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ABSTRACT 

Our objective is to move a two wheeled robot from one posture to the next 
in the minimum time in a planar environment without obstacles. We assume that 
the maximum acceleration on each wheel is bounded. We have used Pontryagin’s 
Maximum Principle to find the optimal paths. 

The optimal trajectories are bang-bang; at every point on the optimum path, 
the acceleration on each wheel is either at the upper limit or at the lower limit. We 
can use a coordinate transformation to move the initial posture to the origin. We 
can reach any point by a rotation followed by a translation. Adding a final rotation 
moves the robot to an arbitrary posture. 

A switch point is a point at which the acceleration on one of the wheels changes 
sign. We can characterize a trajectory by the number of switch points. A path 
with a smaller number of switch points will have a higher average velocity and 
a longer distance traveled by the wheels. The path with the smallestA number of 
switch points has two (one of each wheel). [For translation, both wheels accelerate 
from zero to the maximum velocity. After the switch point, both wheels decelerate 
to zero.] However, there are only two paths with two switch points: translation 
and rotation. Rotation followed by translation requires five switch points, while 
rotation, translation, rotation has eight switch points. 

We have explored paths with three and four switch points. The paths with 
three switch points and initial rotation can reach any point faster than a rotation 
followed by a translation. Paths with three switch points and initial translation 
or paths with four switch points are useful if the final orientation is considerably 
different than the direction of travel. 

V 





1. INTRODUCTION 

A robot’s path can be described by a sequence of postures (a posture is a position 
with an orientation). At each posture, the robot is at rest and performs a task, This 
paper considers the problem of finding the quickest path from one posture to the 
next in an environment with no obstacles. 

The motivation to consider this problem was provided by the need to plan paths 
for the HERMIES-I11 mobile robot. The robot has two steerable drive wheels and 
four casters (in this paper, we will assume that the drive wheels are not steerable). 
The kinematics and control of the robot are described in Jansen and Kress.’ 

Currently, the motion system for HERMIES-I11 consists of five processes: global 
path planning, path monitoring, obstacle detection and avoidance, wheel control, 
and wheel drive. A mission for the robot is defined by a sequence of via points. At 
each via point, the robot stops and performs an action (typical actions are: laser 
ran e scan, video ima e acquisition, or move arm). Given the mission and a world 
mo f el, the global pat 8, planner defines a sequence of set points that connect the 
via points and avoid the obstacles in the world model. During the execution of the 
path, the path monitor compares the robot’s position to the plan and determines the 
next set or via point, While the robot is moving, sensors monitor the environment. 
If unexpected obstacles are detected, the robot modifies its path to avoid the 
obstacles. Given the next point or posture on the modified path, the wheel controller 
continuously determines the wheel velocities and sends them to the wheel driver. 
The wheel driver sends currents to the wheel motors. 

In this paper, we are examining the kinematics of an idealized wheel controller. 
The real wheel controller would allow the final posture to change during the 
execution of a path. Thus, the initial wheel velocities could be nonzero positive 
or negative). We will assume that the initial and find velocities are zero. &he real 
wheel controller has bounds on both velocity and acceleration. We will neglect the 
velocity bounds. 

Our focus is on kinematics rather than dynamics. We consider position, velocity, 
and acceleration and neglect mass, force, motor currents, and power supplies. 

The insights gained from the study of the kinematics of an idealized wheel 
controller will help us design the algorithm for the red wheel controller. The design 
and development of the real wheel controller will be described in a subsequent paper. 

Kanayama and Hartman2 have worked on a similar problem. Their objective 
is to find smooth paths between postures. When they minimize curvature, the 
paths are circular arcs aad line segments. When they minimize the derivative of 
the curvature of the path, the trajectories are segments of cubic spirals. 

We will use Pontryagin’s Maximum Principle3 to find the optimal paths. We 
have been unable to find any papers that have applied the Maximum Brinciple to 
mobile robots. However, we have found several papers that apply the Maximum 
Principle to robotic manipulators. Since the optimum solutions for manipulators 
are similar to the optimum solutions for mobile robots, we will discuss the results 
of two recent papers. 

Chen and Desrochers4 have worked on the minimum time control problem for a 
manipulator with a constrained path between two endpoints (they observe that the 
minimum time control problem for an obstacle-free and unconstrained environment 
is more difficult than the constrained problem). They assume that the control 
torques have upper and lower bounds. For the point to point control problem, at 

1 



2 INTRODUCTION 

least one of the control torques is at its bound. For the constrained problem, one 
and only one of the control torques is always at its bound. 

