
3 4 4 5 6 028b717 I

MARTIN MARIETTA ENERGY SYSTEMS LIBRARIES

I(Ill ll 111 Ill1 Ill II Ill 11 I I/ I1 Ill1 Ill1 Ill11 II Ill Ill Ill I

FOR THE UNITED STATES
DEPARTMEMT OF ENERGY

ORNLTTM-11747

Parallelizing the Spectral
Transform ethod-Part I

P. H. Worley
J. B. Drake

ORNL/TM-11747

Engineering Physics and Mathematics Division

Mathematical Sciences Section

PARALLELIZING THE SPECTRAL TRANSFORM METHOD - PART I

Patrick H. Worley
John B. Drake

Oak Ridge National Laboratory
Mathematical Sciences Section
P.O. Box 2009, Bldg. 9207-A
Oak Ridge, TN 37831-8083

Date Published: March, 1991

Research was supported by the
Atmospheric and Climate Research Division

of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-ACO5-840R21400

3 4 4 S b 0286717 I

Contents

1 Introduction

2 Shallow water equations on a sphere

3 Spectral transform method

4 Example problems

5 SSWMSB 7

6 Intel iPSC/860 7

7 PICL and ParaGraph 8

8 Parallel Implementation 9
8.1 Denormalized numbers. 10
8.2 Blocking sends . 12
8.3 Blocked network protocol messages . 13
8.4 Simplified network protocol . 15

9 Results and analysis 18

21 10 Performance model

11 Conclusions 22

Acknowledgments 23

References 23

...
111

PARALLELIZING THE SPECTRAL TRANSFORM METHOD - PART I

Patrick H. Worley
John B. Drake

Abstract

The spectral transform method is a standard numerical technique used to solve
partial differential equations on the sphere in global climate modeling. In partic-
ular, it is used in CCMl and CCM2, the Community Climate Models developed
at the National Center for Atmospheric Research. This paper describes initial ex-
periences in parallelizing a program that uses the spectral transform method to
solve the nonlinear shallow water equations on the sphere, showing that an efficient
implementation is possible on the Intel iPSC/SSO. The use of PICL, a portable
instrumented communication library, and ParaGraph, a performance visualization
tool, in tuning the implementation is also described.

The Legendre transform and the Fourier transform comprise the computational
kernel of the spectral transform method. This paper is a case study of paralleliz-
ing the Legendre transform. For many problem sizes and numbers of processors,
the spectral transform method can be parallelized efficiently by parallelizing only
the Legendre transform. A subsequent paper will discuss parallelizing the Fourier
transform as well.

V

1. Introduction

In order to understand the effects of the increasing atmospheric concentrations of greenhouse
gases, numerical simulations covering hundreds of years using high resolution models are needed.
This is not computationally feasible using current climate models and computers. Developing
the ability to adequately model the climate will require advances in both numerical algorithms
and model physics, and massively parallel multiprocessors will be necessary to run such simu-
lations in a reasonable amount of time [7]. In this regard, we are investigating the suitability
for parallel computation of the numerical techniques currently used in climate models.

The spectral transform method [9], [27], [31] is a standard numerical technique for solving
partial differential equations on the sphere in weather and climate modeling [l], [2], [29], [40].
In particular, it is used in CCM1, the Community Climate Model developed a t the National
Center for Atmospheric Research (NCAR) [40]. There are both numerical and algorithmic
issues to be considered before using the spectral transform method in climate models with
much finer resolutions. In the work described here, we restrict ourselves to investigating how
efficiently the spectral transform method can be parallelized on distributed memory multipro-
cessors, and how this performance is likely to scale as both the problem size and the number
of processors increase. Some theoretical work has been done in this area [lo], [15], [23], but
empirical studies have been limited to shared-memory multiprocessors with small numbers of
processors and to massively parallel SIMD multiprocessors [6], [19], [33], [34]. In this paper, we
describe our initial experiences in parallelizing a serial program that uses the spectral transform
method to solve the nonlinear shallow water equations on the sphere, showing that an efficient
implementation is possible on the Intel iPSC/860. The shallow water equations constitute a
simplified atmospheric-like fluid prediction model that has been used to benchmark a number
of algorithms and machines [3], [18], [34], [37], [39]. This particular code is similar to the com-
putational kernel of CCM2, the successor to CCM1 currently being developed at NCAR, and
was provided courtesy of J . J . Hack at NCAR.

