T, Corr[Y(t), Y(s)] = R(s-t), a function only of the 

distance between s and t. Following observation of the values of y at each site in D, the posterior 

process is also Gaussian and Y(t) has posterior mean and variance: 

Here, 2, is the vector of prior covariances between Y at the site t and the design sites D, and ODD 

is the prior covariance matrix for Y at the design sites. The elements of 7~ are the observed 

values of y on D, and the elements of i i D  are the prior expected values of Y(t> (all equal to p. ) for 

each 1~ D. It can be shown that 9 satisfies the given data exactly; it is therefore an interpolating 

function. 

In order to implement equations (2) and (3), one needs to specify p, (s, and the correlation 

function R. Two examples of R used by Cunin et al. are the Gaussian correlation function (not to 

be confused with a Gaussian stochastic process), 

R(d) = 

and the nonnegative cubic correlation function, 

0 
ldl<- 

2 
d Id1 
0 0 

R(d) = 1 - 6(-)2+6(-)3 

Id1 
0 

R(d) = 2( 0 
--I Id1 < 0  
2 

(4) 

R(d) = 0 Id12 0. 

where d = s-t, s. t E T, and 0 c 0 c -. 

Since 

G&=c;”x[R(t-t l ) ,R(t-t2) ,  ,R(t-t,)] , 

the posterior mean function g is seen to be a constant (p) plus a linear combination of the n basis 

functions Ri = R(t - 4).  Thus, if R is given by (4), 9 is analytic (because R is), and iP R is given 

by (5). 9 is a cubic spline (because R is). We shall use these correlation functions in our 

examples below, where the application is to the approximation of the solution of linear 

differential equations. 
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2. APPROXIMATING THE SOLUTION OF A LINEAR DIFFERENTIAL EQUATION 

From a statistical point of view, the primary difference between the interpolation problem 

described above and the problem of approximating the solution of a differential equation is the 

nature of what may be called data. We shall follow essentially the approach outlined above for 

interpolation, modified to use the data available in a differential equation. 

2.1 The Approximation 

In order to admit a unique solution, an nth-order linear ordinary differential equation (1) is 

generally accompanied by n side conditions that must be satisfied in addition to the differential 

equation. In this discussion, we will use conditions of the form: 

where the ith condition specifies the value c, of the k(i)th derivative at site ti, k(i) 5 n. We denote 

by B = (4,  i=l, ..., n)  the list of sites corresponding to the set of side conditions. These are not 

necessarily distinct; for example, an initial value problem specifies all side conditions at the same 

site. 

Other information about y is available in the differential equation (1) itself. Of course, if we 

could find a function that satisfied the side conditions as well as the differential equation at all 

sites in T, it would be the exact solution, y. Unfortunately, this is generally not feasible. Instead, 

we shall use as data the relationship specified by (1)  at only a finite set of m enforcemenr sites 

D =  {ti , i=n+l,  ,n+m]:  

We regard enforcement sites as design sites, because we are free to select them. Although some 

sites in B and D may coincide, it is convenient for notation and bookkeeping to treat B and D as 

distinct lists. We shall call their concatenation C. 
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We represent uncertainty about the solution function y by the nth-order differentiable Gaussian 

stochastic process Y. Let 

where 

$aj(t)YG)(t) = F(t) . 
j=o 

(9) 

The elements of 2 are all linear functions of Y and its first n derivatives at the sites of side 

conditions and enforcement, i.e., 

where ?* is the [(n+m)(n+l)]-vector: 

2 = A?*. 

and A is an (n+m)x(n+m)(n+l) matrix of known constants. (In practice, any columns of A which 

contain only zeros could be deleted from the matrix, but for notational simplicity we will not do 

so here. We demonstrate the formation of A in examples to be given later.) 
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Then the knowledge provided by the data is that 

2=2 
where 

-if= 

Since the process Y is Gaussian and nth-order differentiable, the joint prior distribution of 2 and 

Y(t) at any site is multinormal. The posterior distribution of Y(t), given (12), is therefore also 

multinormal (see, for example, Morrison (1967)), and its mean and variance are given by: 

where COVE?*, Y(t)] is the vector of covariances between 'it* and Y(t); 

where Cov[?*, ?*] is the matrix whose (i, j)th element is the covariance between the ith and jth 

elements of ?*; 
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-+ p, = E[?] = E[Af)*] = AE[?*]. 

