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ABSTRACT 

An explicit formulation is developed to determine the width of a magnetic island 

separatrix generated by magnetic field perturbations in a general toroidal stellarator 

geometry. A conventional method is employed to recast the analysis in a magnetic 

flux coordinate system without using any simplifying approximations. The island 

width is seen to be proportional to  the square root of the Fourier harmonic of BP/BC 

that is in resonance with the rational value of thc rotational transform, where BP 

and I?< are contravariant normal and toroidal components of the perturbed mag- 

netic field, respectively. The procedure, which is based on a representation of three- 

dimensional flux surfaces by double Fourier series, allows rapid and fairly accurate 

calculation of the island widths in real vacuum field configurations, without the 

need to follow field lines through numerical integration of the field line equations. 

Numerical results of the island width obtained in the flux coordinate represcnta- 

tion for the Advanced Toroidal Facility agree closely with those determined from 

PoincarC puncture points obtained by following field lines. 

V 





1. INTRODUCTION 

Toroidal confinement devices having rotational transform are highly sensitive 

to perturbing magnetic fields that resonate with rational values of the rotational 

transform (t = n/m).  Sources for these perturbation (error) fields include coil 

misalignments during inst allat ion, imperfections in coil windings, fie1d.s from bus- 

works and leads, and the presence of ferromagnetic materials in the virinity [l, 21. 

Recently, the mechanism of magnetic-surface breakup and island formation by mag- 

netic field irregularities has received considerable at tention, and significant advances 

have been reported by many authors [3-131. 

In a cylindrically symmetric system of flux sidaces, if the perturbation field 

contains a component normal to an (unperturbed) rational surface with t = n /m 

and the resonant helical harmonic of this component is of the type 

then the maximum width of a magnetic island generated at the resonant surface is 

given by [9-11] 

where -E is the rotational transform, a‘ = da/dr  is the shear, T is the minor radius, 

and ( B e ( r ) )  is the average poloidal component of the magnetic field at the flux 

surface T .  Subscripts “0” in Eq. (2) mean that the quantities a.re evaluated at the 

rational surface r = ro with - E ~  = n/m. Somewhat different but fundamentally 

equivalent forms are given in Refs. [3, 6-81, and an improved formula correct to 

second order in inverse aspect ratio is derived in Ref. [12]. 

The result given by Eq. (2) is basically accurate in the approximation d an 

infinite-aspect-ratio toroidal magnetic field configuration, in which magnetic flux 
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surfaces are assumed to be concentric circles and hence the toroidal coupling of 

the Fourier coriiporients arising from noncircularity and shift of the flux surfaces 

is entirely neglected. In one way or another, this type of assumption is usually 

made in carrying out analytical studies of the effect of field perturbations on the 

magnetic flux surfaces in toroidal stellarator configurations [3-121 I If, however, a 

perturbation B,, given by Eq. (1) is applied to an actual toroidal system, islands 

are produced not only on the surface with t = n/m but, also on other surfaces with 

c = n/ (m f I), rn > 1, because of mode coupling caused by toroidicity. This means 

that nonresonant perturbations B,+l ,, and B,-l ,n also generate islands at the 

surface with G = n/m, although these islands are somewhat smaller than those due 

to B,, with the same magnitude. 111 the case of the Advanced Toroidal Facility 

(ATF), island widths at the t = 1/2 surface due to B1,1 and Rs,1 are both about 

48% of the width of the island due to B z , ~ .  

For the practical analysis of perturbations to the fixed geometry of an exist- 

ing stellarator experiment (such as the AT!?), it is very useful to break down error 

fields into their Fourier components and then cal.culate the island widths at the 

various rational surfaces without resorting to the tedious ‘4~tandard” method [2, 141 

of following field lines for each of the realistic perturbations under consideration. 

The Cary-Hanson technique [15-171, which is not directly related to finding island 

widths, employs Hamiltonian dynamics to estimate the isla.nd width by using in- 

formation obtained from integrating along the closed field line at the island center. 