The spectral transform method approximates the state variables of the problem in both
physical space, where nonlinear terms are calculated, and spectral space, where the differential
terms of the equations are evaluated. The spectral representation of a state variable is defined
by an approximation of the variable with a truncated series of spherical harmonic functions. The
physical space is a rectangular tensor-product grid whose axes represent latitude and longitude.
The spectral space is a triangular grid whose axes represent the Fourier modes and the degrees
of the Legendre polynomials, respectively, that are used in the spherical harmonic expansion.

Each timestep of the calculation requires transforming the current approximation to the
solution from spectral coordinates to physical coordinates, evaluating the nonlinear terms of
the differential equation, transforming these terms back to spectral coordinates, and completing
the time update. Transforming from physical coordinates to spectral coordinates involves a
fast Fourier transform for each line of constant latitude, followed by Gaussian quadrature to
approximate a Legendre transform for each line of constant longitude. The inverse transform
reverses these two steps. In Hack’s shallow water equation program SSUMSB, the time update
is calculated in spectral space using a semi-implicit technique.

Our parallel implementation is based on dividing both the physical and spectral coordinates

2

equally among the processors. The physical coordinates are partitioned into slabs, so that each
processor is responsible for a specified range of latitudes. The spectral coordinates are ordered
and this ordering is used to partition them into blocks for assignment to processors. Using this
decomposition, each processor contains all the information needed to perform the FFTs for its
latitudes, so an optimized serial FFT can be used for both forward and inverse transforms. The
evaluation of a Legendre transform for a given line of constant longitude requires information
from all grid points on that line. The communication required for this part of the algorithm
is similar to that of the N-body problem [ll], and can be performed efficiently using a ring
algorithm. With this decomposition and communication strategy, the code runs efficiently on
the 128-node Intel iPSC/SSO hypercube for problem sizes of interest.

By decomposing only over latitude, we limit the number of processors that can be used.
Thus, for an efficient parallel algorithm, the number of processors must not exceed the number of
latitudes. In a subsequent paper, we will describe decomposing over longitude and parallelizing
the fast Fourier transforms, and the impact this has on performance.

Throughout this paper, we emphasize our use of PICL [la], [13], [14], [42], a portable
instrumented communication library, and ParaGraph [16], [42], a performance visualization
tool, when developing and tuning the parallel implementation, and when discovering previously
unknown performance quirks of the iPSC/860. These tools enable us to visualize the algorithm’s
performance and simplify the modeling of the performance of the algorithm. This is very
important because we are parallelizing a complex code and using a new multiprocessor, making
it difficult to develop reliable performance models a priori.

2. Shallow water equations on a sphere

An approximation to atmospheric flow can be obtained by considering a single layer, inviscid,
isothermal atmosphere with the top of the atmosphere being a free surface. Using the hy-
drostatic assumption, the pressure variables can be replaced with a height function, h, or the
geopotential, = gh. The approximations resemble those made in modeling wave phenomena
in shallow water, as for example in [25]. Atmospheric flow differs from shallow water theory
because of the rotation of the sphere, the effect of the Coriolis force, and the compressibil-
ity of an atmospheric layer. By incorporating these differences into the shallow water theory,
the resulting approximate atmospheric model exhibits many of the features of more complete
models. In particular, the evolution and migration of high and low pressures over the surface
of the sphere is much like observed weather patterns. The similarities with a full model of
the atmosphere have led many researchers to evaluate numerical methods for atmospheric flow
using the shallow water equations on the sphere as a first test [3], [4], [as] , [30], [36], [37], [39].

The shallow water equations on the sphere consist of equations for the conservation of
momentum and the conservation of mass. With V denoting the horizontal velocity of the layer,
V = iu + j v , the horizontal momentum and mass continuity equations can be written as [35]

= -fk x V - V@ dv
dt
-

3

and

where the substantial derivative is given by

and f is the Coriolis term.
For the application of the spectral transform method a different form of the equations will

be used. It is convenient to redefine the horizontal velocity components as U ucosd and
V E vcosqh, where q5 is latitude, to avoid the singularity in velocity a t the poles. The new
variables U and V go to zero a t the poles and are thus continuous scalar quantities over the
sphere. The V operator in spherical coordinates is

where a is the radius of the sphere and the independent variables X and p denote longitude
and sin4, respectively. The horizontal momentum can also be specified in terms of relative
vorticity,

C E k.(V x V), (5)

and horizontal divergence,
s = v * v .

