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PREFACE 

This report deals with the superfluid diffusion equation 

dT 
at 

S(T)- = v * [K(T)(VT)’/3] . 

Although it is primarily about the mathematics of this equation, the results given 
here have a strongly practical aspect, because the superfluid diffusion equation de- 
scribes heat transport in turbulent helium-11. (Helium-11, somethies called super- 
fluid helium, is a second liquid phase of heliiim that exists at temperatures below 
2.17 K.) Reccntly, helium-11 has been used to stabilize superconducting magnets, 
especially those for magnetic fusion or magnetic energy storage. It has also been 
proposed for cooling space-bornc infrared telescopes. On account of such applica- 
tions, it is helpful to have solutions to the superfluid diffusion equation such as 
those described here. 

The superfluid diffusion equation is nonlinear owing to the appearance of the 
cube root of the temperature gradient. As a result, all the powerful methods of solu- 
tion based on superposition are lost to us. But though much is lost, much remains. 
Three methods that do not depend on linearity------namely, the method of similarity, 
the variational method, and the method of maximum/minimum principles-form 
the mainstay of this report, and upon their foundation a substantial body of knowl- 
edge has been erected. 

This work came about as the result of a four-year collaboration with the Applied 
Superconductivity Center of the University of Wisconsin--Madison during the period 
1984-1988. The collaboration was principally with Professor S. W. van Sciver and 
the members of his group. Without Prof. van Sciver’s unflagging interest in the 
results, his many suggestions for new work, and ‘his constant encouragement, this 
report could never have reached its present satisfactory form. 

Some of the results given in this report Itlave been published before; othcr results 
are new. It is my feeling that all should be collected in onc place, first, for the 
convenience of those who want to study the Irrathematical approach, and second, 
to make a tangible record of a very succcssfd collaboration between OC& Ridge 
National Laboratory and the University of Wisconsin-Madison. 

If these justifications for publishing this report are not enough, let me recall the 
somewhat lofty advice of the English mathematician 6. H. I-lardy that “it is one 
of the first duties of a professor . . . to  exaggerate a little . . . the importance of his 

vii 



subject.” And if this smacks too much of unhealthy hubris, let me take refuge in a 

humbler dictum of Faraday, who said simply: “Work7 finish, publish.” 

Lawrence Dresner 
Oak Ridge, Tennessee 
May 1989 
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V l l l  
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ABSTRACT 

This report deals with the superfluid diffusion equation, S ( T ) g  = V . 
[K(T)( VT)lI3] ,  which describes heat transport in turbulent helium-I1 (siiperAuid 
helium). Three methods of solution-the method of similarity, the variational 
method, and the method of maximum/minimum principles-are applied to this 
equation. The solutions discovered are helpful in addressing the use of helium-I1 in 
superconducting magnets and other applications. 
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CHAPTER 1 

SIMILARITY SOLUTIONS 

Introduction. The partial differential equation S ( T ) g  = V [K(T)(VT)1/3], 
which is the central object of study of this report, describes heat transport in tur- 
bulent helium-11. The mechanism underlying this heat transport is very different 
from the diffusive mechanism of ordinary heat conduction, but thinking and speak- 
ing of heat transport in helium-TI in the language of ordinary heat conduction is 
a useful heuristic and a convenient abbreviation. However, whereas ordinary heat 
conduction obeys Fourier’s linear law f = --kBT, heat “conduction” in helium-I1 
obeys the nonlinear law 

a”= -li(VT)1/3 . (1.1) 
Here $is the heat flux vector [in watts per square meter (W-m-2)] and (VT)1/3 is 
a vector whose magnitude is IVT11/3 and whose direction is that of V T ;  T is the 
temperature. The coefficient of proportionality K ( w - ~ - ~ / ~ - I ( - ’ / ~ )  is a function 
of T, although it is often convenient to approximate it by some constant average 
value. We refer to K as the supel-fluid beat conductivity because superfluid hclium 
is another name for helium-11. 

If we apply the equation of continuity V * 6-+- ST‘ = 0 to Eq. (l-l), we obtain 
the superfluid diffusion equation 

(1.2) 

The quantity S (J-m-3-K.--1), the heat capacity per unit volume, is also a function 
of T, but it, too, is often approximated by a constant average value. Equation (1.2) 
describes heat “conduction” in stagnant helium-11. From this point forwad we drop 
the quotation marks, remembering that conduction in helium-I1 is qualitatively 
different from conduction in other Inatcrials. 

The dependence of K and S on the temperature T is complicated, and it seems 
prudent to start by approximating K and S as constants. Then, to avoid the 
tedium of writing I -  and S over and ovcr again, we can employ special units in 
which 1- = S = 1. A final answer obtained after calculation can be converted to a 
form correct in ordinary units by inserting, as needed, products of powws of K and 
S so as to make the final answer dimensionally homogeneous. 

Now we turn our attention to the constant-property version of Eq. (1”2), 

(1.3) 
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In plane geometry, Eq. (1.3) can be written as 

Tt = (T,'I3) , 
L 

which may be thought of as describing heat conduction in a thin, helium-11-filled 
pipe with insulated sides. Equation (1.4) is the jumping-off point for our investiga- 
tions. 

Similarity Solutions (Overview). The paxtial differential equation (1.4) is 
inva,riant to the one-parameter family of &ne groups 

where the constants Q and p are connected by a linear constraint, 

The parameter X labels the individual transformations of a single group. The pa- 
rameter a labels groups of the family. Thc: coefficients M ,  N ,  and L dcpend on 
the structure of the partial differential equation. In the case of Eq. (1.4), M = 2, 
N = -3, and L = -4. 

The truth of the assertions in the last paragraph is easily verified- -if readers 
will assume that Eq. (1.4) holds for the unprimed variables and substitute Eq. (1.5) 
into Eq. (1.4)? they will find that Eq. (1.4) also holds for the primed variables, but 
only if Q and p are connected by Eq, (1.6). The u s e  of these assertions rests on the 
following considerations. 

As we have just seen, if we have a solution T ( z , t )  of the partial differential 
equation, its image T'( z' ,  t ' )  under a transformation of the family (1.5) is also a 
solution. To clarify the meaning of this last statement, the following geometric 
interpretation is helpful. The solution T(z,  t )  represents a surface in the three- 
dimensional space in which T, z ,  and C are the coordinates. Each point ( T , z , t )  

on this surface is carried into another point ( T ' , z ' , t ' )  called its image under the 
transformation (which is labeled by a paxticular choice of X and a) .  The locus of 
all the image points is another surface in ( T , z , t )  space, and it, too, represents a 

solution of the partial differential equation [since T', z ' ,  and t' also obey Eq. (1.4)]. 
When X varies over all possible values between 0 and m, the images of a given 

integral surface comprise a space-filling, one-parameter family of integral surfaces, 
cach labeled by one value of X and each of which is an image of any other. Among 
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the integral surfaces there may be some special ones whose images are the same as 
the original for all the tramformations (all A) of one group (one a) .  Such integral 
surfaces (solutions) are said to be invariant to a group of the family. For them, the 
one-paraineter family of image surfaces is not space-filling but consists only of the 
original surface itself. 

An algebraic form for T(z , t )  that has the property of being invariant to the 
group labeled by a is 

where y is an as yet undetermined function of the simple argumcnt z = z/tl/P. 
[Proof T' = A ~ T  = A* - t o l p y  (z/tll/7) = ( t ' ) a / p  y (%I/ ( t  I 1 I P  ) .I ~t can be aIiown,l 

though I shall not do it here, that Eq. (1.7) is the most general form an invariant 
solution can have. 

Invariant solutions of the forin (1.7) are interesting because when they are sub- 
stituted into the partial differential equation, they lead to an ordinary differential 
equation for the as yet undetermined function y(z). The reduction of the partial 
differential equation to an ordinary differential equation occurs, of course, because 
y is a function of a single argument only, namely, z = z / t l / p .  

It is shown in ref. 1 khat the ordinary differential equation for y(x) is also 
invariant to a group of transformations, namely, 

where L and M are two of the coefficients in the linear constraint (1-6). The 
geometric interpretation of this invariance is the same as before: any integral curve 
y(z) is carried into another integra.1 curve y'(z'> by each transformation of the group 
(1,8), so that each integral curve belongs to a one-parameter family, all the mexiilxrs 
of which are images of one another. 

The invariance of the ordinary differential equation for ~ ( x )  to the group (1.8) 
allows us to draw some valuable conclusions about the class of problems described 
by the boundary and initial conditions 

T(%,O) = 0 , 
T(c0,d.j = 0 ,  

T(0, t )  = AtN'P . 
(1.9) 
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In this class of problems, it is usef1.d to think of T as the temperature pise ,  which is 
allowable for the constant-property equation (1.4). The problems then describe the 
temperature distribution in a semi-infinite pipe, initially at a constant temperatiire, 
in which the temperature rise at the front face varies as a power of the time. 

The three boundary and initial conditions (1.9) for T collapse to the two bound- 
ary conditions 

(1.10) 

if ,f? > 0. 
equation as y(x) and the boundary conditions 

The image of y(x) under the group (1.8) obeys the same differential 

y'(0) = 1-L : > / M A  (1.U) 

y'(m) = 0 . 

Thus, if we know the solution T ( z ,  t )  for one value of A,  we can find it for any other 
value of A by transforming y(x) with the group (1.8). 

The heat flux through the front surface z = 0 of the half-space can be cadculaked 
from the derivative 

Tz (0, t )  = t ( " - ' ) / P ? j  (0) . (1.12) 

It follows from Eq. (1.8) that y' = P ( ~ / " ) - ' $ ,  so that 

(1.13) 

Equation (1.13) means that the ratio displayed is independent of the particular 
solution being considered, that is, is independent of y(0) == A. Let us call this ratio 
C. Then 

= C t - - N / L  [ T (0, t )] -- . 

(1.14) 

So for all the problems of the class described by the boundary and initial conditions 
(S.9), the tempei-atm-e rise and its derivative at z = 0 are connected by the relation 
(1.14). 
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To see the meaning of this relation, let us insert the values 4, = -4, M = 2, 
and N = -3 appropriate to the superfluid diffusion equation. Then 

Now, for example, when a = 0, the temperature rise T(0, t )  at the front face of the 
half-space is clamped at the constant value A.  Then Eq. (1.15) says that the heat 
flux through the front surface varies inversely as the one-fourth power of the elapsed 
time and directly as the square root of the clamped-temperature rise. When a = 1, 
the heat flux - [T, ( Q , t ) ] 1 / 3  at the front face is clamped at the constant value tj(Q). 

Then Eq. (1.15) says that the temperature rise at the front surface varies directly as 
the square root of the elapsed time and the square of the clamped heat flux. When 
a has other values, neither the temperature rise nor the heat flux at the front face 
i s  clamped at a constant value, but though both vary in time, they are constrained 
to obey Eq. (1.15). The constant C in general depends on a but not on y(0) or 

Ij(0). 
Up to this point, we have not used any properties of the partial differential 

equation save its invariance to the family of groups (1.5). The conclusions that 
we have drawn so far are thus solely consequences of that invariance. Later, we 
shall derive them again by direct computation whcn we calciilate the solutions 
y(x) in detail. But these computations, based an the specific propertics of the 
partial differential equation, obscure the more general, group-theoretic nature of 
the foregoing equations, especially Eqs, (I.$), (1.13), and (1.14)" It is to emphasize 
this group-theoretic origin that I have written this rather lengthy overview. 

The form (1.7) is invariant to one group of' the family (1.5), namely, the one 
corresponding to the specified values of Q and p. The form 

7 (1.16) L /nil t .- N/ M T ( % , t )  = UZ 

where U is a constant, on the othcr hand, is invariant to all the groups of the 
family, no matter what the values of (lr and ,!? [as long as they satisfy the constraint 
(1.6)]. It can be shown, though 1 shall not do so here, that Eq. (1.26) is the most 
general forrn having this property. The constant U ,  like the function C(a), cannot 
be determined by group-theoretic argurnents. The simplest way to determine it is 
to substitute the form (1.16) into the partial. differential equation. If wc do this €or 
Eq. (1.4), for example, we find U = 4/3&. 

The most important of these group-theoretic results is the existence of the group 
(lJ3), to which the ordinary differential equation for ~ ( x )  is invariant. In the case of 
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the superfluid diffusion equation, and in many other practical problcms as well, this 
ordinary differential equation i s  of second order. Its invariance to the group (1.8) 
can be used to reduce it to a first-order differential equation according to a theorem 
of Lie. Lie's theorem says that if we choose as new vaxiables a group invariant u( 2, y) 

and a first differential invariant v(z, y ,  lj), the second-order differential equation for 
y in terms of z will reduce to a first-order differential equation for v in terms of u. A 
group invariant u ( x ,  y )  is a function of x and y such that u(z ' ,  y') = u(x, y);  a first 
differential invariant u(x,y,t j)  is a function of z, y, and Ij such that u(z ' ,y ' ,y ')  = 

v(x, y, lj). For the simple group ( 1.8), a suitable choice of u and 2, is 

u = y/x L I M  , 

v = y/x L/M--I 

An equally valid choice is 

(1.17a) 

(1.17b) 

(1.17~) 

(1.17d) 

The reduction of a second-order differential equation to first, order helps us 
greatly because the content of a first-order equation can be visdized by means of its 
direction field. The existence of the group (1.8) and its use in reducing the second- 
order differential. equation for g(x) to a first-order differentia.1 equation for u ( u )  are 
the subject of the author's earlier book,' which gives proofs of the unsupported 
statements made here. Readers interested in the group-theoretic background of the 
calculations that follow may wish to consult ref. 1, but they need not do so as long 
as they have the framework described above firmly in mind. 