This method is computationally fax more eficient than the standard method, and 

the numerical results obtained for the ATF a,re accurate to at least within 5% for 

the c = 1/2 surface and 30% for the G = 2/3 surface [13]. However, for a,pplica.tions 

such as experiments in which the configuration is already fixed and there are many 

possible sources of error fields, it is frequently desirable to analyze the efiects of 
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external perturbations using harmonic analysis and an expression like Eq. (2). For 

example, when one is trying to find the error fields responsible for islands measured 

experimentally using electron beams [2], it is useful to study the effects of many 

possible error sources quickly so as to reduce the number of possibi1itit.s that must 

be investigated in more detail. 

The general technique of deriving island width formulas under various types 

of approximations is well known and can be found in the literature, including 

Refs. [3-121. In this report, we employ the same method to develop a quite gen-  

eral a n d  acczLrute numerical procedure for calculating island widths in an arbitrary 

three-dimensional toroidal geometry, without introducing any approximations. The 

present study, therefore, differs only in this respect from the majority of the earlier 

investigations [3-12], which are primarily concerned with analytic dcrivations un- 

der simplifying assumptions, such as zero or small inverse aspect ratio, circular (or 

nearly circular) and concentric flux surfaces, small helical field, and expansions in 

terms of certain small parameters. Application of the island width formula to  the 

actuaj ATF vacuum magnetic geometry shows that numerical results hascd on the 

formula and those obtained by following field lines in the standard method agree 

quite closely even though the involved perturbations are substantial. 
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2 .  FORMTJLATION IN MAGNETIC 
FLUX COORDINATES 

In this section, we present a brief derivation of the expression for the magnetic 

island width by following basically the same method employed in Refs. [3-121. Here, 

however, no specia.1 approximations are made; hence, the formulation is quite gen- 

eral and the results are expected to be more accurate than those based on many 

conventional approximations. The only assumption used is that the toroidal flux 

surface under consideration is closed and satisfies the stellarator symmetry condi- 

t ions 

and can be represented by a double Fourier series [18, 191: 

Z(P, 6, C) = ~ m n ( P )  sin(m6 - 4, (4) 
m,n 

where C and 0 represent toroidal and poloidal angles, respectively, and p is a radial 

coordinate labeling the toroidal surfaces. Here, we define 

where @ = @(p)  is the toroidal magnetic flux enclosed in the magnetic surface p and 

Bo is the average magnetic field at the axis, p = 0. As in the inverse representation 

of MHD equilibria [20], the magnetic flux coordinates ( p ,  8, S j  are considered the 

independent variables in Eqs. (3) and (4), and the cylindrical coordinates ( R ,  $,Z) 

are the dependent variables, with 

q5 = (. (6) 
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-+ 
The unperturbed magnetic field Bo can be expressed in a contravariant vector 

form as [18, 19, 211 

& = V@ x vp, (7) 

where A ( p , e , C )  is a stream function relating the poloidal angle 6' to the Irirtgnetic 

flux coordinate @*. In the (p ,  $*, C) coordinate system, the magnetic field lines are 

straight on any surface given by p = const, since Eqs. (7) and (8) givc the local 

rotational transform 
8, * V$* 

z, * vg = & ( P I ,  

which is a function of p alone. Thus, along the unperturbed field line, we have 

d4* -=  
4 

which is one of two equations used to describe the field line. 

To obtain a useful form of the other equation, we write 

-t 

where (f, $,2) is the set of orthonormal basis vectors of the (I?, #, Z j  system, SB 

represents the pert iirbation (error) field, and 
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are the contravariant components of g. In Eqs. (12)-( 14), 

and 

2 - vu; 

are the covariant and contravariant basis vectors, respectively, and (u1, u2, u3) rep- 

resent ( p ,  8, (). Since Bib = RBC, Eqs. (61, (12), and (13) yield 

Note that B,P = 0, and hence BP = g .  i i lVp l  is due entirely to c5Z ( i i  is the unit 

vector normal to the unperturbed flux surface). 

