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ON FINDING SUPERNODES FOR 
SPARSE MATRIX COMPUTATIONS 

J. W. H.  Liu 

E. Ng 
B. W. Peyton 

Abstract 

A simple characterization of fundamental supernodes is given in terms of the 
row subtrees of sparse Cholesky factors in the elimination tree. Using this char- 
acterization, we present an efficient algorithm that determines the set of such 
supernodes in time proportional to the number of nonzeros and equations in the 
original matrix. Experimental results are included to demonstrate the use of this 
algorithm in the context of sparse supernodal symbolic factorization. 
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1. Introduction 

In the Cholesky factorization of large sparse symmetric positive definite matrices, factor 

columns with the same sparsity structure are often clustered together to  form a storage 

or computational unit. Such a grouping of columns has been referred to  as a supernode 

in the literature. The term “supernode” first appeared in [4], although the basic idea 

behind the term was used much earlier. 

Indeed, the use of supernodes can be found in many algorithms and techniques 

connected with sparse Cholesky factorization. The related notion of indistinguishable 

node subset is used to accelerate the popular fll-reducing minimum degree ordering 

algorithm [lo]. The success of the column compressed factor storage scheme by Sher- 

man [18] can be attributed mainly to  the existence of many nontrivial supernodes in 

most sparse Cholesky factors, Duff and Reid [8] use the term supervariubZes t o  refer to  

supernodes, and they explore their use in the milltifrontal method. The technique of 

static condensation in finite element applications can also be viewed as the elimination 

of columns/nodes associated with a supernode. 

In [4], Ashcraft et al. discuss supernodal implementations of general sparse and mul- 

tifrontal factorization methods for vector supercomputers. In their work, supernodes 

play an important role in achieving a high level of vectorization on such machines. In 

sparse factorization on shared-memory or distributed-memory parallel machines, the 

use of supernodes is also central in obtaining good performance. The recent compute- 

ahead implementation of the Tan-in distributed sparse scheme [2] relies quite heavily on 

the use of supernodes. Work is also in progress in using supernodes in sparse Cholesky 

factorization on shared-memory parallel machines [14] and preliminary results indicate 

that substantial improvements in performance can he obtained. The use of clique trees 

in speeding up a reordering algorithm for parallel elimination [ll] is also related to  the 

notion of supernodes. The merits of exploiting supernodes in sparse factorization on 

modern workstations has been considered by Rothberg and Gupta [16]. 

The purpose of this paper is t o  provide an efficient algorithm that determines a set 

of supernodes of a given sparse matrix using only the structure of the original matrix, 

Given the many uses of supernodes, this scheme will be a useful addition to practical 

sparse matrix software packages. An outline of this paper follows. 

In Section 2, we formally define the notions of supernodes and so-called “fundamen- 

tal” supernodes [3]. We then use the column and row structures of the sparse Cholesky 

factor matrix to characterize these supernodes. An efficient algorithm to  find funda- 

mental sixpernodes is described in Section 3. We show, moreover, that the execution 

time of the algorithm is linear with respect to  the number of nonzeros and equations 

in the original given matrix. 
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In Section 4, the use of this linear-time algorithm to find fundamental supernodes 

is considered in the context of sparse matrix symbolic factorization. Experimental 

results for the symbolic factorization phase of some large sparse matrix problems are 

given. Significant rediactions in execution time are demonstrated, when compared with 

a. conventional symbolic factorization method [9]. Section 5 contains 01x1: concluding 

remarks. 

2. Supernodes and Fundamental Supernodes 

2.1. Cholesky Factor Charac ter iza t ion  of Supernodes 

The reader is assumed t o  be familiar with the graph-theoretic terminology used in 

the study of sparse elimination: fill, ordering, and related concepts. All the necessary 

material can be found in [6] or [9]. Furthermore, we assume familiarity with the defi- 

nitions and relevance of the elimination tree structure and tree postordering in sparse 

elimination. Details on elimination trees and postorderings can be found in [13]. 

