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HMECHANICAL PROPERTY CHARACTERIZATION OF FIBER-REINFORCED
S1C HMATRIX CGOMPOSITES*

D. P. Stinton, E. A, Lowden, and R. H. Krabill

ABSTRACT

Mechanical properties of Nicalon-fiber-veinforced
silicon carbide (81iC) matrix composites fabricated by a
forced chemical vapor Llf leration (CVI) process have been
measured and compaved with properties of cowmposites fabri-
cated by a conventional isothermal process. Flexure
strengths, tensile strengths, and fracture toughnesses
measured at room tempevature and flezure strengths measured
at high temperatures are nearly ildentical for composites
fabricated by the two processes provided that hot-face
temperatures <1200°C are used for the forced CVI process.
Reduced strengths ave observed for composites fabricated by
forced CVI at temperatures >1200°C because of the degrada-
tion in strength of Nicalon fibers. Composites reinforced
with more stable Tyramno fibevs were fabricated by forced
CVI and exhibited mechanical properties similar to those of
Nicalon-yeinforced composites. Conmpozites reinforced with
Tyranne fibers also exhibited improved high-temperature
strengths.

IWTRODUCTION

Composites consisting of silicon carbide (Si0) matricez reinforzed
with continuous silicen-carbide-oxygen (8i-C-0) fibers ave being
developed for many high-temparature styustural applications. Chemical
vapor infiltratioen (CVI) is an attractive process for fabricating these
fiber-reinforced composites because continuous ceramic fibers can be
processed without strength degradation. The great potential use of

ceramic matrixz composite materials has prowpted lo-depth investigations

of these waterials.

*Reseavch sponscred by the U.8. Departwent of Energy, Fossil Euergy
ARETD Matevials Program [DOE/FE aA 15 10 10 0, Work Breakdown Structure
Element ORNL-1(AY) under contract DE-ACDS-R40E21400 with Martin Maviets
Energy Systems, Inc,




Fiber-reinforced ceramic-matrix composites have been f{abricated by
two distinctly different CVI processes. The first, by which most CVI
composites are fabricated, is the isothermal prccess in which reactant
gases diffuse into freestanding preforms (Fig. 1).'"? The second pro-
cess, developed at Oak Ridge National Laboratory (ORNL), simultaneocusly
uses a thermal gradient and a pressure gradient in which the reactant
gases are forced into the cool side of the fibrous preform. Densifi-
cation in the isothermal process is relatively slow in comparison with
the forced-flow process because of the use of diffusive transpoxrt of
gaseous reactants and reaction by-products. The reduced infiltration
times offered by the forced-flow process make the ORNL process
especially attractive for densifying thick-walled, simple shapes.

Unfortunately, the properties of the Nicalon fibers routinely used
in both CVI processes degrade at elevated temperatures. Composites
fabricated by the isothermal process are exposed to a lower processing
temperature than are composites fabricated by forced CVI. Therefore,
this invegtigation compares the mechanical properties of composites
fabricated by the two processes. In addition, the mechanical properties
of composites reinforced with reportedly more stable Tyranno fibers were

compared with those of Nicalon-reinforced composites.
BACKGROUND

COMPARISON OF CVI PROCESSES

The economical densification of cowmposites by the isothermal
process requires large furnaces. To ensure uniforwm infiltration
throughout the furnace, the isothermal process must be slowed by combi-
nations of low-temperature, low-reactant concentrations and low pres-
sures to avoid coating and sealing the outer surface of the preform and
depleting the reactants befcere they reach the inner volume. The Societe
Europeenne de Propulsion (SEP) in St. Medard en Jalles, France, has
successfully commercialized this pr@cess and has licensed it to
E. T. du Pont de Nemours and Company in the United States. Although the

process is proprietary and specific processing conditions are unknown,
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Fig. 1. Schematic representation of the isothermal CVI process.
Reactant gases, as they flow through the furnace at a reduced pressure,
diffuse into fibrous preforms and effluents diffuse back to the preform
surface.



the processing temperature is assumed to be ~1000°C. The composite
shapes are exposed to this temperature for relatively long periods
(weeks to months) during which the fibers are thought to lose some
fraction (30 to 50%) of their strength.