The posterior process depends, therefore, on certain covariances and expectations involving ?*, 
which are immediate once covariances and expectations involving the derivatives of Y are 

available. It can be shown that, for stationary Gaussian processes with R suitably differentiable, 

and 

E[YG)(t)] = 0 , j > 0 , 

Cov[Ya)(t) , Y@)(s)] = 02(-1)'Rc'k)(s-t). 

From (I l ) ,  (IS), and (19), 
-3 

k = we, 

where 2' is the [(n+m)(n+l)]-vector with "1" in positions j(n+l)-tl, j=O, 1,2,  . 
"0" everywhere else, Le., t h a s  "1"  in the same positions that Y has the superscript "(0)" in (1 1). 

, n+m-1, and 

We shall use 9 in (14) as our approximation to the solution of the differential equation (1) subject 

to the specified side conditions (6). It can be shown that 9 necessarily satisfies (6) and (7), i.e., 

our approximation satisfies the side conditions and also satisfies the differential equation at the 

enforcement sites. Our method is therefore a type of collocation method. (Sce, e.g., Prenter 

1975, Chapter 8.) We shall not be concerned here with the posterior variances given by (15); 

effective use of these calculations for design and inference requires a more intensive 

investigation. 

At present, we automatically choose p by the method of maximum likelihood. The probability 

density function of 2 is 

The likelihood function is the prior probability density function for 2, evaluated at the value 2' 

given by (13), and regarded as a function of the parameters of the stochastic process. It is 

convenient to work with the natural log of the likelihood: 

L = -%[(n+m) In (2x) + In det ((Tc-) 3- @'- + T  pJ o&@- a]. 
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For fixed 6 and (3 the maximum with respect to p occurs at the unique stationary point, which can 

be easily found by differentiating L with respect to p. and equating the resulting expression to 0. 

One obtains: 

where t3 = A??. 

With (23) substituted for p. in (14), 9 depends only on the choice of correlation function R, 

including its parametefls) 0. (The prior variance 02 does not affect 9, since it appears only as a 

constant factor in & and OCC, and effectively “cancels out“.) The choice of correlation function 

is still very much an open issue. In our examples so far, we have considered only the Gaussian 

(4) and nonnegative cubic (5) correlations, and have experimented with various choices of 0 in 

each case. 

2.2 Example 1 

Consider the simple differential equation: 

The solution is y(t) = e‘, which we shall use to compare with our approximation. 

There is one side condition site B =Itl) = {O). Suppose we choose the m=6 enforcement sites 

D =  Itz, . . , t7) = (0,0.12,0.35,0.61,0.86, 1.00). Then 

where a t )  = 1 and al(t) = -1, and 



To obtain the covariances needed to compute and oCc through (16), (17), and (20), we use the 

Gaussian correlation function (4) with 8 = 1.0. The approximation (14) works very well in this 

case: the maximum absolute error, I &(t) I = I y(t) - 9(t) I , evaluated at 101 equally spaced sites 

covering T, is 0.00021. We shall visit this example again later, using the nonnegative cubic 

correlation. 

2.3 Selecting Enforcement Sites 

In an attempt to develop a formal method for choosing the enforcement sites, we first adopted as 

a design criterion the maximization of det (acc). This was contrived by analogy with the 

approach of Cunin, et al. (1988) to the construction of designs for prediction of y on T given 

knowledge of y at the design sites. There the design criterion for prediction based on (2) and (3) 

was maximization of det (aDD). Although the analogy is weak (because the given knowledge 

here is of a different type), this criterion is useful for numerical reasons. Since crcc is the matrix 

of the linear system that must be solved in (14) and (23), the choice of design heavily influences 

the extent of numerical difficulty encountered in the prediction. We have found that designs 

which maximize the determinant of this matrix often lead to relatively fewer numerical 

difficulties. In the few cases we have considered, the "optimal" designs found by our computer 

algorithm place the design sites at roughly equal intervals. Until more rigorous approaches to 

design construction are developed, this kind of design seems a reasonable choice. 