Using the vector identity

v - v
2 (V * V)V G V(-) + Ck x V,

the horizontal momentum equation (1) becomes

aV v - v - = -(C + f)k x V - V(@ + -).
at 2

Applying k - V x () and V - () to the moment'um equation yields

- = -v - (C + f)V a
db v - v - = k . V x (C + f)V - V2(@+ 7). dt

In terms of the variables U and V these equations can be written as

1 8 1 0
-(U77) - - a - ap (Vrl) - - - arl-

at u (l - p 2) ax
1 8 1 0 u2 + v 2

a(1 - p2)
- ---(Uq) - V2(@ + - as - -

at u(1 - p2) d V q) a aP

(7)

4

where

and

The mass continuity equation can also be rewritten as

a@ - = -v
at @V - $6,

where @ is now a perturbation from a constant average geopotential 6. In terms of the U and
V variables, (15) can be rewritten as

The velocity vector can be related to a scalar stream function, +, and a scalar velocity
potential, x, by

V = k x V + + Vx.

These are related to vorticity and divergence, through application of the curl and divergence
operators, by

r)=v2++ f (18)

and

In the spectral transform method, we solve equations (l l) , (12), and (16) for r) , 6 , and @,
respectively, and use equations (17)-(19) to calculate U and V .

3. Spectral transform method

The spectral transform method is based on a dual representation of the scalar fields in terms
of a truncated series of spherical harmonic functions and in terms of values on a rectangular
tensor-product grid whose axes represent latitude and longitude. Representations of the state
variables in spectral space are the coefficients of an expansion in terms of complex exponentials
and associated Legendre polynomials,

where P,"(p) is the (normalized) associated Legendre function [32] and i = a. The spectral
coefficients are then determined by the equation

5

since the spherical harmonics P," (p)eiemx form an orthonormal basis for square integrable
functions on the sphere. In the truncated expansion, M is the highest Fourier mode and N (m)
is the highest degree of the associated Legendre function in the north-south representation.
Since the physical quantities are real, tirn is the complex conjugate of [F, and only spectral
coefficients for nonnegative modes need to be calculated.

The tensor-product grid in physical space is rectangular with I grid lines evenly spaced along
the longitude axis and J grid lines along the latitude axis placed at the Gaussian quadrature
points in [-1,1]. To evaluate the spectral coefficients, a fast Fourier transform (FFT) is used to
find Cm(p) for any given p. The Legendre transform is then approximated using a Gaussian
quadrature rule. Denoting the Gauss points in [-1,1] by and the Gauss weights by wj,

(For simplicity, we will henceforth refer to (22) as the forward Legendre transform.) The point
values are recovered from the spectral coefficients by computing

for each m (which we will refer to as the inverse Legendre transform), followed by FFTs to
calculate [(A, p) . To allow exact, unaliased transforms of quadratic terms the following relations
are sufficient: J 2 (3 M + 1)/2, I = 2J, and N (m) = M [31] . Using N(m) = M is called a
triangular truncation because the (m, n) indices of the spectral coefficients make up a triangular
grid.

The spectral transform method described in this paper calculates the time update of the
variables 77, 6 and @ in spectral space. The transformed time evolution equations are

and

8

6

In these equations the following quantities have been introduced:

d P 2 H P z (1 - p2)-,
d/r

A E Ur), B E Vr), C E U @ , D E V @ , and E (U 2 + V 2) / (2 - 2p2). The physical U and V
fields can be recovered from the spectral representation of r) and S using the following relations:

and

Note that, along with the evaluation of nonlinear terms and derivatives, the right-,,and sides
of equations (24)-(26) represent transformations from physical space to spectral space, and
are algorithmically very similar to the forward Legendre transform (22). Similarly, equations
(28) and (29) include transformations from spectral space to physical space, and their inner
summations are similar to the inverse Legendre transform (23).

The algorithm for calculating the time update begins with the initial state vectors in physical
space. To initialize the computation the quantities r), 6 and @ are transformed from physical to
spectral space. To begin the time update, the quantities A to E are computed at each physical
grid point. Then FFTs are performed on these quantites. Next, the right-hand sides of the
spectral time update equations (24)-(26) are computed. Once right-hand sides are available, the
time update is calculated using a standard finite difference approximation to the time derivative.
An inverse transform updates the variables q , 6 and @ in physical space. The physical grid values
of U and V are then updated using equations (28) and (29). This completes the time step.