In the forced CVI process*® fibrous preforms are retained within a
cylindrical graphite holder that contacts a water-cooled, metal gas
distributor that cools the bottom and side surfaces of the substrate
(Fig. 2). The top of the fibrous preform is exposed to the hot zone of
the furnace (nmormally 1200°C), which creates a steep temperature
gradient through the thickness of the preform. The reactant gases are
forced under pressure into the cooled side of the fibrous preform but,
because of the low remperature, do not initially react. The gases flow
from the cooled portion of the preform into the hot portion, where they
react-depositing the matrix on the fibers. Deposition of matrix mate-
rial within the hot region of the preform increases the density and
thermal conductivity of the preform; therefore, the deposition zone
moves progressively from the hotter regions toward the cooler regions.
Composites fabricated by the forced CVI process are thus exposed to
higher temperatures (1200°C compared to 1000°C) than in the conventional
CVI process but for much shorter times (~24 h vs weeks or months).
Again, the strength of the fibers is degraded during processing;
however, the strength loss may be no greater than that experienced by

the conventional CVI process.

COMPARISON OF FIBER REINFORCEMENTS

The baseline fiber used by SEP for isothermal CVI processing has
been ceramic-grade Nicalon, a polymer-derived Si-C-0 fiber.% ' The
fiber consists primarily of SiC, which makes it attractive for elevated
temperature reinforcement. During the development of the forced CVI
process, plain-weave ceramic-grade Nicalon cloth was used alwost exclu-
sively for the fabrication of composites. The strength of the fiber
reinforcement in ceramic matrix composites can be directly correlated
with the overall mechanical properties of the composite. Because of
grain growth and the formation of large pores, the strength of the

Nicalon is degraded when it is heated above 1000°C.'1"12 The implication



ORNL-DWG 85-44418R6

HEATING HOT ZONE
ELEMENT:

EXHAUST GAS
PERFORATED

RS

LID
N/,,,/ i '»4/57’3}; Z/B ////\
NJEE 2 HOT_ SURFACE 252 77 ]
2 i e §

\"'— FIBROUS
GRAPHITE . JZCOLD SURFACE ’\:__’7;’_‘\ PREFORM

HOLDER-—’”/\\<;\ <
NN ;\\ &\\\\

INFILTRATED WATER-COOLED
COMPOSITE SURFACE

f

REACTANT
GASES

Fig. 2. Schematic representation of the forced flow-thermal gradi-
ent CVI process. Reactant gases are forced under pressure inte the
cooled side of the fibrous preform and flow toward the hot side, where
SiC is readily deposited on the fibers,



is that exposure to elevated temperatures during processing or in
service may have a detrimental effect on the strengths of infiltrated
composites.

As a result of the reported higher stability of Tyrawmno over
Nicalon, Tyranno reinforcing fibers are of great interest (Table 1).13
Nippon Carbon Company reported the strengths of Nicalon to be 2900 MPa;
however, lower strengths (2315 MFa) were measured on fiber tows received
at ORNL. Further strength reduction was observed after the Nicalon
fibers were carbon coated (2175 MPa) and woven into fabric (1730 MPa).
Reduction in strength due to weaving is anticipated because the tows are
damaged by handling. Tow testing of Tyranno fibers performed at the
National Institute of Standards and Technology determined the as-
received strength to be 3500 MPa.* After the Tyranno fibers were
annealed for 3 h in nitrogen at 900°C, the tensile strength decreased to
2000 MPa. No further strength reduction was observed after the Tyranno
fibers were heated for 3 h in nitrogen at 1400°C. In addition to their
high-temperature stability, an advantage of Tyranno fibers is their
smaller diameter (8 pum) compared with that of Nicalon (15 wpm), which

results in improved handling, weaving, and braiding behavior.