Alternatively, we tried an adaptive approach, which starts with an equispaced design and then 

adds new enforcement sites one at a time, each one at the value o f t  where the absolute value of 

the function 

2(t) = ?(t) - f(t) = ?aj(t)y"(t) - f(t). 
fl 
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is currently largest. (We typically restrict this search to the finite set T l o l ,  which consists of 101 

equally spaced sites covering T.) This strategy is based on the hope that enforcement of the 

differential equation at the value of t where it currently fails most badly will improve the 

approximation to y. After the addition of each new site, 9 and z are updated and the process 

continues; as already noted, z becomes 0 at each new enforcement site. Ideally, we want z to be 

0 everywhere in T, for then 9 would satisfy (1). However, we have not developed any 

convergence theory. Our "stopping rules" are quite vague: we stop when I z I seems satisfactorily 

small. We are sometimes forced to stop sooner (or to pause and alter 0), because G~~ becomes 

increasingly ill-conditioned for fixed 6 as we add enforcement sites. Nevertheless, we have had 

good results with this adaptive method so far, and we shall use it in the remaining examples of 

this report. 

2.4 Example 1 Revisited 

We consider again the first-order differential equation (24), this time with the five equally spaced 

enforcement sites D = IO, 0.25,0.50,0.75, 1.001, and the nonnegative cubic correlation (5 )  with 

8=20. The maximum l ~ ( t ) I  on TI,, is 0.02675; this is attained at t=0.12, so the sixth 

enforcement site is placed there. After updating 9 and z, we find the maximum Iz(t)l to bc 

0.01865 at t = 0.37, and the seventh enforcement site is added there. This process is continued, 

and three further enforcement sites are added at 0.62.0.06, and 0.18, in that order. The functions 

z,(t) and %(t) = y(t) - ym(t) are shown in Figure 1 for m=5, 6, and 10, where the subscript m 

refers to the number of enforcement sites used in the approximation. Figure 2 shows the 

maximum value of the absolute error I &(t) I on Tlol as a function of m. The final maximum 

absolute error of approximation is 0.00385, which we think is respectable, although it is still not 

as low as that obtained above using the Gaussian cornlation function with six enforcement sites. 

2.5 Choice of Correlation Function; Estimating 8 

As in the prediction context (Section l), the nonnegative cubic correlation function leads 

automatically to approximations that are cubic splines and the Gaussian correlation function leads 

to approximations that are analytic. This can be seen by noting that 9 in (14) depends on t 

through the elements of &; examination of (20) shows that these elements have the same form 

as the correlation function R and its derivatives. 
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Figure 1. Plotofr,(t)=h:,(t)-h(~)and&,(t)=y(r)-y^,(r),m =5,6,10,forExamplel (re- 
visited), where the approximation y  ̂ is based on the nonnegative cubic correlation with 8 = 20. 
Points that correspond to the m enforcement sites are marked on the curves by dots. 
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Figure 2. plot of the maximum absolute error in y,  as a function of the numbex of enforcemat sites m , for 
Exampie 1 (revisited), w h m  y  ̂ is based on the nonnegative cubic corrtiation with 0 = 20. 
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Our limited experience suggests that the Gaussian correlation can work very well indeed, as in 

Example 1, but its performance seems quite sensitive to the design D and to 8. The nonnegative 

cubic correlation seems more forgiving, and is better suited to the sequential addition of 

enforcement sites for fixed 8. A disadvantage is that it can only be used for first-order equations; 

this can be seen by noting that R must be differentiable through order 2n in order to define all the 

covariances required (see (20)). 

We have tried two approaches to the choice of 8 for a given correlation function, one based on 

maximizing the likelihood (22) and the other based on minimizing the size of the function z (27). 

For fixed 0 it is easy to obtain maximum likelihood estimates for p and 0, but after substituting 

these values into (22), maximization with respect to 8 is not so direct. Although the likelihood 

function seemed well behaved in all the cases we considered, the search needs to be handled 

delicately. As 8 increases, the detemiinant of aCc tends to become very small, so the 

computation of (22) becomes unreliable. Unfortunately, maximization of L frequently forces the 

search in this direction. After making some superficial efforts to overcome this difficulty, we 

abandoned the attempt to choose 8 via maximum likelihood in favor of an alternative criterion 

based on z. We observed that the absolute value of this function tended to be relatively small 

when the approximation was good and relatively large when the approximation was bad. As a 

result, we tentatively adopted a criterion which chooses 8 to minimize the sum of squared values 

of z(t) on Tlol. Although we have not investigated the theoretical properties of this or similar 

critcria, it has not so far presented the numerical difficulties we encountered with maximum 

likelihood, largely because it does not seem to favor such high values of 8. We used this criterion 

for choosing the initial values of 8 in the Examples 3 and 4 below, where it worked well, and we 

think it might prove helpful in automating parameter estimation after further development. 