Yamamoto and Mohri5 consider the unconstrained problem. Using the 
Maximum Principle, they can show that the optimal path is bang-bang (the torques 
are always at their bounds). They propose an algorithm for solving a bang-bang 
control problem in which the switching times for the control torques are unknown 
variables 

The 
third section will use the Maximum Principle to derive the conditions for optimal 
trajectories. The fourth section will present analytical solutions for rotation and 
translation. The fifth section will derive optimal trajectories for combined rotation 
and translation. The final section will summarize the results and present our 
conclusions. 

The next section will describe the equations of motion for the robot. 



2. ROBOT MOTION 

We consider a robot with two wheels that cannot be steered (the wheels are 
perpendicular to the axis joining the wheels). The motion of each wheel is described 
by four variables: x ,  y ,  h, and g .  The coordinates x and y locate the point of contact 
on the plane; the angle h is the orientation of the plane of the wheel with respect 
to the x axis; and the angle g is the angle of rotation of the wheel about the axis. 
The equations of motion for each wheel are: 

x = rgcosh (1) 

f i=rgsinh , (2) 
where r is the radius of the wheel and the dot signifies a time derivative. 

We will refer to the two wheels by the letters R and L (for right and left). We 
will use a dot notation for each of the four variables for each of the two wheels; for 
example, R.z is the x mrdinate of the right wheel and L.g is the angle of rotation 
of the left wheel. The equations of motion for the two wheels are: 

R.5 = rR.g cos R. h (3) 

R.6 = rR.g sin R.h (4) 

L.y = rL.gsinL.h (6) 
We can reduce the four equations of motion to three by introducing the rigid 

body constraint that the distance between the wheels is fixed. We define F to be 
the vector from the left wheel to the right wheel and C to be the vector to the 
midpoint between the wheels: 

F.x = R.x - L.x (7) 

C.X = (R.x + L.x ) /2  (9) 

c . y  = (R.y + L.y)/2 . 

F.x2 + F.y2 = D2 . 

(10) 

(11) 

If D is the distance between the wheels, the length of F is D: 

Let h be the orientation of the vector F: cos h = F.x/D and sin h = F.y /D.  
Since the wheels are perpendicular to the axle: c0sR.h = -sinh and 
sin R.h = cos h. 

Since the distance between the wheels is fixed, the motion of the vector F is 
determined by h: 
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4 ROBOT MOTION 

h = r(R.g - L.g)/D . 
The motion of the vector C is given by: 

C.i = - [(R.g + Lq) sin h] /2  (13) 

C.y = [(R.g + L.g) cos h]/2 (14) 
Equations (12) to (14) determine the position and orientation of the robot. 

If the two wheels have equal velocities, the robot moves without rotation. If the 
wheel velocities have equal magnitudes and opposite signs, the robot rotates without 
translation. In general, the robot simultaneously rotates and translates. 

The velocities of the wheels are changed by accelerations provided by forces. 
Thus, the wheel velocities are continuous, while the wheel accelerations can be 
discontinuous. The wheel accelerations are the control variables that determine the 
potential trajectories. 

To express our problem in the language of control theory, we will define five 
state variables [si]. 

2 1  h (15) 

2 5  = rL.JI/D . (19) 
Using the state variables, the equations that determine the motion of the robot 

are: 

23 = (x4 + x5) cosx1 (22) 

is = u2 , 
where the u; are control variables that are bounded: 



3. OPTIMAL TRAJECTOFUES 

Since its discovery in 1956, the Pontryagin Maximum Principle has been used 
to solve a wide variety of optimization problems. This section will summarize the 
maximum principle and apply it to our problem. In vector notation, the motion of 
the system is described by: 

i = f ( s , u )  . (26) 
The optimization problem is to find control variables [ui(t)] that will move the 

system from an initial state xo to a final state q and minimize a functional. For 
our case, the goal is to minimize the time. 

Pontryagin introduced a system of dual variables [$*I. The dud  variables satisfy 
the following system of differential equations: 

$=-C+jaf’/axi , i and j=1,  ..., n (27) 
j 

Using the dual variables, Pontryagin defines a Hamiltonian function, H :  

H = C$jfj . 
i 

The optimal set of control variables maximizes the Hamiltonian function. For 
our problem, the fJ(s,u) are the right sides of Qs. (20) to (24) and the only f j  

that depend on the control variables are f 4  and f5. Thus, the control variables axe 
at their upper limits when the corresponding dual variables are positive and at their 
lower limits when the dual variables are negative. In the jargon of optimal control, 
the optimal trajectory is bang-bang. Ftuthermore, for an optimal trajectory, the 
Hamiltonian is constant and non-negative. 

