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MODELING SPEEDUP IN PARALLEL 
SPARSE MATRIX FACTORIZATION 

L.S. Ostrouchov 
M.T. Heath 

C.H. Romine 

Abstract 

This paper is an attempt to explain the observed performance of sparse matrix 
factorization algorithms on parallel Computers. In particular, we examine whether 
the disappointing performance of these algorithms is due to insufficient parallelism 
in the problem or to the architectural characteristics of existing parallel computers. 
Through a series of theoretical models of increasing realism, we first determine 
upper and lower bounds on the speedup that can be expected in practice for 
this problem, and end with a parameterized model that is capable of reprodiicing 
the full range of behavior within these bounds, including the speedups actually 
observed in practice. This model suggests that the current limits on speedup in 
sparse factorization are due to poor communication performance of the present 
generation of parallel computer architectures rather than to a lack of parallelism 
in the problem. 





1. INTRODUCTION 

In this paper we attempt to gain, through a detailed study of a particular problem, a 
better understanding of the factors affecting the performance of parallel architectures. 
The problem we have chosen is Cholesky factorization of symmetric positive definite 
sparse matrices. This factorization is the most computationally intensive step in solving 
many large linear systems that arise in a l l  areas of science and engineering, including 
the analysis of structures and networks, and thus has received a substantial amount of 
attention from developers of parallel algorithms (see [19] for a survey). However, sparse 
Cholesky factorization has often shown disappointing performance results on parallel 
computers. An additional motivation for selecting this problem is that we can make 
use of the theoretical concepts and techniques, based largely on graph theory, that have 
been developed for analyzing sparse elimination algorithms. Parallel sparse Cholesky 
factorization is sufficiently complex to be typical of scientific computations in general, 
as well as being interesting in its own right, yet is amenable to theoretical analysis. 

The potential performance of a parallel computer in solving a given computational 
problem depends on the nature of the problem being solved, the parallel algorithm 
employed, and the architectural details of the particular parallel computer. For realistic 
problems of interest, these factors interact in an extremely complex manner that is 
difficult to analyze in detail. Two relatively simple and commonly used measures 
of effectiveness are speedup and eficiency. The speedup resulting from the use of p 
processors is defined by the ratio of execution times S, = Tl/Tp, where the subscript 
indicates the number of processors used, and the best sequential algorithm is used for 
the single-processor case. The efficiency in using p processors is defined by the ratio 
Ep = Sp/p ,  which can be interpreted as the average utilization of the p processors. 
Attaining perfect efficiency would require that S, = p ,  so that Ep = 1. Such ideal 
performance is not generally achievable in practice, however, due to communication 
costs, synchronization overhead, load imbalances, contention for resources, and various 
other inhibiting factors. In attempting to understand and improve performance, it is 
important to identify those limitations that are due to the architecture (which we will 
refer to as hardware limits) and those that are due to the algorithm and/or the problem 
(which we will refer to as sojtware limits). 

Perhaps the simplest and best known model of parallel computer performance is due 
to Amdahl [1,2]. In this model, the hardware is characterized by a single parameter, 
namely the number of processors p ,  and the software is also characterized by a singlc 
parameter, the fraction f of the computation that is inherently serial. “Amdahl’s Law” 
then gives the following upper bound on speedup for a given problem of givcn size: 

Although Amdahl’s analysis can yield useful insights, it suffers from a numbcr of sliort- 
comings: (1) the serial fraction f is difficult to determine (2 priori; indeed, in practice 
it is often inferred a posteriori from observed performance rather than used to predict 
performance, (2) there is an implicit assumption that at  any given time a,ll work is 
either completely serial or completely (p-fold) parallel, which is seldom true, and ( 3 )  
the serial fraction f is not a very robust measure in that it tends to be a fuiictiun not 
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only of the algorithm used, hut also the problem size and the number of processors 
used. Thus, for example, a constant value for f usually entails a fixed problem size, 
which does not refleet the way that supercomputers tend to  be used in practice (see 
[18,28] for a discussion of this last point). 

A performance model with greater flexibility and predictive power, yet still ap- 
pealing in its simplicity, has been given by Eager, Zahorjan, and Lazswska [8]. Their 
approach is based on the observation that speedup and efficiency, rather than rising 
or falling together, often show an inverse relationship. Thus, for a fixed size problem, 
execution time may be reduced by using more processors, but the consequent improve- 
ment in speediip is usually accompanied by a decline in the average utilization of the 
processas ( is . ,  efficiency). Intuitively speaking, a5 the number of processors grows it 
becomes increasingly difficult to  keep them all busy doing useful work; the number of 
L6~vasted9’ machine cycles increases more rapidly than the execution time decreases, so 
the overall efficiency declines. The analysis in [8] of this tradeoff between speedup and 
efficiency uses the concepts of hardware bound, software bound, and average paral- 
lelism. The hardware bound on speedup is simply the number of processors used (Le., 
the speedup cannot exceed the number of processors). The software bound is based 
on representing the parallel computation by a directed acyclic graph (DAG), whose 
nodes correspond to (serial) computational subtasks, and whose arcs reflect precedence 
constraints between suhtasks. The length of a path in this graph is defined to he the 
sum of the computations at  the nodes along the path. The software bound on speedup 
is then given by the ratio of the total amount of computation to  the length of a. longest 
serial path in the subtask graph (i.e., regardless of how many processors are used, 
executioii time must still be at  least as loing as a longisst serial path in the subtask 
graph). Finally, average pamlleld.srn is defined in four ways, which are then shown to 
be equivalent [8]: 

1. the average number of processom that are busy during the execution of a program, 
given an iinliinited nnmber of processors; 

2. the speedup, given an unlimited number of processors; 

3. the ratio of the total arnount of computation to  the length of a longest path in 
the snhtask graph; and 

4. the intersection point of the hardware bound and the software bound on speedup. 

