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ABSTRACT 

The system of partial differential equations recently introduced to model combat 
in one spatial dimension has been extended to include two spatial dimensions and 
has been numerically integrated to demonstrate its capability to describe maneuver. 
Engagement scenarios wherein the attacking force( s) employs the frontal attack, 
turning movement, envelopment, or infiltration against a fixed defensive force 
are presented for various combinations of troop and firepower ratios. The time 
and spatial distributions of the forces are displayed in graphical form along with 
approximate attrition rates as a function of battle duration. The results establish 
that the PDE formalism replicates these maneuver forms within the constraints and 
present development of the model. 

vi i 





1. INTRODUCTION 

In 1914, F. W. Lanchester' introduced the first successful mathematical model 
to describe military combat. His model is a system of nonlinear o r d i n q  differential 
equations (ODES) 

giving the time evolution of 
classical, usually small size, 

the total number of troops, u( t )  and v(i), during a 
engagement. In this model the mutual attrition is 

controlled by the negative coefficients c1, c2, d l ,  d2 while autonomous sources or 
sinks are represented by the nonhomogeneous terms el  and e2. 

Lanchester's equations and their direct generalizations have been used for more 
than 70 years to study combat to guide military researchers in the assessment of 
concentration of troops in combat, and to predict the outcome of battle and resolve 
issues including but not limited to force concentration, duration of the battle, and 
tactical assessment of the engagement. 

Since WWI, when the Eqs. (1.1) were proposed, the modern battlefield 
environment has changed dramatically. The lethality of firepower, mobility, 
and logistics capabilities have increased with improved technology. In addition, 
highly interconnected command, control, and communications ( C3) networks, 
hierarchical fire control, and joint forces operations have led to changes in tactical 
deployment strategies and mission planning. Although the Lanchester equations 
have undergone numerous improvements and refinements: the ODE format cannot 
account for the movement of opposing forces and thus relevant factors such as 
maneuver (advance and retrograde), terrain effects, obstacles, replacements, target 
priority/fire allocation, etc., could not be systematically included in the analyses of 
battle. 

A model for combat should take into account its two basic features, namely 
attrition and maneuver, and should be able to include, in a more refined stage, the 
nonhomogeneous character of the modern army, the importance of the principle of 
command and control, and the impact of logistics and intelligence. 

A new, more comprehensive, analytic model3 was introduced to describe both 
the spatial and temporal evolution of forces in combat. This new model is based 
on partial differential equations (PDEs) and contains the Lanchester model as one 
of its limiting cases but goes beyond any generalization of Eqs. (1.1) that has been 
tried over the years. It is a new and original tool for military research. Indeed, this 
model provides, for the first time, an analytic alternative to war games and combat 
simulation methods €or obtaining time-dependent solutions of the attrition rates of 
opposing forces during movement to contact and engagement. However, in the form 
given in Ref. 3, the model constrains the force movement to one dimension,, i.e., along 
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the axis of attack, and, accordingly, cannot represent realistic maneuvers on the 
battlefield (e.g., circumvention of obstacles by moving forces) and in general, it 
cannot account for the full dynamics of modern tactical situations. To include these 
aspects, and to have the capability for representing realistic engagement scenarios, 
the model proposed in Ref. 3 was extended to two spatial dimensions. 



2. THE MODEL 

Two situations have been considered: two opposing forces consisting of an 
attacker (offensive troops), A, and a defender, D, and two attacking forces Al,  
and A2 against a single defending force. For the former case, the PDEs describing 
the engagement are given by 

and for the latter, the first equation in (2.1) is replaced by two equations to account 
for the added offensive force and are given by 

The equation to describe the defending force remains the same as in Eqs. (2.1), 
but now U A  = uA1 + u A 2 .  In equations (2.1) and (2.2), the terms have the followhg 
meanings 

- &(fi;B+i) is a (Fickian) diffusion term that models the natural tendency of any 
force, ancient or modern, to spread out from its initial configuration as it moves, 
fights, etc., or simply as just time elapses, due to fatigue, loss of concentration, 
loss of motivation, etc. 

- a,.((?iu;) is the advection term describing the large-scde, ordered of 
troops on the battlefield as opposed to the “chaotic,” small-scale movement 
represented by diffusion. 

- uiu; represents re-supply of the force u,  at the rate ai > 0. 

- biu? models (for bi < 0), self-repressing effects due to crowding, saturation, etc. 
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- uici * u j  describes typical interaction between opposing forces and is given by 

uici * uj = u ~ ( F ,  t )  c ~ ( F + -  F ' ) U j ( F ' ,  t)dr" . J 
--- diuj + ei reproduces the linear and nonhomogeneous terms in the classical 

Lanchester form (1.1). 