T h e  Ordinary Differential Equation for 3 The partial derivatives of 
the invariant solution (1.7) can be calculated using the chain rulc for differentiation: 

Now according to Eq. (1.41, the first and third lines display cqual quantities. Be- 
cause of the constraint (1.61, ( a  - 4)/3@ = a / p  - 1 when M = 2, W = -3 and 
L - -4. Therefore, the quantities in the first and third lines each contain as a 

factor the same power of t .  When it is cancelled, we find 
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(1.19) 

It can be verified at once that Eq. (1.19) i s  invariant to Eq. (1.8) with L / M  = -2. 
Equation (1.19) can be solved as it stands in two cases, namely, a = 0 and 

a = -1, and both of these solutions are of great practical importance. When cu = 0 
(and /? = $) we can immediately integrate Eg. (1.19) once by considering Q113 to 
be a new dependent variable. The result is 

where a is a constant of integration. A second integration gives 

(1.20) 

(1.21) 

The constant arising in the second integration has been chosen to make y(m) = 0, 
as required by the second of the boundary conditions (1.10). 

j l ( O ) / [ t ~ ( O ) ] " ~  = -33/4/2fi and is independent of a ,  as expected. Direct coni- 
putation then shows that 

According to Eq. (1.21), y(0) = 2a2/& and Ij(0) = --a3* Thus C 

(1.22) 

exactly as expected from Eq. (1.15). 

the family (1.21) have the same asymptotic form when 
When x >> 1, y N 4 / 3 d x 2 ,  which is independent of a .  Thus, all the curves of 

i s  large. Since z EE z/t3/47 

(1.23) 

which is exactly the same as the totally invariant solution (1.16). -4s wc shall see 
later, this is no coincidence and could have been predicted even if we did riot know 
the explicit formula (1.21). 

Since a = 0 characterizes the clar~i~ed-temperat.nri(.: problem, we give below the 
form of the solution (1.21) when the const(mt a is removed in favor of the constant 
A = y(0) = 2a2/&: 

T Y  I X --- A A = ' - -  112 

(xz + &) 
(1 .24~~)  

x = x&i = z a p 4  . (1.24'4 
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To reconstitute this equation so that it applies in any set of units (rather than the 
special units in which K = S = 1)) we leave the first line unchanged a.nd replace 
the second line by the dimensionally homogeneous equation 

(1.25) 

(remember that A has the units of temperature). 
The solution (1.24) has been made the basis of a theory of stabilization of 

superconductors by helium-11. This theory is discussed in Chap. 2, and wc now 
pass on to discuss the second case in which Eq. (1.19) can he solved, namely, 
a == -1 ( p  = 3). In this case 

so that 

(1.26) 

(1 27) 

Since the integral on the right-hand side of Eq. (1.27) is a pure number, the integral 
on the left-hand side, though nominally a function of t ,  is actually constant. Tf 
we again interpret T as the temperature rise, then T dx is proportional to the heat 
required to raise the temperature in the interval dz of an iilffnite pipe by the amount 
T .  The constancy of the integral on the left-hand side of Eq. (1.27) then implies 
the constancy in time of the total heat added to the helium-I1 in the pipe. If we 

can find a solution tu Eq. (1.19) that is sharply peaked for small t and spreads out 
as t increases, we can use it to describe the dispersion of a heat pulse uniformly 
deposited (at t ;=I 0) in some plane cross section of the pipe (which we take to be 
2 =III 0). 

When a = -1, Eq. (1.19) is a perfect differential and can be integrated to give 

(1.28) 

The constant of integration on the right-hand side of Kq. (1.28) has been taken to 
be zero since c(0) = 0 on account of the symmetry of y(x). A second integration 
now gives 

(1.29) 
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where B is a second constant of integration. Since $(S) = 0,  C IJT 0 when N = -1. 
When x r> 1, y is again asymptotic to 4/3ax2, independent of B. When this 
asymptotic form is substituted into Eq. (1.261, we again find that the asymptotic 
form of T is given by Eq. (1.23); as noted previously, this is the sanie as the totally 
invariant solution (1.16). 

The constant B is related to the value Q of the integral in Eq. (1.23): 

(1.30) 

When Eq. (1.29) is reconstituted so that it applies in any set of units, it takes the 
form 

T /K t \3 /2  4 -1/2 =-(X4+b4) , 
3& (Q/S12 

where 

and b is the numerical constant on 
be interpreted as the pulse energy 
J m - 2  in the SI system. 

3/2 

(1.31) 

(1.32) 

the right-hand side of Eg. (1.3Q). Here Q is to 
per unit cross-sectiond mea and has the units 

The solution given in Eqs. (1.31) and (1.32) is sharply peaked for short times 
and spreads out as time goes on. Therefore, it is the sought-for description of 
the evolution of a sudden heat pulse deposited at the centcr of an infinite tube. 
This situation has been studied experimentally and the results arc: described in 
Chap. 4, but it is worth noting herc that the agreement with Eqs. (1.31) and (1.32) 
is extremcly good. 

Reduction of the Order of the quatian. Equation (1.19) 
is not easily solvable for values of a other than 0 and -1, and  for all other valics 
we proceed by introducing the new variables u z: ~ y ' / ~  and v = x$1/3 suggestcd by 
Lie's theorem. Then, 

du 1 v 3  
x- = u + -- 

dz 221 F(21,v) ' 
so that 

dv 

du F ( u , v )  p 2212 + 113 

G ( u , v )  - 2 u p v  - t a u 2  - v 3  _ -  - - -  

(1,33b) 

(1.34) 



To understand the nati-ire of the solutions v(u) of Eq. (134) wc study its direction 
field. We restrict our attention to the fourth quadrant since zi = z'/'y > 0 aiid 
v = z1l3y < 0 because y > 0 and y < 0. 

Solutions (1.7) that spread out as time advanccs correspond to p > 0. This 
restriction requires a > -2. As we shall see subsequently, the direction field has 
two different forms depending on whether cy > 0 or 0 > Q > --2. We start oelr 

investigations with tlie first case, namely, Q > 0 (0 > $). 
To sketch a direction field it is convenient first to divide it into regions in each of 

which the slope clvldu has one sign only. These rcgions are separated by curves on 
which dvldu is either 0 or i o o .  Figure 1.1 shows these curves, labeled C, and Cm. 
Each is identified with short hatch marks showing the slope d v l d u .  The singular 
points of the differential equation, which play a central role in what follows, are the 
points of intersection of Co and C,. They turn out to be the origin Q:(O,O) and 
the point P:(2/33/4, --2/@). The sign of the slope in the four regions into which 
the curves Co and Cm separate the direction field is shown by the encircled plus 
and minus signs drawn in these regions. A moment's thought will then show that 

ORNL-DWG89- 2337R FED 

Fig. 1.1. The direction field of Eq. (1.31) with Q > 0. 



the integral curves v (u )  in the fourth quadrimt must look as shown in the slretch 
(light lines) and that the point P is a saddle point. 

As we have seen earlier, the integral curves y(z) obeying the boundary condi- 
tions (1.10) axe all images of one another under the group (1.8). Now any curve y(x) 
defines a corresponding curve ~ ( u )  through the relations v = 5j11/3 and u. = ~ g ’ / ~ .  

Two curves y(x) that axe images of one another under (1.8) correspond to the same 

curve v(u) because v = = ~ ’ y ‘ l / ~  and u = = z‘y’l/z. So the entire 
family of solutions defined by the boundary conditions (1.10) all correspond to a 
single curve in the (u, v) plane. 

The curve we are looking for must pass through the origin 0 because when 
5c = 0 ,  u = v = 0 if y(0) and G(0) are finite. Among these curves, one stands out 
as different from all the rest, namely, the separatrix S. It is the one we want, and 
we prove this by showing that as the point (u,v)  approaches P along S from the 
direction of 0, 2 approaches inkinity. 

If we approach the singular point P along an integral curve S: 2 = m, then in 
the immediate vicinity of P, Eq. (1.33b) can be written 

d U  
2- dx zzz (Fa + M F , )  ( u  - up) (1.35) 

to lowest order. The partia) derivatives FU and Fv amre to be evaluated at P. Equa- 
tion (1.35) means that near P 

Thus as u -+ u p ,  5 approaches 0 or f w  according to whether F, + nxFv is positive 
or negative. Now F, t- mFv is the directional derivative of F along the curve S in 
the direction of increasing u. Since S and C, : F = 0 intersect at P ,  F, -1 m F ,  is 
positive if S crosses C:, in the direction of increasing F and negative if S crosses 
C, in the direction of decreasing F.  These results are summarized below: 

At a singular point P ,  if S crosses C, : F = 0 in the  diwct ion of increasing u, 

and 
e F increases, x --+ 0 

as we approach P along S . (1.37) 
e F decreases, 5 4 foa 

. . . . . . . . . . . . . . . . . . . . . . . ...... . , . . , . . . . ~  .,. .... . . . . . . 
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Exactly the sitme rule holds if we replace u by v ,  C, by Co, and F by G. The limits 
0 and kcx, are the only ones possible. The rule (1.37') enables us to tell at a glance 
what the limiting value of 2 is along any integral curve through a singularity. 

In Fig. 1.1, F is positive above C, and negative below C,. By the rule (1.37), 
therefore, 2 --+ OQ as u approaches P along S and z 4 0 as u approaches 0 

along S (we already knew this second fact). Now, when the point ( u , . ~ )  is near P, 
y = u",xz = 4/3402. This cquation gives the asymptotic form of y for large z 

and shows that the family of solutions y(x) corresponding to thc separatrix S obeys 
the second of the boundary conditions ( l . l O ) ,  

The constant in the asymptotic form is the same as the constant in the totally 
invariant solution (1.16). This is no accident, as we now demonstrate. The function 
y(x) belonging to the totally invariant solution is given by 

Now, since N / M  4- cy//? = L/M/? ,  

(1.38) 

(1.39) 

According to Eqs. (1.17~) and (1.17d), the curve in the ( u , ~ )  plane to which the 
solution (1.39) corresponds consists of only one point, namely, that €or which 

(1.4Qa) 

( I .40b) 

For the solution (1.39)-(1.40), d u / d x  z 0 and dv/dz -1 0 since u and v remain fixed 
as z and y change. Thus the point given by Eq. (1.40) is a singular point. Finally, 
along S near the singular point P ,  y = f - l ( ~ p ) ~ L / M .  From Eq. (1.40a) we can see 

that f - ' ( u p )  '1= U ,  the constant in the totally invariant solution (1.16). From the 
preceding we can also see that the totally invariant solution gives the asymptotic 
form for large z or small t of all the similarity solutions (1.7) no matter what the 
values of Q and ,f?. 

Now that we have seen how y(z) behaves for large 2 (u, v new P )  we may ask 
how y(z) behaves new z = 0 (u,v near 0). To determine this, we must study the 
behavior of the integral curves v(u) near 0, that is, when both u and v are <1. 
In this limiting case, = Eu, E I- cnnst, satisfies Eq. (1.34) to lowest order. This 
latter phrase means neglecting higher powers of v against lower powers of and 
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higher powers of u against lower powers of u. The constant E is not determined by 
Eq. (1.34) and can have any value. From v = Eu it follows at once that 

(1.41) 

where C is the ratio defined in Eq. (1.13). 
To calculate E ,  we integrate Eq. (1.34) numerically from P to 0 along S. We 

choose this direction of integration because it is the direction in which the integral 
curves converge and the numerical integration is stable. Numerical integration in 
the opposite direction, 0 to P ,  is unstable. We cannot start the integration at the 
point P because la is a singular point. We overcome this difficulty by advancing a 
short distance along S to a new starting point. To make this advance, we need the 
slope of S at P ,  and this we calculate by applying L’Hospital’s rule to Eq. (1.34). A 
short calculation shows that the two possible slopes at P have opposite signs when 
a > 0 and that the negative slopk is given by 

p + 4 + [ (B + + ISCYB] 1’2 
m = -  

2 x 33/48 
(1.42) 

As the integration advances toward 0, the step size is progressively decreased. 
The integration is continued until the ratio v/u converges to the desired accuracy. 
Table 1.1 shows E for a few values of a. 

Table 1.1. Relation of a and E 
cy E 

0 -( fi/2)1/2 = -0.930605 
1 -1.095792 
2 - 1.161379 
4 -1.218374 

10 - 1.27001 1 

Direction Field When 0 > (Y > -2 (f > /3 > 0). When ,6 > 0, thc quantity 
v3  - Pv, which appears in the numcrator of Eq. (1.34), is positive in the interval 
0 > v > -a. Thus, when a > 0, the equation au2 = u3 - ,i3v for the curve Co 
has real solutions for ti in this interval, as depicted in Fig. 1.1. When a < 0, it 



has no real solutions for u in the interval 0 > v > -fi, so the direction field for 
0 > a! > -2 must look qualitatively different from that for a! > 0. 

Figure 1.2 shows the direction field when 0 > a! > -2. Again, the curves Go 

and C, intersect in the singular points 0 and P: (2/3'/',-2/&). The point P 

is a saddle point at which the two possible slopes ape given by Eq. (1.42) and by 
Eq. (1.42) with the sign preceding the square root changed from plus to minus. 
Both of these slopes are negative; the more negative of the two, which i s  the one 
we want, is that given by Eq. (1.42) as it stands. 

ORNL-DWG89-2338 FED 

Fig. 1.2. The direction field of Eq. (1.34) with 0 > a > -2. 



15 

In Fig. 1.1, it is clear at a glance that all the integral curves in the lenticular 
region between Co and C, must pass through the origin. This conclusion applies, of 
course, to the separatrix S. In Fig. 1.2, the situation is slightly more complicated. 
Again, near 0, there is the faniily of curves 79 = Eu passing through the origin. 
Again, E can have any value. In Fig. 1.1, only the curves having negative E are 
shown since only they lie in the lenticular region. In Fig. 1.2, we also consider curves 
with positive E. Besides this family of curves, there are two other curves t h t  satisfy 
Eq. (1.34) to lnwest order in u a id  21, narndy, ?J = (a /P)u2  and 71 I= u2I3.  Neither 
of these was mentioned in eoniiection with Fig. 1.1 because wlicxn 01 > 0 both lie in 
the first quadrant. Now, however, we need to consider them. 