For our problem, the dud variables satisfy the following equations: 

$1 = [x4 + z g ]  [+2 cos 51 + $3 sin $1 J (29) 

$5 = +$I + $2 sin21 - $3 ~ 0 ~ x 1  (33) 
Our objective is to move from a31 arbitrary initial posture to an arbitrary find 

posture. By a coordinate transformation, we can move the initial posture to the 
origin. Thus, our initial conditions are that all five of the state variables are zero. 
We will assume that the final posture is in the first quadrant; if we can reach any 
posture in the first quadrant, simple sign transformations will allow the robot to 
reach any posture in the other three quadrants. 

The requirement that the Hamiltonian is a constant often provides initial or find 
conditions on the dud  variables. For our problem, the wheel velocities are zero at 
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6 OPTIMAL TRAJECTORIES 

the beginning and end of the optimal trajectory. Consequently, the first three f' 
are zero at both ends of the trajectory and the d u e s  of the $; are arbitrary. The 
initial values of the dual variables [c;] will characterize a trajectory: 

(34) $ i ( O )  ci 9 for i = 1, ..., 5 . 



4. TRANSLATION AND ROTATION 

In this section, we will derive simple analytical solutions for pure translation and 
pure rotation. We will also derive the conditions for combined motion (translation 
and rotation). 

For pure translation in the first quadrant, both wheels have maximum positive 
acceleration for half of the trip and maximum negative acceleration for the second 
half of the trip: 

i 4  = b for 0 5 t 5 T/2 (35) 

i d  = -b  for T / 2  5 t 5 T (36) 
The velocity increases for half of the trip and decreases for half of the trip: 

(37) x4 = bt for 0 5 t 5 T / 2  

x4 = b(T - t )  for T / 2  5 t 5 T (38) 
Similarly, 2 5  t )  = x 4 ( t  Without rotation, the angle is constant and equal to its 
initial value 1 x 1  = 01. "&us, there is no motion in the x direction [52 = 01. The y 
displacement increases with the square of the time: 

2 3  = 2bTt - bt2 - bT2/2 for T/2 5 t 5 T (41) 

t j (T)  = bT2/2 (42) 
The solution for the dud  variables that detennine the motion of the wheels (Gq 

and $ 5 )  should be positive initially, decrease to zero at T/2 ,  and be negative for 
the last half of the trip. We assume that $1 = +2 = 0. Thus, +I = 0 and both $4 

and $5 satisfy the same equation: 

4 4  = - c 3  . (43) 
Integrating Eq. (43), we obtain the dual solution for the right wheel: 

(44) $4 = Cq - C 3 t  

The constants are chosen to switch from positive to negative at T/2: 

$4 = T/2  - t 
For pure rotation, the wheels always move in 

and the location of the robot does not change 
rotation, the right wheel has negative rotation 
rotation: 

(45) 
opposite directions [ ( x p  + 5 5 )  = 01 
[xz = 53 = 01. For a clockwise 
while the left wheel has positive 
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8 TBANSLATION AND ROTATION 

x5 = b for 0 5 t 5 T / 2  

335 = -b  for T / 2  5 t 5 T 

The velocity increases for half of the trip and decreases for half of the trip: 

5 5  = bt for 0 5 t 5 T / 2  

x5 = b(T - t )  for T / 2  5 t 5 T 

The angle decreases with the square of the time: 

XI = -2x5  

2 1  = -bt2 for 0 5 t 5 T / 2  

x1 = bT2/2 + bt2 - 2bTt for T / 2  2 t 5 T 

z l ( T )  = -bT2/2 

The dual solution for each of the wheels should have opposite signs. For the 
left wheel, the dual solution should be positive initially, decrease to zero at T / 2 ,  
and be negative for the last half of the trip. For pure rotation, $1 is a constant. 
We assume that c2 = c3 = 0. Thus, $2 = $8 = 0 and $4 and $5 satisfy the same 
equation with opposite signs: 

$4 = -c1 . (54) 

(55 )  

Integrating Eq. (54), we obtain the dual solution for the right wheel: 

$4 = c4 - Clt 
The constants are chcsen to switch from negative to positive at T/2: 