The hardware and software bounds and the actual speedup for a simple example of a 
software system (taken from [a]) are shown in Figure 1. Based on the second definition 
above, vie will use in this paper the more self-explanatory term maximum speedup rather 
than average parallelism. Our principal tool in determining this quantity, however, will 
he the third definition, using the subtask graph of the parallel computation. 

In exploring the limits of parallelism in Cholesky factorization, we will naturally 
focus on parallel architectures having a relatively large nurnber of processors. In the 
current sta.te of technology, shared-memory architectures tend to be limited to a rela- 
tively small niimher of processors, typically up to about thirty. To go beyond this level, 
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number of pmcusos, p 

Figure 1: Hardware and software bounds on actual speedup. 

to say a hundred or a thousand processors, the most popular and widely available solu- 
tion at present i s  distributed-memory architectures, typified by hypercubes. This is the 
class of parallel architectures on which we will focus in selecting appropriate parallel 
algorithms and in conducting numerical experiments. Still higher levels of parallelism, 
with many thousands of processors, currently requires the use of very fine-grained al- 
gorithms and S l M n  architectures, typified by the Connection Machine, and is beyorid 
the scope of the present investigation. 

Parallel algorithms for sparse Cholesky factorization on hypercubes and other dis- 
tributed-memory, message-passing architectures have been the object of considerable 
research. Although the performance of these algorithms has shown steady improve- 
ment, it is still fair to say that they have yet to achieve satisfactory performance levels 
in practice, with efficiencies seldom exceeding 50%. One of our main objectives in this 
study is to gain a better understanding of this disappointing performance: is it due to 
an inherent lack of parallelism in the problem, or is it due to  the architectural char- 
acteristics of the current generation of distributed-memory parallel computers? We 
will attempt to  answer this question by developing theoretical models of the sparse 
factorization process that will enable us to estimate the maximum speedup achievable 
for a given problem. Further, we will compare these theoretical estimates with results 
obtained on a real machine. 

The remainder of the paper is organized as follows. Section 2 contains a detailed 
discussion of parallel sparse Cbolesky factorization, an explanation of the subtask graph 
we use to model this application, and a small example problem illustrating these con- 
cepts. Section 3 contains a discussion of the calculation of maximum speedup for our 
application, including three strategies that ignore communication costs and one strat- 
egy that incorporates communication costs. Section 3 concludes with a comparison 
of the four strategies on a small example problem. Section 4 compares our theoretical 
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results with actual speedups observed on an Intel iPSC/2 hypercube multicomputer for 
a series of finite-difference grid problems. Finally, section 5 conta,ins OUT conclusions. 

Consider an iz x n symmetric positive definite matrix A.  Its Cholesky factor is a 
lower triangular matrix 1; such that A = ELT. The computational significance of the 
Cholesky factor is that a system of linear equations Az  = b can be solved by successive 
forward and back substitutions in the triangular systems L y  = b and L’x = y. If A is 
a sparse matrix, meaning that most of its entries are zero, then during the coi~rse of the 
factorization process some entries that are initially zero in the lower triangle of A may 
become nonzero entries in L. These entries of TJ are known as fill or fill-in, Usually, 
however, many zero entries in the lower triangle of A remain zero in L. For efficient 
use of computer memory and processing time, it is desirable to  keep the amoiant of fill 
s m d ,  and to store and sperate oil only the nonzero entries of A and L .  

A given linear system yields the same solution regardless of the particular order 
in which the equations and unknowns are numbered. This freedom in choosing the 
ordering can be exploited to  enhance the preservation of sparsity in the Cholesky fac- 
torization process. Let P be any permutation matrix. Since YAPT is also a symmetric 
positive definite matrix, P can often be chosen so that the Cholesky factor of P’RPT 
has less fill than I,. The permuted system is equally useful for solving the original lin- 
ear system, with the triangular solution steps simply becoming f.y = Pb and L T z  = y, 
and finally 2 = P’z. Unfortunately, finding a permutation P that minimizes fill is 
a very dificiilt combinatorial problem (an NP-complete problem) [29]. Thus, a great 
deal of research effort has been devoted to  developing good heuristics for limiting fill in 
sparse Cholesky factorization, including the nested dissection algorithm [10,14] and the 
minimum degree algorithm [17,22]. The choice of ordering also has a substantial effect 
on the potential parallelism with which the Cholesky factorization can be computed, 
as we will disciiss in section 2.1. 

Graph theory provides a iiurnber of extremely helpful tools in modeling the struc- 
tural aspects of sparse eliminatioa algorithms. The graph of an n x n symmetric matrix 
A ,  denoted by G ( A ) ,  is an undirected graph having n vertices (or nodes), with an edge 
between two vertices i and j if the corresponding entry ai3 is nonzero in the matrix. 
Thc filled graph of A ,  denoted by k’ (A) ,  is the graph of A with all fill edges added: there 
is an edge between two vertices i and j of F ( A ) ,  with i > j ,  if + 0 in the Cholesky 
factor matrix L (equivalently, F ( A )  is the graph of E + L T ) .  Finally, the elimination 
tree associated with the Cholesky factor L of A ,  denoted by T ( A ) ,  is a graph having n 
vertices, with an edge between two vertices i and j ,  for i > j, if i = p a r e n l ( j ) ,  where 
p r e n t ( j )  is tht. row indrx of the first off-diagonal nonzero, if any, in column j of L .  
Throughout this paper, we will assume that the matrix A is irreducible, so that column 
n is the only colurnln having no off-diagonal nonzero, and hence Y’(A) is indeed a tree 
with node n as its unique root. See [24] for a survey of the role of elimination trees in 
sparse factorization. For a much more detailed general discussion of sparse Cholesky 
factorization, we refer the reader to [16]. 
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2.1. Column Task Graph 