Assume that a triangular truncation is used. Computing A, B, C , D, and E on the physical
grid requires O (I J) operations.' The FFT at each Gaussian latitude for each of these quantities
requires @ (I log I) operations, for a total complexity of O(J . I log I). The subsequent evaluation
of the right-hand sides of equations (24)-(26) requires e(J) operations for each of the modes,
resulting in a total complexity of O(J . M 2) . The complexity of the time update is O(1) for each
of the spectral coefficients, for a total complexity of 0 (M 2) . The inverse transform to update
r), 6, and @ and the update formula for U and V all have the same order of complexity as a
Legendre transform for each mode (O(J - M 2)) followed by an FFT for each Gaussian latitude
(@ (J Ilog I)). Thus, the total complexity for a single timestep is O(J . Ilog I) + O(J - M 2) .
Note that if J M (3M + 1)/2 and I = 2J, then the complexity becomes O (M 3) , in agreement
with the complexity reported in [3], and the Legendre transform and its algorithmic equivalents
are the most time consuming portion of the calculation for large M.

lIn this discussion, the expression Q(z) denotes a quantity whose leading order term is proportional to x.
See Horowitz and Sahni [20, p. 311 for a formal definition of €3 notation.

7

4. Example problems

A triangular truncation of the spherical harmonic expansion is one of the three options, along
with rhomboidal and trapezoidal truncations, found in CCM1 [40, pp. 41-45]. For a triangular
truncation, it is common practice to choose J and I to be the smallest values satisfying J >
(3M + 1)/2 and I = 2 J for which I is a convenient number of longitudes over which to calculate
an FFT. For such a model, the value of A4 is sufficient to characterize the resolution of the
model, and is commonly referred to as TM.

It is unclear what resolution future climate models will use. The initial design point for
CCM2 is T42 [41, p. 31. A resolution of T213 is being planned for the European operational
weather model [24]. In this paper we present results for T21, T42, T85, T169, and T340. These
examples indicate how the parallel implementation scales as a function of problem size and
number of processors. The T85 example, which is the largest of our examples that will fit in
the memory of a single node on the Intel iPSC/860, will be used in examples detailing the
performance of the algorithm.

As a minimal test of the correctness of our parallel implementations, initial data is used that
represent a steady state zonal flow [38]. Note that the choice of initial data does not influence
the execution time of the method once the other problem parameters have been fixed.

5 . SSWMSB

SSWMSB is a FORTRAN program written by J. J . Hack at NCAR. It is a serial implementa-
tion of the algorithm described in $3 that was designed to solve the shallow water equations
efficiently on a vector computer. When using a triangular truncation, storage is required for
the approximately M2/2 complex spectral coefficients of 77, 6 , and a, and for U , V , q, 6, and

on the I x J tensor-product grid. The associated Legendre polynomials P z (p) and their
scaled derivatives H,fia(p) are precalculated for each spectral coefficient and for each latitude
in the northern hemisphere, requiring storage for approximately J . M2/2 values. The pro-
gram exploits symmetry in the approximation to the Legendre transform between northern
and southern latitudes, effectively halving the operation count over the naive implementation.

We first ported SSWMSB to a Sun workstation, and then to a single processor on the IPSC/860.
It is a reflection on the high quality of SSWMSB that this was a relatively simple task, requiring
primarily the removal of calls to graphics routines and associated logic that are used in the
post-processing of the results.

6. Intel iPSC/S60

The Intel iPSC/860 is a state-of-the-art medium-grained distributed-memory multiprocessor
with up to 128 nodes. Each node is either an Intel 8 6 0 microprocessor with 8 megabytes of local
memory or an Intel 80386 microprocessor with 1, 4, 8, or 16 megabytes of local memory. The
nodes are physically interconnected by a hypercube network, but the communication hardware
effectively emulates a fully connected network. (See [8] and [22] for more details.) The iPSC/860
is also known as the Touchstone Gamma prototype, since it represents an early phase of Intel’s

8

Touchstone project. Future Touchstone prototypes will scale up to 2048 nodes [26], and are
candidate architectures for the next generation of global climate models.