$4 = t - T / 2  (56)  
Pure rotation and pure translation are optimal trajectories with one switch 

point for each wheel. In the remainder of this section, we will show that we can 
have optimal trajectories with a maximum total of four switch points. Thus, we 
could have two for one wheel and one for the other, or two for one wheel and two 
for the other, or three for one wheel and one for the other. 

is zero. To derive 
expressions for the dual variables, we will define some auxiliary state variables [z; ] :  

Switch points occur when one of the dual variables [$4 or 

i l  = sinxl (57) 

(59) 
. .  
z3 = x2 
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z4 = 53 (60) 
The initial conditions for the zi are Zi(0)  = 0. 

satisfy: 
Using the state variables and the auxiliary state variables, the dual variables 

‘$5 = c5 + clt + CZ(z1 + z4) - c3(z2 + 23)  (63) 
The dud  variables that control the switch points depend on five constants [c;]. At 
each switch point, either $4 or $4 or both are equal to zero. Since the equations 
are homogeneous, we caa assume that one of the constants is known [cq or c5] and 
solve for the other four constants. Thus, we can have a maximum of four switch 
points. We will explore the solutions of these equations in the next section. 





5. NUMERICAL RESULTS 

4-  

3 -  

2 -  Y 

1 -  

The robot can reach any point by a rotation followed by a translation. If we 
assume that b = 0.2 and use Eq. (53), a 90 degree rotation requires 3.96 seconds. We 
will present results for two time intervals (6 and 10). Using Eq. (421, the robot can 
travel 3.6 when T = 6 and 10.0 when T = 10. (Recall that the z and y coordinates 
have been divided by hdf the distance between the wheels [see Eqs. (16) and (")I). 
If the robot rotates 90 degrees and then moves forward, it can travel 0.4 when = 6 
and 3.6 when T = 10. The locus of points that the robot can reach when T = 6 is 
displayed in Fig. 1, while the locus for T = 10 is displayed in Fig. 2. 

f l  time = 6 

a 

I3 

m 

D 
0 

D 
D 

X 

Fig. 1. The locus of points that the robot can reach when T = 6. 

The optimal trajectories are bang-bang. During the trajectories, each wheel is 
always either ramping up or ramping down at the maximum rate. Since the initial 
and find velocities are zero, each wheel spends half of its time ramping up and the 
other half ramping down. A switch point is a time when the acceleration changes 
sign. Switch points characterize trajectories. The most simple trajectory has one 
switch point (at T/2) .  A trajectory with one switch point will travel farther than 
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12 NUMERICAL RESULTS 
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Fig. 2. The locus of points that the robot can reach when T = 10. 

any other trajectory. The next most simple trajectory has two switch points. The 
first switch point (t,) can range from 0 to T/2. The second switch point occurs at 
t = t ,  + T/2. We will call the first switch point for the right wheel t 4  and call the 
left switch point t 5 .  

Initially, the robot is at the origin. Our objective is to move it into an arbitrary 
posture in the first quadrant. For the first class of trajectories that we will analyze, 
the left wheel has one switch point and the right wheel has two switch points. 
We assume that the initial acceleration on the left wheel is positive, while the 
acceleration on the right wheel is negative. If t 4  = 0, the robot will translate up the 
y axis. If t 4  = T / 2 ,  the robot will rotate without translation. As t 4  increases from 
zero, the final location of the robot will move through the first quadrant. Typical 
results for the optimal trajectories are presented in Table 1 and Fig. 3 for T = 6 
and in Table 2 and Fig. 4 for T = 10. 

When the total time of the trajectory is increased, the switch time required to 
produce a rotation through the first quadrant is decreased; as T increases from 6 
to 10, t 4  decreases from 1.5 to 0.9. For each of the two values of T ,  the magnitude 
of the angle (51) increases in proportion to t4. 
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Table 1. Optimal three switch trajectories with 
initial rotation for T = 6(t5 = 3.0). 

1 Case t4 5 1  x 2  x3 t-rad t-tot I 
1 0.1 -0.1 0.35 3.46 6.90 7.34 
2 0.5 -0.6 1.45 2.60 7.71 8.67 
3 1.0 -1.2 2-00 1.21 8.03 9.36 
4 1.5 -1.8 1.71 0.05 8.06 9.66 

Table 2. Optimal three switch trajectories with 
initial rotation for T = 10(t5 = 5.0). 