In exploiting parallelism to solve any problem, the computational work must be bro- 
ken into a number of subtasks that can be assigried to  separate processors. The most 
appropriate number and size of these tasks depend on the target parallel architecture 
arid the extent of the pmallelism at various levels in the problem. The term often 
used to  denote the size of computational tasks in a parallel implementation is granular- 
i ty .  111 sparse factorization, as in most problems, a number of levels of cornpiitstional 
granularity can potentially be exploited. Liu [23] characterizes three models of parallel 
Cholesky factorization that exhibit fine, medium, and large granularity, respectively: 

1. fine-grain parallelisnz, in which each subtask is a single multiply-add pair, 

2. medium-yruin parallelism, in which each task is an operation on an entire column. 
Examples of such operations include adding a scalar multiple of one column to 
another or multiplying a column by a scalar. These operations correspond, respec- 
tively, t o  saxpy ancl sscal  from the RLAS (Basic Linear Algebra. Subroutines) 

[211. 

3 .  large-grain pnmblelism, in wliich each task is the complete coniputation of a col- 
umn of the Cliolesky factor or perhaps an entire set of columns in a subtree of 
the elimination tree. 

A fine-grained model for studying the parallel soliltion of linear systems was in- 
troduced by Wing and FTuaxlg [27] .  It associates each task with a single mu1 tiplicative 
operation in tlie factorization. A precedence relation is inaintainrd in the following way. 
If one task compiites a value needed by another task, then the first task iniist precede 
the second one. The clirccted edges of the task graph follow this precedence re1 a t’ ion. 
The resulting task graph is a directed acyclic graph (DAG).  The numbcr uf nodes in 
the graph is equal to the number of rnultiplicative operations required to p d o r m  the 
Cholesky factorization. For large problems, this fine-grained nioclel is appropriatc oiily 
if several thousands of processors arc available. 

Jess and Kees I201 introduced a model in which the structure of the task graplr is 
essentially that of tlie elimination tree defined above. Thus, the nodes of tlie task g r i ~ l ~ h  
are simply the columns of the Cholesky factor and the preccdcncc relation defining the 
directed edges is given by the parent relation defined above. This large-grained modrl 
is most appropriate when only a relatively small number of processors is available. 

For parallel dense Cliolesky factorization, a medium-grajned task model was intro- 
duced in 1111 and then extended to  the sparse case in [l’t] ancl I131 and many subsequent 
papers (see [ 191 for a survey). The scheduling of the medium-grained tasks fur parallel 
sparse Cholesky factorization is studied in detail by Liu in [ 2 3 ] .  Each coinlmtational 
subtask in this model is a column-oriented operation of one of the followiiig two types: 

1. cd iv ( j ) :  division of column j by a scalar; 

2. c m o d ( j , k ) :  modification of column j by column k ,  j > k .  
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Specifically, c d i v ( j )  divides the nonzero entries in column j by the square root of its 
diagonal element, and cmod( j ,  k )  subtracts a scalar multiple of coliimn k from column 
j .  The precedence relation among these column-oriented tasks is as follows: 

Thus, c d i v ( j )  cannot begin until c m ~ d ( j ,  k) has been completed, and c d i v ( j )  must finish 
before c n ~ o d ( i , j )  can begin. In terms of operations on individual matrix elements, some 
of the operations in c d i v ( j )  could in principle be executed without requiring that all 
operations in crnod(j, k) first be completed, and similarly for the relationship between 
c d i v ( j )  and ernod(i, j ) .  However, in the medium-grained model this potential fine- 
grained parallelism is not exploited, the rationale being that the conirnunication and 
other overhead costs of exploiting parallelism at the level of individual floating point 
operations would be greater than the potential gain in execution time for the target 
architect we. 

1 here is a one-to-one correspondence between the off-diagonal nonzero entries f j k  

in the Cholesky factor matrix L and the cnzod(j, I C )  operations. Thus, as observed by 
Liu [23], the medium-grained model based on column-oriented tasks, which he calls the 
C Q ~ U W Z ~ L  tusk graph, is stracturally equivalent to the filled graph F ( A )  of the matrix A .  
Since each column division operation cdiv corresponds io  a diagonal element of L ,  and 
each column update operation cmod corresponds to  a nonzero OR-diagonal element of 
I,, thc column task graph, which we wid denote by C ( A ) ,  is simply the elimination 
tree T ( A )  with edges added to incorporate the additional nonzeros in the factor niatrix 
L .  The nodes of the graph C(i2) correspond to  the cdiu operations and the edges 
correspond to  the cmod operations. To derive a true task graph, in which all tasks 
are represented by nodes and a11 edges represent precedence relations, we could merely 
insert a node representing each @mod operation within each ““edge” in the above sense, 
but we will not make such a distinction, since nu confusion should arise. 

There is an intimate structural interplay between the elimination tree and the col- 
umn task graph. The two graphs have the same node set, and the elimination tree is a 
spanning tree for the coliirnn task graph. Thus, the elimination tree serves as a conve- 
nient mechanism for traversing the column task graph, as required by some algorithms. 
Unfortunately, there is great potential for confusion in the terminology for referring 
to  the relationships among nodes in the two graphs. In the standard terminology for 
a DAG representing a task graph, naturally enough, the ancestor tasks precede their 
descendants in time. In the standard terminology for trees, however, the parent/child 
relationship among immediate neighbors, or more generally the ancestor/descendan t 
relationship among more distant nodes, places a parent or ancestor node between its 
child or descendant node and the root node. Thus, in the case of elimination trees, 
the leaf nodes are descendants of the other nodes in the tree yet are the first to  be 
executed, while the root is an ancestor of the other nodes in the tree yet is last to be 
cxecnted, which is precisely backward from the notion of ancestor and descendant in a 
DAG. Since the elimination tree terminology is much more established and pervasive 
in the sparse matrix field, we will iise the terms parent/child and ancestor/descendant 
in the “tree” sense throughout this paper. 