Thc direction field near 0 thus looks as shown In Fig. 1.2, The fanlily w I- Eel 

of rays through the origin is separated from intcgral curves that intersect the v-xxis 
by a separatrix s', wliich near the origin must ~ i a v e  l ike 'u = u 2 / 3 ,  there ~.,sirng no 
other possibility. [&member that v = (a,/p)uz now lics in thc fourth quadrant!] 
I have shown the scparatrix S through P entering the origin with a positive slope 
E.  We may expect the slope E to be positive for a < -1 sinec for N > 0 it is 
negative and for a = -1 it is zero. [The exact solution (1,291 for a =3 -1 can be 
written in tcrms of 'ZL = ~ y ' / ~  anid 'u =; as 2) = - (3 /2)u2 = ( a / p ) 2 .  Thus, 
( d v / d u ) o  = 0.1 ule (1.37) now can be used to show that dong the separatrix S, 0 

corresponds to x = 0 and P corresponds to x II= 00. Continuation of the numerical 
calculations that led to Table 1.1 now yields the results given in Ttble 1.2. Shown 
in Fig. 1.3 is a graph of -E vs a based on these numerical rcsimlts. 

Table 1.2. Relation of Q and E for 
negative values of a! 

Q E 
-0.5 ----0.699404 
-1.0 0 
-1.1 8.276865 
-1.25 0.870506 
-1.40 2.818246 
-1.42 5.487'496 

One consequence of these results is that wlieii -2 < a .< -1, that is, when --00 < 
3 a < -4, $(O) > 0 wid y(x), instead of being monotone decreasing on the interval 

0 < x < 00, has a maximum for some z > 0. 
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Fig. 1.3. The negative slope - E  and the ratio  CY/^ plotted vs a.  

Integration of the DifTerei-xtinl Equation for y(z). The boundary condi- 
tions (1.10) supply boundary conditions at two different points, while a numerical 
integratioti of Eq. (1.19) rcqmiires two conditions at one point. Having calcdated E, 
we know y(0) and Ij(0) simultaneously and so can proceed with a iiurnerical integra- 
tion. Unfortunately, integration in the direction of increasing z is unstable, as trial 
quickly demonstrates. This instability occurs because integration in the direction 
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of increasing z is equivdent to traversing the separatrix S in the direction from 0 

to P ,  that is, in the direction of diverging integral curves. Any smdl error, such as 
the truncation or roundoff error, throws us slightly off the separatrix S. When the 
integral curves diverge, as they do at a saddle point, the computed points eventually 
veer uncontrollably to one side of S or the other. 

The instability does not &ect the calculated points for small x very much, so 

we can join these points graphically to the known asymptotic behauior 4 / 3 4 . 2 .  
Such a procedure can be successful in providing a rough picture of the function 
g( IC), but for high accuracy we must proceed otherwise. 

What we need are the two boundary vali-ies y(x) asid $(z) at scrme large .7: SO 

that we can iritegrste in the stable directioii of decreasing I. One way to find such 
boundary values is as follows. First we find a point P' : ( u 7  o)  on the scparatrix S 

close to P. It is simplest to use a point P' close enough to P that the coordinates 
of P' can be found from those of P by linear extrapolation insing the slope 178 given 
in Eq. (1.42). Then we choose a vdue of x ~~~~~~~~~~~ and edcula,tt y a,aid i from 
the relations 9 = ( U / I C ) ~ ,  $ f= (./$I3. Using 2 ,  y, and 6 as initial data, we thcn 
inttcgrate in the stable direction of decreasing x, 

In general, this integration will produce an integral curuc: for which y(0) # 1. 
Now if we s h d d  happen to want the curve for which y(0) = 1, we can produce it by 
scaling our nuinerically calculated results with the Srmsformatition (1 ' 8 )  for which 
p = [y(0)]-M/" = [y(0)]1/2. Then y'(0) = 1. The CU~VCS in Fig. 1.4 corresponding 
to a = -5/4 and a! = 1 were calculated in this way. [The curves corresponding to 
a = -1 and a: = 0 were calculated using appropriate vprsions of Eqs, (1.29) and 
(1.21).] Shown also for comparison is the comnon asymptotic limit y = 4 1 3 8 ~ ~ .  

The reason this procedure works is as follows, Suppose we contintie to denote 
by y' the integral curve that we seek. For some large x, say x = x*, y' will have 
the value y* and j l !  will have the value y,. If .t'* is large enough, u = r v y x  and 
v = x*y* . ' I3 will be the coordinates of a point on S near P. Let y be a11 image of 
y' under the transformation (1.8); then y I- p'-'yY,, $ = /L-~!)*, and x are 
values of y and $ at some point x corresponding to the same values of u and v as 
given by 24 = z,&'~ and 'u = z,y* . Since 1.1 can have any value, z can bc made to 
assume any value. Thus, any z together with the coordinates ( u , v )  of rz point 6"' 
on S yields consistent, initial values z, y, 6. 

Further Discussion of the Similarity ~ 0 ~ ~ ~ ~ ~ ~ s "  hf wc: refer hack to the 
direction field in Fig. 1.1, we may notc that the integral cixves which emanate from 

1 / 2  

. 1 / 3  
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Fig. 1.4. Curves of y(n:) plotted vs n: for varions a. Also shown is the asymptotic 
X 

limit y = 4 / 3 4 x 2 .  

the origin 0 and lie below the sepasatrix S must eventually intersect the w-axis a 

second time at a point we denote by $. Let vo be the ordinate of Q. If, following 
thc argument just given above, we choose an arbitrary value of L, say 5 0 ,  then 
Q corresponds to thc consistent set of values z = 5 0 ,  y = 8, zj = ( V ~ / X ~ ) ~ .  If 
wc integrate from Q to 0 we obtain a well-behaved solutioii y(:c) on the interval 
0 < z < 5 0 .  If for n: > 20 we take y = 0, can we not thereby satisfy the boundary 
condition y ( w )  = 0 and SQ obtain a satisfactory solution? After all, such segmented 
sohitions are known for other diffusion-like partial differential equations-see, for 
example, the work of P a t t k 2  

The criterion for the admissibility of segmented solutiolis is that the two seg- 
ments should obey the condition of conservation of heat at their iiitersection. We can 
derive this condition with the aid of Fig. 1.5. Let ,4 be the position (z-coordinate) 
of the front y = T = 0 at time t and k t  B be its position at time t+&. The distance 
from .A to B is V d t ,  where V is the average velocity of the front in the iiiterval d t .  
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Fig. 1.5. The foot of the temperature distribution at time t and t + dt .  

The oblique lines emanating from A and B represent the tail of the instantaneous 
temperature distributions T ( z )  at times t and t + W. To lowest order, they are 
parallel. The heat crossing the point A into ,4E3 during dt  is then +Jtdt q(u)CIu, 

where u is the distance from the foot of the temperature distribution measured in 
the direction opposite to z. The average temperature rise in AB at the end of dt is 

T(u)du.  The heat capacity of AB is SVdt. Therefore, the condition of 
heat conservation reads 

V d t  
Jo 

(1.43) 

Bccarise Eq. (1.43) is an identity in V d t ,  differentiation with respect to the upper 
limit of the integrals yields 

q(u) = SVT(u) . (1.44) 

Now for the supeduid diffusion equation, q(u) = K ( d y / d ~ ) ' / ~ ;  it therefore follows 
from Eq. (1.44) that f' = (SV/Iir)3T3, which cannot be satisfied by a temperature 
distribution that falls to zero at the head of an advmcing wave ( u  = 0). 

In Pattle's work, q = kT" (dT /du) ;  thus Eq. (1.44) becomes TPn-'i? = SV/k,  

which leads to 2' = ( n ~ S V u / k ) ' / ' ~ .  This relation admits segmented solutions, 
Furthermore, Pattle's explicit solutions satisfy it. So while in Pattle's ea.se the 
segmented solution is admissible, it is not admissible for the supeduid diffusion 
equation. 

q(u)du = s T(PI)& , lv 





21 

CHAPTER 2 

APPLICATIONS OF SIMILARITY SQ 

Introduction. Of the similarity solutions presented in Chap. 1, three are 
especially important: that to the clczmped-temperature problem ( a  = 01, that to 
the clamped-flux problem (a  = l), and that to the pdsed-source probleni (CY = -1). 
The first of these is important because it has been made the basis of a theory of 
stabilization of superconductors by lieliimi-11. The second arid third are important 
because the problems that they solve have been studied experimentally. 

The one-dimensional clamped-flux and pulsed-source problems can he studied 
by placing an electrical heater in a long tube filled with Ineliurn-11. The clamped- 
flux or pulsed-source boundary condition is then obtained by either holding the 
heater power fixed or pulsing it briefly. Such experiments have been performed by 
van Sciver3 and by vw1 Sciver and L ~ t t i n . ~  The claxnped-temperature boundary 
condition can be visualized as resulting from the sudden contact of the end of the 
helium-filled tube with a large heat bath. The heat Lath must be large so tha,t 
the transfer of heat from the bath to the helium will not appreciably rediace the 
temperature of the heat bath; if the heat bath is too small, its tenipmuturc will 
decrease during the course of the experiment. However, owing to some peculiarities 
of the physical properties of helium, as long czs the temperature of the lieat bath is 
high enough, even if i t  changes during the exper-iment, the ow of heat dovm the 
tube will be very close to what it woiild be if the temperature of thc hcat bath werc 
clamped at the He-1-He-I1 transition temperature Tx (-2.17 

To see how this comes about, we nced to fix in our minds the phase diagram 
of helium at low tmpxatures  (Fig. 2.1). The ordinate is pressure, the abscissa 
temperatare. The curve OC is the saturation curve that separates liquid on the 
left froan vapor on the right. The point C is the critical point, Ixyond whidi 110 
distinction between vapor and liquid is possible. Rising almost vcstically from the 
point X 011 the saturation curve is the line that separates He11 011 the left from 
ordinary He-I on the right. The point X is called the lamhda point, and the nearly 
vertical line, the lambda line. Shown in the He-I1 region is the point in at T = 1.8 IC 
and pressure P = 1 atm. This point is a typical operating point when Ne-I1 is used 
as a coolant in technical applications. 

If the temperature of the heat bath is high enough, the helium immediately in 
contact with the heat bath will have a temperature higher than that of the lamlnda 
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Fie;. 2.1, The phase diagram of helium. 

line. (The pressure in the tube is assumed uniform.) Talus a layer of liquid He-1 
(and possibly a layer of vapor) will separate the heat bath and the bulk of the Me-11. 
The downstream boundary of this He-I layer has the temperature of the la.nzbda 
line (approximately 7'~).  In most practical situations, the heat flux Q down the 
tube (and thus across tlie He-I layer) is a few watts per square centimeter; the 
temperature difference AT between &he solid and the helium in the tube is a few 
kelvins. The thickness 6 of the Re-1 layer is approximately kA:T/Q, where k 3s the 
thermal conductivity of He-I ( w  W-.em-l.K-l). Owing to the smallness of 
E ,  6 is of the order of cm. Thus the Re-I-He-I1 interface, at which T = Tx, 
is always very close to the surface of the heat bath. Such a thin layer also has an 
extremely small heat capacity (- 40 p J . c ~ i - ~ . K - ~ ) ,  and so its thickness can respond 
to changes in the heat flux through it in times of the order of tens of microseconds. 
Looking back from the He-II-filled tube at the heat bath, one thus sees a s u r f x e  on 
which the temperature is clamped at T = 2'A and whose location is, for all practical 
purposes, identical with that of the heat bath. The temperature distribution in the 
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tube and the heat flow down the tube are then well approximated by the solution 
of the clamped-temperature problem with “(0, t> = Tx. This extremely important 
observation was first made by Seyfert, LafFeranderie, and Claudet,5 who summarized 
the situation succinctly as follows: “At the onset of burnout [transition from Ne-I1 
to He-I at the surface of the heat bath], formation of the thermal barrier starts. The 
He-I1 new the heated surface experiences a phase transition. A He-11-&-I interface 
appears which has its temperature locked at Tx . . . . We assunid that this bayricr 
has a negligible thickness and that it only affected heat transport in 
condition of a constant temperature, i.e., T = TA, at the hot end of the channels in 
our test sect ion.” 

The observation of Seyfert et al. has made i t  possible to base a theory of sta- 
bilization of superconcluctors by He-I1 on the solution to the clamped-ternpcrature 
problem, and this theory is described in the next section. The solution to the 
clamped-temperature problem can dso  be made the basis of a theory of bubble 
growth in superheated He-11. This theory is dcscribed here7 too. Ncxt, after a hrief 
comparison with the experimental results of van Seiver a i d  lot ti^, the solution of 
the pulsed-source problem is used to analyze thc pulsed time -&-flight method of 
measuring flow velocity. Then the solution to the clamped-Aiix proohlem is briefly 
compared to the experimental results of van Sciver. This solutionr is made the basis 
of an approximate solution of the prokhxn in which the heat flux into the tube is 
imposed by an external agency but not held constant. Experiments of this sort have 
been performed by Okarnura ct d.‘ Finally, a similarity sohition to the clamped- 
temperature prolaleix valid in thc temperature range 1.9 K < T < ??A is presented 
for the case in which liT and S axe not constant but have their real vuriations with 
temperature. 

Stabifizationi s f  Superconductors. we begin by assuming the therrnophys- 
i c d  properties K and S to he constant, as in Chap. 1. Because 28’ and S both vary 
strongly with tcmperature near Tx, the criterion for stability that we derive helow 
on the basis of constant I -  and S may be inaccurate. In the last section of this 
chapter, we estimate the degree of this inaccuracy. But for the time being, wc take 
I< and S to be constant. 

We consider a superconductor cooled by contack with a closed channel of length 
L filled with He-11 (see Fig- 2.2). The thermodynaInic state of the 1-?e-11 i s  that 
denoted by a point in the phase diagram like point P in Fig. 2.1 (T = Tb). Suppose 
the superconductor is driven normal (Le., nonsupercondueting) by a sudden heat 
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Fig. 2.2. Schematic diagram of a superconductor cooled by contact with a closed 

channel of length Z filled with Me-11. 

pulse .E, after which it produees a steady Joule power 45.  (The quantities E and 
Q J  are both expressed per unit area of wetted surface and therefore have SI units 
of J.m-2 and W-m-2, respectively.) If E i s  small enough, the He-I1 cools the 
superconductor well enough to overcome the Joule heating, and the superconductor 
returns to the superconducting state. If E is too lage,  the Joule heating overwhelms 
the cooling by Be-11, a.nd the superconductor does 1-lot return to the superconducting 
state. We seek tlie largest value of E for which the superconductor c a n  still recover 
the superconducting state. 