CONTROIL OF FIBER-MATRIX BONDING

The mechanical properties of Nicalon-reinforced 5iC composites are
controlled by the strength of the bond between the fibers and the
matrix. Deposition of the S5iC matrix directly onto the Nicalon fibers
results in a strong interfacial bond that produces brittle behavior. An
intermediate coating applied to the fibers before infiltration is needed
to weaken the fiber-matrix bond and produce crack deflection and fiber
pullout that contribute to the "toughening" of the composite. Deposi-
tion of a carbon or boron nitride layer has been shown to produce
appropriate fiber-wmatrix bonding to enhance fiber pullout and slip with
a resultant increase in the toughmness and the ultimate strength of the

composite material 14718



Table 1, Properties of Nicalon and Tyranno fiber reinforcements

Tensile Tensile
Fiber Treatment/condition strength modulus
(MPa) (GPa)
Nicalon? Manufacturer’s data 2900 + 395 195 + 15
As receivedb 2315 + 160
Carbon coated 2175 + 191
From fabricP 1730 + 126
1200°C in argon® 1234 108
1200°C in air® 660 110
1 h, 1200°C, 10% HCL/H,P 861 + 70
25 h, 1200°C, 10% HC1/H, 71 £ 15
Tyranmno?  As received® 3500 200
3 h, 900°C, N,€ 2000
3 h, 1400°C, N,° 2000

Nippon Carbon, Tokyo.

bTesting of fiber tows performed at Oak Ridge National Laboratory.
Source: R. A. Lowden, Characterization and Control of the Fiber-
Matrix Interface in Fiber-Reinforced Ceramic Composites,
ORNL/TM-11039, QOak Ridge National Laboratory, Oak Ridge, Tenn.,
March 1989.

CSource: T. Mah et al., "Thermal Stability of SiC (Nicalomn),"
J. Mater. Sci. 19, 1191-201 (1984).

duBE Industries, Tokyo.

®Testing of fiber tows at The National Institute of Standards and
Technology. Source: B. A. Bender, J. 5. Wallace, and D. J. Schrode,
"Effects of Thermochemical Treatments on the Strength and
Microstructure of SiC Fibers," J. Mater. Sci., accepted for
publication.

The usefulness of the pyrolytic carbon is, however, limited by its
low resistance to oxidation. Boron nitride has greater resistance to
oxidation and can be used to slightly higher temperatures,'® as demon-
strated in Fig. 3. Also, boron doping of pyrolytic graphite improves

its oxidation resistance (Fig. 3).
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EXPERIMENTAL FPROCEDURES

PREFORM ASSEMBLY

Fibrous preforms were assembled for the forced CVI process by
stacking multiple layers of Nicalon plain-weave fabric rotated in a
0° * 30° sequence within the cavity of a graphite holder. The layers
were compressed by hand to produce a preform with a nominal leading of
40 vol % fiber and were held in place by a perforated graphite 1id
pinned to the holder. The cloth sizing was removed through multiple
washings with acetone. Two sizes of fibrous preforms were constructed,
small disks (45 mm in diameter, 12.5 mo thick) and larger disks
(75 mm diameter, 16 mm thick).

After assembly, preforms were precoated with thin layers of carbon.
The coatings were deposited from an argon/propylene mixture at 1100°C
and 3.3 kPa for 2 h. The thickness of the carbon interlayer,
0.2 to 0.3 pm, was verified by polarized-light optical microscopy of
metallographic cross sections. Boron nitride coatings were applied
instead of carbon to a few 45-mm-diam preforms. For these preforms,
Nicalon fabric was coated with boron nitride (BN) by the Chemical Vapor
Deposition Department of Comhurex, Pierrelatte, France. Boren nitride
layers 0.2 to 0.3 pm thick were deposited on plain-weave cloth from a
mixture of boron trichloride, ammonia, and hydrogen under proprietary
processing conditions. Fibrous preforms were assembled from the

BN-coated cloth as previously described.