Computation of z for many values of 8 should be avoided if possible, however, because of 

computational expense (Section 4). 

3. EXAMPLES 

We applied the method described above to three additional examples where the solution is 

known. The problems are of the textbook variety, but serve as generic examples of several kinds 

of differential equations that are of much interest. The first is a first-order equation that is 

considered stiff because its solution contains a rapidly decaying component. The second and 
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third examples are based on a second-order differential equation. They differ from each other 

only by the nature of their side conditions, the first of them being an initial value problem and the 

second being a two-point boundary value problem. 

3.1 Example2 

Problem: 

The solution is 
e-50t 

y(t) = - + t2. 
3 

Our initial design consists of the 10 enforcement sites D = { O . l ,  0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0). The form of A and of ‘2‘ are similar to (25) and (26), but A has 11 rows, Q(t) = 50, 

q ( t )  = 1, c1= 1/3, and f(t) = 50t2 + 2t. Our initial approximation, which is shown in Figure 3a, is 

based on the Gaussian correlation function with 9 = 0.42. (This and other values of 8 were 

chosen by trial and error so as to give reasonably low values of I z I  without encountering 

numerical difficulties.) We find the maximum Iz(t)I to be 8.96, at t =0, and add a new 

enforcement site there. The resulting approximation is shown in Figure 3b. We Lben find the 

maximum I z(t) I to be 3.17, at t = 0.03. After adding a new enforcement site there, we encounter 

numerical problems, which are alleviated by decreasing 0 to 0.25. The maximum Iz(t)I 

surprisingly shoots up to 20.6, at t=0.97. The approximation, although good for t cO.75, 

becomes much worse near the right end of the interval. ( S e e  Figure 3c.) The addition of a 

thirteenth enforcement site, at t =0.97, improves matters greatly. Figure 3d shows 9 for the 

resulting 13-point design; the maximum absolute error in 9 on TI,, is 0.010, and the root mcan 

squared error is 0.0045. The maximum Iz(t)l is 0.66 at t-0.06, but when we try to add an 

enforcement site there, we encounter more numerical problems. We go no further, although we 

presumably could relax 0 again and continue. The functions z, and E, are shown in Figure 4, for 

m=10, 11, and 13. 

We now repeat this example using the nonnegative cubic correlation function with 8 = 13. We 

find that this correlation function allows us to use more enforcement sites in our design without 

encountering numerical problems. Also the z and E functions become smaller (as measured by 
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Figure 3. Plots of me solution y and approximale solulions y,, m = 10, 1 1 ,  12. 13, for Example 2, where the approximation is based on the Gaussian 
correlation with 9 = 0.42 for M = 10.11 and 8 = 0.25 for m = 12.13. Points that correspond to the rn enfoEement sites are marked on 9 by dots. 
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Figute4. Plotofr,(t)=h:,(t)-h(r)and~,(t)=y(r)-j,,,(t),rn = 10,11,13,forExarnpb2, 
where the approximation y  ̂ is based on the Gaussian comhtion with 0 = 0.42 €or m = 10.11 and 
0=0.25 €or m = 12,13. Points that correspond to the rn enforcement sites are marked on the 
curves by dots. 
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the maximum and sum of squared absolute values on Tlol) with the addition of each new site. 

After starting with the same initial 10-point design (from 0.1 to 1.0 in steps of O.l), we add the 7 

new points: 0, 0.04, 0.02, 0.01, 0.07, 0.03, 0.05, in that order, again using the strategy of adding 

the new point wherc IT I is currently largest. For this 17-point design, the maximum absolute 

error in 9 on TI,, is 0.00131 and the root mean squared error is 0.00032. The plot of 9 (not 

shown) is visually indistinguishable from the true solution y. The functions z, and are shown 

in Figure 5 ,  for m=10, 11, and 17. Figure 6 shows the maximum absolute error in 9 on TI,, as a 

function of the number of enforcement sites. We could continue to add enforcement sites without 

numerical difficulties, but this does not seem warranted given the accuracy of the approximation 

obtained at this stage. 