In general, the right side of Eq. (17) can be expanded in helical harmonics as 

RBP - = a7,&) cos(rn@* -- 724) + bm&) si+@* - v q  
B+ m , n  m n 

with C m n ( P )  > 0. However, in the process of island formation at a given ra,tional 

surface, the contribution from nonresonant components is far smaller than that 

from the resonant one. Therefore, at the surface with .(p) = n /m,  Eq. (17) may 

be approximated by 

where 

a = mt)* - n$ + Y ~ ~ .  

Along the field line, the derivatives of a with respect to q5 become, with Eq. ( lo) ,  

d a  - = rnc(p)  - 72, 
dd 
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d2a d f 
d42 
- =  m 4  P I  &j. 

Without loss of generality, Eq. (22) can be written as 

- A  sin a ,  
@a 

d42 
- =  

where 

may be approximated as a constant in integrating Eq. (23), if the field line does not 

deviate far from the unperturbed rational surface with t = n/m. The result can 

then be written in the form 

The maximum width of the magnetic island (separatrix) corresponds to k2 = 1 [9, 

221 

and is given by 

With substitutions from Eqs. (19) and (26), Eq. (27) finally becomes 

Note that Eq. (28) gives the island width in the variable p (;.e., d / 2  is the maximum 

deviation in p ) .  The relationship between p and the average minor radius ( r )  is 

discussed in Section 3. If the normal component of the error field BP is given by 

Eq. (1) and the straight cylindrical geornctry is used by approximating Eqs. (3) and 

(4), (9), and (18), respectively, by 



then Eq. (28) reduces to Eq. (2). 

We now turn to a method of evaluating the Fourier components of RBP/B+: 

where aan(p) and bma(p) are coefficients of cos(mB* - n$) and sin(m8* - n$), 

respectively, in the Fourier series given by Eq. (18). The quantities that are needed 

to calculate c m n ( p )  (R ,  B ,  V p ,  2, e‘i, etc.) cannot be expressed readily in ( p ,  8*, 4) 
coordinates; hence, it is more convenient to use ( p ,  8,d) coordinates. Therefore, we 

write, except for m = n = 0, 

f 

which indicate that we now need to determine two expressions: (1) X(p,O,$) for 

B*(p, Old) and 3@*/3B and (2) Vp for BP = 2 . Vp. The Fourier series of X(p, 6 , $ )  

is of the form [19] 

X(P187 $1 = X m n ( p )  sin(m6 - n$),  (35) 
m,n 

and a convenient and accurate method of calculating Xm,(p) is described in Rkf. [19]. 

With Eqs. (11) and (15), and 3i./d$ = 4, it is straightforward to obtain 

-4 d R ,  82,  
e p  = -r + -z,  

-+ 3R, 8.2, 
eg = -r f -z, 

dP 

88 d8 (37) 

(38) 
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in terms of which 3' can be written as 

where 

is the Jacobian of the transformation from (R ,  4,Z)  to ( p ,  B,4). Thus, the expression 

for BP in ( p ,  8 ,4 )  coordinates becomes 

Expressions for the partial derivatives of R, Z ,  and X with respect to the flux 

coordinates ( p ,  8 , d )  amre obtained from Eqs. (3), (4), and (35), respectively. 
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3. COMPARISON WITH NUMERICAL RESULTS 

In this section, we present nmnerical results for the magnetic islands obtained 

at two rational surfaces with t = 1/2 and 1/3 in the vacuum magnetic configuration 

of the ATF. Eight examples are considered so that the island widths evaluated with 

Eq. (28) can be compared with those measured from Poincark puncture points. A 

set of such points forming islands at a given toroidal surface is obtained by following 

the actual field line that produces the maximum islands (and hence the x-points) 

after enough transits around the torus. In Table I, examples 1-5 and 6--8 are given 

for surfaces with t = 1/2  and 1/3,  respectively; the table lists numerical values for 

(a) the Fourier component c,, obtained from Eq. (32) with n2 = 2 , 3  and n = 1, 

(b) the island width d determined from Eq. (28) with t' =0.02396 cm-' (t = 1/2) 

and 0.007622 cm-*(t = 1/3), and (c) the actual (computed) island width Ap, which 

is the maximuin difference in p between the outer and inner points of an island at 

a given 6'. 