COMPOSITE INFILTRATION

Preforms were infiltrated with SiC produced by the decomposition of
methyltrichloresilane (MTS) in hydrogen at slevated temperature and
atmospheric pressure. A series of disk-shaped composite specimens was
fabricated for our investigation of the effect of top surface temperva-
ture on the mechanical properties of the material. Composite specimens
with hot-face temperatures vanging from 1100 to 1400°C were
investigated, and the processing conditions are detalled in Table 2.
Note that the processing times decreased from about 36 h for a top

temperature of 1100°C to only 9 h for a top temperature of 1400°C.
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Table 2. Composite specimens fabricated for
investigation of the effect of hot-face
temperature on mechanical properties

Fiber Processing Processing
Run content temperature time

(%) (°G) (h)
351 41.7 1100 36.0
249 39.8 1175 27.5
346 41.8 1200 19.0
247 40.9 1225 17.1
248 41.0 1275 18.0
353 41.2 1300 20.5
354 41.7 1400 9.0

Notes: All composites were fabricated from
plain-weave, ceramic-grade Nicalon fabric that had
been coated with a carbon interface. All samples
were 45 mm diam and 12 mm thick.

The processing times are not always linear (e.g., run 353 was longer
than anticipated), because graphite seals within the furnace sometimes
leak and allow reactant gases to bypass the composite specimen.

A second series of composite specimens was fabricated for our
investigation of the effect of elevated tewmperatures on the mechanical
properties of the composite material. The processing conditions from
these composites are described in Table 3. The configuration of the
equipment when these specimens were fabricated resulted in a bottom
temperature about 100°C lower than that of the smaller furnace, which
failed to fully infiltrate the bottom layers of the composite. The hot-
face temperatures for these specimens was increased to 1270°C to in-
crease the bottom temperature, After fabrication of these composites, a
recirculator was developed that yields better control of the hottom
temperature of the part.

A third series of composites was fabricated from Tyranmo fabric to
determine the room-temperature mechanical properties. The processing

conditions for these runs are described in Table 4.



11

Table 3. Composites fabricated for investigation of
elevated temperature flexural strengths
(All samples were 75 wmm diam, 16 mm thick, and
fabricated at a hot-face temperature of 1270°C)

Fiber i Processing
Run type Interface time (h)
255 Nicalon Carbon 14.3
268 Nicalon BN 34.,0¢
258 Tyranmo Carbon 14.1

4p faulty seal within the furnsce allowed
reactant gases to bypass the composite. After 24 h,
the leak became apparent aond the furnace was shut
down. After installation of a proper seal, densifi-
cation was completed in only 10 additional hours.

Table 4. Composites fabricated to investigste the mechanical
properties of Tyranno-reinforced waterisl

Fiber Sample Processing Processing
Run content diameter temperature time
(%) (mm} °e) (b}
242 43 45 1200 12.5
243 43 45 1200 38.1
269 40 45 1200 21.1

FLEXURE TESTING

Flexure bars were cul with a diamond saw from the samples paralliel
to the 0° orientation of the top layer of cloth. Tensile and compres-
sion surfaces were ground pavallel to the long axis of the specimen.
The average dimensions of the test bars from the composite samples were
2.5 x 3.3 x 40 mm for the swall composite samples and 3 x 4 X 55 mm for
the larger composite samples. All specimens were weasured and weighed

to determine densities.
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Room-temperature flexural strengths were determined from linear
elastic-beam assumptions and the maximum load by a four-point bending
method, with a support span of 25.4 mm, a loading span of 6.4 mm, and a
crosshead speed of 0.0085 mm/s. The larger bend bars were used for
elevated-tenperature flexure testing. The specimens were first coated
with a 35-um layer of SiC to prevent oxidation of the carbomn or boron
nitride interlayers exposed during cutting and grinding. The elevated-
temperature flexure strengths were determined from linear elastic-beam
assumptions and the maximum load by four-point bending, with a support
span of 40 mm, a loading span of 20 mm, and a loading rate of 1.0 kg/s
(crosshead speed of 0.0075 to 0.011 mm/s). The tests were performed
with alumina fixtures at 25, 500, 750, 1000, and 1200°C. All specimens
were loaded perpendicular to the layers of cloth.