The iPSC/860 at Oak Ridge National Laboratory, which was used for our performance
measurements, has 128 nodes, each of which is a 40 MHz i860 processor with a peak execution
rate of 80 Mflops for 32-bit floating point calculations. Thus, the aggregate peak performance
is 10 Gflops. The peak execution rates are based on conditions that are difficult to realize (and
sustain) in practice even for assembly coded routines [17]. For most compiled FORTRAN or
C programs, the performance is significantly less, ranging between 2 and 8 Mflops on a single
node. All performance results reported here used standard FORTRAN 77 source code compiled
using the Portland Group compiler with -01 optimization. At the time of these experiments,
invoking higher levels of optimzation did not consistently improve performance, and sometimes
introduced errors.

7. PICL and ParaGraph

The Portable Instrumented Communication Library (PTCL) is a subroutine library that imple-
ments a generic message-passing interface on a variety of multiprocessors [12], [131, [141, [42].
Programs written using PICL routines instead of the native commands for interprocessor com-
munication are portable in the sense that the source can be compiled on any machine on which
the library has been implemented. Correct execution is also a function of the parameter values
passed to the routines, but standard error trapping is used to inform the user when a parame-
ter value is not legal on a particular machine. Programs written using PICL routines will also
produce timestamped trace data on interprocessor communication, processor busy/idle times
and simple user-defined events if a few additional statements are added to the source code.

ParaGraph is a graphical display system for visualizing the behavior of parallel algorithms
on message-passing multiprocessor architectures [16], [42]. It takes as input execution trace
data provided by PICL and replays it pictorially, thus providing a dynamic depiction of the
behavior of the parallel program. ParaGraph provides several distinct visual perspectives from
which to view the same performance data, enabling the viewer to gain insights that might be
missed by any single view.

We used PICL subroutine calls to implement interprocessor communication when paralleliz-
ing SSWHSB. This allows us to port the resulting code to similar message-passing multiprocessors,
like the NCUBE family of hypercubes, with only a slight loss of performance. For example,
when tracing is not enabled, the overhead of using PICL instead of the native commands is
less than 1% for our implementations of SSWHSB on the iPSC/860. More importantly, the use
of PICL allows us to collect trace data for analyzing and tuning the parallel implementation.
This has been crucial in our efforts to produce an efficient parallel program. ParaGraph is an
invaluable tool in the analysis since the amount of trace data collected in a typical run is very
large. We use ParaGraph displays in the subsequent sections to illustrate the behavior of our
parallel implementations. Note that ParaGraph displays are most detailed (and informative)
when viewed in color, but monochrome displays are also supported, and these monochrome
displays are used in this paper.

.

9

8. Parallel Implementation

Y

V

Our first step in parallelizing SSWHSB was to partition the physical coordinates into slabs, so
that each processor was responsible for a specified range of latitudes. To exploit the symmetry
in the Legendre transform, each processor was assigned two slabs, one for latitudes in the
northern hemisphere and one for the “reflected” latitudes in the southern hemisphere. Thus, at
most J / 2 processors could be used, and each processor was responsible for at least two latitude
lines.

The second step in parallelizing SSWHSB was to partition the spectral coefficients as well.
Partitions of the latitudes and the spectral coefficients are independent, and all equipartitions
of the spectral coefficients are equally good. We chose to order the spectral coefficients and to
use this ordering to partition the spectral coefficients into blocks for assignment to processors.
We ordered the spectral indices by first running up the columns (of constant mode) and then
moving from left to right (increasing mode). This ordering will be convenient when partitioning
over longitude in physical space as well. Figure 1 gives an example partitioning of 15 spectral
coefficients into 3 subsets using this approach.

00...
00..
000
00

l o
m

Figure 1: Example three-element partition of triangular grid representing spectral coefficients.
Each circle represents a spectral coefficient, and each circle pattern represents a different element
of the partition.

Using this decomposition, each processor contains all the information needed to perform
the FFTs for its latitudes, so an optimized serial FFT can be used for both forward and inverse
transforms. The evaluation of a Legendre transform for a given line of constant longitude
requires information from all grid points on that line. The communication required for this
part of the algorithm is similar to that of the N-body problem [ll], and can be performed
efficiently using a ring algorithm.