Sey-fert et aL5 have given a simple method of calculating E based on the balance 
of areas shown in Fig. 2.3. In this diagram, the ordinate is the heat flux froin the 
conductor into the helium through the wetted suiface a.ad the abscissa is the time 
elapsed since the beginning of the heat pulse E.  The stepped curve depicts the 
power production in the superconductor. The initial heat pulse E,  shown having 
a duration t l ,  is the first part of this stepped curve. After the tiirie tl elapses, 
the superconductor is assumed to have been driven normal and to be producing a 

steady Joule power 45. The part of the stepped curve depicting this Joule power 
production is labeled “post-heating.” 

The smooth curve labeled “similarity solution” represents the heat flux q into 
the Be-IT through tlie surface at which T = Tx. This curve, whose equation we 
shall calculate later, is a decreasing function of time. At the time t Z ,  it crosses the 
level Q J  of the post-heating flux. If, by the time t 2 ,  the helium has not withdrawn 
all of the heat produced in the supercondactor, the superconductor will not have 
cooled enough to regain the resistanceless superconducting state. Then Joule beat 
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Fig. 2.3. Sketch depicting the balance-of-areas argument of Seyfert et aL5 

production at the steady level ¶.J will persist beyond Lz, where it will exceed thc 
cooling Q of the helium. But then tho conductor, being heated more strongly than 
cooled, will never regain the superconducting state. From this reasoning, it is clear 
that the largest value of E corresponds to the condition that all the heat producd 
in the superconductor up to time t z  must just equal the heat withdrawn by the 
helium. This means that, in Fig. 2.3, the areas from t == to t zz t Z  ullder thc 
stepped and smooth curves must be equal; equivalently, area A must cqiial area B. 

If the channel is long enough, recovery of the superconducting state takes glace 
before much heat has reached the far end of the cooling channel. Then from the 
near end, the channel looks irikitely long. According to Seyfert et al., the channel 
can thus be treated as it semi-infinite tube, the temperature of whose front surface 
( z  = 0) is suddenly (t = 0) clamped at Tx. It then follows from the solution (1.24a) 
mid (1.25) to the clamped-tcmperature problem that 



26 

The constant A in Eqs. (1.24) and (1.25) that represents the clamped-teiilperature 
rise of the surface z = 0 has been replaced by Tx - Tb7 the diEerence between the 
lambda temperature and the temperature Tb of the ambient helium (point P In 
Fig. 2.1). The balance of areas can now be written a s  

q dt - E -1.- qJ  (t2 - t l )  , 

where t 2  is given by 

t2 = 1 . 1 7 / q J ) 4  * 

If in Eq. (2.2) we assume that t2 >> t l ,  then we find that 

(2.3) 

(2.4a) 

so that 

(2.46) 

If the channel is short enough, the characteristic time for the temperature dis- 
tribution in the channel to approach uniformity is short compared with the tinie it 
takes to regain the superconducting state. ‘Then all of the enthalpy of the helium 
is ava.ilable for recovery, and 

where h ( T )  i s  the enthalpy per unit volume of helium. If we consider E / E ,  as a 
function of q J / q * ,  where 

we can combine Eqs. (2.46) and (2.5) as follows: 

q J / q *  << 1 - ..._ 
EO E - { i i J / q * ) - 3  , q J / q *  >> 1 ’ 

(2.7aj 

(2.7b) 

The author has made the two limits (2.7a) a.nd (2.7b) the basis of a practica.1 the- 
ory of superconductor ~ tab i l i ty .~  This theory requires some additional elaboration 
that is not described here because that woiild carry 11s too far afield of our general 
goal of studying the mathematics of the supcduid diffusion equation. The reader 



27 

seeking these details may consult refs. 2-7 as well as the confirmatory experimental 
studies of Pfotenhauer and van Sciver.' 

Bubble Growth in Superheated He-11. Suppose we have a sample of He-I1 
at a pressure P and a temperature Tb = Ts(P)+AT, where Ts(P) is the saturation 
temperature corresponding to the pressure P and AT is a sniall superheat. Such a 

sample is thermodynamically unstable and tends to change into vapor. The rate of 
this conversion depends on the density of nucleation sites initially present and the 
rate of growth of the bubbles arising at these sites. 

The rate of bubble growth is controlled by the transfer of heat from the super- 
heated liquid to the suIface of the growing bubble. In He-11, this heat transfer is 
controlled by the superf-luid heat conduction process described by Eqs. (1.1) and 
(L2)" 

Again the procedure is to consider limiting cases. When the superheat AT is 
very small, bubble growth is slow and the temperature distribution in the liquid 
sirrounding a bubble will be vcry close to the steady-state distribution T = Tb - 
ATR5/r5,  where R is the instantaneous bubble radius and r (> .R) is the radial 
coordinate measured from the center of t he bubble. This temperature distribution 
is a steady-state (Tl = 0) solution of Eq. (1.3), as can be verified by substitution. 
Whcn the superheat AT is very large, bubble growth is rapid and the temperature 
distribution in the liquid is never close to the steady-state distribution. We can 
approximate it with the help of the assumption, justified later, that the layer in 
which the temperature changes is thin compared with the radius of the bubble. 
There we can neglect the curvature of that layer. The temperatiire distribution in 
that layer in a coordinate system inoving with the bubble surface is then given by 
the solution to the clamped-temperature problem with the z = 0 sudace (the bubble 
surface) clamped at the saturation temperature Ts. Since Ts = Ir, - AT < Tb, the 
clamped-temperature rise at z = 0, Ts - T', is actually negative (-AT). This 
requires some small changes in Eqs. (1.24) and (1.25) which can best be determined 
by repeating the derivation leading from Eq. (1.19) to Eq. (1.24). These changes 
require that the sign of the right-hand side of Eq. (1.20) be changed and that A he 
set equal to -AT in Eq. (1.24a) and AT in Eqs. (1.24b) and (1.25). 

surface is 
In the first case, when the superheat is small, the inward heat flux at the bubblc 

= K(5AT/R)1'3 . 
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The quasistatic heat balance for the growing bubble is then 

where pv is the density of the vapor in tlie bubble and L is the latent heat of 
vaporization of helium. Equation (2.9) is easily integrated and yields 

R =  (%> 314 5114 (""1 314 ( AT)'I4 (small superheat) . (2.10) 
P J  

In the second case, when the superheat i s  large, the inward heat flux through 
the bubble surface can be calculated from Eqs. (1.24) and (1.25): 

(2.11) 

Now the beat balance for the growing bubble is 

(2.12) 

Equation (2.12) is also easily integrated and yields 

(large superheat) . (2.13) 
3 1 4  SAT 

A comparison of Eqs. (2.10) and (2.13) shows that, except for a minor diEerence in 
the munerical constant, they differ in the appearance of the factor (SAT/p,L)1/4. 
When this factor is very small, the radius given by Eq. (2.13) is much less 
than that given by Eq. (2.10), so we must use the radius ~f Eq. (2.10). When 
(SAT/p,L)'14 >> 1, the radius of Eq. (2.13) is milch larger than that of Eq. (2.10), 
and we must use the radius of Eq. (2.13). The break in use between these two equa- 
tions comes at superheats of the order of p,L/S that make the factor (SAT/pvL)1/4 

roughly 1. 
The thickness of the temperature transition layer will be small. compared with 

the radius given in Eq. (2.13) if the value of X in Eq. (1.25) calculatcd for z = R is 
large compared with 1. We find 

X ( R )  = ( L ) I i 2  (=) SAT , 
3& 

(2.14) 

so again we find that the condition for the use of Eq. (2.13) is that SBT/p,L > I. 



29 

An additional argument for the use of Eq. (2.10) when SAT/p ,L << 1 is this: 
The characteristic time to establish the steady-state temperature distribution T = 
Tb - ATR5/r5 is determined by the superfluid conductivity K ,  the superfluid heat 
capacity per unit volume S, the superheat AT, and the bubble radius R. The only 
time that can be made out of these four quantities is r = S(AT)2i3R4i3K-1.  The 
quasistatic theory is applicable when kr << R for the Id given by Eq. (2.10). We 
find after a short calculation that 

kr -=  
R 

(2.15) 

which shaws, as expected, that the condition for the use of Eq. (2.10) is that 
SAT/p,L << 1. 

The theory presented here for bubble growth ignores the inertial reaction of 
the fluid as it is pushed away by the expanding bubble. This inertid reaction is 
considered in ref. 9, in which this theory was first published. But we shall not go 
into these details because what interests us here is the application of the similarity 
solutions of Chap. 1. to particular physical problems. 

A related problem in which there is no displacement of the fluid hy the vapor 
is that of evaporation from a free surface. A long. tube containing liquid He-I1 is 
imagined to extend in the z-direction, and the initial position of tl-ne free surface is 
taken to be z = 0. At t = 0, the pressure above the free surface is dropped suddenly 
so that the liquid, at temperature Tb, becomes superheated by an aanoairit AT. The 
vapor produced at the free surface exhausts in the negative z-direction, while the 
frec surface z = Z(t )  advances in the positive z-direction. 

Early enough, the tube can be treated as infinitely long, The boundary and 
init ial conditions are then 

( 2.1 G b  ) 

(2.16~) 

(2.16d) 

The first two conditions state that the initial temperature and the temperature far 
down the tube are T b .  The third says that the liquid temperature at the free surface 

is the saturation temperature Ts ;= Tb - AT. The fourth is a heat balance that 
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says that the heat transported to the surface by superfluid conduction is expended 
in vaporizing liquid. 

We again make the assumption that K and S are independent of temperature 
and work in specia.1 units in which K I S’ = 1; thus we must solve the version of the 

uid diffusion equation given by Eq. (1.4). Equations (1.4) and (2.16) have a 

similarity solution of the form 

T = y ( * / t 3 / 4 )  , (2.17a) 

2 = At3I4 , (2.17b) 

where A is a constmt yet to be determined. Substitution of Eq. (2.17a) into Eq. (1.4) 
shows that y satisfies Eq. (1.19) with a = 0 and /3 = 4/3. The four boundary 
conditions (2.16) collapse to 

We can use Eq. (1.20) for since y satisfies Eq. (1.19) with a L= 0 and /3 - 4/3. 
If we substitute Eq. (1.20) into the boundary conditions (2.18), they become 

and 

3 
(2, Ish) 

Equations (2.19) can he used to calculate the constant A,  which determines the 
displaccment of the free surfacc as a function of time. The calculation is tedious 
and the result complicated except when SAT/p,L << 1, which i s  nearly always the 
case. In this limit, in ordinary units 

(2.20) 

which is precisely the sanie as Eq. (2.13) save that pe, the liquid density, replaces p., 

the density of thc vapor. Since the ratio of these densities is of the order of 1000, 
bubble growth velocities are three orders of magnitude greater than free surface 
velocities. 
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The Pulsed-Source Problem and the Pulsed Time-of-Flig 
of Measuring Flow Velocity. Lottin and van Sciver4 have measured the tem- 
perature distribution in a long, 6-Inm-diitm, He-IT filled tube after a 0.92-5 heat 
pulse at its center ( z  = 0). Their data are shown in Fig. 2.4. The inset shows their 
measured profiles of temperature rise at various times after the pulse. The main 
drawing shows a comparison of these same points with the similarity solution (1.31) 
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curve is the sirnil<arity solution (1.31) and (1.32). 
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and (1.32). Here K and S have been given their measured values at 1.8 M (ref. 10). 
The agreement of theory and experiment is excellent. 

The solution to the pulsed-source problem can be used to study the effectiveness 
of the time-of-flight method of measuring flow velocity in a pipe. A short pulse of 
heat is injected into the fluid at one point, and its time of arrival at a second point 
is measured. Because the heat pulse may spread owing to conduction (molecidar 
or turbulent), a convenient time to measure is that corresponding to the arrival at 
the sccond point of the maximiim temperature. 

In principle, even if there were no flow at all, the temperature recorded at the 
second point would have a maximum. In ordinary fluids, the arrival time of this no- 
flow maximum is SO long that it can easily bc distinguished from the much shorter 
arrival times caused by flow. So axial conductioa causes no practical problem in 
ordinary fluids. 

In Be-11, on the other hand, axial heat transport by superfluid conduction is 
very large. Because of the rapid spread of the temperature distribution it causes, 
the arrival time of the maxiInuin temperature for low flow velocities may not be 
very different from that in thc no-flow case. The accuracy with which the arrival 
time can be determined then sets a lower limit to the flow velocity that can reliably 
be measured. Becaiise an analytic solution to the pulsed-source problem in He-IT. is 
known, these considerations can be quantified as shown below. 

The temperature distribution in the moving fluid is governed by thc partial 
differential equation 

(2.21) 

The last term in Eq. (2.21) accounts for the convective transfer of heat downstrearm 
As before, we assume that K and S are constant, work in special units in which 
K = S = 1, and interpret T as the temperature rise. The boundary and initial 
conditions are exactly those of the pulsed--source problem, namely, T ( z , O )  = 0, 
T(ti>o,t) = 0, and JTzTi i z  - Q. For convenie~ice, we further specialize our 
system of special. units by taking Q = v = 1. No additional quantities may be set 
equal to 1. 

The solution we seek is given by Eqs. (1.31) am$ (1.32) with z replaced in 
E:q, (1.32) by z -- v t  (= x - t in special units): 

(2.22) 
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The maximum value of T (at some fixed 2) occurs when the bracketed quantity has 
its minimum. A short calculation shows that this occurs when z and t satisfy 

= xtmax 7 

3 
(2 - 1) (32 + 1) = 3b4t;ax , 

(2.23a) 

(2.23b) 

where z is an auxiliary variable. The simplest way to find tma, as a function of z is to 
choose x and solve Eqs. (2.23a) and (2.23b) for x and tmm. Figure 2.5 shows a plot 
constructed in this way of vs z (or, in ordinary units, Kt,a,l(ZZSQ2)1/3 

vs K3z / (v3SQ2) .  Using such a plot, we can use measured values of the ordinate to 
find the corresponding value of the abscissa, which depends on 'u, and thus determine 

When v is very small, the special units of length ( u 3 S Q 2 / K 3 )  a ~ i d  time 
Then t,,, in special units is very large and x is very 

V. 