For the case of two opposing forces, i , j  E { A ,  D}, i # j and for two attacking 
forces against a single defender, i = A1 or A2, j = D. The kernel ci represents 
a space dependent generalization of the area-fire attrition inflicted on force ui by 
force uj  during the engagement. Of course, the aimed fire term diuj  can be made 
nonlocal too, in the form d;  * uj = J d i ( r ' -  F')uj(F+',t)d?". 

Equations (2.1) and (2.2) are supplemented with the initial conditions (I.C.) 

and the boundary conditions (B.C.) 

-+ 

aiui + pa+ilpEan = h i ( 3  (2.4) 
where the subscript i denotes (A ,  0) or (AI, A2,D)  depending on the number of 
forces engaged in the battle. 



3. MANEUVER MODELING 

Together with attrition, maneuver is an essential element of combat. The forms 
of maneuver include envelopment , the turning movement, infiltration, penetration, 
and frontal attack. Depending on the tactical situation, these may be used alone 
or in combination, and each poses a very different command and control challenge 
to the commander of the attacking forces. 

In this section, the capability of the PDE model to replicate both aftration and 
maneuver is demonstrated for the engagement of homogeneous forces. The principal 
purpose of this study is to demonstrate that the model can describe movement 
during combat thus representing a significant improvement over the ODE models 
which can describe only attrition. Although for some cases, the sensitivity of the 
attrition rate is calculated as a function of the force concentration, the results remain 
still qualitative since realistic quantitative results depend on further refinements to 
the model. To provide a quantitative and detailed description of maneuver, real 
data regarding attritions, speeds, diffusions, etc. need to be taken into account. 
These data are usually not readily available or easily derived from engagement 
histories.* Moreover, the data are almost exclusively given in terms of outcomes 
(number of troops); finding the input parameters (attrition rates, advancement 
speeds) from these outcomes requires a difficult and uncertain process of parameter 
identification. 

For all the cases studied, the battlefield is taken to be a square having sides of 
unit length. The initid force distribution, ujo, is a bivariate Gaussian. This shape 
was chosen to simplify the numerical analysis since flat rectangular distributions 
yielded oscillations in the tails of the distribution as the battle evolved. The global 
force concentrations are calculated from the distributions u j(?, t )  by integration over 
the spatial domain 

Ui( t )  = J Uj(?, t)dF i = 1 , 2 .  

Similarly, one computes the initial strengths of the forces 

Uj, = ~;,(?')dr" i = l , 2 .  (3-2) J 
Since the purpose here was only to demonstrate maneuver to contact, the battle time 
was chosen to carry the problem to engagement. No attempt was made to disengage 
the forces as a function of troop losses even though the capability does  exist.'^^ For 
the subsequent analysis, it was assumed that 15% global losses represented the 
unacceptable casualties criterion used for battle termination. 
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3.1 FRONTAL ATTACK 

The frontal attack generally occurs over a wide front and along the axis of the 
most direct approach. It is the simplest and least economical form of maneuver 
since the attacking force is subjected to the concentrated forces of the defender 
while its firepower is most constrained. The frontal attack is used principally to 
overwhelm a lightly defended position or to disorganize the enemy. It is also used 
by a subordinate force to an attacking element or larger force carrying out an 
envelopment or an infiltration. 

The temporal evolution of two opposing forces during a frontal attack when the 
global attacking force A has a 1:l troop ratio, i.e., no advantage over the global 
defending force, D, is shown in Fig. 1. The defender maintains his position as the 
attacking force advances. During the engagement, both forces spread out on the 
battle plane at the same rate. The diffusion of the defending force occurs since 
the value chosen for its diffusion coefficient was in this, and all cases studied here, 
taken to be equal with the diffusion coefficient of the attacking force. This was done 
since there is, at present, insufficient experience and/or evidence for choosing more 
realistic 

Figs. 2a and 2b show the change in the total concentration, Ui/Ui, ,  of the 
attacking and defending forces, respectively, as a function of the duration of the 
battle. Results are given for the case shown in Fig. 1* and also for the cases 
when UA,/UD, i s  2:l and 4:l. For all of the cases, the attacking-to-defending force 
attrition rate ratio was taken to be 1.5:l in order to give the defensive forces a 
firepower advantage. 

The curves show that concentration is an advantage in a frontal attack 
maneuver. For example, when parity exists, the attacking force loses 15% of its 
troops at 0.55 time units into the battle compared to 6% for the defender. The 
superior firepower of the defense has the advantage. However, when the offense 
forces have troop superiority, as should be the case in this form of maneuver, the 
defending force is eventually overwhelmed and its losses axe too great to sustain 
the battle. When the offense has a 2:l superiority, -15% losses occur at 0.85 time 
units and are slowly varying at times greater than 0.85. On the other hand, the 
defensive force loss rates show a much higher loss rate after the opponents become 
fully engaged increasing from -15% to 30% between 0.85 and 0.95 time units. 
The results are even more dramatic when the attacking-to-defending force ratio 
is 4:l. The defending force suffers 15% casualties at 0.65 time units compared to 
only 6% for the attacking force. As the battle continues, the offensive force loss 

* In plots showing the frontal attack for force ratios of 2:l and 4:1, the larger 
attacking force shadows the defending force as the battle proceeds. The 1:l case 
was selected for Fig. 1 in the interest of clarity. 
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Fig. 1. Time evolution of a frontal attack maneuver for the case UA~~UD,, = 1:i. 
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rate remains essentially the same while the defensive force sustains casualties at a 
rapidly increasing rate. 