When transforming from spectral space to physical space, the spectral coefficients are moved
around a “ring” of processors. At each step a processor sends its current block of data to the
processor on its left (in the ring topology), uses the data to calculate contributions to the
physical quantities it is responsible for, then receives a new block of data from the processor
on the right. After P steps, the calculation is complete and each block of spectral coefficients
has been returned to its source processor. The concurrent send (receive) volume of data is
approximately M 2 / 2 complex numbers for each state variable, and much of the computation

10

and communication is overlapped because the data is forwarded before it is used. We will refer
to this as the first ring algorithm, or ring algorithm 1.

When transforming from physical to spectral space, the spectral values being calculated are
circulated around the ring. Each processor calculates its contribution to the block of coefficients
it knows that it will receive next, receives that block from the “right”, adds in its contribution,
sends the updated block to the “left”, and begins the calculation for the next block. As before,
the computation and communication are overlapped and the concurrent send (receive) volume
is M 2 / 2 complex values per state variable (or equation). We will refer to this as the second
ring algorithm, or ring algorithm 2.

As part of this parallel implementation, we also modified SSWHSB to combine the evaluations
of all forward (inverse) transforms during each timestep and to combine the state vectors into
a single array of one larger dimension. Combining the transforms increases the communica-
tion/computation overlap and decreases communication start-up cost. Combining the state
vectors eliminates the need to pack and unpack message buffers.

While other approaches to parallelizing the Legendre transform in SSWMSB exist, equi-
partitioning both the physical and spectral coordinates among the processors and using the
ring algorithms to transform between the physical and spectral coordinates has numerous ad-
vantages. First, this parallel implementation is “perfectly parallel” in the sense that the floating
point operations in the inner loops of the original program are divided equally among the pro-
cessors. Second, the ring algorithms require only that the underlying architecture support a
ring topology in order to minimize the communication cost, which may be important in the
next generation of distributed-memory multiprocessors. Third, the communication volume gen-
erated by the ring algorithms is the minimum possible for a parallel Legendre transform that
does not perform redundant calculations. Fourth, the organization of the ring algorithms max-
imizes the potential for communication/computation overlap. One disadvantage of the ring
algorithms is that the communication start-up cost is O (P) , which is not the minimum for a
parallel Legendre transform. The communication/computation overlap (potentially) offsets the
additional communication cost.

8.1. Denormalized numbers.

Table 1 contains the performance numbers for our initial implementation of the algorithm
described above. Here P is the number of processors used, T is the total execution time (in
seconds) for 10 timesteps, S is the observed speed-up over the execution time on one processor,
E is the parallel efficiency, C is the maximum communication time (in seconds) observed on
a single processor, and C/T is the ratio of the maximum communication time to the total
execution time. The communication time is the observed time during which a processor is
sending a message, receiving a message, or waiting for a message. The time that a processor
spends within a system routine is observable, while cycle-stealing and memory contention caused
by overlapping communication and computing are not.

These performance numbers are both disappointing and surprising. Most surprising is that
the communication cost is very high for small numbers of processors, and is not reasonable
until P becomes large. The reason for the unexpected behavior of this implementation can

.

11

Commmunication (C)
.oo

3.62
5.23
3.22
2.41
1.69
1.76

C/T
0.00
0.17
0.37
0.40
0.48
0.51
0.63

.

Time (T)
39.51
21.57
14.29
8.03
5.00
3.31
2.80

F== Processors (P) Speedup (S) Efficiency (E)
1 .oo 1 .oo
1.83 .92
2.76 .69
4.92 .62
7.90 .49
11.94 37
14.11 .22

16
32

I 64

I

Table 1: Performance of initial parallel implementation.

E3
TFsK1 TAQ(2

m
TASK 0

Figure 2: Task graph showing effect of denormalized numbers on ring algorithm.

12

be observed from the tusk graph in Fig. 2. The task graph indicates what each processor was
doing at a given time. Three different tasks are indicated. Task 1 is the computational kernel
of the first ring algorithm, calculating contributions to physical quantities from the current
block of spectral coefficients. Thus, a sequence of P “task 1” blocks, separated by white blocks
representing interprocessor communication, occurs for each processor during each timestep.
Task 2 is the computation occurring between the two ring algorithms, primarily a sequence of
FFTs. Task 0 is the computational kernel of the second ring algorithm, calculating contributions
to the next block of spectral coefficients to arrive. Thus, each processor also has a sequence of
P “task 0” blocks per timestep. Because only three tasks can be indicated in this monochrome
display, the spectral coefficient update in the second ring algorithm is also called task 1 and
the time update of the spectral coefficients is also called task 2. Both of these tasks take very
little time, and are easily distinguished in the task graph.