TABLE I. NUMERICAL VALUES OF ~ , 1 ,  d, AND Ap AT RATIONAL SURFACES 
WITH I = 112 AND 113 FOR A T F  

Example G m cm1 (cm) d (cm) AP 
1 1/2 2 6 . 7 4 3 ~ 1 0 - ~  4.744 4.77 

2 1/2 2 1 . 5 7 0 ~ 1 0 ~ ~  2.290 2.30 

3 1/2 2 1 . 5 7 0 ~ 1 0 - ~  2.290 2.28 

4 1/2 2 7 . 7 5 0 ~  lov2 5.087 5.05 

5 112 2 7 . 5 8 9 ~  1.592 1.57 

6 113 3 1.125 x low2  2.806 2.81 

7 113 3 1.849 x 1.138 1.12 

8 1/3 3 2 . 2 4 5 ~  1.253 1.25 
-- 



11 

Perturbation fields of the form 

65 = b cos( pB* - I$)?& (42) 

are used in examples 1,2, and 3 with p = 2, 1, and 3, respectively. Here b = 3.0326 x 

10-‘Bo, where Bo = 0.9893 T is the average toroidal component of the unperturbed 

field at the magnetic axis. It must be pointed out here that the perturbation field 

given by Eq. (42) is not a realistic one in a toroidal geometry. However, it appears 

to serve a useful purpose in demonstrating that nonresonant components of a field 

error also contribute to island formation at the rational surfaces. In the nunierical 

process of integrating the field lines (at least 500 turns toroidally) with the error 

field of Eq. (42), we did not observe any indication of difficulties, such as spiraling 

of the field lines into the island chain or away from it. The perturbation field of 

examples 4 and 6 is due to the “initial” buswork (before modification) of thr ?2TF 

configuration, which involved four large sets of uncompensated currcnt feeds to 

the helical and vertical field coils [2]. This asymmetry was found to be the main 

source of rather large islands (4 cm wide at the G = 1/2  surface, as determined 

by electron beam measurements), and the buswork was later modified by adding 

a “compensatory” buswork consisting of eight similar loops to produce the 12-fold 

symmetry. The perturbation field of examples 5 and 7 is due to this “~nodified” 

buswork [2]. (In the experiment, this change reduced the island width to zl cm at 

the G = 1/2 surface.) Example 8 involves an error field resulting from a horizontal 

linear displacement of the entire upper outer vertical-field coil set by 5 mm. Poincarh 

puncture plots of 2 vs 17: and p vs 6 for example 2 are shown in Figs. l(a) and l(b), 

respectively. Similar plots for the other examples are not shown, since they do not 

look much different except in width. 
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Fig. 1. Poincark puncture plots of example 2; (a) R vs Z and (b) p vs 8. 

In general, the validity of Eq. (28) is restricted to the case where only a single 

perturbation field is taken into a.ccount. However, as long as the involved pertur- 

bations are not excessively large, a fairly accurate estimation can be made from 

Eq. (28) even if the error field consists of many overlapping perturbations. Suppose 

the error field space of a given magnetic configuration is an N-dimensional vector 
--t -t 4 

space spanned by basis vectors 6231, 6B2, - - * ,  ~ B N ,  each representing a small ele- 

mentary perturbation field, The assumption of “small” perturbations is made hew 

so that the Fourier harmonics a?k(p) and b?i (p)  due to 6& can be obtained with 

the approximation B, = &, - 4 in Eqs. (18), (XI), and (34) for .i = 1, 2, “-,  N.  