Cholcsky factor. The (i,j)-th entries of A and L will be represented by a;j and 

respectively. Without loss of generality, the matrix A is assumed to be irreducible, 

so that its elimination forest is indeed a tree. Furthermore, we assume the matrix A 

has been pre-processed SO that its ordering is already a postordering of the elimination 

tree. In other words, nodes in every subtree of the elimination tree are numbered 

conseciitively by the postordering. For oiir discussion, we shall use 7’ t o  represent the 

elimination tree of A ,  and T[i]  to represent the subtree rooted at the node i. 

Let A be a given n x n sparse symmetric positive definite matrix, with L as its 

We define a rnnrirnal supernode with respect to  the postordering to be a maximal 

block of contiguous columns of L ,  whose diagonal block is full lower triangular, and 

whose off-block-diagonal column sparsity structures are identical. Figure 1 shows the 

maximal supernodes in the Cholesky factor of a matrix defined on a 7 x 7 finite element 

grid ordered by nested dissection; columns between two vertical Lines belong t o  the 

same maximal supernode, For brevity, we shall use the term “supemode” to refer to  

a maximal supernode. To formalize this notion, we need the following notation and 

terminology. For a sparse n-vector u ,  we define the structure of to be 

Str.irct(v) = { j  I v j  # 0). 

Furthermore, we use the notation q(v) to  represent IStrucd(v)l, that is, the number of 

nonzeros in the vector v. Finally, we use “column subset” to  refer t o  a subset of the 

column subscripts. 

Using this terminology, we can express the notion of supernodes as follows. The 
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Figure 1: Supernodes for the 7 x 7 grid problem ordered by nested dissection. (x and 
0 refer to nonzeros in A and fill in I, respectively.) 
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column subset S = {s, s + l , . - - , s  -+ t - 1) is a supernode of the matrix L if and only 

if it is a maximal contiguous column subset satisfying 

Struct(L*,,) = StTUct(L*,,+t-') u {s, ' - - ,s 4- t - a). 

The maximal property of a supernode implies that  neither S U (s - 1) nor S U (s t t }  

satisfies this structural condition. The reader may verify that the set of supernodes 

shown in Figure 1 satisfy the maximal property. 

The particular set of supernodes obtained Ihy applying this definition depends on 

the particular postordering used to number the nodes. Indeed, one postordering may 

give rise to  fewer supernodes than another. It is trivial to generalize the definition 

so it applies t o  any topological ordering of the elimination tree', but many of these 

orderings would define far too many supernodes and therefore capture little of the 

supernode structure actually available in the factor. In contrast, postorderings define 

supernode sets that in practice take advantage of almost all the redundant column 

structure to  he found in the factor. 

Finding the set of supernudes of L is an almost trivial task once the structure of 

the Cholesky factor L is determined. Indeed, we need only the factor column nonzero 

counts, rather than factor column structures, to  find the set of supernodes. An algo- 

rithm using nonzero counts and the elimination tree structure can be formulated based 

on the followirig result. 

Theorem 2.1, The columri subset S = (3,s + l ,".,s + t - 1) is a superiiode of the 

matrix L if and only if S is a maximal set of contiguous columns such that s + i - 1 is 

a child of s $- i in the elimination tree for i = 1, - , t - 1, and 

Algorithms that use results much like Theorem 2.1 to find supernodes are presented 

in [3] and [l.?]. Our goal is an efficient algorithm that generates the supernodes b e . f ~ ~  

the symbolic factorization, which is used to refer t o  the process of determining the 

structure of the Cholesky factor. One might try to achieve this goal by applying 

Theorem 2.1, as in the following scheme: 

1. Compute the elimination tree, postorder the tree, and compute the factor column 

nonzero counts. 