I Case t4 21 2 2  23 t-rad t-tat 

5 0.1 -0.2 1.63 9.65 11.19 11.76 
6 0.3 -0.6 4.49 8.16 11.89 12.88 
7 0.5 -1.0 6.56 5.84 12.27 13.62 
8 0.7 -1.4 7.61 3.07 12.51 13.96 
9 0.9 -1.8 7.61 0.27 12.65 14.27 

We have defined two performance measures: t-rad and t-tot. The first measure, 
t-rad, is the time required to rotate and translate to the final xy position of the 
robot, while t-tot is the time required to rotate, translate, and rotate to the find 
posture of the robot. As the total time of the trajectory increases, the performance 
advantage of the optimal trajectories decreases. When T = 6, the largest value of 
t-rad in Table 1 is 34% larger than T and the largest value of t-tot is 61% larger. 
When T = 10, the largest value for t-rad in Table 2 is 26% larger than T and the 
largest value for t-tot is 43% larger. 

We have considered optimal three switch trajectories with initial rotation. The 
other set of optimal three switch trajectories has initial translation. The left wheel 
has one switch point and the right wheel has two switch points. To have initid 
translation, the initial acceleration on both the right and the left wheel is positive. 
If t4 = 0, the robot will rotate without translation. If t 4  = T / 2 ,  the robot will 
translate up the y axis. As t4 decreases from T / 2 ,  the final location of the robot 
will move through the first quadrant. Typical results for the optimal trajectories 
are presented in Table 3 and Fig. 5 for T = 6 and in Table 4 and Fig. 6 for T = 10. 

Table 3. Optimal three switch trajectories with 
initial translation for T = 6(t5 = 3.0). 

I Case t4 2 1  5 2  5 3  t-rad t-tot 

10 2.9 -0.1 0.07 3.48 6.34 7.34 
11 2.5 -0.6 0.28 2.96 6.42 8.67 
12 2.0 -1.2 0.41 2.30 6.15 9.36 
13 1.5 -1.8 0.43 1.65 5.73 9.66 



14 NUMERICAL RESULTS 
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time = 6 

0 1 2 3 4 
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Fig. 3. Optimal three switch trajectories with initial rotation for T = 6. 

Table 4. Optimal three switch trajectories with 
initial traslslation for T = l O ( t 5  = 5.0). 

I Case t 4  21 2 2  2 3  t-rad t-tot I 
14 4.5 -1.0 1.37 8.67 10.62 13.52 
15 4.0 -2.0 2.09 7.02 10.26 14.39 
16 3.5 -3.0 2.28 5.42 9.66 14.76 

Unlike the trajectories with initial rotation, the trajectories with initial 
translation cannot reach all points in the first quadrant; the trajectories in Tables 3 
and 4 lie in the sector between 67 degrees and 90 degrees. For each of the two values 
of T, the magnitude of the angle (XI) increases in proportion to (T/2 - t 4 ) .  

If we compare the d u e s  of the performance measures t-rad and t-tot) in 
Table 1 with the corresponding [(T/2 - t 4 )  = t 4 ]  values in !r able 3, the values 
of t-rad decrease while the values of t-tot are identical. Thus, optimal three switch 
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Fig. 4. Optimal three switch trajectories with initial rotation for T = 10. 
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Fig. 5. Optimal three switch trajectories with initial translation for T = 6. 
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Fig. 6. Optimal three switch trajectories with initial translation for T = 10. 
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trajectories with initial translation are not well suited to cover large distances but 
are well suited for a trajectory with a small translation and a large rotation. 

We have considered trajectories with three switch points; one on the left wheel 
and two on the right wheel. Next, we will examine trajectories with four switch 
points; two on both the right and left wheels. We will confine our attention to 
trajectories with initial rotation; positive acceleration on the left wheel and negative 
rotation on the right wheel. Sample results for optimal four switch trajectories with 
initial rotation are displayed in Table 5 and Fig. 7 for T = 6 and in Table 6 and 
Fig. 8 for T = 10. 

Table 5. Optimal four switch trajectories with 
initial rotation for T = 6(t4 = 1.0). 

I Case t-rad t-tot 

17 3.0 -1.2 2.00 1.21 8.03 9.36 
18 2.5 -0.6 1.32 1.19 7.11 8.65 
19 2.0 0.0 0.71 0.94 5.99 8.52 

Table 6. Optimal four switch trajectories with 
initial rotation for T = 10(t4 = 0.5). 