(w2SQ2/K3)  are small. 
large, too. In the limit of very small o, then, Eqs. (2.23a) and (2.23b) simplify to 

t/z2I3 = b12/3 = 0.4969466668,. . (special units; zero velocity) , (2.24) 

v 
\ 

X 
0 

E 
c 
Y 
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Fig. 2.5. A curve from which the flow velocity v may be determined from a 
measurement of t,,,, the time at whicli the temperature a distance 2 from the 
source point reaches its maximum. 
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This value is shown as a horizontal straight line in Fig. 2.5. When the abscissa 
is large (v small), the curve asymptotically approaches this value from below, and 
thus its slope becomes ever smaller. This slope i s  easily calculated from Eqs. (2,23a) 
and (2.23b) and is given by 

4x f 2 d In (tmaxJzZ/3) - __. 

d lnz 3(922 - 2a: - 1) - (2.25) 

The decrease: in slope magnifies the Tractiond error in v compared with the 
fractional error in t,,,,. For example, when z = 1000, the slope given in Eq. (2.25) 
is 7.46 x IO-3. Since the abscissa in ordinary units is inversely proportional to 
v3,  the slope d ln t,,,/d In v is three tirues as great. Thus, inverting, we find 
du /v  = 44.7 (d~max/&,lax), so that in this example, a 1% error in determining 
the arrival time of the temperature maximum results in a 45% error in the flow 
velocity v. 

Suppose we consider helii~m. at Tb = 1.8 I< 8nd locate our thermorneter 30 cm 
downstream of the heater. What is the smallest we can successfully measure? 
To answer this question we must first decide what accuracy we seek in determining 
v. Suppose we want 1 %  accuracy. If d In v / d  In t,,, is as large as 45, as it was 
in the illustration above, we would then have to determine the arrival time of the 
maximum with a fractional error no greater than 2 x 10 '. This is a very small error 
and may not be attainable. Suppose we select an. upper limit for d In v/d 111 t,,,, 
of 3. Then, since Ey. (2.25) implies that 

(2.26) 

we find that 3 < (7+4fi)/9 .I- 1.954. . . . Then from Eq. (2.23) it follows that t,,, < 
0.1728 and z < 0.3377 in special units, In ordinary units this reads K32/213SQ2 < 
0.337'7. If we take the value of Q to be that used by Eottin and van Sciver, we 
fiml that the lower limit to 'u in this example is about 30 cm/s. Trying to reduce 
this limit substantially by increasing Q may introduce another source of inaccuracy, 
namely, that caused by the temperature variation of the physical pi-operties Ir' and 
S. The analysis presented above is as far as we can go using the similarity solution 
(1.31) and (1.32). 

The CIaniped-Flux Problem. Figure 2.6 shows a comparison of temperature 
differences mcasiired by van Sciver3 with the similarity solution y ( .~ )  for cu = I taken 
fiorn Fig. 1.4. The physical properties I< and S have bccn chosen to make the 
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Fig. 2.6. A coniparison of the temperature differences measured by van Sciver3 
in the clamped-flux case ( a  = 1) with the similarity solution y(z). 

sinlilztrity solution fit the experirnentd points as closely as possible." The best-fit 
values differ somewhat from the point values at Tb = 1.8 I< given in Table 2.1,'" 
the differences in K being slight and those in S more substantial. A possible reason 
for this is that van Sciver's measured temperature distributions spanned the range 
from 1.8 K to 2.0 K, in which K increases slightly but S nearly doubles. Similar 
differences do not occur in the case of Fig. 2.4, where the points span the much 
narrower temperature range 1.82-1.87 K, 

Table 2.1. Thermophysical properties of H e - P  

1.8 
1.9 
2.0 
2.1 

10.4 
11.6 
11.6 
8.35 

0.410 
0.553 

0.756 

1.10 
aVaIues from ref. 10. 



36 

Whereas van Sciver used steady heat flux, thus conforming to the conditions 
of applicability of the clamped-flux solution, Okarnura et d6 imposed a sinusoidal 
time variatioii on the heat flux into the helium. The remainder of this section is 
devoted to explaining the use of similarity solutions as a jumping-off point for an 
approximate trcatinent of such. a problem as Okamura’s. 

We still wish to find solutions of Eq. (1.4) satisfying the first two boundary 
conditions of Eq. (1.9). The last boundary condition no longer applies, and the 
time dependence on the right-hand side is no longer a simple power law but some 
more general function of time, say, p ( t ) .  Let us then approximate the temperature 
distribution by 

T (2, t )  = P ( t )  Y [zJq (ill 7 (2.27) 

where y(x) is the similarity soliitiori corresponding to the value a0 of LY and nor- 

malized so that y(0) = 1, arid g ( t )  i s  a function to be determined. 
= 0, 

T j w , t )  = 0, arrd T(0,t)  = p ( t )  if g(0 )  = 0. But i t  does not have the coirect 
form to be a solution of Eq. (1.4) unless p(t) is a power of t .  So we cannot deter- 
mine q ( t )  by simply substituting Eq. (2.27) into Eq. (1.4): the differential equation 
(1.4) is too striiigent a condition for the trial function (2.27) to satisfy. We can 
reduce the information content of the differential equation by integrating it over z 

from 0 to OQ. Then it becomes 

Equation (2.27) obeys the boundary and initial conditions T(z ,O)  

If we substitute Eq. (2.27) into Eq. (2.28) we get 

(2.28) 

(2.29) 

By integrating Eq. (1.19) over 3; from 0 to OQ (arid using one integration by parts) 
we can show that 

(2.30) 

Then Eq. (2.29) can be solved for q in terms of p ;  tlie solution that obeys the 
condition g(0) = 0 is 

(2.31) 
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In Oksmura’s experiment it is the flux Q(t )  = [--T,(O,t)]’/“ that is imposed. 
According to Eq. (2.27), 

where E(a0) is the number defined in Eq. (1.41). Thus 
-1/4 

Q ( t )  = -E(ao)p”’ (2.33) 

If we set u(t> = J i p 2 i 3 d t ,  u = p 2 j 3 ,  Eq. (2.33) becomes a solvable first-order 
differential equation for u. After some computation we find that 

One way to check the accuracy of this formula is to cornpare the predictions 
with known, exact results. For the similarity solution belonging to cx, we have from 
Eq. (1.15) the exact relation 

T (0, t )  = [E Q2t1l2 , (2.35) 

where Q = Q*t(a-1)/3fl  and &* is a constant of proportionality. If we insert this Q 

into Eq. (2.34), we find after some calculation that 

(2.36) 

If a = 4, then ,kl = 4, and 01/p = 1. If 00 = 10, then PO = 8, and c r ~ / / ? o  = 5/4. 
Froin Table 1.1 we find E(a)  = -1.218874 and E(ao) = -1.270011 so- that the 
ratio in Eq. (2.36) is 0.966049. Table 2.2 shows some additional results of the same 
kind. 

Table 2.2. Values of Tapprox(O, t)/Texact(O, 2) from Ey. (2.36) 
Base caw a = 4, /? = 4 

10 8 5/4 

2 8/3 3/4 
1 2 1/2 
0 4/3 0 

4 4 1 
0.966049 
1 .oooooo 
1.044939 
1.1OSS40 
1.328809 
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,4s expected, the greater the resemblance of the trial y to the actual y, the better 
the approximation. 

Okamura et, ala6 imposed a flux Q = Q,[l+ sin(27rvt)l using various frequencies 
in their experiments. According to formula (2.341, T(0, t )  vanishes whenever Q does, 
so that it should have 1/v nodes per unit time, and the envelope of the maxima 
should vary as ill2. Okamura's reported curves of T(0,t) show the expected sinu- 
soidal modulation, and the envelope of the mmimiim appears to increase roughly 
as t 1 j 2 .  But the peaks and valleys are not as great as expected from Eq. (2.34), 
and thc valleys never reach zero. However, Okaraura's experiment does not conform 
with the conditions governing formula (2.34). The formula is based on the assump- 
tion that the heater has no thermal inertia, whereas Okmura  et sl. interposed a 
rathcr long copper L a  between the heater and the He-11 bath. Interpreting their 
results in light of Eq. (2.34) seems to indicate that the heat flux out of the distal 
end of the copper bar into the helium resembled Q = Q*[1 + k sin(2~vt)] ,  where k 
is substantially less than 1, rather than the flux Q - &*[1 + sin(2nvt)l supplied Ly 
the heater to the proximal end of the copper rod. 

The final application of Eq. (2.34) is to the following problem: I€ Q = $*e-t/', 

under what conditions will the temperature of the front sudace never exceed the 
transition (lambda) temperature? If T is not too small, we might expect the choice 
a0 = P (claniped-flux solution) to yield a good approximation to the temperature 
distribution. Then 

The niaximum of T(0, t )  occurs when evtiT = 3/4: 

(2.37) 

(2.3 sa) 

Equation (2.38a) is written in special units; in ordinary units it is 

Here we rriust remember that T represents the temperature rise, so T,,, = y~-- ab in 
the problcm as stated. As long as Q,7-1/4 is less than the valiie given by Eq. (2.38b), 
the teniperatiire at the front face will never reach the transition temperature. When 
T b  = 1.8 E(, & * T ~ / ~  2 5.37 W . C I U - ~ . S ~ / ~ .  
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The Clamped-Temperature Problem When K and S Vary with Tern- 
perature. All of the work so far has been restricted by the assumption that the 
properties K and S are constant. As it happens, the clamped-temperature problem 
can be solved in the temperature range from 1.90 to 2.15 K even when li' and S have 
their real temperature variations. By comparing this solution with the constant- 
properties solution, we can determine how accurate the constant-properties solution 
is. We begin with Eq. (1.2) written for plane geometry, 

(2.39) 

Here T represents the absolute temperature, not the temperature rise. Now we 
introduce the new variable 

(2.40) 

In terms of H ,  E¶. (2.39) becomes 

dH - IC3 3 aH ' I 3  - - - . -  
at s a&%) - (2.41) 

Figure 2.7 shows the ratio K 3 / S  plotted vs W ;  also shown is the line K 3 / S  = 

c = 73 c n ~ ~ / ~ . s - ~ .  The error in the fitted line is less than 30% for 
1.9 K < T < 2.15 IC, in which range K 3 / S  varies by three orders of rnagnitudc. 
Henceforth, we work in special units in which c = 1, reconstituting our answer at 
the end to be valid in any units. 

The boundary conditions for the elamped-temperature problem axe 

When K 3 / S  = H213,  Ecl. (2.41) is invariant to the family of groups 

O < X < m .  

(2.424 

(2.4%) 

(2.424 

(2.43a) 

(2.4%) 

(2.434 
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Fig. 2.7. The ratio K 3 / S  plotted vs H .  Also shown i s  the line K 3 / S  = C H 2 / 3 ,  
c = 73 C I I ~ ~ / ~ . S - ?  

'The similarity solutions that obey the boundary and initial conditions (2.42) belong 
to the value cy = 0 of the parameter Q and accordingly take the forin 

H = y ( z / t 3 I 4  . (2.44) 

The coefficients in the constraint equation (1.6) are M = 8, N = 3, L = 4. To 
see what the group (1.8) becomes in this case, it is best first to substitute v = p L I M  

and write it as 

) 

(2 .454 
o < u < m ,  

(2.45b) 

I y = v y  

X I  = , / M / L X  

which becomes 

O < V < o O  

y' = "y 

I 
2 =,;e 

when hf = 0, N = 3, and X, = 4. 

(2.46a) 

(2.46b) 
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If we substitute Eq. (2.44) into Eq. (2.41) with K 3 / S  = H2I3 ,  we get 

(2.47) 

which is, as expected, invariant to the group (2.46). The three boundary conditions 
(2.42) now collapse to the two conditions 

y213- d ($113)  + ;?"'j 3 = 0 , dx 

Y(Q) = Ho 7 (2.48a) 

Y(m) = Bb * (2.4%) 

The heat flux through the front surface is given by 

which can be written 

(2.49b) 

Now the three quantities $(0),  y(0) = No, and y(00) == Hb are functionally related, 
for if we know y(0) and y(0) we can calculate y(m) by integrating Eq. (2.47). The 
functional relation must be invariant to Eq. (2.46) (augmented by the additiorial 
obvious requirement that $' = .e). The only possibility is 

Then, Eq. (2.49b) becomes, in ordinary units, 

q t 1 / 4  = [. (2 -'I4 (ordina.ry units) . 

(2.50) 

(2.51) 

This needs to be compared with the constant-properties result [cf. Eqs. (1.24a) and 

qt1I4 (&/z) '" (1<3s)114 (To - Tb)'I2 . (2.52) 

To make this comparison, we need to do two things. First, we iieed to calculate 
the function F .  This we can do by repeated integration of Eq. (2.47) usi~ig the initial 
value y(0) = 1 and various $(O). Second, we need to determine what constant values 
of K and S to substitute into Eq. (2.52) in order to compare it  with Eq. (2.51). 
If K 3 / S  were truly equal to cH2I3,  then Eq. (2.51) would be cxact. The relation 
between H and T is determined by whatever functional dependence we take for I< 
on T7 so we must choose K b  in accordance with it. The value of Sb that corresponds 

( 1 -25 11 
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to the law IC3/§  = c A ’ / ~  is then Sb = I<&w~’~. When these values are 
substituted into Eq. (2.52) we get a comparison of it with Eq. (2.51) that does not 
depend on the goodness of the fit of c H ~ / ~  to the real K3/S.  

‘l’he function K ( T )  used in computing H ( T )  is a correlation recommended by 
van Sciver12; it is shown in Fig. 2.8. Shown also is van Sciver’s recommended 
correlation for S(T) .  Shown in Fig. 2.9 is the fractional difference between the left- 
hand sides of Eqs. (2.52) and (2.51) for Tb = 1.9 IC as afunction of To. The fractional 
difference is small (<5%) until To approaches ?‘A, where K has a precipitous fall 
towards zero. When TO = TA, the fractional difference has its largest value, namely, 
20%. The real valine of S b  obtained from Fig. 2.8 is about 4% higher than the 
value I<~/CI€?’~. Since the right-hand side of Eq. (2.52) depends on using 
the real value of Sb will only change the results in Fig. 2.9 by roughly +Q.O1. So 
for Tb = 1.9 I(, at least, the constaxit-properties solution gives the flux through 
the front face correct to within 20% or better. This comparatively small error in 
the constant-properties flux in the face of a rather strong dependence of I< on 1‘ 
accounts for the good agreement wi th  experiment of the theory of stabilkation of 
superconductors presented earlier. 
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Fig. 2.8. Correlations made by van Seiverl2 for the superfluid heat conductivity 
I< and the volumetric heat capacity S as functions of temperature T. 
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[Eq. (2.52)] and the real-properties value of 
temperature TO of the heated surface. 