The task graph in Fig. 2 displays a little more than one timestep when using 16 processors to
solve T85. Since the latitudes and spectral coefficients are divided equally among the processors,
each instance of a task should take approximately the same amount of time as every other
instance of the same task. This is true for task 2, but the bottom four processors have some
task 0 and task 1 blocks that are up to 20 times as long as they should be. The resulting
load imbalance destroys the efficiency of the ring algorithm, causing processors to wait for
long periods for messages. The reason for the load imbalance is the presence of denormalized
numbers2 in the precalculated values P z (p) and H,“(p) . The Intel iPSC/860 supports the
IEEE floating point standard, but handles computation with denormalized single or double
precision numbers in software, not hardware. Using our partition of the spectral coefficients
and the latitudes, the denormalized numbers are not equidistributed over the processors, causing
large load imbalances.

8.2. Blocking sends

The solution to the problem of denormalized numbers is simple, for this application. For
the resolution of the example problems used in our tests, the additional accuracy provided by
denormalized numbers is unnecessary. Our solutions are just as accurate when the denormalized
P r (p) and H r (p) values are set to zero. If higher accuracy is required, using double precision
arrays to hold P,”(p) and H , ” (p) eliminates the denormalized numbers when solving T85 and
restores the load balance. For the larger examples, denormalized numbers will reoccur even
when using double precision variables, and will still need to be set to zero. Note that, while using
double precision arrays would normally significantly increase the execution time of SSWHSB when
compared to using single precision arrays, the increase is partially offset by not doing arithmetic
with denormalized numbers. For example, the execution time for solving T85 when using one
processor is approximately 30% greater when the arrays are double precision than when they
are single precision, if denormalized numbers have been zeroed. When denormalized numbers
are not set to zero, the double precision version is only 5% slower than the single precision
version, and it becomes faster when more than one processor is used, due to the better load

.

2A denormalized number is a non-zero floating-point number whose exponent is the minimum admitted and
whose leading significant digit is zero [5].

13

balance.
Table 2 contains the performance numbers when denormalized P T (p) and Hr(p) values are

set to zero. Note that speedup and efficiency are measured in terms of the execution time when
using one processor with this implementation. Since the fastest serial execution time belongs
to an implementation described later in this paper, we have not normalized the speedup and
efficiency measures over all implementations. To compare between implementations, we use the
raw execution times.

As expected, the improvement over the previous implementation is significant, but the
communication cost is still higher than expected for small P. The Gun22 c h a d in Fig. 3 indicates
what the difficulty is. The Gantt chart indicates what state (busy, communicating, idle) each
processor is in at any given time. Figure 3 is a magnified snapshot of the start of the second
ring algorithm, calculating the right-hand sides of equations (24)-(26), for problem T85 when
using 16 processors. Note the stagger of the shaded blocks. These blocks primarily represent
time spent in the PICL routine sendO, which initiates a message transmission. In most cases, a
processor is not exiting send0 until the processor it is sending to (the one immediately below it
in the Gantt chart) has finished computing. This causes long delays for the sending processor.

The problem is due to the communication protocol on the iPSC/860 when using the native
iPSC command csend, which is called within the PICL routine send0. On the Intel iPSC/2, if
a message is sent to a processor that is not expecting it, the user process is interrupted and the
message is copied into a system buffer. When the request for the message is finally made, the
message is copied from the system buffer into the designated user buffer. In an attempt to cut
down on buffer copies of long messages, the current operating system on the iPSC/860 does
not interrupt the user process to handle the incoming message, but rather waits until control is
relinguished to the operating system for other r e w n s . Since the iPSC command csend blocks
until the message is on its way and the message buffer can be reused, the sending processor
is blocked until a compute phase on the receiving processor is finished. The operating system
designers are aware of this problem, and future revisions of the operating system will use a
different communication protocol.

8.3. Blocked network protocol messages

To avoid the “blocking send” phenomenon, we replaced the calls to the native iPSC commands
csend and crecv, which do not return until the message buffer can be used, with calls to the
commands isend and irecv, which return immediately. The logic of the first ring algorithm
is now (a) call irecv to indicate where the next message should be put, (b) call isend to send
the current data to the neighbor to the left, (c) compute using the current data, and (d) wait
until the isend and irecv calls have completed by calling msgwait. Similar logic is used for the
second ring algorithm. This requires double buffering so that incoming data does not overwrite
the data that is currently being used. Since isend, irecv, and msgwait are not available in the
original version of PICL, new commands sendbegin0, sendendo, recvbegin0, and recvendO
have been added that use these commands.