2. TJse Theorem 2,l. to  generate the supernodes, 

'A topological ordering of ail elimination tree i s  an ordering in which each parent is labelled after 
its children [13]. 
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An algorithm for determining the factor column nonzero counts appears in [13]. The 

priniary problem with this approach is the expense of computing the factor column 

nonzero counts prior to the symbolic factorization. Indeed, computing the nonzero 

counts requires O ( n  + q ( L ) )  operations. We have implemented this approach, and our 

tests indicate that this method is much less efficient than the new algorithm introduced 

in the next two sections. The new approach finds the supernodes directly from A by 

determining the leaves of the row subtrees, which requires O(n  + 9 ( A ) )  operations. 

Note that once the supernodes are known, a much more efficient “s~pernodal~’  symbolic 

factorization can be performed t o  find the structure of the Cholesky factor L, Details 

of the supernodal symbolic factorization will be discussed in Section 4. 

2.2. Row Subtree Characterization of Fundamental Supernodes 

Tn [3], Ashcraft et al. introduce the notion of fundamental supernodes. A fundamental 

supernode is a maximal contiguous column subset {s, s + 1, e ,  s + t - 1) such that 

s + i - 1 is the only child of s + i in the elimination tree for i = 1, - - , t - 1 and 

StTuCt(L*,s) = Struct(L*,,+t-l) u {s, - - - ,s + t - 2). 

This restriction on the columns that can appear together in the same supernode is ap- 

propriate for several reasons. First, since a set of fundamental supernodes is the same 

regardless of the particular postordering in use, designing an algorithm t o  produce 

fundamental supernodes eliminates any dependence on the postordering for maximal 

supernodes noted in the previous section. Second, while our new algorithm could 

be designed to  generate maximal rather than fundamental supernodes, the difference 

between the two is rarely of any practical consequence - typically very few maxi- 

mal supernodes are replaced by more than one supernode in the corresponding set of 

fundamental supernodes. For example, for the matrix shown in Figure 1, the set of fun- 

damental supernodes is the same as the set of maximal supernodes with one exception: 

the supernode {40,41,42,43,44,45,46747,48,49) is partitioned into two supernodes 

{40,41,42} and {43,44,45,46,47,48,49} because node 43 has two children in the elim- 

ination tree (see Figure 3 in Section 4.1, where we introduce the notion of supernodal 

elimination tree). Third, the supernodd version of the elimination tree induced by a 

set of fundamental supernodes preserves in a strict sense the data  dependency results 

that  hold for the nodal elimination tree: that is, for a set of fundamental supernodes, 

no column in a supernode can be completed until after the completion of a19 columns 

belonging to descendant supernodes in the supernodal elimination tree. Fer a given 

set of maximal supernodes, i t  may be the case that some columns in a supernode can 

be completed before all columns belonging to descendant supernodes are completed. 
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The strict form of data dependency that holds for fundamental supernodes is helpful 

in designing parallel factorization algorithms that make explicit use of supernodes. 

Finding the set of maximal or fundamental supernodes is equivalent t o  finding 

the first coliirnns of the supernode subsets. In  this subsection, we shall provide a 

characterization of such first colramns/nodes of fundamental supernodes in terms of the 

elimination tree. The characterization uses the row structure of the Cholesky factor. 

As before, let T be the elimination tree of the matrix A ,  and T[ i ]  the subtree 

rooted at node i. We shall also use T[i]  to represent the node subset associated with 

the subtree, that  is, node i together with all i ts  proper descendants in the elimination 

tree. The notation IT[i]I will be used to denote the number of nodes in the subtree 

T [ i ] .  Therefore, the number of proper descendants of node i is given by IT[i]I - 1 .  

In [17], Schreiber shows that the structure of the i-th row of the Cholesky factor L is 

a pruned subtree of the elimination tree rooted at node i. Liu, in [la], gives a complete 

characterization of the structure of factor row Lis ,  and calls the corresponding pruned 

subtree the i-th row subtme. We quote the following result without proof. 

Theorem 2.2 (Liu [12]). Node j is a leafnode of the i-th row subtree o f  L i f  and only 

i f  a;j # 0 and a i k  I= 0 for every k E T [ j ]  - { j } .  

Note that the characterization in Theorem 2.2 is in terms of nonzeros in the orig- 

inal matrix A .  We are now ready t o  characterize fundamental supernodes using POW 

structures and row subtrees of the factor matrix. 