[Eq. (2.51)] as a function of the 
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CHAPTER 3 

TIME-INDEPENDENT PROBLEMS; COMPLEMENTARY 
VARIATIONAL PRINCIPLES 

Introduction. We begin with the problem of the steady flow of heat through 
an irregular, He-11-filled duct. The lateral surface of the duct is impervious to heat; 
the end surfaces are isotherms. The problem is to calculate the steady flow of heat 
Q through the duct ;ts a function of its shape and the temperatures 7'1 and T2 of 
its isothermal surfaces. 

The equation that governs the steady temperature distribution in the duct is 
the time-independent version of Eq. (1.2), namely, 

(3.la) 

Under the assumption of ~ o n s t a d  properties ( K  independent of T ) ,  which applies  

throughout this chaptey, Eq. (3.la) becomes 

v ' (vT)1/3 = 0 . (3.1F) 

The attack is by means of complementary variational  principle^.'^,'^ Complemen- 
tary variational principles are a pair of functionals one of which attains a minimum 
and the other an equal maximum for exact solutions of a related differential equa- 
tion. Trial functions therefore provide two estimates of the quantity represented by 
the functional one of which is an upper limit, the other of which is a lower limit, 
and both of which are accurate to second order in the error in the trial function. 

Reference 14 gives a thorough description of how to construct a pair of vari- 
ational principles; therefore, I shall simply state the variational principles for 
Eq. (3.lb). But 1 shall prove here that they have the properties ascribed to tltlmi. 
Let 

A + - I  - IVT14/3dV (3-2) 
V 

and 

where V is the interior volume of the duct, S is its total surface, T* i s  the exa,ct so- 

lution of Eq. (3.lb) corresponding to the isothermal-adiabatic boundary conditions 
mentioned above, T is a trial function obeying the boundary conditions T = T2 and 
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T = TI on the isothermal surfaces, and f i s  a divergenceless trial vector. Then, as 
we sliall show below, 

with eqiiality holding when T = T, and f- f* = -K ( 0 T v ) 1 / 3 .  
The appearance of Q in the value of A, is the reason for the usefulness of the 

complementary functionals A+ and A _ ,  for they provide upper and lower bounds 
to the quantity we are seeking, accurate to second order in the error in our trial 
functions. 

Suppose the trial function T in Eq. (3.2) is written as T = T* + E, where T, is 
is the small difference of T from T,. 'L'o the cxact temperature distribution and 

terms of second ordcr in F, the integrand in Eq. (3.2) is 

We denote the integral over V of the first term by A,  [which we have yet to show 
equals Q(T2 - Tl) /K] .  The integral over V of the second term is zero: 

(3.6) 
The first equality follows from the definition of (';7T*)'i3, the second from the fact 
that T, satisfies Eq. (3.lh),  and the third from the divergence theorem. The last 
integral vanishes because on the isothermal surfaces E = 0 (sincc T I- T, there), 
whereas on the adiabatic surfaces (VT*)'/3 d$ = 0 [see Eq. (1.1)]. The sum of the 
two second-order terns in Eq. (3.5) is always positive, as we can see by noting that 
(VT* V E ) ~  5 (VT*)2(V~)2. Thus A+ differs from R, by a positive term of second 
order in e. 

To evaluate A,  we proceed as follows: 

A * = / ,  JV7:14/3dV = k ( V T + ) 1 / 3  (VT,) dV 



47 

On the adiabatic surfaces <* - d,!? = 0. On the high-temperature isothermd surface 
T, = TZ and - Js <, dg = Q. On the low-temperature isothermd surface T, = TI 

and J';* - dS= Q. Thus the last line of Eq. (3.7) becomes 

We treat A- in a similar way. Suppose we set (r" = 3, + ?, where V - Z = 0 so 

that c i s  clivergenceless, as required. Then, to terms of second order in < 

Remembering that $* = -IC(VT,)"' and using Eq. (3.7), we can show that the sum 
of the first and fourth terms on the right-hand side of Eq. (3.9) is A,. Remembering 
also that P Z =  0 and using the divergence theorem, we can further show that the 
sum of the second and fifth terms vanishes. The integrand in the third term being 
positive, we then see that A -  differs from A, by a negative term of second order in 
-+ 
E .  

Comparison of the Superfluid and the Ordinary Conductance. The 
quantity 

(3.10a) 

is a dimensionless measure of the total heat flow Q through the duct. I call it 
the superfluid conductance of the duct. E the duct were filled with ail ordinary 
conductive material that obeyed Fourier's law f - 7  -LVT, its conductance would 
be 

( 3 . m )  8 0  r -  
- V2/31U[(Tl - T , ) / V W ]  

where &0 i s  the total heat flow through the duct in the case of ordinary conduct.ion, 
These conductances are related, as we now show using the functional A.+. 

According to Eqs. (3.2) and (3.4) 

(3.11) 



48 

where T is a trial function assuming the values T' and 7'1 on the isothermal duct 
surfaces. Now theorem 192 of Hardy, Littlewood, and Polya15 says that 

so that 

(3.12) 

(3.13) 

Now we choose the trial function T to be the exact temperature distribution in the 
case of ordinary conduction. it is &hen easy to show that the right-hand side of 
Eq. (3.13) IS QO(T2 - Ti)/k- Thus 

which says that thc superfluid conductance of a duct is bounded from above by the 
two-thirds power of the ordinary conductance of the duct. The usefulness of this 
result conies from the fact that the ordinary conductance can be measured easily 
at room temperature using an electrical analog or can be calculated for a variety of 
complex shapes by conforinal mapping. 

In a duct shaped like a rectangular parallelepiped, IVT[ = (T2 - Tl ) /L ,  where L 

is the distance between the two parallel isotliermal surfaces, irrespective of whether 
thc heat is transferred by ordinary or by superfluid conduction. Then, the left- and 
right-hand sides of Eq. (3.11) are equal to each other, as are those of Eq. (3.12). So 
for a pasallelepipedal duct, the left- and right-hand sides of Eq. (3.14) are equal. 

It is comparatively simple to calculate the ordinary and superfluid conductances 
of a duct in the form of a prism of unit height whose base is a sector of a cylindrical 
anniilus. The inner and outer radii of the annulus are R2 and R1, respectively. The 
isothermal smfaces are T = 122 arid r" = R1. Then a short computation shows that 

The corresponding result for a sector of a spherical annulus is 

(3.15) 

(3.16) 

Figure 3.1 shows both of these ratios plotted against the ratio p of the outer and 
inner radii. 'These curves, when properly interpreted, show that except in the 
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Fig. 3.1. The ratio of the superfluid conductance to the two-thirds power of 
the ordinary conductance for cylindrical and spherical annular ducts. The abscissa 
is the ratio of the inner and outer duct radii. 

most extreme cases the two sides of Eq. (3.14) should be fairly close to one another. 
Consider, for example, the case of p = 3. In the cylindrical annulus, the temperature 
gradient changes by a factor of 3 for normal conduction and by a factor of 27 for 
superfluid conduction. Yet l?/r'E/3 = 0.879. 'dn the spherical anndus, the situation 
is even more extreme, with the temperature gradient changing by the respectivc 
factors 9 and 729. Yet = 0.636. Hence the condition of constant temperature 
gradient, which makes r'/r2,/3 = 1, can he quite severely violated without l-',/l-'i'3 
departing substantially from 1. 

The Two-Dimensional, Irregularly Shaped Duct. The duct occupies the 
region R bounded by two parallel planes a distance L apart, each of which is an 
isotherm. The adiabatic sides of bhc duct are the curves y = Yl(r) and y = &(.E), 
with YI > Yz (see Fig. 3.2). Suppose we choose OUP trial function T in A+ to he 
a function of 2 only, that is, T = T(z ) .  To satisfy the boundary conditions on the 
isothermal surfaces we must have T(O) = 2'2 and T ( L )  = TI. Then 

3/3 
(Yl - Y2) dz . (3.17) 
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C 

T = T2 

A 

~ 

X = L  

x = o  

adiabatic surfaces y = k ; ( z )  and y = Yz(x). 
Pig. 3.2. The He-11-filled duct with isothermal surfaces z - 0 and x = P; a.nd 

We choose the dependence of ‘T on a: to make ,A+ a minimum; that is, we choose 

Since 6 and & commute, we can integrate by parts in Eq. (3.18) and get 

(Y1 -Y2) 6T dn: = 0 .  1 -iL; 4 [(Z)”” 
3 

(3.19) 

The integrated term in Eq. (3.19) vanishes because 6” 1= 0 at, z = 0 and z = E ;  

this is because the trial function T must obey the boundary coxiditions T(O) = T?, 

T ( E )  - Y: . Thus 7’ satisfies the Eu1er-T.zigrange equation 

so that 

where B is a constant of integration determined by 

(3.20) 

(3.21) 

(3.22) 
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If we substitute Eqs. (3.21) and (3.22) into Eq. (3.17), we find after some rearrange- 
ment that 

Then since A+ 2 A,, we have, using Eq. (3.8), 

(3.23) 

(3.24) 

The Two-Dimensional, Irregularly Shaped Duct (continued). Now we 
turn to the evaluation of A- given in Eq. (3.3). Since {must be a divergenceless 
vector, we introduce a stream function $ arid set 

(3.25) 

To evaluate the surface integral in Eq. (3.3) we need to know T, on S, the bounding 
surface of the duct. We know it only on the isotherms, not on the lateral, adiabatic 
surfaces, that is, not on y = YI and y =t Yz. But if we take y = Yl and y = Yz to 
be level surfaces of t,b7 @‘- d g  will be zero on them. Then 

- 4  4 --& l, T,<s dS = - (Tz - TI) dg = - (T2 - Ti) ($hi - $2) . (3.26) 3K 31c 

Now in order that our trial functions may include the exact solution, we take 

Combining Eqs. (3 .26) ,  (3.29), (3.31, and (3.4), we find 

(3 .27)  

(3.28) 

In spite of the direction of this inequality, it will ultimately provide a lower limit to 
Q because .51, also involves &. 

We choose as level surfaces for the trial function tC, the surfaces 

y = XY&E) + (1 - X)Y2(2) , 0 5 x 5 1 . (3.29) 

This procedure is called by Polya and Szegij16 the method of assigned level suifaces. 
The most convenient way to evaluate the integral in Eq. (3.28) is to introduce 

the new coordinates A, x. Since the new coordinates are not Cartesian, we employ 
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tensor formalism for the calculations. In terms of E and A, the squared distance 
between two neighboring points is given by 

( d ~ ) ~  -t ( d y ) 2  = (dX)2 + ((U; - Y2)dA + [ X Y ;  +- (I X ) Y ~ ] ~ X ) ~  . (3.30) 

The components of the metric tensor are then 

Szr = 1 4- [Ai.;_ f (1 - A)r;,I2 , 

If .$ is a function only of A, 

Since 
/ / ( V $ ) " d X  dy = /J(v$)44j dA dz , 
R R 

we finally have 

(3.31) 

(3.32) 

(3.33) 

The right-hand side of Eg. (3.34) has the form 

(3.35) 

where G(X) is Jt - - dx. We choose 11, so as to minimize Eq. (3.35). A short varia- 
tional calculation shows that $J must obey the Eider-Lagrange differential equation 

(3.36) 

The solution that obeys the boundary coiiditions $; = Q,  4i2 - 0 [see Eq. (3.27)] is 

(3.37) 
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Substituting Eq. (3.37) into Eq. (3.35), we find that Eq. (328)  takes the form 

01 

where 

(3.38a) 

(3.3%) 

(3 3 8 c )  

The function C is simple to evaluate when the adiabatic surfaces axe straight 
lines, that is, when It is a trapezoid. Y way of @x=nPk consider the trapezoid 
shown in Fig. 3.3, for which Yl = -a and Y 2  = (4. In this case, Eq. (3.3813) becomes 

O A N L - B W G  87C-2348 FED 

//,umhY/ i %/ 
Fig. 3.3. A trapezoidal duct. The hatched surfaces axe adiabatic. 

(3.39) 

Comparing Eq. (3.39) with Eq. (3.24), we see that the A-integrd in Eq. (3.39) gives 
the ratio of the iipper and lower variational estimates of . The X-iIltegral is easy to 
evaluate either by series or with Simpson's rule. A few values are given in Table 3.1. 
These numerical values show that even for substantid slopes the two bracketing 
estimates are quite close together. 
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Table 3.1. Values of the integral 
J;( 1 4- X % 2 ) - 2 / 3  dX 

0.0 
0.1 
0.3 
0.5 

0.7 
1 .o 
1.5 
2.0 

1.000000 
0.997789 
0.980852 
0.950452 
0.911607 
0.8471 38 
0.743754 
0.6565 16 

Tube Banks. The varia.tiona1 estimates (3.24) and (3.3%) can be applied to 
superfluid heat conduction transverse to a bank of tubes. Imagine a pair of parallel 
planes a distance Ax apart. One plane is ma.inta.ined at the tenipera,ture T 2  a,nd 
the other at the temperature 7;. Between the planes lie many tubes of a lattice 
(square or triangular) of tubes. The lattice pitch (center-to-center spacing) 2L i s  

therefore < Ax. We wish to express the heat flux between the planes a s  a fraction 
f of the heat flux K[(T2 -  AX]'/^ that would flow in the absence of the tubes. 
The tubes are considered impervious to heat. 

