
'3

. .. - , ~.~_.

. . - . e ! i-fi.5 :;;: L .

x

ORNL/TM-11563

Engineering Physics and Mathematics Division

Mathematical Sciences Section

O N FINDING SUPERNODES FOR
SPARSE MATRIX COMPUTATIONS

J. W. H. Liu t
E. Ng

B. W. Peyton 1

t Department of Computer Science
York University
North York, Ontario, Canada M3J 1P3

Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge, T N 37831-8083
P.O. BOX 2009, Bldg. 9207-A

Date Published: June 1990

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy, and by the Canadian Natu-
ral Sciences and Engineering Research Council under grant
A5509.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Ine.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400

Contents

1 Introduction . 1
2 Supernodes and Fundamental Supernodes . 2

2.1 Cholesky Factor Characterization of Supernodes 2
2.2 Row Subtree Characterization of Fundamental Supernodes 5

3 A Linear-time Algorithm for Finding Fundamental Supernodes 7
4 Supernodal Symbolic Factorization . 9

4.1 Overview Discussion . 9
4.2 Experimental Results . 11

5 Concluding Remarks . 14
6 References . 14

ON FINDING SUPERNODES FOR
SPARSE MATRIX COMPUTATIONS

J. W. H. Liu

E. Ng
B. W. Peyton

Abstract

A simple characterization of fundamental supernodes is given in terms of the
row subtrees of sparse Cholesky factors in the elimination tree. Using this char-
acterization, we present an efficient algorithm that determines the set of such
supernodes in time proportional to the number of nonzeros and equations in the
original matrix. Experimental results are included to demonstrate the use of this
algorithm in the context of sparse supernodal symbolic factorization.

- v -

1. Introduction

In the Cholesky factorization of large sparse symmetric positive definite matrices, factor

columns with the same sparsity structure are often clustered together to form a storage

or computational unit. Such a grouping of columns has been referred to as a supernode

in the literature. The term “supernode” first appeared in [4], although the basic idea

behind the term was used much earlier.

Indeed, the use of supernodes can be found in many algorithms and techniques

connected with sparse Cholesky factorization. The related notion of indistinguishable

node subset is used to accelerate the popular fll-reducing minimum degree ordering

algorithm [lo]. The success of the column compressed factor storage scheme by Sher-

man [18] can be attributed mainly to the existence of many nontrivial supernodes in

most sparse Cholesky factors, Duff and Reid [8] use the term supervariubZes t o refer to

supernodes, and they explore their use in the milltifrontal method. The technique of

static condensation in finite element applications can also be viewed as the elimination

of columns/nodes associated with a supernode.

In [4], Ashcraft et al. discuss supernodal implementations of general sparse and mul-

tifrontal factorization methods for vector supercomputers. In their work, supernodes

play an important role in achieving a high level of vectorization on such machines. In

sparse factorization on shared-memory or distributed-memory parallel machines, the

use of supernodes is also central in obtaining good performance. The recent compute-

ahead implementation of the Tan-in distributed sparse scheme [2] relies quite heavily on

the use of supernodes. Work is also in progress in using supernodes in sparse Cholesky

factorization on shared-memory parallel machines [14] and preliminary results indicate

that substantial improvements in performance can he obtained. The use of clique trees

in speeding up a reordering algorithm for parallel elimination [ll] is also related to the

notion of supernodes. The merits of exploiting supernodes in sparse factorization on

modern workstations has been considered by Rothberg and Gupta [16].

The purpose of this paper is t o provide an efficient algorithm that determines a set

of supernodes of a given sparse matrix using only the structure of the original matrix,

Given the many uses of supernodes, this scheme will be a useful addition to practical

sparse matrix software packages. An outline of this paper follows.

In Section 2, we formally define the notions of supernodes and so-called “fundamen-

tal” supernodes [3]. We then use the column and row structures of the sparse Cholesky

factor matrix to characterize these supernodes. An efficient algorithm to find funda-

mental sixpernodes is described in Section 3. We show, moreover, that the execution

time of the algorithm is linear with respect to the number of nonzeros and equations

in the original given matrix.

- 2 -

In Section 4, the use of this linear-time algorithm to find fundamental supernodes

is considered in the context of sparse matrix symbolic factorization. Experimental

results for the symbolic factorization phase of some large sparse matrix problems are

given. Significant rediactions in execution time are demonstrated, when compared with

a. conventional symbolic factorization method [9]. Section 5 contains 01x1: concluding

remarks.

2. Supernodes and Fundamental Supernodes

2.1. Cholesky Factor Charac ter iza t ion of Supernodes

The reader is assumed t o be familiar with the graph-theoretic terminology used in

the study of sparse elimination: fill, ordering, and related concepts. All the necessary

material can be found in [6] or [9]. Furthermore, we assume familiarity with the defi-

nitions and relevance of the elimination tree structure and tree postordering in sparse

elimination. Details on elimination trees and postorderings can be found in [13].