Case 21 52 t-rad t-tot I 
20 5.0 -1.0 6.56 5.84 12.27 13.52 
21 4.5 0.0 4.70 6.26 11.39 13.93 
22 4.0 1.0 2.94 5.93 10.28 14.10 

When the switch time for the left wheel (t5) is equal to T / 2 ,  the four switch 
trajectory becomes one of the three switch trajectories that we examined previously 
in Tables 1 and 2. As t5 decreases from T/2, the distance traveled by the left wheel 
decreases and the robot rotates in the positive direction. As the distance traveled 
by the left wheel decreases, the radial distance decreases and the radial performance 
measure (t-rad) decreases. For both cases, the total performance measure (t-tot) is 
always significantly greater than T.  For the cases when T = 6, t-tot decreases with 
increased rotation while t-tot increases with increased rotation for the cases when 
T = 10. 

The wheel velocities for three, four, and five switch point trajectories are 
displayed in Figs. 9 to 11. Figure 9 illustrates the wheel velocities for case 3 (and 
case 17), a three switch trajectory with initial rotation and the switch point at 
t4 = 1.0. By integrating the wheel velocities, the right wheel travels 0.6 while the 
left wheel travels 1.8. The rotation of the robot during the transition from the 
initial posture to the final posture is the difference between the distances traveled 
by the two wheels; x1 = -1.2. 

Figure 10 presents the wheel velocities for a four switch trajectory with initial 
rotation and switch points at t4 = 1.0 and t 5  = 2.0. The two wheels travel the same 
distance, 0.6. Thus, there is no rotation between the initial and final postures; 
2 1  = 0.0. 

Figure 11 displays the wheel velocities for both a three switch trajectory and 
a five switch trajectory. The five switch trajectory has a rotation followed by a 
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Fig. 7. Optimal four switch trajectories with initial rotation for T = 6. 
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Fig. 8. Optimal four switch trajectories with initial rotation for T = 10. 
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Fig. 9. Wheel velocities ( ~ 4  and 21;) for a three switch trajectory with 
initial rotation. 
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Fig. 10. 
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Wheel velocities (z4 and 2 6 )  for a four switch trajectory with 
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Fig. 11. Wheel velocities (z4 and ZIT )  for both a three switch trajectory 
and a five switch trajectory. 
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translation. The right wheel has the same velocity profile for both trajectories. For 
the five switch trajectory, the left wheel ramps up and down during both the rotation 
(0 to 2) and the translation (2 to 6). The left wheel travels farther (1.8) during the 
three switch trajectory than during the five switch trajectory (1.0) because it has 
a higher velocity from t = 1 to 4. 



6. CONCLUSIONS 

Our objective is to move a two wheeled robot from one posture to the next in the 
minimum time in an environment without obstacles. We assume that the maximum 
acceleration on each wheel is bounded. We have used Pontryagin’s Maximum 
Principle to find the optimal paths. 

The optimal trajectories are bang-bang; at every point on the optimum path, 
the acceleration on each wheel is either at the upper limit or at the lower limit. We 
can use a coordinate transformation to move the initial posture to the origin; the 
midpoint between the wheels is at the origin and the vector from the left wheel to 
the right wheel is parallel to the positive z axis. We assume that the final posture 
is in the first quadrant; if we can reach any posture in the first quadrant, simple 
sign transformations will allow the robot to reach any posture in the other three 
quadrants. We can reach any point by a rotation followed by a translation. Adding 
a final rotation moves the robot to an arbitrary posture. 

A switch point is point at which the acceleration on one of the wheels changes 
sign. We can characterize a trajectory by the number of switch points. A path 
with a smaller number of switch points will have a higher average velocity and 
a longer distance traveled by the wheels. The path with the smallest number of 
switch points has one for each wheel. However, there are only two paths with two 
switch points: translation and rotation. Rotation followed by translation requires 
five switch points, while rotation, translation, rotation has eight switch points. 

We have explored paths with three and four switch points. The paths with 
three switch points and initial rotation can reach any point faster than a rotation 
followed by a translation. Paths with three switch points and initial translation 
or paths with four switch points are useful if the final orientation is considerably 
different than the direction of travel. 

The real wheel controller will have a velocity constraint. The velocity constraint 
will reduce the velocity advantage for trajectories with a small number of switch 
points. The real wheel controller will choose an optimal path from a family of 
possible paths. In many cases, the rotate-translate-rotate path will probably be the 
optimal path. 
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