3.2 TURNING MOVEMENT 
The turning movement, which is a variant of the envelopment, is a tactical 

maneuver wherein the attacker attempts to by-pass a heavily defended position 
to assault a lightly defended position or secure an undefended objective. The 
representation of this maneuver is shown in Fig. 3 for the case when U A ~ / U D ~  is 4:l 
and the attacking-to-defending force attrition rate ratio is 1.5:l. For the purpose of 
this analysis, the firepower advantage was given to the defending element and the 
troop advantage to the offense. For a very lightly defended objective this might not 
actually occur. 

The numerical simulation did clearly demonstrate the movement of troops on 
the field, the active phase of the battle when the direct contact is realized and the 
mutual attrition decreases the number of troops engaged in combat, and the retreat 
of the defeated force (not shown in Fig. 3). If the defeated force is the one that 
made the attack, this last phase of the battle takes place on the same track as 
the one used for engagement but in reversed direction. If the entrenched force is 
the defeated one its retreat is made on some new track conveniently chosen. The 
loss of the total number of troops of one combatant that triggered the retreat was 
arbitrarily set at 15%. 

Fig. 4 compares the troop losses as a function of battle duration for the case 
given in Fig. 3. The offensive force superiority results in a victory by inflicting 
unacceptable casualties on the defending troops. The defending force suffers 15% 
losses at 0.75 time units while the attacking force losses are 7%. However, as the 
attacker expends 1.87 troops for each defender, victory is achieved, but at a heavy 
price. If the offense was modeled with both force and firepower superiority for the 
attacker, the outcome would be considerably different and, perhaps, a more realistic 
representation of this maneuver. 

3.3 ENVELOPMENT 
Envelopment is the form of maneuver that pits strength against weakness. The 

main element of the attacking force avoids the enemy front where his forces are most 
heavily defended and where his firepower is most concentrated. The defender’s 
attention is fixed forward by the diversionary assault of a small force while the 
main attacking body moves around the enemy defenses to strike at his flanks. A 
single envelopment is directed against one flank and the double envelopment is 
used to assault both of the enemy’s flanks. If the enemy forces move forward to 
repel the frontal attack, the enveloping maneuver can result in an encirclement that 
severs lines of communication and prevents escape or retreat and blocks the arrival 
of reinforcements. The envelopment places a priority on speed and agility since 
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Fig. 3. Time evolution of a turning movement for the case CTA~/UD~ = 4:l. 
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Fig. 4. Global force concentration as a function of battle duration when 
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4:l. 

success depends on reaching the enemy's vulnerable flanks before he can shift his 
forces and fire power. 

The scenario considered for this maneuver consists of a small attacking force 
having initial strength T L A ~ ~  carrying out a frontal attack on a defensive initial force 
' U D ~  while a larger force with initial strength 21,420 makes an envelopment and attacks 
the enemy flank. Three variations on this engagement were calculated corresponding 
to total attacking-to-defending force ratios, ( U A ~ ~  + U A ~ ~ ) / U D ~ ,  of 1:1, 2:1, and 4:l. 
For all of the cases, U A ~ ~ / U A ~ ~  is 3:l. Since this maneuver is used to pit strength 
against weakness, firepower superiority was given to the offensive forces in the ratios 
2:l and 4:l for attacking forces A1 and A2, respectively. The movement of the 
offensive forces was adjusted so that both offensive elements reached the objective 
at the same time. 

The evolution of the engagement when ( U A ~ ~  + U A ~ ~ ) / U D ~  is 4:l is shown in the 
sequence of topographical plots in Fig. 5. As in the case of the turning maneuver, 
the envelopment is completed by the attacking force making a right-angle turn to 
engage the enemy force. 
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Fig. 5. Time evolution of an envelopment maneuver for the case 
(U,,, +u*l0)/ UD, = 4:l. Force A1 is on the left and force A2 is on the right. 
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Fig. 6 compares the troop loss rates as a function of the duration of the battle 
for the three engagement scenarios. For the 1:l troop ratio case, the defensive 
forces suffer 15% casualties in 0.62 time units into the battle compared to 11% 
and 7% for attacking forces 1 and 2, respectively. When the attacking force has a 
2:l advantage, 15% casualties occur among the defending troops at 0.45 time units 
while the attacking force losses are 6% and 2%. For the case shown in Fig. 5, the 
same defensive force losses occur at 0.38 time units and the attacking elements lose 
3% and 2% of their initial strength. As the offensive force superiority increases, the 
casualty rate of defensive force increases rapidly as expected with the high offensive 
firepower advantage. 