Cholcsky factor. The (i,j)-th entries of A and L will be represented by a;j and

respectively. Without loss of generality, the matrix A is assumed to be irreducible,

so that its elimination forest is indeed a tree. Furthermore, we assume the matrix A

has been pre-processed SO that its ordering is already a postordering of the elimination

tree. In other words, nodes in every subtree of the elimination tree are numbered

conseciitively by the postordering. For oiir discussion, we shall use 7’ t o represent the

elimination tree of A , and T[i] to represent the subtree rooted at the node i.

Let A be a given n x n sparse symmetric positive definite matrix, with L as its

We define a rnnrirnal supernode with respect to the postordering to be a maximal

block of contiguous columns of L , whose diagonal block is full lower triangular, and

whose off-block-diagonal column sparsity structures are identical. Figure 1 shows the

maximal supernodes in the Cholesky factor of a matrix defined on a 7 x 7 finite element

grid ordered by nested dissection; columns between two vertical Lines belong t o the

same maximal supernode, For brevity, we shall use the term “supemode” to refer to

a maximal supernode. To formalize this notion, we need the following notation and

terminology. For a sparse n-vector u , we define the structure of to be

Str.irct(v) = { j I v j # 0).

Furthermore, we use the notation q(v) to represent IStrucd(v)l, that is, the number of

nonzeros in the vector v. Finally, we use “column subset” to refer t o a subset of the

column subscripts.

Using this terminology, we can express the notion of supernodes as follows. The

- 3 -

a
3
4
5
6
7
8
9
1Q
11
12
13
1 4
15

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

i?

X

Figure 1: Supernodes for the 7 x 7 grid problem ordered by nested dissection. (x and
0 refer to nonzeros in A and fill in I, respectively.)

- 4 -

column subset S = {s, s + l , . - - , s -+ t - 1) is a supernode of the matrix L if and only

if it is a maximal contiguous column subset satisfying

Struct(L*,,) = StTUct(L*,,+t-') u {s, ' - - ,s 4- t - a).

The maximal property of a supernode implies that neither S U (s - 1) nor S U (s t t }

satisfies this structural condition. The reader may verify that the set of supernodes

shown in Figure 1 satisfy the maximal property.

The particular set of supernodes obtained Ihy applying this definition depends on

the particular postordering used to number the nodes. Indeed, one postordering may

give rise to fewer supernodes than another. It is trivial to generalize the definition

so it applies t o any topological ordering of the elimination tree', but many of these

orderings would define far too many supernodes and therefore capture little of the

supernode structure actually available in the factor. In contrast, postorderings define

supernode sets that in practice take advantage of almost all the redundant column

structure to he found in the factor.

Finding the set of supernudes of L is an almost trivial task once the structure of

the Cholesky factor L is determined. Indeed, we need only the factor column nonzero

counts, rather than factor column structures, to find the set of supernodes. An algo-

rithm using nonzero counts and the elimination tree structure can be formulated based

on the followirig result.

Theorem 2.1, The columri subset S = (3,s + l ,".,s + t - 1) is a superiiode of the

matrix L if and only if S is a maximal set of contiguous columns such that s + i - 1 is

a child of s $- i in the elimination tree for i = 1, - , t - 1, and

Algorithms that use results much like Theorem 2.1 to find supernodes are presented

in [3] and [l.?]. Our goal is an efficient algorithm that generates the supernodes b e . f ~ ~

the symbolic factorization, which is used to refer t o the process of determining the

structure of the Cholesky factor. One might try to achieve this goal by applying

Theorem 2.1, as in the following scheme:

1. Compute the elimination tree, postorder the tree, and compute the factor column

nonzero counts.

2. TJse Theorem 2,l. to generate the supernodes,

'A topological ordering of ail elimination tree i s an ordering in which each parent is labelled after
its children [13].

- 5 -

An algorithm for determining the factor column nonzero counts appears in [13]. The

priniary problem with this approach is the expense of computing the factor column

nonzero counts prior to the symbolic factorization. Indeed, computing the nonzero

counts requires O (n + q (L)) operations. We have implemented this approach, and our

tests indicate that this method is much less efficient than the new algorithm introduced

in the next two sections. The new approach finds the supernodes directly from A by

determining the leaves of the row subtrees, which requires O(n + 9 (A)) operations.

Note that once the supernodes are known, a much more efficient “s~pernodal~’ symbolic

factorization can be performed t o find the structure of the Cholesky factor L, Details

of the supernodal symbolic factorization will be discussed in Section 4.

2.2. Row Subtree Characterization of Fundamental Supernodes

Tn [3], Ashcraft et al. introduce the notion of fundamental supernodes. A fundamental

supernode is a maximal contiguous column subset {s, s + 1, e , s + t - 1) such that

s + i - 1 is the only child of s + i in the elimination tree for i = 1, - - , t - 1 and

StTuCt(L*,s) = Struct(L*,,+t-l) u {s, - - - ,s + t - 2).