Figure 3.4(a) shows a portion of a squa,re lattice. Owing to the symmetry of 
the lattice, the horizontal lines shown in the figure are streamlines of the heat flow 
and the vertical lines are isotherms. The boldly outlined area caLn be considered a 

duct of the kind we have just considered. The result, of applying Eq. (3.24) to this 
duct is shown in Fig. 3.5 as the curve of f vs p I_ R/Ls  marked "square lattice, 
upper bound." A similarly obta.ined bound for the triangular lattice is also shown 
in Fig. 3.5 (ref. 1.I). 

In applying Eq. (3.38b) to the duct in Fig. 3.4(a), the following difkulty is 
encountered. Because the slope Y2 becomes illfinite at .2: = R, the lower limit given 
by Eq. (3.38) is f = 0. While a correct lower bound, this value is not of m.uch 
practical use. We can evade this difficulty, but  a t  t h e  p r i c e  of v a r i a t i o n a l  accuracy. 

It can be shown'' that the value of f for the eEeetive duct shown in Fig. 3.4(b) is 
less than that for the duct shown in Fig. 3.4(a). Shown in Fig. 3.5 are lower bounds 
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x 

Fig. 3.4. Sketch of (a) the unit duct for the square lattice and (b) the effective 
duct for calculating a lower bound, The hatched s~mdaces are sdiabat~c. 

f.0 

0.8 

0.6 

f 

0.4 

0.2 

Fig. 3.5. Upper and lower bcau~ids to the correction factor f for the square 
triangular lattices as  a hictioxr of p p  the diameter-to-pitch ratio, 
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to f based on applying Eq. (3.38b) to this effective duct for both the square and 
triangular lattices. 

where p is the diameter- 
to-pitch ratio, fits the two upper bounds rather closely (<4% for p < 0.85) and is 
recommended for design purposes. 

As a postscript to this section, I shall add a brief application of this formula 
to the design of tube-in-shell heat exchangers for He-HI. In a tube-in-shell heat 
exchanger, hot fluid flows through a bank of parallel tubes immersed in a constantly 
renewed cold bath. In the example we consider here, the hot fluid is pressurized 
He-I and the cold bath is a purnped bath of saturated €€e-11. The purpose of the 
heat exchange is to make pressurized He-I1 in the tubes. In this way, for example, 
the helium corresponding to point P in Fig. 2.1 can he made available for technical 
purposes. 

The empirical function f = (1 -1- p ) ( l  + 2p)/(l +- 

The effectiveness of the heat exchanges is greatly decreased if the He-I1 in the 
bath boils anywhere but at the free surface (see the schematic diagram in Pig. 3.6). 
As we descend from the free surface, the bath temperature T increases from the 
satitration temperature Ts(P), where P is the pressure maintained by the pump. 
The saturation temperature Ts also increases with dcpth because of the pressure 

ORNL-DWG 89M-2626 FED 

ab TOPUMP 

0 0 0 0 0  
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0 0 0 0 ~ ~  
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Fig. 3.6. Schematic diagram of a tube-in-shell heat exchaiiger. 



head pdgz  the lielium experiences. If T < 2's everywhere but ai m = 0, no volume 
boiling will occur. 

To calculate at, we must specify the total thermal. power Q being transferred 
from the tubes to the bath (un i ts  of : W-rn-')). We assume khat this power is 
uniformly deposited in the bath. Treating the bath as a uniform continuum, we 
then write for its steady temperature the di rentid equation 

1 /3 

- j - 8 - 0 .  (3.40) 

Were the factor f accoiints, as discussed above, for the partial occlusion of the 
flow space in the bath by the tubes. Equaiioii (3.40) is based on the assumption 
that A- can be treated as a constant, independent of T .  This is an extremely good 
approximation here because of the small temperature rise that occurs in the bath. 

We need to solve Eq. (3.40) subject to the boiindnry conditions T = Ts(P) 
at 3: = 0 and dT/clx = 0 at 1 z ~  2 h (we treat the hatdied surfaces in Fig. 3.6 as 
adiabatic). The solution we seek is 

(3.41) 

The saturation temperature at depth z with which Eq. (3,411 i-ietds to be compared 
is 

(3.42) 

(3.43) 

example let us t,&e iJls(P) = 1.8 K ( P  = 1.64 kPa), ( d T / d P ) s  = 

then find from Eq. (3.42) that f > 0.351, and nsing the empirical fit quoted above 
we find further that p < 0.75. This pitch-to-diameter ratio corresponds to a fairly 
compact tube bank. we want a tliernid powcr transfer of Q = 60 mW-cni-', tlien 
f > 0.702 and p < 0.47, corresponding to a somewhat looser lattice. The maximum 
thermal power trans r allowed by ~ g .  (3.43) is 71 r n ~ - c i n - ~  ( f  I=I I., p = 0). 

1.79 x 10-4 K/Pa, li' i- 1 .4 W.em-"/".K-"/3, h 2 28 cm, Q = 25 mw~ern-3. FVC 
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Constant Heat Source in an Irregular Volume. The problem dealt with 
in Eq, (3.40) brings to mind the generalization V .(VT)l13 +l = 0 in some volume V 

and 7' = 0 on the surface S of V .  'This problem abstracts the mathematical essence 
of the temperature rise caused by a steady thermal power soirrce in a volume V 

well-cooled at its surface S. I cannot think of a weighty practical application of this 
problem, but it does help to demonstrate the limitations of variational principles. 

The upper  complementary variational principle is 

(3.44) 

wherc T is a trial function that obeys the boundary condition T = 0 on the surfacc 

S of V .  This assertion is easily proved by the techniques used in the introduction 
to this chapter. When 2' = 'T*? the exact solution to the problem, then A+ = 

A,,  its minimum valuc, which the following short computation identifies as being 
proportional to the average temperature r ise in thc volume V: 

(3.45,) 

(3.45b) 

since 'T*(S) = 0. 
The average temperature rise is less useful than the maximum temperature rise, 

so the variational method plow offers us mucli less than in the earlier case of the 
irreginlar duct. This short discussion has been irieluded here to warn the reader 
that, while the method of complementary variational principles is powerful, it is no 
panacea. 
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CHAPTER 4 

MAXIMUM AND MINIMUM PRINCIPLES 

Introduction. In the discussion of Okamura’s experiments in Chap. 2, we 
used similarityl solutions as the basis for an approximate treatment of the problem, 
showing thereby at least one way to extend the applicability cQ similarity solu- 
tions. Anotherlway i s  to compare them with other solutionis. Here we use the word 
“compare” in the strict sense of Hardy, Littlewood, axid Folyaa5: taw functions are 
comparable in la domain if there is an ineqdlity between them valid for all argu- 
ments in the domain. One way to compare functions is by use of maximum and 
minimum principles. The rather od terminology LLmaximiim or minimum princi- 
ples” means this: a function is said to have a maximum (minimum) pri 
a domain .D ifiit achieves its largest (smallest) value on the bo~indary o 

only does the qxistcnce of a aiaximiim or niir&m~rn principle allow sdiitisns to be 
compared w i d  each other, but it is possible to compare solutions with trial 
functions which o not satisfy the differential equation. A11 this is clearer in ap- 
plication than in description, so let us ~nove  straightaway to a disciissiora of the 
maxinmrn (rnixknurn) principles of the supeiflui 

Eq. (1.2), 

sion equation. 
G S .  The steady-state version of 

(4.1) 
I 

has a maximuq principle as explained in the following essentially verbatim excerpt 
from one of myi emlies reports”: 

Equation (4.1) has a rnaxirnu rinciple, i.e., the largest arid smallest 
temperatures lie on the boundar any regioii K”. To see this, suppose 
that T has a relative maximum at some point P in the interior of R. In 
the neighborhood of P ,  the level siirfaees of T are closed s ~ d a c e s  enclosing 
P. The vector -VT is the outward normal to these surfaces. Now V T  = 

-q2f/K3, so (I“’ (-VT) = q ” / K “  > 0, which means that the vector if 

makes an acute angle with -BT, the outward normal to the level surfaces 
of 2”. Hence J J <- d751 > 0 when taken over a level surface of T .  But since 
‘TJ * f =  (9 everywhere, this integral must vanish. This is a contradiction, so 
our original supposition that T had a Iclative rnaxirnuxn must bc fidse. A 
similar argumenh ap1dit.s to relative minims. 
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In the case of a linear equation, the difference of two solutions, being a solution 
itself, has a ma.ximum and a minimum principle. However, this simple argument 
does not suffice for Eq. (4.1) because it is nonlinear. Nevertheless, even though 
the difference of two solutions is not necessarily a solution, the difference obeys 
a maximum and a minimum principle. Suppose the two solutions are TI and T2. 
Then 

Thus @i - makes an acute angle with the normal --V(TI - T2) to the 
level surfaces of 2’1 - “2. Since V * ($1 - &) = 0, these level surfaces cannot 
be closed, i.e., 2‘1 - T2 cannot have either a relative maximum or a relative 
minimiim in the interior of any region R. 

This argument can be extended to functions TI obeying differential and 
boundary inequalities. Suppose, for example, we have a function TI for 
which V - [Ir’(VTI)1/3] > 0 and for which Tl(E3) < ‘I?@), where T’ is a 
solution of Eq. (4.1). Then V - & < 0 and so V - (4: - 4;) < 0. Thus TI - Tz 

cannot have a relative maximum in B. For then, JJ(& - &) - d$ must 
be > 0 when taken over a closed level surface around the maximum. This 
contradicts V - (& - &) < 0. Therefore, the largest value of TI .-.- T2 lies 
on B. Then TI - T2 < (‘7’1 - Tz)max < 0 since Tl(B)  < TZ(B), and thus 
TI < T2 everywhere in R. The same argument applies when the inequalities 
are reversed and the words rclargest” arid “niaximuni” are replaced by the 
words “smallest” and “minimum,” respectively. 

Constant Heat Source in a Square of Side 2. Let us return to the problem 
of a constant heat source in an irreguhr volume dealt with at the end of Chap. 3. 
For definiteness let us choose the volume to be a very long square prism-----thus a 
square of side 2. We wish to find information about the solution T of the (two- 
dimensional) equation V - (VT)lI3 + 1 = 0 for which T = 0 on the perimeter P of 
the square S whose vertices are (&I, &a). 
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We can make a quick start by noting that the function 7'1 = (R4 - r4)/32 
is a solution of our equation in cylindricd coordinates. Here R4 is a constant of 
integration yet to be chosen. The difference 2'' - T has its niaxirnwn and minimum 
on P. Since T ( P )  = 0, 

Owing to the geornetric symmetry of the problem, we need only consider the values 
of Tl(P)  on the interval z = 1, 0 5 y 5 1, where Tl(P)  = [R4 - ( 1 + ~ ~ ) ~ ] / 3 2 .  Thus 
min[Tl(P)] = (R4 - 4)/32 and max[Tl(F)] = (R4 - 1)/32. Now since TI(0,Q) = 
R4/32, it follows from Eq. (4.3) that 1/32 5 "(0 ,  0) 5 118. 

This is not a very satisfactory result because the bounds on 'T(0,O) d8er  from 
one another by a factor of four. We can improve our estimate of T(8,O) at the cost 
of some additional computational labor in the following way. Suppose we find a 
vector $, such that V . & = I in S, and define TI as any solution of VTI = -q;&. 

Let 2'2 be the exact solution of our prohlem. Then the proof cmbodieci in Eq. (4.2) 
shows that TI - T2 has a minimuan and a maximum principle in the sqiiaxe S. 

Suppose we try 6 = fF+ V$? where V24 = (4 in 5. Then 'FJ. & = 1 as required. 
We choose for this problem (b = u(x4 -- 6z2y2 -+ ;ad4), where u is a constant yet to 
be determined. The function d, has the three symmetries of the square: 2 -"r -2, 
y -+ --y, and J: -+ y -+ z. Chr computational problem is to choose a to minimize 
the difference of the extreme values of TI on P ,  the perimeter of S .  Again owing to 
the geometric symnietry of the problem we xamd only considcr the segment x = 1, 
0 5 y 5 1. A straightforward but somewhat, tedious calculation shows that 

32 3 10 1 
Z ( 1 , O )  - T1(1,y> = -a y 4- 3a2y* --- - (384a" .f 12 5 6 

' 1 9 % ~ ~  +40n2 + a  - 
1 

4 8 
-1 ( m Z 3  - 3 2 8 2  + 14a - - 

A simple numerical computation shows that the vdue a = 0.0464894 minimizes the 
difference of extrema at the value E -x 1.78425 x IOm3; the nlinirnum of Tl(1, y) is 
TI ( 1 , O )  and the maximurn is 2'1 ( 1 , O )  + e.  Then 
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Another short computation integrating (Tl)z = -q lqT.  along the line y = 0 from 
z = 0 to x = 1 gives 

l ; ( O , O )  - Ti(1,O) = 6.162154 x low2 EE M . (4.6) 

Froin Eqs. (4.5) and (4.6) it then follows that 

C E - > T2(0,0) - ( M  - 2 )  > "-2 , 2 (4.7a) 

or 

8.92125 x lo-* > T.(O,O) - 6.07294 x > -8.92125 x low4 , (4.7b) 

or finally 
Tz(0,O) 6.07294 x f 1.47% , (4.74 

which is a rather acceptable result. This result can be extended to squares whose 
sides have other lengths by noting that the partial differential equation is invariant 
to the group T' = X4T, x' = Xz, y' = Xy, so that T(0,O) varies as the fourth p ~ w e r  
of the side of the square. 

Another problem in 
which maximum and minimum principles play an essential role is the pulsed-source 
problem in spherical geometry. The reader may recall that in plane geometry the 
pulsed-source problem has the similarity solution (1.31) and (1.32) for the temper- 
ature rise, 'T. In spherical geometry, Eq. (1.3) takes thc form 

Pulsed-Source Problem in Spherical Geometry. 

The boundary and initial conditions corresponding to the pulsed-source problem 
are 

T(r,O) = 0 (T > 0) , (4.9a) 

T(oo,t) = 0 , 

1 m 4 ~ ~ 2 T  dr = Q ( t  > 0 ) .  