The casualties suffered by attack force 1 are, in all cases, greater than those of 
attack force 2. This occurs for several reasons. Since the velocities of the assaulting 
troops are set to effect simultaneous contact with the enemy, force 1 is exposed to 
area fire for a longer time than the enveloping force. The casualty rate depends on 
the ratio U A l o / U ~ a  which for the total force ratios cases of 1:l and 2:l is 1:4 and 
12, respectively. For these cases, the enemy force advantage reduces the attacking 
force 1 firepower advantage. For the 4:l total troop ratio, UAT,,/UD,, is 1:l but the 
attacking force maintains the advantage in area and aimed fire. 

3.4 INFILTRATION 
The infiltration maaeuver is one of the means for reaching the enemy’s rear 

without fighting through prepared defenses. It is a covert movement where all or 
part of the attacking forces cross the enemy lines to secure a favorable position in 
the rear. A successful infiltration requires that the initial movement of forces go 
undetected so the attacking force is generally limited in size. This maneuver is used 
in rough terrain where visibility is limited or in areas poorly covered by observation 
and fire. It may be used to attack a lightly defended position or to assail a stronger 
position by attacking the enemy’s flank. 

The cases analyzed here combine infiltration with a frontal attack on a lightly 
defended position. The attacking force is initially split into two equal size forces 
( U A ~  = U A ~ )  to carry out the infiltration. These elements then combine to complete 
the frontal attack. In the first case, the offensive-to-defensive force ratio, UA/UD,  is 
1:l with the offense having a 3:l firepower advantage. The second case demonstrates 
the assault on a heavily defended position by an attacking force having a 1:2 troop 
disadvantage but a 5:l firepower advantage. 

The time evolution of the infiltration maneuver for the case when (UAI + 
U A ~ ) / U D ~  is 1:l is shown in Fig. 7. Shown in Fig. 8 are the rates of losses for the 
attacking and defending forces in this maneuver. Since each of the two attacking 
force elements have the same size, the attrition rates are identical and appear as 
one curve in the figure. For the case when the troop ratio is 1:1, the defense loses 
15% of its troops in 0.60 time units compared to 5% per attacking element for the 
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offensive troops for the 1:2 troop ratio case, the defense suffers 15% loses in 0.46 
time units while the attacking forces endure 5% casualties per attacking force. Even 
though the defense has troop superiority in this case, the firepower advantage of 
the assaulting forces secures a rapid victory. 
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Fig. 7. Time evolution of an infiltration maneuver for the case 
(uAio + U A ~ , , ) / ~ D ~  = 1:1. Force A1 is initially on the left and force A2 is initially 
on the right. 
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4. NUMERICAL COMPUTATIONS 

The approach taken in solving the combat modeling PDEs in one dimension3 was 
extended to two dimensions by discretizing the PDEs in both spatial dimensions. 
The integrator chosen to solve this problem is based on the Method of Lines, 
designed**' to solve a large class of PDE systems with different I.C. and B.C. Driver 
programs for these integrators were written to include the tactical information 
needed to simulate the chosen maneuvers. Thus it was necessary to investigate and 
assess the reliability and precision of the software for the specific class of problems 
to be solved here. Extensive testing of the program was carried out on a large set 
of test cases. This preliminary work involved different versions of the integrator 
code, its well as analytic work that produced exact solutions for comparison with 
the numerical results. The main purpose of this testing was to determine numerical 
values for the coefficients in Eqs. (2.1) and (2.2) to be used in the modeling of the 
nonanalytically solvable cases. 

4.1 COMPUTATIONAL METHODS AND COMPUTER PROGRAMS 

The Method of Lines on which the integrator is based consists of two parts. The 
first one is the discretization of the spatial derivative terms in the systems (2.1)- 
(2.2); it generates a large ODE system for the time evolution of the troop densities. 
The second part consists of the integration of this ODE system using the powerful 
numerical techniques that have been independently developed to solve this kind of 
problem. 

Let NPDE be the number of original PDEs, NX the number of nodal points 
in the x-direction, and NY the number of nodal points in the y-direction. Upon 
discretization in the spatial variables, the original system of NPDE PDEs in the 
three independent variables x, y, and t is converted to a system of (NEQ = NPDE 
* NX * NY) ordinary differential equations (ODEs) in the single independent 
variable t . Relatively recent developments include software for previously difficult- 
to-solve stiff ODEs and reliable, efficient algorithms for dynamically changing time 
step size and method order to maintain mathematical stability and a user-specified 
accuracy during the course of the integration. 