This restriction on the columns that can appear together in the same supernode is ap-

propriate for several reasons. First, since a set of fundamental supernodes is the same

regardless of the particular postordering in use, designing an algorithm t o produce

fundamental supernodes eliminates any dependence on the postordering for maximal

supernodes noted in the previous section. Second, while our new algorithm could

be designed to generate maximal rather than fundamental supernodes, the difference

between the two is rarely of any practical consequence - typically very few maxi-

mal supernodes are replaced by more than one supernode in the corresponding set of

fundamental supernodes. For example, for the matrix shown in Figure 1, the set of fun-

damental supernodes is the same as the set of maximal supernodes with one exception:

the supernode {40,41,42,43,44,45,46747,48,49) is partitioned into two supernodes

{40,41,42} and {43,44,45,46,47,48,49} because node 43 has two children in the elim-

ination tree (see Figure 3 in Section 4.1, where we introduce the notion of supernodal

elimination tree). Third, the supernodd version of the elimination tree induced by a

set of fundamental supernodes preserves in a strict sense the data dependency results

that hold for the nodal elimination tree: that is, for a set of fundamental supernodes,

no column in a supernode can be completed until after the completion of a19 columns

belonging to descendant supernodes in the supernodal elimination tree. Fer a given

set of maximal supernodes, i t may be the case that some columns in a supernode can

be completed before all columns belonging to descendant supernodes are completed.

- 6 -

The strict form of data dependency that holds for fundamental supernodes is helpful

in designing parallel factorization algorithms that make explicit use of supernodes.

Finding the set of maximal or fundamental supernodes is equivalent t o finding

the first coliirnns of the supernode subsets. In this subsection, we shall provide a

characterization of such first colramns/nodes of fundamental supernodes in terms of the

elimination tree. The characterization uses the row structure of the Cholesky factor.

As before, let T be the elimination tree of the matrix A , and T[i] the subtree

rooted at node i. We shall also use T[i] to represent the node subset associated with

the subtree, that is, node i together with all i ts proper descendants in the elimination

tree. The notation IT[i]I will be used to denote the number of nodes in the subtree

T [i] . Therefore, the number of proper descendants of node i is given by IT[i]I - 1 .

In [17], Schreiber shows that the structure of the i-th row of the Cholesky factor L is

a pruned subtree of the elimination tree rooted at node i. Liu, in [la], gives a complete

characterization of the structure of factor row Lis , and calls the corresponding pruned

subtree the i-th row subtme. We quote the following result without proof.

Theorem 2.2 (Liu [12]). Node j is a leafnode of the i-th row subtree o f L i f and only

i f a;j # 0 and a i k I= 0 for every k E T [j] - { j } .

Note that the characterization in Theorem 2.2 is in terms of nonzeros in the orig-

inal matrix A . We are now ready t o characterize fundamental supernodes using POW

structures and row subtrees of the factor matrix.

Theorem 23. Column j is the first node in a fundamental supernode if and only i f
node j has two or more children in the elimination tree, or j is a leaf of some row

subtree o f the elimination tree of A .

Proof. “if p r t ” : In the first case, if node j has two or more children in the

elimination tree, it is clear from the definitions ‘chat it must be the first node of the

fundamental supernode to which i t belongs. In the second case, assume that node j

is a leaf of some row subtree, say the d-th row subtree. If j has 110 children, i t must

start a fundamental supernode. Therefore, we rieed consider only the case when j has

exactly one child. Its only child must be j - 1 because of the postordering assumption.

Since j is a leaf of the row subtree rooted at i, it follows from Theorem 2.2 that a;j $ 0

and a;,j-1 = 0, which implies that e ; j is structurally nonzero while C i g - 1 is structurally

zero. It then follows that Struct(L,,j-l) CI S t ~ ? ~ c t (& +) U { j -... I}, and thus node j

caiinot belong to the same supernode as j - 1. Node j must therefore start a new

fundamental supernode.

“only if part”: Assume that node j is the first node of i t s fundamental supernode.

We need to show that if j has zero or one child, i t is a leaf of some row subtree. The

- 7 -

case is obvious if j has no children. Consider the case when j has exactly one child

j - 1. Since j starts a fundamental supernode and has only one child, the maximal

condition implies that there exists an i > j such that t i j - 1 = 0 and t ; j # 0. In other

words, the node j belongs to the i-th row subtree of L, whereas its child j - 1 does not.

This is possible only if j is a leaf of this row subtree. a
Theorem 2.3 provides a simple condition t o determine the starting node of funda-

mental supernodes. Computing the number of children for each node in the elimination

tree is a trivial task. I t can be done in O(n) time by traversing the elimination tree

in a postorder sequence. All we need is an efficient algorithm t o identify those nodes

that are leaves of a t least one row subtree in the elimination tree. A simple marking

scheme can be used to detect the leaves of successive row subtrees in the algorithm that

generates the elimination tree. Implementing this scheme, however, requires removal of

the path compression technique [13], which is essential for efficient computation of the

elimination tree. We have implemented this scheme, but found the resulting O(q(L))

algorithm to be too inefficient.