3.2 Example3 

In order to approximate the solution of second-order linear differential equations, we require a 

correlation function that is at least four times differentiable. The nonnegative cubic correlation 

hnction does not have this property; therefore, we use only the Gaussian correlation function, 

which can be differentiated as many times as needed, for the second-order examples. 

Problem: 

2y(t) - 2ty’(t) 4- t2y”(t) = t3ln(t) 1 5 ts 2 , y( 1) = 1 , y’( 1) = 0. (30) 
The solution to this problem 

which is plotted in Figure 

is 

7 t3 3 
y(t) = -t + -h(t) - -13, 4 4 2  

7. Our design consists of the 5 equally spaced sites from t = 1.2 

through t = 2.0. The 7x21 matrix A has the form: 

where %(t) = 2, al(t) = -2t, and a2(t) = t2. The vector z’ is given by (13), with c1 = 1, c2 = 0, and 

f(t) = t3ln(t). 
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Figure5 P l O t O f 5 , ( r ) = h : , ( t ) - h ( f ) a n d E , ( f ) = y ( t ) - y ^ , ( f ) , m  =10.11, 17,forExample2, 
wheae the approximation f is based on the nonnegative cubic correlation with 9 = 13. Points that 
carrespond to the rn enforcement sites are marked on the curves by dots. 
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Figure 6. Plot of the maximum absolute emr in y^. as a function of the number of enforcement sites m , for 
Example 2. where f is based on the nonnegative cubic correlation with 8 = 13. 
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Figure 7. Plot of the solution function y for the second order diffemmal equanon of Example 3 (hitiid 
value problem) and Example 4 (two point boundary vdue problem). Points that correspond tD the 5 en- 
forcement sites are marked by dots. The approximation y^, based on the Gaussian correlation with 0 = 9 is 
vinually the same as y in both examples. 
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Our approximation, based on the Gaussian correlation function with 8 = 9, turns out to be 

exceptionally good in this example; the maximum absolute error in 9 on TI,, is 7.84~10". 

3 3  Example4 

We conclude the examples using the differential equation of Example 3 (30), but stated as a two- 

point boundary value problem rather than as an initial value problem. The boundary conditions 

are: 

y( 1) = 1, y(2) = 4h(2) - 5/2 = 0.27258872 (32) 

and the solution is the same as given in (31). 

Using the same 5-point design and value of 8 as in Example 3, the largest absolute difference 

between our approximation and the true solution on TI,, is 2 .17~10-~ .  Although such accuracy 

cannot be expected in general, this example raises our hopes that the method will prove 

competitive. 

4. COMPUTATION 

We have written two programs for producing the approximation 9 .  Thcy are similar in most 

respects, but one was written specifically for first-order equations and the other for second-order 

equations. By means of an input file, the user provides the number of side condition sites n, and 

for each of these, the location 6, the order of derivative k(i), and the value c, of y@('))(t;>, 

i = 1, * , n. The number of enforcement sites m and their locations &,+lr . , &+,,, are 

provided in the same input file. The differential equation (1) is specified through the user-defined 

functions Q, . . . , h, and f. For first-order equations, the user is given a choice of the Gaussian 

or nonnegative cubic correlation functions; this information is supplied interactively by the user 

in response to a prompt. For second-order equations, the Gaussian correlation is assumed. In 

both cases, the value of 8 is also supplied interactively. 

The method of computing the posterior expectation and variance of Y follows the matrix 

formulation described in Section 2. The program constructs the matrix A and the vector e' and 

uses (17) and (20) to construct nee. It computes 9 in (14) as 
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where in (23) is computed as 

(33) 

(34) 

and the vectors 2 and fl are computed as solutions to the linear systems: 

respectively. The program also computes ~ ( t )  in (27) for all t in Tlol .  The derivatives of 9 
needed for this are computed from 

The main computational work is in the solution of the two (n+m)-dimensional linear systems (35) 

and (36), both of which have the same coefficient matrix occ. In the examples we have 

considered here, m+n ranged from 6 to 17. When new enforcement sites are added to an existing 

design, for fixed 8, computational savings can be achieved by updating, for example, the 

Cholesky factorization of oCc used in the solution of the linear systems. We have not yet 

incorporated this into the program. 

5. DISCUSSION 

This report has demonstrated the application of Bayesian statistical inference to the solution of 

linear differential equations. By viewing the differential equation and its side conditions as 

sources of data about the unknown solution function y, we have used simple Bayesian techniques 

to produce the posterior mean function 9 ,  which serves as our approximation to y. 