The particular implementation of the Method of Lines used to solve the combat 
modeling equations in two dimensions is that embodied in the FORTRAN package 
PDETWO/PSETM/GEARB.' The actual integration of the system of ODEs is 
performed by the code GEARB" which is a variable step/vaxiable order solver 
designed to handle both stiff and nonstiff ODE systems. The user's program directly 
calls the GEARB code which, in turn, invokes PDETWO to generate the right hand 
sides of the ODEs. Given a description of the original PDE problem, including 
the computational mesh, I.C., and B.C., PDETWO constructs the corresponding 
semidiscrete approximation system of time-dependent ODEs using second-order 
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centered difference approximations for the spatial derivatives. The routine PSETM 
is designed to allow efficient computation of the Jacobian matrix (the first derivative 
matrix for the right-hand side of the ODE system with respect to the dependent 
variables) for those stiff problems which require the use of the Jacobian matrix, 
The elements of the Jacobian matrix are given by 

for m,n = 1,. . ., NE& 

where fffl = the right-hand side of the mth equation in the ODE system and 

NY. 
 VU^ = u k , i , j  U E ( Z ; , Y ~ )  for IC = I , .  . , , NPDE; i = I,. . . , NX; j = 1,. . . , 

Generating the entries in the Jacobian matrix in a straightforward manner using 
finite difference approximations to the first partial derivatives would require NEQ 
evaluations of the right-hand side of the ODE system as each of the variables on 
was perturbed in turn. However, a close examination of the structure (the location 
of the nonzeros) of the Jacobian leads to the recognition that more than one v, 

can be perturbed simultaneously if these v, axe chosen judiciously so that each fm 
is a function of only one of the sets of selected 2r,’s. Indeed, as a consequence 
of the special block-tridiagonal structure (arising from the five-point difference 
formulas used to approximate the spatial derivatives in the original PDEs) of the 
Jacobian, only five right-hand side evaluations are required to completely determine 
the Jacobian elements corresponding to a particular PDE and hence 5 * NPDE 
evaluations to define the entire Jacobian. 

For checking and testing reasons, we investigated first the conservation 
properties of the solution for the one-dimensional pure diffusion-convection equation 

with homogeneous mixed B.C. 

Da,u + Cu = 0. 

When the initial condition ug(z) used in the integration of the above PDE satisfies 
the same B.C., the solution u that conserves the initial concentration in the exact 
analytic sense; namely, U ( t )  = Uo. However, from the numerical viewpoint, the 
situation is very different. Whatever precautions are taken, the numerical solution 
will yield global concentrations that vary slowly with time. Yet, the rate of change 
can be decreased if the spatial grid is made finer and special care is taken in the 
treatment of the B .C. This investigation clarified the relation between different 
choices for B.C. and the accuracy of the numerical solution provided by the software. 
Thus, with some numerical imprecision unavoidable, we were able to find reasonable 
values for the parameters such that the total loss through the boundaries due to 
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diffusion and convection in the attrition free problem be very small compared to 
the expected attrition losses in the evolution problems (2.1)-(2.4). Th’ is ensures 
that the combating armies are confined to the battlefield during the engagement, 
instead of escaping through the boundaries via spurious numerical artifacts. 

We considered next the following version of (2.2): 

in which diffusion, convection, and local attrition terms are accounted for, as a basic 
model of tactical maneuvers. This system of equations have been supplemented with 
the I.C. 

and the mixed B.C. 

* 
( b i d @ ,  + Ciui)IFcan = 0 i = 1,293- (4.3) 

Here, u1 and 113 are two force densities that represent either two distinct components 
of the same army or two allied armies. For this reason, in the matrix of the attrition 
coefficients we have a31 = a13 = 0. The diffusion tensor is diagonal Di, = D6ij 
and the magnitude of its nonzero elements has been chosen to be D = 0.01. The 
convection velocities C?i vary with t ,  their magnitudes taking values between 0 and 
2.5. We need to point out that the choice of a local attrition term in Eq. (4.1) was 
made to simplify the numerical computation. This choice is not so restrictive as it 
may seem, if only a qualitative study of the problem is intended. 

The knowledge of a typical time for the dynamical process associated to each 
combat situation is very important for an intuitive approach to our investigation. 
We considered this time to be the hypothetical time needed by the troops to travel 
across the battlefield, when they move with their average speed and no engagement 
happens. Taking the battlefield length as the unit for distances, the value of the 
typical time r is numerically equal to the inverse of the average speed of the moving 
troops. Now we required from our code that the conservation of the total number 
of troops be satisfied within about 2% for intervals of time At that are of the 
same order of magnitude as T .  This requirement was met by imposing a perfect 
conservation at the boundaries of the battlefield. To this end we chose mixed B.C. 
which ensured the cancelation of normal components of the individual diffusion- 
convection currents ;; = Bid*; + on + an, the boundary of the domain 1;2. 
Thus, in (2.4) we have hi = 0, ai = C; n’, P k  = bin“, where n’ is the unit normal 
to dR. The knowledge gained from the one-dimensional testing proved to be useful 
for this two-dimensional modeling. 