The structure of the elimination tree gives an indication of the potential parallelism 
in sparse Cholesky factorization. Kaiighly speaking, the height of thp tree determines 

cmod( j ,  k )  with k < j -+ c d i v ( j )  + crnod(i,j) with j < i. 

, -  
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the longest serial path in the column task graph and the width of the tree determines 
the degree of concurrency available (these notions will be made more precise later). 
Thus, a wide tree has many tasks that can be executed simultaneously, and a short 
tree has a relatively small parallel execution time. The structure of the elimination 
tree for a given matrix A is strongly affected by the particular ordering chosen for 
the matrix. For example, nested dissection orderings tend to  produce short and wide 
elimination trees that are good for parallel factorization, whereas bandwidth or profile 
reducing orderings tend to produce relatively tall and narrow elimination trees that are 
poor for pa rde l  factorization. Another desirable property of the elimination tree for 
parallel execution is that it be well balanced, by which we mean that subtrees at  the 
same level are reasonably uniform in size and reqilire roughly the same amount of work. 
For example, on highly regular problems such as k x k grids, some nested dissection 
orderings produce well balanced binary trees. Minimum degree orderings, on the other 
hand, often produce unbalanced elimination trees. Having a well balanced elimination 
tree is helpful in scheduling the column task graph so that the computational load is 
well balanced across processors. However, Geist and Ng [9] havc developed a method 
for partitioning the work in an unbalanced elimination tree and scheduling it so that 
the computational load is well balanced across the processors. 

In the computational experiments to be reported below, the software package 
Sparspak [G,1.5] is used to perform the preliminary symbolic processing of our test 
matrices, which are derived from k x k grid problems. Sparspak is a sparse matrix 
software package designed to order, factor, and solve sparse systems of linear equa- 
tions. We did not use the standard orderings from Sparspak on our test problems, 
however. As mentioned above, minimum degree orderings tend t s  produce unbalanced 
elimination trees. Moreover, the automatic nested dissection ordering in Sparspak uses 
a level structure to find separators. While this approach is effective for many purposes 
on a wide range of problems, for some highly regular problems such as IC x IC grids with 
a nine-point operator it fails to identify the ideal separators that produce an optimally 
short, wide, and balanced elimination tree. Therefore, we used instead a version of 
nested dissection patterned after [lo] that takes advantage of the special structure of 
rectangular grid problems to yield the theoretically “correct” sequence of separators. 
After the ordering of the matrix A has been completed, a symbolic factorization is 
performed on the ordered matrix to obtain the structure of the Cholesky factor matrix 
L ,  from which we can construct the column task graph. We are then ready to begin 
our exploration of maximum speedup. 

2.2. An Example 

As an example of the ideas presented thus far, consider the 10 x 10 matrix R whose 
nonzero entries are denoted by x in Figure 2. Since the matrix A is synimetric, we 
concern ourselves only with its lower triangular structure, and we assume t4hat i t  has 
already been ordered. Symbolic factorization yields the structure of the factor matrix 1; 
shown in Figure 3, where fill entries resulting from the factorization are denoted by +. 
The elimination tree for this example is shown in Figure 4. TJsing Liu’s representation, 
we arrive at the column task graph shown in Figure 5.  Next to each cdiv node and 
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Figure 2: Lower triangular structure of a 10 x 10 symmetric matrix A.  
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Figure 3: Structure of factor matrix L for example in Figure 2. 

cmsd edge in the column task graph is a value in parentheses that indicates the number 
of floating point operations involved in that column operation. The calculation of these 
values is discussed in chapter 3. 

Now, consider the Cholesky factorization of the matrix A .  From the figures we 
observe some important facts about the progression of the factorization of this matrix. 
Since 1 2 ,  is zero, coliimn 2 is not affected by column 1, and hence the computation of 
column 2 need not await, the completion of column 1. On the other hand, since 132 is 
nonaxo, column 3 depends on column 2, and therefore the computation of column 3 
must await the completion of column 2. Similarly, we can continue this type of analysis 
for all columns of the matrix L.  In terms of the elimination tree (Figure 4), we see 
that column i aRects a subset of the columns that are ancestors of node i, and the 
completion of the columns (i.e., the cdiv operations) corresponding to the nodes along 
a path to  the root must be computed sequentially in the given order. For nodes that 
are on independent branches of the tree and do not affect each other, such as nodes 1, 
2,5, and 7, the corresponding columns of L can be computed in parallel. Completing a 
column of I ;  by performing its cdiv operation corresponds to removing that node from 
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Figure 4: Elimination tree of example matrix. 

Figure 5: Column task graph of example matrix. 
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the tree. At the first step of the factorization, aU of the leaf nodes are removed (recall 
that we are assuming an unlimited number of processors). This elimination results in 
the creation of more leaf nodes, and the factorization continues. At each stage, the 
cdiv operations for all of the current leaf nodes can be computed in parallel. 

The parallel execution of multiple cdiv tasks i s  possible only in the sparse case; 
this type of parallelism is not available in factoring dense matrices (for a dense matrix, 
the elimination tree is a linear chain). For both sparse matrices and dense matrices, 
however, many cmod operations can potentially take place in parallel. Thus, in our 
example, cmod(3,2$ and cmod(4,2) can take place simultaneously, even though cdiv(3) 
and cdi71(4) must be computed sequentially, with ediv(3) preceding cdiv(4). These 
precedence relations among the column tasks are shown pictorially in the column task 
graph (Figure 5). To be fully effective, a para1,llel sparse factorization algorithm should 
exploit both types of parallelism: simultaiieoiis cdiv operations on multiple leaf nodes 
and simultaneous cmod operations where possible. 