Our main concern here has been to show that this approach can work well, in the sense of 

producing good approximations easily. We have shown that for either the Gaussian or 

nonnegative cubic correlation function, with selected values of 0, it is possible to obtain a very 

good approximation of the solution lo both first-order and second-order linear differential 

equations by this method. However, we have treated lightly many of the following important 

issues, which will need to be resolved before the ultimate utility of the method can be 

determined. 
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5.1 Design 

One of the advantages of a Bayesian approach is that there exist accepted ways to quantify such 

concepts as "amount of information". However, we have not really exploited this in fonnulating 

design criteria. That is, we have not formally addressed the question of where to place additional 

sites in order to maximize the gain in information about y. Our current design method is to start 

with an equispaced design and then add new sites where the value of I z I is largest. This is 

intuitively appealing and seems to work well, but lacks a rigorous foundation. 

5.2 Choice of prior process 

Although we restricted our attention to Gaussian prior processes, stochastic processes other than 

the Gaussian could have been considered. However, such processes would, in general, greatly 

complicate computation of 9. Furthermore, given freedom to choose the form of an appropriate 

correlation €unction, use of Gaussian processes may not pose a serious limitation in practice. 

Within the framework of Gaussian processes, there is much room for the investigation of 

correlation functions other than the two we have used here. A nonnegative quintic correlation 

would be useful for second-order problems, since the cubic can be used only for first-order 

equations. The Gaussian correlation function, which is infinitely differentiable, can be used for 

differential equations of any order, but requires considerable care to avoid numerical problems. 

Both the correlation functions we considered here depend on a single parameter 8. In practice, 

we have found it useful to select a value of 8 which approximately minimizes the sum of squares 

of z over a representative finite subset of T, but this minimization can be computationally 

expensive. 

53 Computation 

The main computational disadvantage of our method is that it requires the solution of an 

(n+m)x(n+m) system of linear algebraic equations, and the coefficient matrix of the system may 

not be well-conditioned. This is offset somewhat by the fact that (n+m) does not need to be very 

large to obtain a good approximation. One possible way of speeding up the computation is to 

choose the correlation function and the design so that acc is sparse. For example, if one uses an 

equispaced design in which the distance between two neighboring sites is 6, and a nonnegative 

cubic correlation function with 6 c 8 c 26, acc will be tridiagonal. 
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5.4 Extensions. 

An appealing feature of the Bayesian approach is that it extends naturally to systems of linear 

ordinary differential equations (0.d.e.’~) and to linear partial differential equations (p.d.e.’s). For 

the former, prior uncertainty about the unknown functions is represented by independent 

stochastic processes, each of which can be of the same form considered in this report. Each 0.d.e. 

is then considered a source of data for the Bayesian method. The mechanics of the 

approximation are the same as for single o.d.e.’s but the system of linear algebraic equations to 

be solved is likely to be much larger. The design issues are likely to be more interesting, also. It 

is not clear whether one should enforce the whole system at all design sites, or take a more 

selective approach. 

The Bayesian approach to linear p.d.e.’s is the same as it is to linear o.d.e.’s. The only obvious 

complication is that T is multidimensional, and suitable correlation functions need to be defined. 

This can be done using the product correlation rule, as is done for the prediction problem (Cunin 

et al. 1988, Sacks et al. 1989). Once the intersite correlations are defined, the mechanics are 

again the same as for linear o.d.e.’s. Our experience with the prediction problem leads us to 

believe that we may be able to achieve good approximations to the solution of linear p.d.e.’s with 

fairly simple and economical designs, Le., without having to impose a dense, well-structured 

mesh on T. Further extension to systems of linear p.d.e.’s leads to problems that are larger in 

scale, but require no fundamental change of approach. 

Ultimately, of course, we would like to extend our approach to nonlinear differential equations, 

but the way is not so clear. Our approach for linear differential equations benefits greatly from 

the fact that, for Gaussian prior processes, the data provided by the differential equation(s) are 

normally distributed, a priori, with easily derivable means and covariances. For nonlinear 

equations, this is not the case. Our inclination is to attempt to develop an iterative method, based 

on the solution of appropriately linearized equations at each stage. 

These extensions will require much more work than we have so far undertaken. Although we can 

only speculate about their eventual success, we are encouraged by the results we have obtained in 

the few simple examples described in this report. 
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