Theorem 23. Column j is the first node in a fundamental supernode if and only i f  
node j has two or more children in the elimination tree, or j is a leaf of some row 

subtree o f  the elimination tree of A .  

Proof. “if p r t ” :  In the first case, if node j has two or more children in the 

elimination tree, it is clear from the definitions ‘chat it must be the first node of the 

fundamental supernode to  which i t  belongs. In the second case, assume that node j 

is a leaf of some row subtree, say the d-th row subtree. If j has 110 children, i t  must 

start a fundamental supernode. Therefore, we rieed consider only the case when j has 

exactly one child. Its only child must be j - 1 because of the postordering assumption. 

Since j is a leaf of the row subtree rooted at i, it follows from Theorem 2.2 that  a;j $ 0 

and a;,j-1 = 0, which implies that e ; j  is structurally nonzero while C i g - 1  is structurally 

zero. It then follows that Struct(L,,j-l) CI S t ~ ? ~ c t ( & + )  U { j  -... I}, and thus node j 

caiinot belong to  the same supernode as j - 1.  Node j must therefore start a new 

fundamental supernode. 

“only if part”:  Assume that node j is the first node of i t s  fundamental supernode. 

We need to  show that if j has zero or one child, i t  is a leaf of some row subtree. The 
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case is obvious if j has no children. Consider the case when j has exactly one child 

j - 1. Since j starts a fundamental supernode and has only one child, the maximal 

condition implies that  there exists an i > j such that t i j - 1  = 0 and t ; j  # 0. In other 

words, the node j belongs to the i-th row subtree of L,  whereas its child j - 1 does not. 

This is possible only if j is a leaf of this row subtree. a 
Theorem 2.3 provides a simple condition t o  determine the starting node of funda- 

mental supernodes. Computing the number of children for each node in the elimination 

tree is a trivial task. I t  can be done in O(n) time by traversing the elimination tree 

in a postorder sequence. All we need is an efficient algorithm t o  identify those nodes 

that are leaves of a t  least one row subtree in the elimination tree. A simple marking 

scheme can be used to  detect the leaves of successive row subtrees in the algorithm that 

generates the elimination tree. Implementing this scheme, however, requires removal of 

the path compression technique [13], which is essential for efficient computation of the 

elimination tree. We have implemented this scheme, but found the resulting O(q(L) )  

algorithm to  be too inefficient. 

3. A Linear-time Algorithm for Finding Fundamental Supernodes 

Theorem 2.3 gives a simple characterization of fundamental supernodes. To use this 

characterization, we need to  identify the nodes that axe leaves of some row subtrees. 

In this section, we consider an efficient linear-time algorithm t o  determine the boolean 

vector ISLEAF(*), where IS LEAF(^) is true if and only if node j is a leaf of some row 

subtree of the elimination tree T .  

The result in Theorem 2.2 can be used to  find the leaves of each row subtree. 

IIowever, it does not immediately lead to  a practical algorithm, since determining if 

a;k is zero for every proper descendant I; of j in the subtree TL] is far too expensive. 

By making use of the postordering property, Liu 1121 gives a more usable form of the 

same result, which we quote here. 

Theorem 3.1 (Liu [la]). Let c1 < c2 < - - .  < e, < i be the column subscripts of all 

the nonzeros in A;, Jess than i, that is, the structure of row i of A below the diagonal. 

Node et is a leaf of the i-th row subtree if and only i f  t = 1 or ct-1 e T[et] .  

The testing of ct-1 $ T[ct] in Theorem 3.1 can be further simplified by using a 

property that holds far ancestor-descendant pairs when the nodes are postordered [l]. 

Corollary 3.2 (Ciu [22]). Let cg < cl < ... < c, < i, where eo = 0, and cl, e - .  ,c, 
are as in Thcoren 3 . 1 .  Node ct is a leaf o f  the i - th  row subtree if and only if ct-1 < 
Ct - lT[ctIl t 1. 
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One way to  compute ISLEAF(*) is to apply Corollary 3.2 to the rows of A one by one, 

determining the set of leaves for each row subtree and flagging the nodes accordingly. 