Then, an arbitrary (small) error field can be written as 

N 
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and the island width can be determined from Eq. (28) with c m n ( p )  given by 

As an application of Eq. (44), let us consider the ATF configuration with the “mod- 

ified” buswork, which is the “initial” buswork plus the “compensatory” buswork. 

Table I1 lists numerical values of resonant hxmonics amn(p),  b m n ( p ) ,  and e m n ( p )  

obtained for four cases at two surfaces with t = 1/2 and 1/3. In the table, per- 

turbations involved in cases I, 11, and I11 are the error fields due to the initial, 

compensatory, and modified buswork, respectively, and in all three cases El+ is ap- 

proximated by 8 0  - 4 in Eqs. (18), (33), and (34). Case IV is the same as Case I11 

except that the exact form (go + 63). & is used for B4. In all cases, cmn(p)  is given 

by 

(45) 
1/2 

Cmn(P)  = [4&) + b2, , (P)]  - 

Two observations can be made from the results in Table 11: (1) values of a m n ( p )  

and b,,(p) for case I11 are equal to algebraic sums of the corresponding values 

from cases I and 11, and hence the validity of Eq. (44) is numericallly demonstrated, 

and (2) the very small differences between the numerical values in cases I11 and IV 

TABLE 11. NUMERICAL VALUES OF RESONANT HARMONICS a,,, b,,,,, AND c,, 

(in units of an) AT RATIONAL SURFACES WITH 6 = 1/2 AND 1/3 

t = 1/2 t = 1/3 

Case a2 1 b2 I c2 1 a3 1 b3 1 c3 1 

I 73.627 24.322 77.540 8.6273 7.3092 11.3073 

I1 -67.199 -20.283 70.193 - 6.9 730 -6.4670 9.5105 

I11 6.428 4.039 7.592 1.6543 0.8422 1.8564 

IV 6.426 4.036 7.589 1.6540 0.8422 1.8560 
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suggest that Eq. (44) can be used to determine c m n ( p )  quite accurately when two or 

more overlapping perturbations are present (if their magnitudes are not very large). 

Next we turn to a close examination of mode couplings that contribute to the 

resonant harmonic amplitude cmn(p)  appearing in Eq. (28). The source function 

of cnzn(p )  is the product of four terms - R, JUpJ, l/B+, and 6 6  - f i .  To see 

how and how much various modes of each of these terms contribute, we consider 
-+ 

thc case of example 4: SB from thc “initial” buswork and the Aiix suiface with 

t = 1/2. The stellarator symmetry givcn by Eqs. (1) and (2) and the 12-fold 

symmetry of the unperturbed field imply that all the sine components of R and 

JVpJ vanish and the cosine components have modes of the form (m ,  f 1 2 v ) ,  where 

m and v are non-negative integers; such modes are designated (mo, no). Since I34 

is the perturbed field, the components missing in the series of R and lVpJ do not 

necessarily vanish in the series of l/B+ and RlBpllB,, but their magnitudes are 

too small to merit further consideration here. Table lIIa lists ( m o ,  no) modes and 

coefficients of cos(moB* - nod) in Fourier series of R, l/B,#,, IVp l ,  and RIVpl/Bd, 

which make dominant contributions to the resonant harmonic c z l ( p ) .  Modes that 

give amplitudes of RIVpl/Bd that are less than 0.01 m/T are not shown. T;lrhile only 

a single group of modes is dominant in the series of RIUpl/B+, the mode spectrum 

of Dn - B P / I V p l  = SB fi is quite broad, and thcre are no particular dominant 

groups. It suffices to consider only the modes of B, that couple with (mo, no) 

of RIVpl/B+ to yield a (2, l )  mode for RBP/B+. We call such modes (ml ,  nl):  