3. DETERMINATION OF MAXIMCJM SPEEDUP 

After obtaining the structure of L ,  we can count the number of floating point operations 
required for each cdiv and cmod column operation. In the cdiv we consider each 
scalar division of an element of the column as one floating point operation. Thus, to 
calculate the number of operations required for cdiv(k) ,  we simply count the number 
of nonzeros, including the diagonal element, in column k of the matrix L .  Each scalar 
multiply/subtract pair in a emod is also considered as one floating point operation. 
The number of Boating point operations required for a cmod(j,  k), j > 1, is calculated 
by counting the number of nonzero entries in column k of L on and below row j. The 
total amount of work involved in the factorization is the sum of all of the cdiv and 
cmsd column operations. 

These individual floating point operation eoiints for the cdiv and ~ m ~ d  column op- 
erations are maintained as weights for the nodes and edges, respectively, of the column 
task graph. Three of the strategies to be described in the next section use these weights 
to ca!culate the length of the longest serial path in the column task graph representing 
the factorization. A fourth strategy, rather than using the individual weights, instead 
assumes a unit cost per cdiv or cmod, but also incorporates communication costs into 
the calculation of maximum speedup. 

Once the length of the longest serial path and the total amount of work have been 
determined, we are ready to calculate our estimate of maximimm speedup. We calculate 
maximum speedup according to the third definition for average parallelism of Eager, 
Zahorjan, and Lazowska [8]: 

maximum speedup (total work) / (length of longest path) 

'l'his theoretical bound ignores the performance. degrading effects of communication 
delays, synchronization overhead, poor load balancing, etc. The effects of these factors 
will be examined in section 3.4. 

The general problem of scheduling an arbitrary task graph for optimal parallel exe- 
cution is another very difficult combinatorial problem (again, an NP-complete problem) 
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[26]. Thus, we seek heuristic scheduling strategies that provide an approximation to the 
longest serial path in the column task graph, whose length is required for computing 
maximum speedup. Initially, we consider three strategies that neglect communication 
costs, concentrating instead simply on the potential parallelism in executing the var- 
ious column operations simultaneously, without regard for delays in propagating any 
data that might be required from other processors. Our strategies apply a depth-first 
search to  either the elimination tree or the column task graph of L. The three different 
strategies result from different restrictions placed on the parallelism allowed in execut- 
ing the column operation tasks. These restrictions result in different actions taken as 
each node is visited during the depth-first search. Two of the strategies serve as upper 
and lower bounds for the length of the longest serial path, while the third gives an 
intermediate estimate. 

3.1. Strategy 1 

Our first strategy is the most optimistic. It assumes that a given cdiv(j) task can be 
executed as soon as cmod(j,  k) has been completed, where node k is the final descendant 
of node j in the elimination tree to be completed. Thus, this strategy assumes that any 
other required crnod(j, i) tasks, corresponding to any other descendants of node j ,  will 
have already been completed by this point in the execution of the algorithm, which may 
not be realistic in practice due to limited computational resources or Communication 
delays. This strategy can be interpreted as placing no restriction on which processor 
can execute a given task. Thus, this optimistic strategy provides a lower bound on the 
length of the longest serial path, and hence an upper bound on maximum speedup. 

Given the assumptions in Strategy 1, we compute the longest serial path by ap- 
plying depthfirst search to visit all nodes of the elimination tree. The total weighted 
path lcngth is computed using the cdiv and cmod weights previously computed. The 
recursive depth-first search begins at  the root of the tree. The following visit pro- 
cedure is applied upon reaching a leaf node, and subsequently to the other nodes as 
the algorithm backtracks out of the recursion. We use the notation t ( v )  to denote the 
cumulative weight at node Y, 

visit(v) 
t(w) = 0 
let TI have children V I , .  . . ,vk 
for i = 1 to IC 

endfor 
t ( v )  I= maz(t(v) , t (v , )  + cmod(v, TI*)) 

t(v) = t(v) + cdiv(v) 

Using this algorithm on our small example, we obtain the weighted elimination tree 
shown in Figure 6, where the cumulative weights t ( v )  of each node are shown in square 
brackets beside the node. Each of the brackets contains two values in the form [a ,b] ,  
where a is the incremental contribution of that node, and b is the length of the longest 
path at  that point in the tree. By examining this weighted tree, we see that the length 
of the longest serial path for the example problem is 14. 



- 12 - 

Figure 6: Weighted elimination tree for Strategy 1. 

3.2, Strategy 2 

Our second strategy is the most pessimistic, severely restricting the possible parallelism 
in the factorization. It assumes that a given c$iv( j )  operation and all of its emanating 
cmod(i , j )  operations must be done sequentially, which would be the case, for example, 
if the cdiv and resulting cmod operations were all done by the same processor. This 
extremely pessimistic approach foregoes one of the principal soiirces of parallelism in 
matrix factorization, namely the simultaneous execution of multiple cmod operations 
emanating from a single coluniii, and thereby provides us with a lower bound 011 the 
spcediip that can be expected in practice. In computing the longest serial path using 
Strategy 2; we apply depth-first search to visit the nodes of the column task graph, 
again using the cdi71 and cmod weights previously computed. The visit procedure 
applied at each node is as follows, where again t ( v )  denotes the cumulative weight at 
node u .  

vis i t (v)  
t ( v )  = 8 
let v haarc children V I , .  , , ,vk then 
for i = 3. to k 

end for 
t ( v )  = maz( t (v ) ,  t (v ; ) )  

t ( v )  = t ( w )  t cd iv (v )  t C&&,pocmod(v,v) 

The results of this strategy for our example are shown in Figure 7, where the bracket 
notation is as before. The length of the longest serial path obtained from this strategy 
is 16. 
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Figure 7: Weighted column task graph of Strategy 2. 