However, this involves sorting the subscripts of nonzeros in A;, to  the left of its diagonal 

entry. Our experience indicates that  it is necessary to avoid such sorting in order to  

obtain a method whose practical efficiency is acceptable. In the algorithm displayed 

in Figure 2, we provide a simple rearrangement of the computation so that sorting can 

be avoided. In this algorithm, the columns of the matrix A are processed in increasing 

order. While processing column A,j, for each nonzero a;j below the diagonal, the 

algorithm checks to see if node j is a leaf of the i-th row subtree (using Corollary 3.2). 

A temporary integer vector PREV-ROWNZ(*) is used to remember the location of the 

latest nonzero encountered for each row. It is also necessary to  compute the subtree 

sizes lT [ j ] / ,  which can be done in Q(n> time. It is obvious that the overall algorithm 

runs in O ( n  + q ( A ) )  time. 

for column j := 1 to n do 
IS LEAF(^) := false; 
PREV-ROWNZ(~) := 0 ; 

end for 

for node j := 1 to n do 
compute [Tb]l ; 

for column j := 1 to do 
for each a;j + 0 with i > j do 

k := PREV-ROWNZ(~) ; 
if k. < j - IT[j]I + 1 then 

endit 
I S E E A F ( j )  := t r u e ;  

PR.EV-ROWNZ(i) := j ; 
end far 

end for 

Figure 2: Determination of row-subtree leaves in the elimination tree. 
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4. Supernodal Symbolic Factorization 

4.1. Overview Discussion 

As noted in Section 2, i t  is trivial to obtain the set of supernodes once the structure 

of the Cholesky factor L is determined. In the literature, symbolic factorization is 

often used t o  refer to  the phase of finding the Cholesky structure. Moreover, there are 

already very efficient and robust implementations for symbolic factorization (see, for 

example, [9]). How does the algorithm proposed in this paper compare with this simple 

approach of performing the symbolic factorization and obtaining the set of supernodes 

by Theorem 2.1? 
To answer this, we must first point out that  using this approach, given schematically 

by 

Symbolic Theorem 2.1 
structure of A - structure of L -----, supernodes , 

we get both the structure of L and the set of supernodes. To make a fair comparison, 

we should perform a supernodal symbolic factorization phase after obtaining the su- 

pernodal structure using the proposed scheme. This phase will determine the sparsity 

structure of each supernode. We can view this alternative approach as 

Figure 2 Supernodal symbolic 
structure of A - supernodes ----+ supernodal structure of L . 
Supernodal symbolic factorization can be carried out by a simple generalization of 

the conventional nodal symbolic scheme. A supernodal elimination tree structure can 

be defined in terms of the supernodes and the basic elimination tree. It is simply the 

quotient graph (tree) whose node set is the set of supernodes and whose edge set con- 

tains a,n edge connecting each pair of supernodes €or which there is an elimination tree 

edge with an endpoint in each supernode. Figure 3 shows the supernodal elimination 

tree for the matrix shown in Figure 1; the tree is based on the fundamental rather than 

maximal supernodal partitioning. Let j be the first column of some supernode 5’. The 

sparsity structure of supernode S in the Cholesky factor L is the union of the sparsity 

structure of A*j below its diagonal entry with the sparsity structure of each child of S 
in the supernodal elimination tree. This is a straightforward extension of the result in 

[13, Theorem 8.11. 

The conventional symbolic factorization, which is column based, suffers from the 

drawback that the number of row subscripts, denoted by o ( L ) ,  required to  represent 

the structure of the Cholesky factor is not known prior to the symbolic factorization. 

However, since o ( L )  I ILI, we can use ILI as an upper bound on the storage requirement. 