The apparent fracture toughness of composites reinforced with
carbon-coated Nicalon and Tyramno fibers were measured by the single-
edge, notched-beam (SENB) technique. Notches were cut with a 0.25-mmn
blade across the width and at the center of flexure specimens
(3 Xx & x 55 mm) to a depth 30% of the 3-mm thickness. The flexure bars
were loaded in four-point bending (support span of 25.4 mm and a loading
span of 6.4 mm); fracture toughness values were calculated from the
maximum loads and the stress-intensity-factor coefficients from Brown

and Srawley for linear elastic behavior.

RESULTS AND DISCUSSION

Room-temperature flexure strengths have been measured on composites
fabricated by the forced CVI process for several years.2?® The
difficulties in interpreting flexure-test results for continuous fiber-
reinforced composites are recognized, and the results are reported only
for comparison of cowmposites fabricated under different processing
conditions. Composites fabricated before 1989 with a top or maximum
temperature of 1200°C by the forced CVI process had an average flexure
strength of 320 MPa. Flexure strength values were generally consistent
within each composite sample (i.e., no apparent effect of location of

the specimen existed with respect to the hot face of the composite).?0
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These values are nearly identical to those reported by Lamicq et al.?
for Nicalon-reinforced SiC matrix composites infiltrated at SEP by the
isothermal CVI process.

Minor improvements to the forced CVI process were made to increase
average flexure strengths of the typical composite to about 380 MFPa.
Mechanical properties of several typical samples are described in
Table 5. A slight decrease in density is observed from the top {or hot
face) of the composite toward the bottom (or cold face). The reduced
density of the flexure bars from the middle and bottom lavers of the
composite appears to decrease the flexure strength. When large numbers
of samples were examined in a previous study,?’ strength was related to
density but significant scatter in the data indicated that other factoers

also affect strength.

Table 5. Characterization of Nicalon-reinforced composites

Fiber . L Flexure
Sample content Samp%e Composite d?nSity strength
(vol %) location (% theorotical) (MPa)
21 41 Top 87.2 ¥ 0.3 417 + 18
Middle 85.5 £ 0.7 406 & 30
Bottom 84.4 + 0.7 350 & 14
23 4] Top 88.2 + 1.0 396 % 30
Middle 87.8 + 0.4 A54 & 44
Bottom 85.4 £ 1.0 308 + 26
364 37 Top 91.8 £ 0.6 407 & 23
Middle 88.1 + 0.8 345 27
Bottom 91.0+ 1.0 339 & 19

As other researchers have reported,??™2® the tensile strength of
ceramics is difficult to precisely measure. All the difficulties
associated with precision tensile testing (e.g., alignment of top and
bottom grip centerlines, alignment of sample centerline to grip center-
line, precision sample machining) are magnified by the brittle nature of

ceramics. The short length of the samples fabricated at ORNL resulted
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in a short gage length (13 mm), which magnified the stresses that any
misalignment would place on the samples. The short sample length also
resulted in a minimum length (16 mm) available for bonding of the
samples to the grips. Because these tests are so time-consuming, few
samples have been tested.

Successful tensile results were obtained by using the precision
tensile-testing apparatus developed under the U.S. Department of Energy
Advanced Materials Development Program by K. C. Liu et al.?* Liu’'s
testing of this equipment indicated that bending stresses at a speciwen
length of 140 mm were <0.5% of the applied tensile stress. To accoums-
date the shorter samples, precision-machined metal adapters wers used in
conjunction with a sample-grip system. Similar stress-strain curves
from strain gages mounted on the front and back surfaces of the temsile
sample indicated that the sample was properly aligned with the testing
machine. A typical strain-gage-derived stress-strain curve for the
fiber-reinforced composites [85% of theoretical density (T.D.)] is shown
in Fig. 4. Note that at the maximum load, the stress is ~230 MPa and
the strain is ~0.75%. Both values are comparable to values reported by
Lamicq et al.?! for similar material fabricated by the isothermal CVI
process.