For the purpose of the present study we decided that “quantitatively good 
results” mean boundary generated losses smaller than 2-2.5% in the total number 

A 

+ 
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of troops for evolutions lasting times that are O(r) .  The conclusion of our testing 
is that “good quantitative results” can be obtained only if N X  - O(100). When 
N P D E  = 2 this means N E &  N 0(104) which is too large a number of equations 
to allow a numerical treatment of the problem that could be termed as reasonable 
with regard to the computing resources used. 

The parameter controlling the numerical stability and the accuracy of the 

solution for the simulations with the attrition turned off is the ratio p = g. 
In our simulations, a good value for p was found to be 2.5 x lo2. This value 
insured sufficient stability during evolution €or a Gaussian shaped initial distribution 
of forces. In this case 
the combination between the small number of points per direction and the value 
of p given above proved to be unsatisfactory. During the evolution the square 
distribution of troops developed oscillating tails. This was unacceptable because 
the density of troops can never take negative values. For this reason we adopted 
the Gaussian as the initial distribution of forces in all subsequent runs. 

The correct qualitative description of the combat maneuvers is visible in our 
modeling based on the Eq. (2.1), even when 32 points per direction are chosen. 
Although the losses due to numerical leaks through the boundary are larger in this 
case, parallel runs of the code with the attrition turned on and off can distinguish 
between the losses due to engagement and those due to numerical imprecision. For 
this rough grid and NPDE= 2 it follows that NE&= 2048 in the case a two-forces 
combat, and NE&= 3072 for the cases when three forces are involved, This last 
case is in fact a combat in which only two armies axe engaged, with one of them 
made up of two distinguishable components. 

The use of the published software for integrating the PDE system required the 
writing of a driver program which generates the specific equations to be integrated, 
the I.C. and the B.C. attached to the problem. Detailed description of the driver 
programs can be found in the papers presenting the i n t e g r a t ~ r . ~ , ~  We point out that 
the essential subroutine of the driver which has built in it all the features allowing for 
the modeling of a specific combat situation is the subroutine defining the convection 
field. This subroutine returns upon its call all the values of the convection velocities 
6i for any values of the independent variables t and 5. It works in conjunction with 
the main program which analyzes the situation at any moment of time and triggers 
changes in the tactical approach of the situation based on the results of it analysis. 

We tried different approaches for modeling the troop movements with the 
convection field 6;. A point dependent convection field with little or no time 
dependence has shown that sensible losses through the boundary cannot be avoided. 
A simple uniform convection field with a strongly time-dependent direction proved 
to be the best choice; it ensured an acceptable conservation of the total number of 
troops when the attrition was turned off. 

The boundary conditions have been imposed according to the instantaneous 
convection velocities which are entered as coefficients within the B.C. This approach 

Square type initial distributions have also been tried. 
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proved to be at the same time the simplest and the most efficient. It allows a 
reasonably simple version of the numerical code, and permits a good numerical 
conservation of the number of troops during the zero attrition runs. 

An example of combat situation which was successfully modeled is the turning 
maneuver. This simulation required the integration of a simple version of the 
system (4.1) with only two coupled equations. The numerical simulation did clearly 
demonstrate the movement of troops on the field, the active phase of the battle 
when the direct contact is realized and the mutual attrition decreases the number 
of troops engaged in combat, and the retreat of the defeated force (not shown in 
Fig. 3). If the defeated force is the one that made the attack, this last phase of 
the battle takes place on the same track as the one used for engagement but in 
reversed direction. If the entrenched force is the defeated one its retreat is made 
on some new track conveniently chosen. The loss of the total number of troops of 
one combatant that triggered the retreat was arbitrarily set at 15%. The specific 
results obtained through numerical simulation of offensive combat maneuvers are 
well illustrated in a paper dedicated solely to this ~ u b j e c t . ~  

There arises a natural question about the complexity of the combat situations 
the model could handle, and we need to address this issue here. From the theoretical 
point of view it is clear that the PDE model can cover any situation, whatever 
complex it may be, as long as the individuality of the elements participating in 
the combat can be ignored. This is when only spatial averages giving the field 
distribution of the combatants need to be considered, i.e., when only the “big 
picture” is of concern. From this follows that, in principle, one can consider as 
many components for combating armies as it is necessary to describe the tactical 
situation. However, from the numerical viewpoint, there are clear limitations on 
the complexity of the combat situations that can be handled. Complex situations 
can be modeled only if the spatial grid is made fine enough to account for the the 
details of the battlefield activity. A finer grid implies the increase of NEQ, and 
this generates an increase in the computational time needed to solve the problem. 
On the other hand, there are indications that the increase in NE&, through the 
increase of NX and NY, brings in some stiffness to the ODE system attached to 
a specific scenario. The integration of a stiff system is a difficult task, and, while 
the situation can be still handled numerically, one finds out that the computational 
time has increased beyond reasonable limits. 