There are two disadvantages with this approach. First, i t  is well known that u ( L )  is 

often much smaller than ILI [9]. Second, computing IL] using the elimination tree and 
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the structure of IAI [13] is often as expensive as performing the symbolic factorization 

on A.  
The situation is quite different for supernodal symbolic factorization. TJsing the 

supernodal elimination tree described above, the algorithm in [13] for computing [AI 
can be modified to compute the number of row subscripts in the supernodal structure. 

Thus, the ezact amount of space required to represent the supernodd structure, and 

hence the amount of space required by the supernodal symbolic factorization, can 

be determined beforehand. Our experience is that the time required to  compute the 

number of row subscripts in the supernodal structure is quite close to  that required 

by the supernodal symbolic factorization, which is very efficient, as we will see in 

Section 4.2. 

4.2. Experimental Results 

In this section, we provide results of some experiments for comparing two approaches 

for computing the set of supernodes. In Approach I, we perform a symbolic factoriza- 

tion of A and then determine the supernodes using the factor column nonzero counts, 

The symbolic Factorization algorithm is the one described in [9]. In Approach 11, the 

algorithm in Figure 2 is employed to determine the supernodes, which is followed by 

a supernodal symbolic factorization. The experiments were performed on a Sun 3/80 

workstation, with 8 Mbytes of main memory. The programs were written in Fortran 

and compiled using the Sun Fortran compiler with optimization turned on. The test 

problems employed in the experiments were selected from the Harwell-Boeing Sparse 

Matrix Collection [7], and they are listed in Table 1. Structural and timing statistics 

are provided in Tables 2 and 3 respectively. For each matrix problem, we assume that 

a minimum degree ordering and a postordering of the resulting elimination tree have 

been predetermined. 

Strictly speaking, the elimination tree and its postordering are required only in 

Approach 11; they are not needed in Approach I. Thus, our exclusion of the time re- 

quired to obtain the elimination tree and its postordering from the timing statistics in 

Approach I1 requires further comment. It is interesting to note that the standard sym- 

bolic factorization algorithm (e.g., the one used in Approach I) is capable of grouping 

columns together into a supernode even when the nodes of the resulting supernode are 

not numbered consecutively. However, recent implementations of numerical factoriza- 

tion requires consecutive numbering of nodes within each supernode [14,16]. Exploiting 

supernodes with nonconsecutively numbered nodes is quite unwieldy. Thus, for practi- 

cal reasons, both approaches require postordering of the elimination tree so that  nodes 

within each supernode are labelled consecutively. In any case, for completeness, we 
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have included in Table 3 the time to compute the elimination tree and its  postordering. 

problem 

UCSPWRlO 
BCSSTK13 
RCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTK17 
RCXS'IK 18 
WCSSTK21 
UCSSTK23 
BCSSTK24 
lldCSSTK25 
UCSSTK28 
CEGB2802 
CEGB3306 
CEGR2919 
CEGB3024 
LOCK2232 
LOCK3491 

n 

5,300 
2,003 
1,806 
3,948 
4,884 

10,971 
11,948 
3,600 
3,134 
3,562 

15,439 
4,410 
2,802 
3,306 
2,919 
3,024 
2,232 
3,491 

Table 1: List of test problems. 

v(A) 

21,842 
83,883 
63,454 

117,816 
290,378 
428,650 
149,090 
26,600 
45,178 

159,9 10 
252,241 
219,024 
277,470 

75,000 
321,603 
79,876 
80,376 

160,5 19 

p7(L) 

28,064 
272,67 1 
112,267 
651,222 
741,178 

1,005,859 
652,725 
90,454 

420,311 
278,922 

1,416,568 
346,894 
267,972 
68,205 

375,642 
115,702 
73,308 

236,339 

number of 

supernodes 
4,960 

599 
503 

1,295 
69 1 

2,595 
7,438 
2,420 
1,522 

4 14 
7,288 

454 
27 I 
599 
252 
685 
318 
479 

number of 
compressed 
subscripts 

15,404 
27,755 
16,907 
59,744 
48,378 
88,816 

100,792 
27,318 
46,916 
21,342 

177,546 
26,398 
14,161 
9,691 

19,182 
17,878 
7,928 

21,524 

number of 
supernodal 
subscripts 

17,934 
28,621 
17,508 
61,614 
50,365 
94,225 

116,807 
28,540 
49,018 
22,331 

205,513 
27,710 
14,666 
10,969 
19,482 
18,093 
9,894 

22,760 

?'able 2: Structural statistics on test problems. 