3.3. Strategy 3 

Our third strategy places only a mild restriction on the possible parallelism in the fac- 
torization. Tt assumes that a given cdiv( j )  operation and all of its incoming cmod( j ,  i) 
operations must be done sequentially, which would be the case, for example, if the 
cdiv and immediately preceding cmod operations were all done by the same processor. 
Superficially, this third strategy may seem similar to the pessimistic Strategy 2, but 
it is in fact quite optimistic. In particular, since all of the incoming cmod(j, i)  opera- 
tions are updating the same column, thcy would have to  be done sequentially anyway 
to  maintain data integrity. Moreover, some of the cnzod operations can be computed 
while waiting for the cdiv operations that provide the data for other cmod operations 
to  be completed. Thus, this strategy provides an estimate for the longest serial path, 
and hence for maximum speedup, which should lie between those provided by the first 
two strategies. While Strategy 3 does not assume that all “earlier” cmods will have 
been completed before the final cdiv( i )  upon which c d i w ( j )  depends, in practice this is 
often the case, so that Strategy 3 often gives similar results to the optimistic Strategy 
1. 

In implementing Strategy 3 we again apply depth-first search to the column task 
graph. If there are few ties in the path lengths as we proceed up the graph, then the 
results for Strategy 3 resemble those for Strategy 1. As bcfore, we use the previously 
computed cdiv and cmod weights, and our depth first search begins at the root of the 
graph, with notation as before. 

visit( v) 
t ( v )  = 0 
let w have children V I  ,. . . ,213, then 
sort children so that E(v1) 5 t(v2) 5 . . . 5 t ( v k )  
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Figure 8: Weighted column task graph for Strategy 3. 

for i = 1 to k 

endfor 
t ( v )  = maz(l(v>,t(v;))  + cmod(v, v;) 

t ( v )  = t (v> -i- cdiv(v)  

The results of this strategy for our example are shown in Figure 8. It reveals a 
longest serial path length of 15. 

3.4. Strategy 4 

Unlike the first three strategies, our fourth strategy takes into account communication 
delays in making results produced by earlier tasks available to  later tasks that may 
require such data. The specific approach we use is due to Papadimitriou and Yaniiakakis 
[XI. The intent of [26] is to  provide a simple, architecture-independent method for 
evaluating the performance of any algorithm on any parallel computer. The algorithm 
is represented by a directed acyclic graph (DAG), with the computational subtasks as 
its nodes and precedence constraints or data dependencies between tasks as its edges. 
As in [8], this analysis assumes that sufficiently many processors are available to handle 
the width of the DAG (i.e., the potential parallelism is not limited by any fixed number 
of processors). 

As we have seen, a lower bound on the parallel completion time for a DAG is 
determined by its longest serial path. However, OUT earlier methods for determining 
the length of this path did not take into account communication delays in propagating 
results along the path before tasks that need these results can begin execution. In [26], 
the communication delay between tasks is measured in units of elementary processor 
steps, which is conveniently expressed as the “ineSsage-to-instruction” ratio, denoted 
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by r. Thus, the communication delay is expressed as a multiple of the time required 
for an elementary computational task. There are in fact two models given in [ 2 6 ] ,  one 
in which all tasks are of unit size and the communication delay is w fixed constant given 
by T ,  and another in which both the task sizes and communication delays vary as a 
function of the amount of computation and sizes of messages, respectively. 

The heart of the approach of I261 is an approximation algorithm for solving the 
problem of scheduling the DAG for parallel execution. This approximation algorithm 
is shown in [26] to produce a scheduling of the DAG that is within a factor of two 
of being optimal in the time to complete execution of the DAG. Our interest is not 
in the schedule itself, but in the longest serial path that it implies, thereby giving 
us an additional estimate of maximum speedup that, unlike our previous strategies, 
incorporates communication delays. 

For the first model, with computational tasks of unit cost and constant commu- 
nication delays, the approximation algorithm given in [26] is relatively simple, quite 
comparable in its complexity to the algorithms for implementing the previous threc 
strategies given above. This simple model is mainly intended to  address fine-grain 
computations, in which the computational tasks are individual arithmetic operations 
and messages consist of individual numbers. The second model, in which both com- 
putational tasks and messages are allowed to vary in cost, leads to a generalization of 
the approximation algorithm that is substantially more complex. The second model is 
intended for relatively coarse-grained computations in which the computational tasks 
require several arithmetic operations and the messages consist of several numbers, and 
both quantities vary in size from task to task. Strictly speaking, the second model is 
obviously more applicable to our medium-grained approach to sparse matrix factoriza- 
tion. However, we found the simplicity and elegance of the approximation algorithm for 
the first model to be much more appealing, and much more in keeping with the spirit of 
our first three strategies for estimating maximum speedup. Moreover, as we will see in 
section 4, the simpler model proved to be adequate for explaining the observed results 
for sparse Cholesky factorization. We therefore make some simplifying assumptions 
that enable us to apply the basic approximation algorithm to our problem. 

The basic approximation algorithm of [26] assumes the following: 

1. a directed acyclic graph whose nodes are computational tasks requiring equal 
execution time; 

2. arcs in the graph representing time precedence and functional dependence; and, 

3. a positive integer T that measures the communication delay relative to the cost 
of the computational tasks. 