3. A Linear-time Algorithm for Finding Fundamental Supernodes

Theorem 2.3 gives a simple characterization of fundamental supernodes. To use this

characterization, we need to identify the nodes that axe leaves of some row subtrees.

In this section, we consider an efficient linear-time algorithm t o determine the boolean

vector ISLEAF(*), where IS LEAF(^) is true if and only if node j is a leaf of some row

subtree of the elimination tree T .

The result in Theorem 2.2 can be used to find the leaves of each row subtree.

IIowever, it does not immediately lead to a practical algorithm, since determining if

a;k is zero for every proper descendant I; of j in the subtree TL] is far too expensive.

By making use of the postordering property, Liu 1121 gives a more usable form of the

same result, which we quote here.

Theorem 3.1 (Liu [la]). Let c1 < c2 < - - . < e, < i be the column subscripts of all

the nonzeros in A;, Jess than i, that is, the structure of row i of A below the diagonal.

Node et is a leaf of the i-th row subtree if and only i f t = 1 or ct-1 e T[et] .

The testing of ct-1 $ T[ct] in Theorem 3.1 can be further simplified by using a

property that holds far ancestor-descendant pairs when the nodes are postordered [l].

Corollary 3.2 (Ciu [22]). Let cg < cl < ... < c, < i, where eo = 0, and cl, e - . ,c,
are as in Thcoren 3 . 1 . Node ct is a leaf o f the i - th row subtree if and only if ct-1 <
Ct - lT[ctIl t 1.

- 8 -

One way to compute ISLEAF(*) is to apply Corollary 3.2 to the rows of A one by one,

determining the set of leaves for each row subtree and flagging the nodes accordingly.

However, this involves sorting the subscripts of nonzeros in A;, to the left of its diagonal

entry. Our experience indicates that it is necessary to avoid such sorting in order to

obtain a method whose practical efficiency is acceptable. In the algorithm displayed

in Figure 2, we provide a simple rearrangement of the computation so that sorting can

be avoided. In this algorithm, the columns of the matrix A are processed in increasing

order. While processing column A,j, for each nonzero a;j below the diagonal, the

algorithm checks to see if node j is a leaf of the i-th row subtree (using Corollary 3.2).

A temporary integer vector PREV-ROWNZ(*) is used to remember the location of the

latest nonzero encountered for each row. It is also necessary to compute the subtree

sizes lT [j] / , which can be done in Q(n> time. It is obvious that the overall algorithm

runs in O (n + q (A)) time.

for column j := 1 to n do
IS LEAF(^) := false;
PREV-ROWNZ(~) := 0 ;

end for

for node j := 1 to n do
compute [Tb]l ;

for column j := 1 to do
for each a;j + 0 with i > j do

k := PREV-ROWNZ(~) ;
if k. < j - IT[j]I + 1 then

endit
I S E E A F (j) := t r u e ;

PR.EV-ROWNZ(i) := j ;
end far

end for

Figure 2: Determination of row-subtree leaves in the elimination tree.

- 9 -

4. Supernodal Symbolic Factorization

4.1. Overview Discussion

As noted in Section 2, i t is trivial to obtain the set of supernodes once the structure

of the Cholesky factor L is determined. In the literature, symbolic factorization is

often used t o refer to the phase of finding the Cholesky structure. Moreover, there are

already very efficient and robust implementations for symbolic factorization (see, for

example, [9]). How does the algorithm proposed in this paper compare with this simple

approach of performing the symbolic factorization and obtaining the set of supernodes

by Theorem 2.1?
To answer this, we must first point out that using this approach, given schematically

by

Symbolic Theorem 2.1
structure of A - structure of L -----, supernodes ,

we get both the structure of L and the set of supernodes. To make a fair comparison,

we should perform a supernodal symbolic factorization phase after obtaining the su-

pernodal structure using the proposed scheme. This phase will determine the sparsity

structure of each supernode. We can view this alternative approach as

Figure 2 Supernodal symbolic
structure of A - supernodes ----+ supernodal structure of L .
Supernodal symbolic factorization can be carried out by a simple generalization of

the conventional nodal symbolic scheme. A supernodal elimination tree structure can

be defined in terms of the supernodes and the basic elimination tree. It is simply the

quotient graph (tree) whose node set is the set of supernodes and whose edge set con-

tains a,n edge connecting each pair of supernodes €or which there is an elimination tree

edge with an endpoint in each supernode. Figure 3 shows the supernodal elimination

tree for the matrix shown in Figure 1; the tree is based on the fundamental rather than

maximal supernodal partitioning. Let j be the first column of some supernode 5’. The

sparsity structure of supernode S in the Cholesky factor L is the union of the sparsity

structure of A*j below its diagonal entry with the sparsity structure of each child of S
in the supernodal elimination tree. This is a straightforward extension of the result in

[13, Theorem 8.11.