4.2 COMPUTATIONAL COMPLEXITIES 

integrals, a very large number of integral computations of the form 
In calculating force levels and, more significantly, in evaluating the attrition 

were required where i , j  E {1,2}, i # j. In determining force levels, 4i and zli were 
taken equal to one, while in calculating attrition integrals 4, was normally taken to 



23 

be a function of the distance [(( - x ) ~  + ( q  - y)2]1/2 between the nodes (t, 7) and 
(2, y) in concert with the expected decrease in effectiveness of fire with increase in 
distance between troop units. Because of the large fraction of the total computing 
time which was consumed in evaluating such integrals, it was highly desirable to 
explore ways in which to minimize the computational times in evaluaking them. 
Several approaches were used. 

The integration was avoided altogether if in the case of attrition integrals the 
multiplier zli(z, y) was below a threshold value, on the basis that the product of the 
multiplier and the integral would be negligibly small. Secondly, the integral. itself 
was evaluated applying Simpson’s rule in two dimensions. But rather than using a 
double summation, the Simpson’s rule evaluation was unrolled to produce a single 
summation, thereby significantly improving vectorization (and hence speed) on the 
CRAY computer because of a single long loop rather than two much shorter nested 
loops. Finally, rather than using every point on the original nodal grid in evaluating 
the integrals, every fourth point, for example, in each direction might be used; an 
approach which was particularly effective when a much finer grid was required to 
accurately solve the underlying PDE’s than was needed to accurately approximate 
the attrition or force level integrals. 

Since the number of ODES to be solved is NEQ = NPDE * NX * NY, the size 
of the ODE system to be solved quadruples when the number of nodes in both the 
x and y direction is doubled, imposing a stiff price in computation time for greater 
resolution in the spatial dimensions. To alleviate the necessity for a fine mesh 
simply to allow accurate representation of initially steep profiles (as, for example, 
the triangular, rectangular, and spike initial troop distributions used in the one- 
dimensional investigation’), initial force density profiles were taken to be much less 
steep bivariate Gaussian distributions. 

The limit on the coarseness of the grid, aside from ensuring reasonably accurate 
representation of the initial and developing force profiles, was set by the need to 
avoid numerical instabilities in the solution. These numerical instabilities, long 
recognized in convection-diffusion problems, manifest themselves most visibly as 
nonphysical oscillations in the solution and are accentuated when convection is 
strongly dominant in the model relative to diffusion. For the range of velocities and 
diffusion coefficients studied, it was found that on the order of 65 nodes in each 
direction were required to yield acceptably stable solutions, resulting in a total of 
2 * 65 * 65 = 8450 ODES to be integrated. 

Another effect of concern in performing the calculations was pmsible loss 
of conservation of the total forces when forces encountered the boundaries. 
Ref. 6 contains discussion of the theoretical boundary conditions which should be 
prescribed to ensure strict conservation (no net gain or loss at the boundaries), 
but notes the failure of the numerical algorithm to achieve perfect conservation, 
although errors decreased as a finer mesh was used. In practice, the force velocities 
and diffusion coefficients, the size of the “battlefield,” and the battle scenario were 
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chosen to minimize interaction of the forces with the boundaries by effectively 
keeping the forces away from the boundaries as much as practicable without having 
to introduce additional grid points. Clearly, boundary effects warrant further study 
in order to avoid ambiguity between losses due to attrition and losses (or gains) due 
to numerical errors at the boundaries. 

For the values of the PDE coefficients and mesh spacing studied, it was feasible 
to specify the nonstiff option (set via a flag passed to GEARB) in solving the ODE 
system. This was a decided advantage (versus having to specify the use of stiff 
methods in the GEARB code) because of the much greater overhead associated 
with stiff methods as a consequence of having to generate the Jacobian matrix and 
to solve nonlinear systems of equations at each time step. For the two-dimensional 
problems studied here, the number of ODES almost precludes the use of stiff 
methods because of the computational times involved in forming and solving large 
systems of nonlinear equations at each time step and because of the tremendous 
memory requirements (approximately 3,300,000 additional words of storage needed 
for NX = NY = 65).  To date, none of the test problems have evidenced the need 
for very small integrator time steps to maintain numerical stability and accuracy, 
which is the primary symptom arising when a stiff problem is tackled using nonstiff 
methods. 