For the purposes of irnplementing this strategy, we take the column task graph of 
L as a representation of the DAG, which includes both the cdiv and cmod column 
operations. We assume a uniform “average” cost per column task, and a constant 
communication delay T (implicitly assuming a fixed %verage” message size). These 
assumptions would be significantly in error for dense matrix factorization, since the 
computational tasks and message sizes vary by a factor of n over the course of the fac- 
torization. However, they are not grossly in error for sparse matrix f;tctorization, since 
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the columns get shorter but tend to become more dense as the factorization proceeds. 
In this setting, the proper choice of T is somewhat problematic. Given the composite 
nature of the “average” message, it is not clear that the basic “communication-to- 
computation” ratio of a given architecture (Le., the time to send one floating point 
number relative to  the time to compute one floating point operation) is applicable, 
since the start-up cost for sending the message is amortized over a larger message size. 
Moreover, there are various cornmimication protocols and message packetizing effects 
that come into play. In addition, the rate at which floating point operations ran be 
sustained in a sparse matrix code is dependent iipoa the amount of indexing and in- 
direct addressing required by the compact storage scheme. Therefore, in applying this 
strategy we will consider a range of plausible vdncs for T. 

Since the approximation algorithm can be implemented by a depth-first search of 
the task graph, we can express this algorithm in terms similar to  our previous three 
strategim, again using the same nota,tion. 

visit [ v) 
let “J have descendants q,. . . ,vk  

if i = IC then 

else 

i = sPLin(7- -t 1 , k )  

t ( v )  = k f 1 

t(v) = t (v ; )  + 2’ 
sort descendants so that t(v1) 2 t(v2) 2 . . . 2 t ( v k )  

endif 

For illustrative purposes, we will use the value T = 2 for our example problem. 
‘raking T = 2 in the above algorithm, we obtain the weighted column task graph 
shown in Figure 9, where we have represented the cmod operations, as well as the cdiv 
opcrntions, explicitly as nodes of the DAG, and the cumulative weights of the nodes 
are shown in parentheses beside each node. The value given in parentheses indicates 
the length of the longest path at  that node, specifying in “computational units” when 
the execution of that task is completed. Examining this weighted column task graph, 
we see that the length of the longest serial path is 9 for the example problem. 

For any value of T, the path length determined by the approximation algorithm, as 
well as the total amount of work, must be multiplied by the average number of floating 
point operations required by each task, which is about 1.8 for our small example, in 
order to determine the cost in units comparable to  those we have used previously. 
However, since speedup is a ratio of costs, the particular value of the average cost docs 
not enter into the results. 

3.5. Summary of Results for Example Problem 

The results of the four strategies applied to the example problem are given in tlie 
Table 1. As expected, we see that Strategy 3 gives results lying between those given by 
Strategies 1 and 2, which serve as upper and lower bounds, respectively, on maximum 
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Figure 9: DAG for Strategy 4 (7 = 2). 

Table 1: Siiminary of results for four strategies on example problem. 

Strategy 2 2.6875000 
Strategy 3 43 2.8666667 

24 2.6666667 

speedup, at  least in the absence of communication delays. Given that it includes the 
additional time required for communication delays, Strategy 4 provides an estimate 
consistent with the other results. 

4. COMPARISON WITH OBSERVED SPEEDUPS 

We now compare the estimates for maximum speedup determined by the four stratcgies 
outlined above to the speedups actually observed for sparse Cholesky factorization on 
an Intel iPSC/2 hypercube. For this purpose we obviously need some test problems 
and a parallel algorithm for computing the factorization. To date there have beell 
three main types of approaches to developing practical parallel algorithms for sparse 
Cholesky factorization on distributed-memory architectures: fan-out [13], fan-in [ 3 ] ,  
and multifrontal [25]. For a direct comparison of these three schemes, see [5]. All three 
approaches are colurnn-based and medium-grained, and therefore fit into the frainework 
we have developed. The differences among the schemes amount to different ways of 
scheduling the work required for the factorization; in particular they amalgamate sub- 
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grid size 
3 x 3  
7 x 7  

15 x 15 
31 x 31 
50 x 50 
63 x 63 

......... 

~ 

.. 

tasks and communications in different ways. The column task graph described earlier 
applies to  each of the schemes in the sense that the temporal precedence relations hold 
among the subtasks it specifies. There is, however, no simple relationship between the 
arcs of the DAG and the messages actually sent when executing one of these parallel 
algorithms. For our numerical experiments, we have chosen to  use the fan-in algorithm 
given in 131 and further refined in [4]. We have selected this algorithm because it is 
among the best performing available and it is the most easily accessible to us in the form 
of .z working program for the Intel iPSC/2. 'The performance results we cite below were 
provided by Barry Yeyton of Oak Ridge National Laboratory. The speedups cited are 
relative to  the serial execution time on a single processor of the numeric factorization 
phase of Sparspak [6] for the same problem and ordering. 

For our set of test problems we use a sequence of sparse matrices derived from a 
9-point finite-difference operator on k x k grids ordered by theoretical nested dissection. 
The b; x IC grid problem is a standard model problem in sparse matrix computations 
because its sparsity pattern is representative of real (planar) applications and because 
its high degree of regularity lends itself to  theoretical analysis. In addition, we have 
chosen to  use grid problems and theoretical nested dissection orderings because they 
tend to  yield better performance in parallel factorization than less regular problems and 
orderings, and we wish to  understand the performance shortcomings of the factorization 
under the ideal conditions in which it should do best. Information about the test 
problems is given in the table 2. Symbolic factorization is used to determine the 
structure of the Cholesky factor L ,  from which we can determine the total number of 
floating point operations that are required for the factorization. The latter quantity is 
reported in the table as "total work.'' 

no. of eqns. nonzerm in A ____ 
9 49 

361 
225 1849 
961 8281 

21904 2500 
3969 34969 

_ 
~ 

49 

.... 