The conventional symbolic factorization, which is column based, suffers from the

drawback that the number of row subscripts, denoted by o (L) , required to represent

the structure of the Cholesky factor is not known prior to the symbolic factorization.

However, since o (L) I ILI, we can use ILI as an upper bound on the storage requirement.

There are two disadvantages with this approach. First, i t is well known that u (L) is

often much smaller than ILI [9]. Second, computing IL] using the elimination tree and

- 10 -

- 1 1 -

the structure of IAI [13] is often as expensive as performing the symbolic factorization

on A.
The situation is quite different for supernodal symbolic factorization. TJsing the

supernodal elimination tree described above, the algorithm in [13] for computing [AI
can be modified to compute the number of row subscripts in the supernodal structure.

Thus, the ezact amount of space required to represent the supernodd structure, and

hence the amount of space required by the supernodal symbolic factorization, can

be determined beforehand. Our experience is that the time required to compute the

number of row subscripts in the supernodal structure is quite close to that required

by the supernodal symbolic factorization, which is very efficient, as we will see in

Section 4.2.

4.2. Experimental Results

In this section, we provide results of some experiments for comparing two approaches

for computing the set of supernodes. In Approach I, we perform a symbolic factoriza-

tion of A and then determine the supernodes using the factor column nonzero counts,

The symbolic Factorization algorithm is the one described in [9]. In Approach 11, the

algorithm in Figure 2 is employed to determine the supernodes, which is followed by

a supernodal symbolic factorization. The experiments were performed on a Sun 3/80

workstation, with 8 Mbytes of main memory. The programs were written in Fortran

and compiled using the Sun Fortran compiler with optimization turned on. The test

problems employed in the experiments were selected from the Harwell-Boeing Sparse

Matrix Collection [7], and they are listed in Table 1. Structural and timing statistics

are provided in Tables 2 and 3 respectively. For each matrix problem, we assume that

a minimum degree ordering and a postordering of the resulting elimination tree have

been predetermined.

Strictly speaking, the elimination tree and its postordering are required only in

Approach 11; they are not needed in Approach I. Thus, our exclusion of the time re-

quired to obtain the elimination tree and its postordering from the timing statistics in

Approach I1 requires further comment. It is interesting to note that the standard sym-

bolic factorization algorithm (e.g., the one used in Approach I) is capable of grouping

columns together into a supernode even when the nodes of the resulting supernode are

not numbered consecutively. However, recent implementations of numerical factoriza-

tion requires consecutive numbering of nodes within each supernode [14,16]. Exploiting

supernodes with nonconsecutively numbered nodes is quite unwieldy. Thus, for practi-

cal reasons, both approaches require postordering of the elimination tree so that nodes

within each supernode are labelled consecutively. In any case, for completeness, we

- 12 -

have included in Table 3 the time to compute the elimination tree and its postordering.

problem

UCSPWRlO
BCSSTK13
RCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
RCXS'IK 18
WCSSTK21
UCSSTK23
BCSSTK24
lldCSSTK25
UCSSTK28
CEGB2802
CEGB3306
CEGR2919
CEGB3024
LOCK2232
LOCK3491

n

5,300
2,003
1,806
3,948
4,884

10,971
11,948
3,600
3,134
3,562

15,439
4,410
2,802
3,306
2,919
3,024
2,232
3,491

Table 1: List of test problems.

v(A)

21,842
83,883
63,454

117,816
290,378
428,650
149,090
26,600
45,178

159,9 10
252,241
219,024
277,470

75,000
321,603
79,876
80,376

160,5 19

p7(L)

28,064
272,67 1
112,267
651,222
741,178

1,005,859
652,725
90,454

420,311
278,922

1,416,568
346,894
267,972
68,205

375,642
115,702
73,308

236,339

number of

supernodes
4,960

599
503

1,295
69 1

2,595
7,438
2,420
1,522

4 14
7,288

454
27 I
599
252
685
318
479

number of
compressed
subscripts

15,404
27,755
16,907
59,744
48,378
88,816

100,792
27,318
46,916
21,342

177,546
26,398
14,161
9,691

19,182
17,878
7,928

21,524

number of
supernodal
subscripts

17,934
28,621
17,508
61,614
50,365
94,225

116,807
28,540
49,018
22,331

205,513
27,710
14,666
10,969
19,482
18,093
9,894

22,760

?'able 2: Structural statistics on test problems.