(mo $- ml, no + n l )  = f(2,l) or ( m o  - ml,  no - nl)  = f ( 2 , l ) .  In Table IIIb the 

(ml,  n1) modes and coefficients of cos(mB* - nqh) and sin(rnB* -- n4) for the Fourier 

series of B, are listed. Net results of couplings between the (mo, no) arid (ml,  n l )  

niodes given in Tables IIIa and IIIb, respectively, are shown in Table IIIc, where 

resonant harmonics ~ 2 1 ,  b21, and c2l of RBp/R+ are listed (in units of lo-’ cm) 

for each (mo, no) mode separately. The table clearly shows that the ( 1 , O )  mode 

-# 
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TABLE IIIa. COEFFICIENTS OF C O S ( ~ ~ O *  - no4) I N  FOURIER. 
SERIES OF R, l / l ? d ,  l[Vpll, AND RIIV,[[/B+ FOR THE 
CONFIGURATION OF EXAMPLE 4 

(010) 2.0651 1.0226 1.0473 2.3476 

(210) 0.0344 0.0097 0.1045 0.3355 
(W) 0.1481 0.0949 0.3269 1.0469 

(3,O) 0.0042 -0.0036 0.0181 0.0675 
(4,O) -0.0003 -0.0013 -0.0112 -0.0185 
(5N --0.0002 0.0003 -0.0109 -0.0249 

(610) 0.0000 0.0004 -0.0043 -0.0114 
(0,12) -0.0001 -0.0251 0.0274 0.0963 

(2,121 

(6712) 0.0000 -0.0008 -0.0099 -8.0199 

(W) -0.0306 0.0021 -0.0105 -0.0458 
(13-12) 0.0037 -0.0036 -0.0043 0,0108 

-0.0104 0.0887 0.2199 0.2732 
( V 2 )  -0.0025 0.0466 0.1996 0.3258 
(4,121 - 0.0003 0.0119 0.0730 0.1379 

of RIVpl/B+ gives the most dominant toroidal effect. At this point it must be 

remarked that examples 1-3 in Table I are special cases of coupling in which only 

a single cosine component of B, is present; thus, the numerical results of cal for 

these three examples can easily be determined from the values of b in Eq. (42) and 

the (0,O) and ( 1 , O )  coefficients of R/Vpl/B+ listed in Table IIIa. 

We conclude this section with a few remarks concerning numerical procedures 

and results. 

1. Let us define the average minor radius of the flux surface with label p by 

where A(p,  4)  is the cross-sectional area of the flux surface at the toroidal angle 

6, and $n = 2n.zr/N1 n = 1, 2, - . e ,  N .  Our numerical results for p and (7') 
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TABLE IIIb. COEFFICIENTS OF cos(moO* - ~ 0 4 )  

sin(m18* - nl+) IN FOURIER SERIES O F  
6 8  ii FOR THE CONFIGURATION OF 

CON'I'RIBUTE TO ISLAND FORMATION BY 

IN 'TABLE IIIa. 

EXAMPLE 4. THE LISTED MODES (ml, nl) 

COUPLING WITH (mo, no) MODES GIVEN 

Cosine Sine 
(m1,n1) coefficient coefficient 

(G)  (G) 

(271) -2.2945 -0.9715 
(1J) -2.8430 0.9624 
( 3 4  -1.0189 -- 0.9869 
( O J )  0.2045 - 1.4479 
(471) 0.2942 -0.4680 
(L-4 1.7796 5.3134 
(591) 0.055 3 -0.1183 
(29-1) 2.2488 ---- 2.77 10 
( 6 4  -0.0197 -0.0077 
(37-1) 1.2957 -0.8105 
( 7 J )  - 0.0 196 0.0004 

(2713) 0.2513 0.2276 
(29- 11) -0.9185 -0.7869 

(h-11) - 1.0698 -0.6391 
(3,131 0.1720 -0.1537 
(0,11) - 0.0525 -0.0256 
(4,131 0.3068 --- 0.04 15 
(1711) - 1.331 1 0.6503 
(5,131 0.2546 0.1086 