.. 

_...- 

Table 2: Characteristics of test problems. 

Figure 10 shows the estimated maximum speedups for the sequence of test problems 
as a function of grid size using each of the four strategies discussed previously, together 
with the speedups observed for sparse Cholesky factorization on the Intel iPSC/2 hy- 
percube. The speedups shown in the figure for the actual factorization are the best 
that were observed over several runs using various numbers of processors up to 64 (the 
best speedup is usually obtained for a larger number of processors as the problem size 
grows). We see that Strategies 1 and 2 indeed provide upper and lower boiinds on 
the other speedups, except for very small grids whose cost is completely dominated by 
communication overhead, so that speedup is worse than predicted by even the most 
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Figure 10: Comparison of results for various strategies with observed speedups for IC x k 
grid problems. 

pessimistic strategy. We also note that Strategy 3 is almost as optimistic as Strategy 
1. 

The value used for T in generating the curve shown in Figure 10 for Strategy 4 was 
T = 59, which is the basic communication-to-computation ratio (sending one word to 
performing one flop) reported by Dunigan [7] for the Intel iPSC/2 hypercube. Since, 
as explained earlier, the choice of this value is somewhat arbitrary, we experimented 
with a range of choices for T in estimating speedups using Strategy 4. The results of 
this experiment are shown in Figure 11. The striking similarity of Figures 10 and 11 
indicates that the model used in Strategy 4 is capable of subsuming all of the 0 t h  
models, as well as accurately modeling the observed speedups for the actual factor- 
ization, simply by choosing an appropriate value for the parameter T .  These results 
suggest that the intent of Papadimitriou and Yannakakis in [26] to  produce a model 
that effectively parameterizes this class of parallel architectures has been successfully 
realized, at least for this particular problem. Further, the results indicate that the Intel 
i Y S C / 2  executes the parallel sparse Cholesky factorization algorithm with an efjcective 
communication-to-computation ratio of about 500, which is an interesting fact about 
the machine itself, again for this specific problem. 
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Figure 11: Estimated speedups for various values of T .  
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5 .  CONCLUSIONS 

In this paper we have tried to  explain the causes of the observed speedups in sparsc 
Cholesky factorization on distributed-memory, message-passing parallel computers. 
this end we developed and analyzed a number of theoretical models for determining the 
maximuni speedup that coiild be expected for this problem. The first two strategies 
were based on rather extreme assumptions concerning the available parallelism, one 
very optimistic and the other very pessimistic, and these two strategies provided upper 
and lower bounds, respectively, on the maximum speedup. Unfortunately, the gap 
between these two hounds is too large for either to  be of significant help in explaining 
the observed behavior of an actiial parallel algorithm for sparse Cholesky factorization, 
which is not surprising considering that these models ignore any communication delays. 
A third strategy was based on assumptions of intermediate restrictiveness regarding 
possible parallelism, but still neglected communication costs and resulted in a very 
optimistic estimate of speedup. 

A fourth strategy that takes explicit account of communication delays was based on 
an approximation algorithm given in [26] for scheduling an arbitrary DAG for parallcl 
execution, which in turn leads to  an estimate of the longcst serial path and hence o f  
maximum speedup. This model proved to  be much more successful, arid by appropriate 
choice of the communication parameter r ,  a full range of behaviors can be produced, 
including those of the previous theoretical models as well as the speedups observed 
for the actual parallel sparse Cholesky factorization algorithm. Since the pa,ramcter 7 

enters the model specifically to characterize communication performance, this model 
indicates that a high degree of parallelism is attainable in solving this problem if coni- 
munication is sufficiently fast. Moreover, the relatively poor performance observed in 
practice can be simulated in the model by assuming poor communication performance. 

These results suggest that the answer to  the question posed in the introductioii 
is that the relatively poor performance of sparse Cholesky factorization lo  date on 
clistributen-memory, message-passing parallel computers is primarily due to the poor 
communication performance ol these machines relative to their floating point speed, 
rather than to  insufficient parallelism in sparse factorization. For a number of reasons, 
however, this conclusion can only be regarded as tentative. First, we have experimented 
with a single algorithm (fan-in), a single class of highly regular test problems (k x k 
grids), and a single ordering (theoretical nested dissection). Further experimentation 
with a wider variety of choices in all three areas is called for in future work. Second, 
the models and strategies we have employed involved a number of simplifying assump- 
tions, heuristics, and approximations, and therefore cartnot provide absolutely rigorous 
resiilts. Finally, we observe that one should not read too much significance into the 
close match between observed performance and the model simulation. In particular, 
there is no necessary resemblance between the task schedule actually used by the fan- 
in algorithm and the schedule implicitly derived by the approximation algorithm of 
Strategy 4. Thus, we cannot rule out the possibility that the performance of the fan-in 
algorithm was determined as much by its choice of task schedule as by its communi- 
cation requirements. Given this fact, one might ask why the approximation algorithui 
is rrcat used in practical sparse factorization algorithms, and the answer is simple: al- 
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though the scheduling algorithm of Strategy 4 is simple to state, it is very expensive to 
execute for large problems. Tn fact, this scheduling algorithm is much more expensive 
than the factorization itself, and thus its value is for theoreticaa analysis rather than 
for practical computation, 

Despite our inability to  draw definitive conclusions based on our results thus far, we 
have nevertheless gained considerable insight into the factors affecting the performance 
of a complex and sophisticated algorithm on distributed-memory parallel architectures. 
Further analysis and experimentation dong these fines should provide additional evi- 
dence to allow more rigorous conclusions, and may also help show the way to  improved 
performance. 
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