' rhe results in 'i'ahle 3 are very encouraging. 'The total time for finding the su-

pernodes and performing the symbolic factorization in Approach I1 is much less than

- 13 -

problem

BCSPWRlO
BCSSTKl3
RCSSTK14
BCSSTK 15
BCSSTK16
BCSSTK 17
BCSSTK 18
BCSSTK2l
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK28
CEGB2802
GEGB3306
CEGB2919
CEGB3024
LOCK2232
LOCK3491

lppl
TSP

0.0s
0.02
0.02
0.04
0.04
0.10
0.14
0.04
0.04
0.02
0.16
0.04
0.02
0.02
0.02
0.02
0.02
0.04 -

ch I ch E1 % improved

t l
t l = 6 t 2 =

T i F + T t P rip + I-&
0.66 1 0.16 0.48 27.27

*
‘SF

-
0.32
0.34
0.22
0.62
0.76
1.20
1.12
0.28
0.38
0.28
1.68
0.36
0.34
0.14
0.42
0.20
0.14
0.28

Table 3: Timing statistics (in seconds). (7 s ~ : time to perform symbolic factoriza-
tion, rsp: time to determine supernodes, 7tree: time to compute elimination tree and
post ordering.)

that in Approach I for all the test problems. The time for finding the supernodes in

Approach I is extremely small because the structure of L is known beforehand. Once

the column structure of L is determined, we need only the column nonzero counts and

a traversal of the elimination tree, which can be performed in O (n) time. On the other

hand, there is a substantial reduction in the symbolic factorization time in Approach

11. The improved efficiency of the supernodal symbolic factorization over the standard

algorithm has two sources. First, since the supernodal algorithm knows the supernode

partition from the start, for each supernode it needs to process only the single column

A,j, where j is the first column of the supernode. On the other hand, the standard

algorithm must process every column of A because i t is implicitly detecting the supern-

odes for the first time. Second, the standard algorithm performs a type of subscript list

compression in cases where a trailing portion of Struct(L,j) may serve as the leading

portion of Struct(L,,j+l). This form of subscript list conipression has no connection

with the list compression due to supernades. It is somewhat costly to detect, and our

experience indicates that it rarely results in a significant reduction in the number of

indices. The results in Table 2 are consistent with our experience. Since the standard

algorithm uses both kinds of compression while the supernodal algorithm uses only

supernode compression, the small differences in the number of subscripts generated by

- 14 -

the two algorithms indicate that the excluded form of compression is rarely used, and

therefore not worthwhile to compute.

5 . Concluding Remarks

We have provided a n efficient scheme t o determine the supernodd structure of a sparse

symmetric matrix. Its practical use in the context of syrribolic factorization is demon-

strated. Although we have attained a significant percentage reduction in symbolic

factorization time, the symbolic factorization phase usually constitutes a small portion

of the overall factorization time. It is, however, important to point out that with the

use of pardlel and vector supercomputers, the numerical factorization time in sparse

elimination has been reduced drasticdly [2, 4, 51. With such improvement, the impact

of a mom efficient symbolic phase becomes relatively important. Finally, although our

algorithm determines only the fundamental supemodes, it is easy and inexpensive to

find the maximal supernodes by a postprocessing phase, if such maxirnal supernodes

are needed.

6. References

[l] A. V. A b , J. E. Hopcroft, and J . D. Ullman. Data Strtnctures and Algorithms.

Addison-Wesley, Reading, MA, 1983.

[2] C. Ashcraft, S. Eisenstat, J. Liu, 13. Peyton, aid A. Sherman. A compute-ahead

implementation of the fan-in sparse distributed factorization scheme. Technical

Report CS-90-83, Department of Computer Science, York Tlniversity, 1990.

[3] C. Ashcraft and 11c. Grimes. The influence of relaxed slipernode partitions on the

rnultifrontal method. ACM Tmrzs. on Math. Softwart, 15291-309, 1989.

[4] C. Ashcraft, R. Grimes, J. Lewis, 13. Peyton, and I-I. Simon. Progress in sparse

Intern. J. matrix methods for large linear systems on vector supercomputers.

S U ~ T C O ~ ~ . Appl . , l(4):lO-29, 1987.

[5] I. S. Duff. Multiprcessing a sparse matrix code on the Alliant FX/8. Technical

Report CSS 210, Marwell Labaratory, Oxfordshire, England, 1988.

[S] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods fo. Sparse M ~ F ~ C C S .

Oxford University Press, 1987.

[7] I. S. DufF, It. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans. QYZ

Math. Software, 15:l-14, 1989.

- 1 5 -

[8] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric

linear equations. ACM Tmns. on Math. Software, 9:302-325, 1983.

191 J . A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive

Definite Systems. Prentice-Hall, Englewood Cliffs, NJ , 1981.

[lo] J . A. George and J. W. H. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 3l:l-19, 1989.

[ll] J . G. Lewis, 3. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse

matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10:1146-11'73,

1989.

[12] J . W. 11. Liii. A compact row storage scheme for Cholesky factors using elimination

trees. ACM Trans. on Math. Softwaw, 12:127-148, 1986.

[13] a. W. H. Liu. The role of elimination trees in sparse factorization. SIAM 9. Matrix

Anal. & Appl., 11:134-172, 1990.