' rhe results in 'i'ahle 3 are  very encouraging. 'The total time for finding the su- 

pernodes and performing the symbolic factorization in Approach I1 is much less than 
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problem 

BCSPWRlO 
BCSSTKl3 
RCSSTK14 
BCSSTK 15 
BCSSTK16 
BCSSTK 17 
BCSSTK 18 
BCSSTK2l 
BCSSTK23 
BCSSTK24 
BCSSTK25 
BCSSTK28 
CEGB2802 
GEGB3306 
CEGB2919 
CEGB3024 
LOCK2232 
LOCK3491 

lppl 
TSP 

0.0s 
0.02 
0.02 
0.04 
0.04 
0.10 
0.14 
0.04 
0.04 
0.02 
0.16 
0.04 
0.02 
0.02 
0.02 
0.02 
0.02 
0.04 - 

ch I ch E1 % improved 

t l  
t l  = 6 t 2  = 

T i F  + T t P  rip + I-& 
0.66 1 0.16 0.48 27.27 

* 
‘SF 

- 
0.32 
0.34 
0.22 
0.62 
0.76 
1.20 
1.12 
0.28 
0.38 
0.28 
1.68 
0.36 
0.34 
0.14 
0.42 
0.20 
0.14 
0.28 

Table 3: Timing statistics (in seconds). ( 7 s ~ :  time to  perform symbolic factoriza- 
tion, rsp: time to  determine supernodes, 7tree: time to compute elimination tree and 
post ordering. ) 

that  in Approach I for all the test problems. The time for finding the supernodes in 

Approach I is extremely small because the structure of L is known beforehand. Once 

the column structure of L is determined, we need only the column nonzero counts and 

a traversal of the elimination tree, which can be performed in O ( n )  time. On the other 

hand, there is a substantial reduction in the symbolic factorization time in Approach 

11. The improved efficiency of the supernodal symbolic factorization over the standard 

algorithm has two sources. First, since the supernodal algorithm knows the supernode 

partition from the start, for each supernode it needs to process only the single column 

A,j,  where j is the first column of the supernode. On the other hand, the standard 

algorithm must process every column of A because i t  is implicitly detecting the supern- 

odes for the first time. Second, the standard algorithm performs a type of subscript list 

compression in cases where a trailing portion of Struct(L,j)  may serve as the leading 

portion of Struct(L,,j+l). This form of subscript list conipression has no connection 

with the list compression due to  supernades. It is somewhat costly to  detect, and our 

experience indicates that  it rarely results in a significant reduction in the number of 

indices. The results in Table 2 are consistent with our experience. Since the standard 

algorithm uses both kinds of compression while the supernodal algorithm uses only 

supernode compression, the small differences in the number of subscripts generated by 
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the two algorithms indicate that the excluded form of compression is rarely used, and 

therefore not worthwhile to compute. 

5 .  Concluding Remarks 

We have provided a n  efficient scheme t o  determine the supernodd structure of a sparse 

symmetric matrix. Its practical use in the context of syrribolic factorization is demon- 

strated. Although we have attained a significant percentage reduction in symbolic 

factorization time, the symbolic factorization phase usually constitutes a small portion 

of the overall factorization time. It is, however, important to point out that  with the 

use of pardlel and vector supercomputers, the numerical factorization time in sparse 

elimination has been reduced drasticdly [2, 4, 51. With such improvement, the impact 

of a mom efficient symbolic phase becomes relatively important. Finally, although our 

algorithm determines only the fundamental supemodes, it is easy and inexpensive to  

find the maximal supernodes by a postprocessing phase, if such maxirnal supernodes 

are needed. 
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