(4.9h) 

(4.9c) 

The partial differential equation (4.8) is invariant to the family of groups (1.5) 
subject to the subsidiary relation (1.6) with M = 2, N -- -3, and L = -4. The 
boundary condition (4.9~) requires that a = -3, so that /? = ----2/3. With these 
values, the similarity solution (1.7) becomes T == t 9 i2y ( r t3 / ' ) .  
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This last fonn is unsatisfactory because it represents a temperature distribution 
that peaks up as time goes on rather than one which spreads out. This defect is 
fundamental and means that the pulsed-source problem in spherical geometry has 
no solution of the f o m  (1.7). It does, however, have solutions of a very closely 
related form, as wc shall see next" 

In addition to its invariance to the groups (1.51, Eq. (4.8) is invariant to the 
group of translations in time: T' = T ,  t' = t -/- A, r"' = r .  Solutions invariant to this 
group must be functions of the time difference t - t o ,  where t o  is some fiducial time 
that is determined by the boundary and initial conditions. These considerations 
suggest that we look for similarity solutions of the form 

T = ($0 - t)"'Y [ r ( tQ - t13j2 . (4.10) 

If we substitute this form into Eq. (4.8), we obtain for y the fallowing ordinary 

1 
differential equation: 

After miiltiplication by e*, this can be integrated once to give 

(4.11) 

(4.12) 

where c is a constant of integration. If y is regular at the origin [ -- 0,  then c = 0, 
in which case Eq. (4.12) can be integrated a second time to give 

(4.13) 

where a is a second constant of integration. 
The solution (4.13) is an exact solution of tlre superfiuid diffaisiou equation. 

Its overall form c =; (80 - t ) " ' y[r ( to  - t I3 j2 ]  was chosen so that the total beat, 

Q = 4rJQm r2c  dr would be conservcd. But with the form (4.15) for y, the Q- 
integral diverges. Thus the solution (4.13) cannot fiiKll the initial condition of 
a finite source pulse, and so, strictly speaking, the solution to the pulsecl-source 
problem is not a similarity solution of the form (4,IO). 

Suppose we consider a pulsed source in which the Sinite heat deposition is such 
that the in!tial tempcrature distribution is given by the similarity solution (4.13) 
out to a radius r = R, but is zero for r > &. If 12 is large enough, the initial effect of 
the region r > R on the temperature distribution near I' = 0 should be small. So thc 



central temperature should begin falling like ( t o  - t)’/’. Since the region r > R is 
initially colder than in the similarity solution (4.13), it seems plausible for the central 
temperature to continue falling faster than ( to  --- t ) ’ j2 .  Indeed, we might expect that 
any temperature distribution that is initially smaller than some similarity solution 
of the family (4.13) will always remain smaller. Thus the central temperature should 
be bounded from above by n-1/2(t0 - t)’/’, which means it should vanish at some 
finite time after the pulse! The proof of these last assertions, given next, involves 
some complicated but rather standard analysis involving maximum and minimum 
principles. 

Proof of the Foregoing Assertions. Let us consider the infinitesimal dif- 
ference 6c between two neighboring solutions of the superfluid diffusion equa- 
tion ct = T - ~ ( T ~ C ; / ~ ) , . .  It obeys the linear partial differential equation ( S C ) ~  

-2/3 / 3 ) ( 6 ~ ) ~ ] ~ ,  which has the form 

Equation (4.14) describes heat conduction 

, k > O .  (4.14) 84 
at 

in spherical geometry with a thermal 

- 

conductivity IC. The bounda,ry and initial conditions that interest us me 

What we should like to show is that + ( ~ , t )  > 0 €or all i > 0. In that case, two 
solutions c1 axid c2 of the superfluid diffusion equation that obey the boundary 
conditions (4.1%) and (4.15~) and the initial condition c1 > c2 are always ordered 
so that c1 > c2. 

We begin first by considering a function 11, that obeys the strict differential 
inequality 

- 1 8  - (?kg) - - 811, .= 0 
r2 3r dt 

(4.16) 

and the bouiidary condition (4.15~) in the rectangle C in the (r,t)-plane (see 
Fig. 4.1). The rninimum value of $ cannot lie in the interior of E, for if it did, 
say at a point P ,  then Gt(P) = 0, Gr(P)  = 0, and $,,(P) 2 0. These conditions 
contradict the strict inequality (4.16). Moreover, the minimum value of $ cannot 
lie at an interior point Q of 54 ,  for if it did, then $T(Q)  = 0 and ~ ! J , ~ ( Q )  2 0. Then 
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Fig. 4.1. The rectangle in the ( r ,  t )  plane used in proving the minimum principle 
for the differentid inequality (4.16). 

from Eq. (4.16) it follows that $t( ) > 0, which means that there must be yet 
smaller values of $ in the neighborhood of 

Finally, the minimum value of II, cannot lie at ai interior point of SI, but in 
order to prove this, we shall have to consider in detail the Consequences of boundary 
condition (4.15~). First of all, any solution c of the superfluid diffusion equation 
(4.8) that is regular at the origin must behave near T -- 0 like a + br4 + ."., for only 
then can the right-hand side of Eq. (4.8) have a finite, nonzero limit as r --+ 0. In 
that case c,. N r-' near r = 0 and thus so does R: in Eq. (4.14). Furthermore, $, 
being the infhitesirnd diEerence between two solutions of the supcduid diffusion 
equation, also has the form n + br4 f ... near F = 0. If" we substitutc this form for 
the first tam on the left-hand side of Eq. (4.16) we find that it equals 1211. lim(r2k) 
at f = 0. If the minimum of t,b occurs at an interior point T of SI, then ?,bt(T) = 0. 
Therefore b(T) < 0, which means that there me yet smaller values of ?I, in thc 
neighborhood of T inside C,  a contradiction. The minimum of ~b mrist, therefore lie 
on S2 or S3. 

inside c, contrary to hypothesis. 

-2 f 3 

r-0 

When q!~ satisfies the equality (4.14), we introduce the auxiliary function 

$ = $ + E t ,  E > Q ,  (4.17) 

which satisfies the differential inequality (4.16). F'urthermore, .sl, behaves like a + 
br4 + ... near r = 0, as it should. Therefore, its minimum value in C must lie on S2 
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or S3; call it m+ and let it be attained at point P.  Let rn+ be the smallest value 
attains on 5'2 and S 3  (not yet proved to be its minimum value in E!). Then from 
Eq. (4.17), for any point Q in C, 

and 
m+ = $ ( P )  = # ( P )  + e t p  2 m+ -9- e t p  . (4.19) 

Thus, combining Eqs. (4.18) and (4.19), we find 

Finally, if we let e -+ 0, we see that $ is always 2 the smallest value it attains 
5 2  and 5'3, so that its minimum must lie en 5'2 or S 3 .  

If # 2 0 on S 2  and 4 = 0 on S 3 ,  then its minimum value must be zero. Therefore, 
q!J 2 0 everywhere in C, as was to be proved. The last step is to let R -+ CQ. 

Discussion. Suppose we establish an initial temperature rise TI inside a sphere 
of radius R. We can use the foregoing results to obtain an upper limit to the time 
at which the temperature rise disappears. To do so, we need to find a similarity 
solution whose initial form at t = 0, namely, T I= to 912 ( a  + 27~* t : /16 ) . - - ' /~ ,  exceeds 

7'1 for T 5 R. The best (smallest) upper limit t o  will correspond to an initial form 
T that just equals TI at r = R (see Fig. 4.2). The choices of a and t o  are therefore 
constrained by the relation 

or 

---1/2 Tl == t;l2 (a + 27R4t:/16) 

27R4Tf 2 
to - U T l  = 0 .  9 

16 t o  - 

Equation (4.22) has one real root, which is always la.rger than 

3 R"9;2 113 

t o *  = 5 (-?-> 

(4.21) 

(4.22) 

(4.23) 

and approaches to* as a becomes smaller (see Fig. 4.3). 
The radius R, the temperature rise TI, and the source strength Q are related 

by 
47r 
3 

Q = - T , R 3 ,  (4.24) 
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Fig. 4.2. A uniform initial temperature rise in the sphere of radius R compared 
with the initial temperature distribution of a similarity solution. 

QRNL-DWG 89M-2629 FED 

Fig. 4.3. An auxiliary sketch depicting the relation of the real root of Ey. (4.22) 
to the eoeficient p .  
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and if we use Eq. (4.24) to eliminate R in Eq (4.23)) we obtain 

Q 4 / 9 T 2 I 9  1 '  (4.25) 

The numerical constant in (4.25) equals 0.629889 ... . 

equal to 1. In ordinary units, Eq. (4.25) must be written 
Equation (4.25) is correct in special units in which I{ and S m e  numerically 

to* -= 0.629889 (8 4 Tl 2 S 5 ) 119 /I< (4.26) 

When the bath temperature is 1.8 I< (and the pressure is 1 atm), S = 

0.410 J . ~ ~ I I ' - ' ~ . K - ~  and K = 10.4 W . ~ r n - ~ f ~ . I < - - - ' / ~ .  In the one--dimensional experi- 
ment of Lottin arid van S c i ~ e r , ~  a heat pulse of 0.92 J was deposited at a point in a 
6 - m i  tube. Taking TI = TA - Tb = 0.37 I<, we find, from Eq. (4.26)) to* = 28.5 111s. 

So we expect the temperature rise to be extinguished in less than 30 ms; this is 
quite different from the l -D experiment of I d t i n  and van Sciver in which a 0.050 I< 
temperature rise was still perceptible after one full second. This rather remark- 
able prediction has not yet been tested experimentally and is a tempting target for 
further study* 

Pulsed-Source Problem in Cylindrical Geometry. In cylindrical geome- 
try, Eq. (1.3) takes the form 

We wish to solve it subject to the boundary arid initial conditions 

T(r,O) = 0 ( r  > 0) , 
T(m,t)  = 0 ) 

27rrT dr  = Q ( t  > 0) . 

Equation (4.27) is invariant to the mixed stretching-translation group 

(4.27) 

(4 .28~~)  

(4.2%) 

(4.284 

(4.29a) 

(4.29h) 

(4.29c) 
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where p is an arbitrary constant not yet determined. The most general form for 
T(r , t )  invariant to a group of the faanily (4.29) is 

T = e-'Pty (re-p') , (4.30) 

where y is an arbitrary function of the single argument [ = re-@. Furthermore, 
Eq. (4.30) has the right form to satisfy the boundary condition (4.28~): 

If we substitute Eq. (4.30) into Eq. (4.27), we get 

After multiplication by (? this can be integrated to give 

(4.31) 

(4.32) 

+ pt2v = c , (4.33) 

where C is a constant of integration. If y is regular at the origin < = 0, then C = 0. 
Then Ey. (4.14) can be integrated again to give 

-1/2 

y =  (a+;[.) , (4.34) 

where a is another constant of integration. 
Again the &-integral diverges, so the solution (4.34) cannot fulfill the initial 

condition of a finite heat pulse. But again, by a repetition of the argument of the 
last section, we expect it to exceed for dl time any solution that it exceeds at t = 0. 
Thus the ,central temperature should be hounded from above by a-1/2e--zPt , which 
means it should fall exponentially with time. 

As before, the choices of a and /? in Eq. (4.34) are constrained by the initial 
condition 

(4.35) 

from which it follows that the largest possible value of /3 is 

(4.36) 



If we now define to* = 1/2p,, the relaxation time of the central temperature, we 
find 

(4.37) 

The source strength Q is related to R and 'TI by 

Q=n-R2T1 (4.38) 

so that 
113 

to* = ($) . (4.39) 

Whereas in the spherical case Q has the dimensions of J, in the cylindrical case it 
has the dimensions of J-rn-'. So in ordinary units, 

113 

(4.40) 

L4n energy deposition Q of 1 Jan-' resiilts in a rehxation time of 13.2 ms, 
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CONCLUDING REMARKS 

preceding chapters constitutes the bulk of the knowledge 
about the superfluid diffusion equation won during the four-year collaboration be- 
tween Oak Ridge National Laboratory and the University of Wisconsin-Madison. 
Actually, somewhat more was done: at Prof. van Sciver's suggestion (1) I devel- 
oped a method of design o€ tube-in-shell heat exchangers,lg which has since been 
employed," and (2) I calculated the temperature distribution in transfer lines in- 
tended for in-orbit transfer of He-II.21 Both of these studies have been omitted here 
because they are based on the one-dimensional, steady superfluid diffusion equation 
and thus do not deal with the partial differential aspect of this equation. A further 
study that does deal with this partial differential aspect is one I made of thermal 
boundary layer development in rapidly flowing He-11, but as the results were neither 
elegant nor especially interesting, I have decided to omit this study, too. 

When analytic methods are exhausted, the conventional recourse is to numerical 
methods. Even here, the subtleties of the superfluid diffusion equation make thern- 
selves felt. The simplest finite-difference representation of Eq. (1.4) is the explicit 
inarching scheme 

where T,,, is an abbreviation for T(a = nh, It = mk). Now as it happens, this 
scheme is always unstable, hut in a rather special way. Unstable integration schemes 
are often beset by the growth of wild oscillations, so let us test Eq. (6 .1)  to see if 
it admits solutions of the form 

T,,, = (-)"e,  . 

Substituting Eq. (C.2) into Eq. (C.l), we find 

(6 .3)  

Equation (C.3) has as a solution the two-cycle 

for all values of k /h4 i3 .  From this we might expect the solutions of Eq. (C.1) to be 
perturbed by high-frequency fluctuations of constant amplitude given by Eq. (C.4). 
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To test this conclusion, 1 performed calculations of the pulsed-source problem in 
plane geometry (for which the solution is known) and found it to be so.18 Others 
have been beset by this problem, too.” The brute-force cure is to take the time 
step short enough that the amplitude of the unwanted fluctuations has little impact 
on the differences on the right-hand side of Eq. ((3.1). This often condenins 11s to 
using a very short time step and thus to consuxriing much computing time. 

The instabilitics of the explicit scheme can be avoided by going to an implicit 
scheme, such as 

(C.5a) 

(C.5b) 

for which no such oscillating solution as Eq. (C.4) is possible. Numerical experi- 
ments confirm the stability of this scheme. I have not delved further into this matter, 
hut for those intending to develop numerical programs, the foregoing consider a t‘ lolls 
need to be borne in mind. 

Shakespeare tells us that “‘an honest tale speeds best being plainly told,” so, 
having exhausted my thoughts on the superfluid difiusion equation, I now bring this 
report bluntly to a close. 
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