[14] E. Ng and B. Peeyton. A supernodal Cholesky fxtorization algorithm for shared-

memory mdtiprocessors. In preparation, 1990.

[15] A . Pothen. Simplicial cliques, shortest elimination trees, and supernodes in sparse

Cholesky factorization. Technical Report CS-88-13, Department of Computer Sci-

ence, The Pennsylvania State University, University Park, Pennsylvania, 1988.

[le] E. Rothberg and A. Gupta. Fast sparse matrix factorization on modern work-

stations. Technical Report STAN-CS-89-1286, Department of Computer Science,

Stanford University, 1989.

[17] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans.

on Math. Software, 8:256-276, 1982.

[18] A. 1%. Sherman. On the eficient solution of s p r s e systems of linear and nonlinear

equations. PhD thesis, Department of Computer Science, Yale University, New

Haven, CT, 1975.

- 17-

ORNL/TM- 11 563

INTERNAL DISTRIBUTION

1.
2.
3.
4.
5.

6-7.
8.
9.

10.
11-15.
16-20.

21.
22.

23-27.
28-32.

33.
34-38.

39.

B. R. Appleton
E. F. D'Azevedo
J. J . Dongarra
J. B. Drake
6. A. Geist
R. F. Harbiaon
M. T. Heath
E. R. Jessup
M. R. Leuze
F. C. Maienschein
E. G. Ng
6. E. Oliver
G. Ostroiichov
B. W. Peyton
S. A. Raby
C. H. k m i n e
R. 6. Ward
P. W. Worley

40. A. Zucker
41. J. J . Dorning (EPMD

Advisory Committee)
42. R. M. Haralick (EPMD

Advisory Committee)
43. J. E. Leks (EPMD Advisory

Committee)
44. N. Moray (EPMD Advisory

Committee)
45. M. E'. Wheeler (EPMD

Advisory Committee)
46. Central Research Library
47. ORNL Patent Office
48. K-25 Plant Library
49. Y-12 Technical Library /

50. taboratory Records - RG
Document Reference Station

51-52. Laboratory Records DeparLtnent

EXTERNAL DISTRIBUTION

53. Mr. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

54. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7, Germantown Building, US. Department of Energy, Washington, DC 20545

55. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Houston,

WA 98 124-0346

TX 77252-2189

56. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State Univer-
sity, University Park, PA 16802

57. Dr. Edward H. Rarsis, Computer Science and Mathematics] P. 0. Box 5800, Sandia
National Laboratory, Albuquergue, NM 87185

58. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cam Avenue, Argonne, IL 60439

59. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, S-58183 Linkop-
ing, Sweden

60. Dr. .Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

61. Dr. James C. Rrowne, Department of Computer Sciences, University of Texas,
Austin, TX 78712

- 18 -

62. Dr. Rill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Ftexarch, P.O. Box 3000, Boulder, CO 80307

63. Dr. Donald A . Galahan, Department of Electrical and Coniputer Engineering, Uni-
versity of Michigan, Ann Arbor, MI 48109

64. Dr. John Cavallini, Office of Scientific Computing, Office of Energy Research, ER-7,
Germantown Building, U.S. Department of Energy, Washington, DC 20545

65. Mr. Ian Cavers, Department of Coinputer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

66. Dr. TORY Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

67. Dr. Jagdivli Chandra, Army h e a r c h Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

68. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada N2L 361

69. Dr. Melvyn Ciment, National Science Foundation, 1800 G Street NW, Washington,
DC 20550

70. Prof. Torn Coleman, Department of Computer Science, Cornell University, Ithaca,
NY 14853

71. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

72. Professor Andy Conn, Department of combinatorics and Optimization, Uiiiversity
of Waterloo, Waterloo, Ontario N21 3G1 Canada

73. Dr. Jane K. Cullunn, IBM T. J . Watson dtesearch Center, P.O. Box 218, Yorktown
Heights, NY 10598

74. Dr. George Cybeiiko, Computer Science Department, University of Illinois, Urbana,
IL 61801

75. Dr. George J . Uavis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

76. Dr. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, OXOA OX1 1 OQX, England

77. Prof. Pat Eberlein? 19epartrnmt of Computer Science, SUNY/Buffalo, Buffalo, NY
142GO

78. I l r . Stanley Eisenstat, Department of Compiiter Science, Yale University, P.Q. Box
2158 Yale Station, New Haven, CT 06520