Apparent fracture toughness measured for composites fabricated from
Nicalon cloth by the forced CVI process is 23.5 * 2.9 MPaen'’?, which is
nearly identical to the room-temperature value reported by Du Pont or
SEP20 (25 MPaem'/?) for isothermally produced composites. Because of the
similar mechanical properties for composites fabricated by different CVI
techniques, processing of composites at 1200°C by the forced CVI method
must cause no greater degradation of fiber strength than processing at
1000°C by the isothermal method. Slightly higher flexure strengths (380
vs 320 MPa) reported by the forced CVI preccess may be the result of
different cloth weaves. The cloth used by SEP and Du Pont is a plain
weave with 500 filaments/tow and about 10 tows/cm, whereas the cloth
used at ORNL is also plain weave but contains 1000 filaments/tow and
only about 6 tows/cm. The more open weave cof the cloth used at ORNL
seems to provide better movement of reactants through the preform, which

is beneficial to the forced CVI process.
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Unusually low flexure strengths have been observed for composites
processed at temperatures higher tham 1200°C by the forced CVI tech-
nique. To investigate the effect of processing temperature on the
strength of Nicalon/SiC composites prepared by forced CVI, disk-shaped
samples were fabricated at top (hot) surface temperatures ranging from
1000 to 1400°C. A plot of the average flexure strengths of specimens
cut from the uppermost portion (the volume that experienced the highest
processing temperatures for the longest time) clearly illustrates the
strength loss above 1200°C (Fig. 5). Similar attempts to correlate
strengths with processing time or density, both of which spanned a
narrow range, indicated no strong relatiounship. Nicalon fibers are
clearly damaged by processing temperatures >1200°C even though the
temperature is maintained for only 16 to 24 h.

The mechanisms of Nicalon-fiber degradation have been the subject

of extensive study.!!.12,27-28

Heating fibers above 800°C in vacuum, air,
or inert atmospheres results in significant reductions of fiber
strength. The strength loss has been attributed to factors such as
grain growth, mechanical damage due to Si0 and CO evolution frowm the
carbothermal reduction of Si0, present in the fiber, and other
compositional changes. Clearly, from the observation of decreasing
flexure strength with increasing processing temperature, such an effect
is confirmed in the composites. This effect is particularly true in
view of the measurements of increasing strength of chemically vaporxr
deposited SiC with increasing deposition temperature.30733

During this investigation, a limited number of SiC-matrix
composites were fabricated with Tyramno fibers precoated with ~0.2 um of
pyrolytic carbon (Table 6). Although composites fabricated with Tyranno
fibers were not as dense as those fabricated with Nicalon fibers, the
mechanical properties were approximately equal. Forced CVI processing
has been optimized for the relatively open weave described previously
(1000 filaments/tow, 6 tows/cm). Tyranno fibers have a diameter of 8 to
10 pum and are available in only 1000-filament tows. The smaller
diameter flexible fibers form a tight bundle with little porosity, which
makes them difficult to infiltrate. The forced CVI process needs to be

optimized for the tightly woven Nicalon and the wore nested Tyranno
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Table 6. Characterization of composites reinforced with Tyranno fibers

o Apparent
Fiber g 1 c ite d " Flexure £
Sample content Sample omposite ?n51 v strength fracture
(vol %) location (% theoretical) (MPa) toughness
(MPasm/?%)
2432 43 Top 79.4 1.8 365.4 + 18.4 20.9 + 2.0
Middle 75.6 £ 0.2 395.0 £ 7.5 206 £ 1.9
Bottom 72.5 0.5 351.9 + 11.0
243 42 Top 81.0 £ 0.7 368.9 + 7.7 19.6 £ 1.0
Middle 75.3 + 0.1 364.2 + 2.4 18.4 + 1.8
Bottom 64.4 + 0.8 216.1 + 36.5
2582 40 Top 85.5 + 0.7 388.3 + 19.2

The middle and bottom of sample 258 used in other tests did not
require cutting into flexure bars.

cloth. (Optimized processing conditions would reduce the wide wvariation
in density within the samples described in Table 6.)