(6713) 0.0953 0.1087 
(2,111 -0.5042 -0.5193 

obtained with N = 192 for the ATF reveal that the values of p and ( T )  differ by 

less than 0.2% in the regions near surfaces with 4- = 1/2 and 1/3. For practical 

purposes, therefore, the island width given by Eq. (28) may be viewed a s  the 

average value of the local maximum island width seen in the R-2 plane as in 

Fig. 1(a). Note that the islaid width is a function of q5 and for a given toroidal 
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TABLE IIIc. INDIVIDUAL RESONANT HARMONICS ~ 2 1  b 2 1 ,  AND 
C Z ~ { ~ O - ~  cm) FOR RBP/B+, WHICH RESULT FROM COUPLING OF 
MODES (mo, no) AND (ml, nl) LISTED IN TABLES IIIa 
AND IIIb, RESPECTIVELY 

(mo7 n o )  (1721, n1) a2 1 b2 1 c2 1 

(070) (271) -5.1571 -2.1536 5.6004 

(270) (OJh ( 4 4  -0.0151 -0.3214 0.3217 
(1,O) (1,1), ( 3 4  -2.0215 -0.0128 2.0216 

(370) (1,-1), (571) 0.0582 -0.1834 0.1924 
(4,O) (%--1), (6,1) -0.0207 -0.0256 0.0329 
(5,O) (3,417 ( 7 4  -0.0159 -0.0101 0.0188 
(0,12) (2,-% (2,131 -0.0321 -0.0269 0.0419 
(1712) (1,-11), (3,131 0.0206 0.0182 0.0274 
(2712) (O,% (4713) 0.0347 -0.0022 0.0348 
(3712) (1,1% (5,131 -0.1754 -0.0882 0.1963 
(4,121 PP) ,  (W3) -0.0282 0.0433 0.0517 
Total (Example 4) - 7.3609 -2.4262 7.7504 

plane there are m islands (with generally different widths) at the t = n/m 

rational surface. 

2. In examples 1-8, the number of modes whose Fourier amplitudes are larger than 

the resonant amplitude c,, (listed in Table I) are 1, 12, 12, 7, 79, 39, 67, and 14, 

respectively. The close numerical agreement between d and Ap demonstrated in 

Table I verifies the assumption that the resonant component in Eq. (19) plays 

the dominant role in the island formation. 

3. The initial buswork involved 12 loops with a total of 84 straight wire segments, 

and the modified buswork has 32 loops with a total of 259 segments; thus, the 

perturbations used in examples 4-7 are quite complex and not small. Never- 

theless, the accuracy of Eq. (28) is better than 2% in these cases, and errors in 

other examples are only about 0.5% or less. 
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4. Determination of d from Eq. (28) requires evaluation of Rmn(p) and Z,,(p> not 

only at the rational surface but also at many adjacent surfaces, since calculation 

of fi [needed for BP and X ( p , O , $ ) ]  involves aR,,/ap and aZ,,/dp, which 

must be obtained numerically [19]. 

5 .  The method described in this paper is self-consistent only for vacuum magnetic 

fields and not for finite-beta equilibria. 
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4. SUMMARY 

We used a known method of Fourier analysis in the magnetic flux coordinate 

system to develop a formulation suitable for accurate numerical evaluation of is- 

land widths due to magnetic irregularities in vacuum field configurations of actua.1 

toroidal systems. Application of the width formula to the ATF configuration yields 

results which differ by less than 2% from those determined in the standard method 

by following field lines through numerical integration of the field line equations. The 

calculations also demonstrate the importance of toroidal mode coupling by show- 

ing that considerable contributions are made at the rational surface with t = n / m  

by nonresonant field error harmonics and BnL-l,n. The method studied in 

this paper is useful in analyzing the effects of various field perturbations in a f ixed 

magnetic configuration. 
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