79. Dr. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkop-
ing, Sweden

80. 19r. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

81. Dr. Albert M. Erisman, Boeiiig Computer Services, P.O. Box 24346, M/S 7L-21,
Seattle, WA 98124-0346

82. IDr. Geoffrey C. Fox, Booth Computing Center 15879, California Institute of 'Tech-
nology. Pasadena, CA 91125

- 1 9 -

83. Dr. Paul 0. Frederickson, NASA Ames Research Center, WACS, M/S 230-5, Moffett
Field, CA 94035

84. Dr. Fred N. Fritsch, L-300, Mathematics and Statistia Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

85. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

86. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Bloom-
ington, IN 47405

87. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

88. Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
Illinois 61801

89. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3C1

90. Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 91304

91. Prof. Gene H. Golub, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

92. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

93. Dr. Per Christian Hansen, UCI[*C Lyngby, Building 305, Technical University of
Denmark, DK-2800 Lyngby, Denmark

94. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

95. Dr. Nicholas J . Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

96. Dr. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

97. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

98. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

99. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University
of Colorado, Boulder, CO 80309

100. Professor Barry Joe, Department of Computer Science, University of Alberta, Ed-
monton, Alberta T6G 2€1l, Canada

101. Dr. Ro Kagstrmn, Institute of Information Processing, University of Umea, 5-901 87
Urnert, Sweden

102. Professor Malvyn Kalos, Courant Institute for Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

103. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National
I,aboratory, 9700 South Cass Avenue, Argonne, IL 60439

- 2 0 .

104. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

105. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laborato-
ries, Livermore, CA 94550

106. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.Q. Box
1892, Houston, T X 77001

107. Dr. Richard Lau, 0 c of Naval Research, 1030 E. Green Street, Pasadena, CA
91101

108. Dr. Alan J . Laub, Department of Electrical and Computer Engineering, University
of California, Santa Barbara, CA 93106

109. Dr. Robert L. Lamer, Army h e a r c h Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

110. Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

11 1. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

112. Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

113. Dr. Jing Li , IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
T X 77042

114. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Departnient of
Computer Science and St,atistics, Queen Mary College, University of London, Mile
End W.oad, London E l 4NS, England

115-119. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Meek
Street, North York, Ontario, Canada M3J 1P3

120. Dr. Frariklin Luk, Electrical Engineering Department, Coriiell liniversity, Ithaca,
NY 14853

121. Dr. Thomas A. ManteufPel, Cornputing Division, Lm Alatmos National Laboratory,
Los Ala.xnos, N M 87545

122. Dr. Paul C. Messina, California Institute ofTechnology, Mail Code 158-79, Pasadena,
CA 91125

123. Dr. James McGraw, Lawrence Livermorc National Laboratory, E-306, P.Q. Box 808,
Livermore, CA 94550

124. Dr. Cleve Molcr, A4rdent Computers, 550 Del b y Avenue, Sunnyvale, CA 94086

125. Dr. Brent Morris, National Security .4gency, Ft. George G. Meade, MD 20755

126. Dr. Dianne P. Q’J,e.zry, Computer Science Department, University of Maryland,
College Park, MD 20742

127. Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlottesville, VA 22903

128. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher-
brooke Street W., Montreal, Quebec, Canada H3A 2K6

- 21 -

129. Prof. Roy P. Pargas, Department of Computer Science, Clemson University, Clem-
son, SC 296341906

130. Prof. Beresford N. Yarlett, Department of Mathematics, University of California,
Berkeley, CA 94720

131. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

132. Dr. Robert J . Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Me@, NC 27650

133. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

134. Dr. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

135. Professor Werner C. Rheinboldt, Department of Mathematics and Statistics, Uni-
versity of Pittsburgh, Pittsburgh, PA 15260

136. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

137. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Labora-
tory, Livermore, CA 94550

138. Dr. Donald J . Rose, Department of Computer Science, Duke University, Durham,
NC 27706

139. Dr. Ahmed H . Sameh, Computer Science Department, University of Illinois, Urbana,
11, 61801

140. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

141. Dr. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

142. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

143. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Reaverton, OR 97006

144. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist Univer-
sity, Dallas, T X 75275

145. Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,

146. Dr. Horst Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA
94035

147. Dr. Danny C. Sorensen, Rice University, Department of Mathematical Sciences,
P. 0. Box 1892, Houston, T X 77251

148. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

149. Prof. Charles Van Loan, Department of Computer Science, Cornel1 University, Ithaca,
NY 14853

FL 32611

- 22 -

150.

151.

152.

153.

154.

155.

156.

157.

Professor Jim Varah, Centre for Integrated Computer Systems Research, University
of British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

Dr. Robert G. Voigt, ICASE, MS 132-@, NASA Langley Research Center, Hampton,
VA 23665

nr. Phuong Vu, Cray Research Inc., 1345 Northland Dr., Mendota Heights, MN
55120

Dr. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Cbmoia, SC 29631

Dr. Andrew B. White, Cornpaitkg Divkkm, 1- Alarms National Laboratory, Los
Ala~mos, NM 87545

Dr. Margaret Wright, &U Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

Professor David Young, University of Texass, Center for Numerical Analysis, RLM
13.150, Austin, 'T'X 78731

Office of Assistant Manager for Energy Research and Development, U.S. Department
of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N 37831-8600

158-167. Office of Scientific: 6% Technical Information, P.Q. Box 62, Oak Ridge, T N 37831