Although a definitive exposition of what is meant by stiffness is well beyond 
the scope of this document (see Ref. 11 for an excellent review of this subject), 
a practical measure of stiffness i s  indicated by the size of the time steps used by 
the integrator relative to the rate of change of the solution for a given accuracy, 
with the problem being more stiff the smaller the time step required. Very small 
time steps which are obviously inconsonant with the time scale of the problem are 
a clear indicator that a problem is stiff. The difficulty is that the size of the time 
steps is being governed by stability criteria rather than by accuracy requirements. 
Thus, for example, the stability criterion may demand that a certain ratio of the 
time step size and the spatial step sizes not exceed a fixed value. It cam well be 
that the fineness of the mesh required to accurately solve the problem necessitates 
the use of such small time steps as to make a nonstiff solver impractical, thereby 
compelling the use of stiff solvers which employ methods which permit much longer 
time steps. Further, it i s  clear that method of lines formulations which are nonstiff 
for a coarse mesh may become stiff for a finer spatial mesh since as the grid is 
made finer, the time steps need to be taken smaller (often much smaller because 
the stability criterion is of the form At/(Az Ay) < constant) in order to maintain 
stability. 

Mesh sizes were governed by the need to ensure numerical stability and 
acceptable accuracy without requiring inordinate computational time or computer 
memory. A relative error tolerance of 1 x was specified for the time integration 
of the ODE system ensuring that the weighted single step error estimates were 
kept less than this value in the root-mean-square norm (the Euclidean norm of the 
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dependent variable vector divided by the square root of the number of variables). 
With this error criterion and with 33 to 65 nodes in each of the x and y directions, 
computational times were generally of the order of one to five minutes on a CRAY 
X-MP computer, with the times a function of the PDE coefficients and the specific 
nonzero terms included in the model PDE. 



5.  CONCLUSIONS 

The numerical study of the PDE combat model has proved its value in dealing 
with some of the complex aspects of modern warfare. The results presented here 
clearly show that the tactical aspects of certain forms of maneuver are accurately 
described by the two-dimensional version of the model. The results obtained here 
are for very idealized engagement scenarios. Opposing force ratios, attrition rates, 
diffusion coefficients, velocities of moving forces, and boundary conditions were 
arbitrarily chosen and do not correspond to actual tactical conditions since the 
purpose of this work was only to demonstrate the capability of the model to 
replicate offensive combat maneuvers. This has been accomplished. The numerical 
results, however, must be treated cautiously because of the parameter values that 
were chosen, and since only homogeneous forces having two-dimensional Gaussian 
distributions were used in the description of the engagements. The point to note is 
that the PDE model does represent a significant departure from the Lanchester's 
ODE model and is the foundation for a more sophisticated approach to analytically 
modeling combat. 

The PDE solver must be improved to 
minimize losses at the edges of the battlefield. The capability to represent more 
realistic spatial distributions of opposing forces must be implemented in conjunction 
with the representation of heterogeneous force structures. The limitation of a square 
battle area must be eliminated in favor of wide versus narrow geometries and vice 
versa where the depth of the battlefield would logically include close, deep, and 
rear operations separately or simultaneously. To achieve these requirements, a new 
two-dimensional PDE code called WAR specifically designed for combat modeling 
has been developed" that already provides the following features: 

Further developments are in order. 

1. Flexibility in defining the input data, with an input module with on-line 

2. Dynamic allocation of the memory (using the container array strategy) provides 
greater flexibility in executing a wider variety of battles without modifying the 
code. 

3. Interactive control of the model parameters (speed, diffusion coefficient, 
attrition rates, etc.) is permitted every one or more time steps, as determined 
by the user. 

4. Interactive color graphics using the DISSPLA Library representing forces as 
contour curves, with a variable frequency of plotting as determined by the user. 

instructions that enables creating or modifying the input file interactively. 

Additional features that are currently being developed or installed in the code 
include: 
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Rewriting the equations in the PDE solver routine in conservative form to avoid 
“numericd dissipation.” 

Modifying the PDE solver routine to reduce the effect of numerical diffusion. 

Modeling non-local interactions in an efficient way. 

’Installing a balance-table-routine to account for all sources/sinks of forces at 
each time step and at conclusion of the battle. 

Refine interactive control to include redeployment of forces, undoing previous 
time step, etc. 

Significant sensitivity and parametric studies are also necessary tcl determine 
ranges of parameter values to reproduce realistic or historical confrontations and 
lend more credibility to analysis of potential conflict situations. Stronger coupling of 
intelligence data to govern force movements and firepower requirements also remain. 

However, the general outlook is good and conducive to optimism. The model is 
sound and even though the cases studied are idealized, meaningful data have ensued. 
The numerical results would provide guidance on force dispositions, firepower 
requirements, and tactical effectiveness. A better knowledge of the software that 
can be used generated a more realistic view on the expectations one can place from 
combat models. The problems encountered are of such a nature that, based on the 
past experience with numerical problems, we can be almost certain they will find a 
solution in a not too distant future. 
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