The mechanical properties of composites reinforced with Tyranno
fibers were encouraging. Despite the somewhat less than optimum density
of the fabricated composites, strengths >350 MPa were obtained for
samples from the top, middle, and bottom of the composite (Table 6). A
load-displacement curve for a Tyranno-reinforced composite exhibits
"toughening” by fiber pullout. Although the fracture toughness values
are similar, the fracture appears to be more brittle than that of
Nicalon composites (Fig. 6).

The effect of testing temperature on the flexure streogth of carbon-
coated Nicalon and Tyranno fibers in a SiC matrix was investigated. The
results of the elevated temperature tests are summarized in Fig. 7. A
gradual increase in the strength of the Nicalon/SiC compesites

produced by forced CVI was observed up to a temperature of 1000°C. The

D

same increase was observed for composites fabricated with either a
carbon or boron nitride interface. The composites exhibited good

strengths and gradual failure in all tests. A decrease in the strength
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of the composites was noted above 1200°C, most likely due to the degra-
dation of fiber properties at this temperature. These results are
nearly identical to those reported by Lamicq et al. for composites
produced at SEP by the isothermal CVI process.?! The strengths of the
Tyranno-reinforced composites were higher than those of the Nicalon/SiC
composites at all test temperatures, and no significant decrease in
flexure strength was observed above 1200°C. Additional tests at
elevated temperatures and after long-term heat treatments are being
performed to further characterize the high-temperature properties and

the stability of the two fibers.
CONCLUSIONS

Silicon carbide matrix composites fabricated by the forced CVI
process have been characterized for room-temperature flexure strength,
room-temperature tensile strength, room-temperature fracture toughness,
and high-temperature flexure strength. Forced CVI composites fabricated
at hot-face temperatures £1200°C exhibit an average flexure strength of
.~380 MPa and an apparent fracture toughness of ~23 MPaem!/?, Room-
temperature tensile strengths obtained on a limited number of samples
gave values of -~230 MPa. Because these values are nearly identical te
those reported by SEP and Du Pont for composites fabricated by the
isothermal CVI process, apparently no additional fiber degradation
results from the higher processing temperature (1200°C) used by the
forced CVI process. Hot-face temperatures >1200°C were shown to cause
significantly greater fiber degradation,

Silicon carbide matrix composites reinforced with Tyranno fibers
were also fabricated by the forced GVI process. The room-temperature
flexure strength of the material is at least as high as Nicalon-
containing composites of similar density with similar strain tolsrance.
Improvement is noticeable in the strength of the Tyrammo-reinforced
composites over that of Nicalon-reinforced composites tested at temperva-
tures up to 1200°C. The dependence of the strength of Nicalon-
reinforced composites on processing temperature will provide an impetus

to further investigate Tyranno fibers. The higher temperature stabilicy
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of the Tyranno fibers could provide greater flexibility for the forced
CVI process.

Plain-weave Nicalon cloth, used almost exclusively for the develop-
ment of the forced CVI process, has a relatively open weave that permits
movement of reactants through the thickness of the preform. The initial
attempts to infiltrate more tightly woven Nicalon cloth similar to that
used by SEP and Du Pont resulted in slightly lower densities. Current
processing conditions do not permit sufficient time for a thorough
infiltration of the fiber bundles that results in the lower demsities.
The forced CVI processing conditions must be optimized for the weave to
increase the final density of the composite. Tyranno fibers are smaller
in diameter and come in bundles of more filaments. Because these fibers
nest together more tightly than do the stiffer Nicalon fibers, less
permeability exists within the Tyrannc bundles. Minor adjustments are
needed for the forced CVI processing conditions to extend the infiltra-
tion time or other such modifications for more complete infiltration and

uniformity iwprovement of the Tyramnno-reinforced composites.
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