This new logic not only avoids the blocking send, but also eliminates some of the (system-
level) buffer copying inherent in the previous implementation. Other minor modifications were

14

Table 2: Performance of combined latitude/spectral coeficient partitioned code after removal
of denormals.

16637 rn
BUSY OVERNAD

.

.

0
IDLE

17437

Figure 3: Gantt chart showing effect of blocking send on ring algorithm.

15

also made at this time to increase the potential for communication/computation overlap. Ta-
ble 3 contains the performance numbers for this new implementation. First, note we achieve
“superlinear” speed-up when P = 2. The performance of the i860 processor is very sensitive to
the number of cache misses, and the decrease in the workload per processor as P increases from
1 to 2 permits a higher percentage of the data to reside in cache at one time. We notice this
for the first time in this implementation because the double buffering increases data locality,
thus decreasing cache misses. The performance of this implementation is very good for small
numbers of processors, and does not seem inappropriate for large P.

I. Foster, one of a group of researchers at Argonne National Laboratory who are examining
the theoretical scalability of the spectral transform method [lo], used our performance numbers
to validate their analysis. The numbers fit very well if the communication costs of the iPSC/SSO
are much higher than benchmarks indicate. To clarify this anomaly, we used ParaGraph to
examine the behavior of this implementation more closely. Figure 4 is the Gantt chart for
the first part of the second ring algorithm when using 32 processors to solve T85. This figure
indicates that processors are idle an unexpectedly large portion of the time, although it is
unclear at first glance what is causing this behavior. Upon closer examination (of this figure
and other ParaGraph displays), we discovered that the time required to send a message to a
neighboring processor varies significantly during the computation. This inconsistency has the
same effect as a load imbalance on the ring algorithms, causing a significant increase in the
idle time when P is large. We queried P. Pierce at Intel, and received the following reply. The
standard protocol for long messages is (a) to query the destination processor as to whether there
is sufficient space for the message, (b) to wait for the reply, and (c) to begin the transmission of
the message. In a ring algorithm, each processor is not only requesting to send a message to its
“left”, but it is also being requested to accept a message from its “right”. If the transmission
of the message from the right begins before the acknowledgement from the left is received,
this acknowledgement is blocked until the “incoming” message is completed. As P increases,
and the amount of computation between communication calls decreases, this behavior becomes
both more probable and more destructive to the efficiency of the ring algorithms.

8.4. Simplified network protocol

A simple solution to the performance problem caused by the communication protocol is to use
a special message type available on the Intel iPSC/2 and iPSC/860. If the message type used
to send a message is within a special range [21], then the destination processor is not queried as
to whether there is room for the message. If the user has not “told” the destination processor
to expect the message, by calling crecv or i recv for example, before the message arrives, then
the message is thrown away. Some care is required to use these force types correctly, but the
ring algorithms are deterministic, and all message types and sizes are known a priori . Thus,
by increasing the amount of working storage allocated to message buffering, the request and
acknowledgement messages of normal interprocessor communication can be eliminated. The
performance of this implementation for T85 is indicated in Table 4. Figure 5 is the Gantt
chart for the first part of the second ring algorithm when using 32 processors to solve T85. It
is clear that using force types avoids the inefficient behavior illustrated in Fig. 4: almost all

16

Table 3: Performance of combined latitude/spectral coefficient partitioned code after eliminat-
ing blocking send phenomenon.

I
W S Y

0
IDLE

Figure 4: Gantt chart showing effect of three step message protocol on ring algorithm.

17

1

16 2.62 13.27 3 3 .117 0.04
32 1.68 20.69 .65 .198 0.12

c

I I I I I I

64 11 1.28 I 27.16 [.42 I .359 I 0.28 I
Table 4: Performance of combined latitude/spectral coefficient partitioned code after introduc-
ing force types.

rn
BUSY

0
IDLE

Figure 5: Gantt chart showing effect of using force types in the ring algorithms.

18

idle time has been eliminated and 50% more steps of the ring algorithm have been completed
during the interval of time displayed in the figure.

9. Results and analysis

Table 5 contains the performance numbers of the final implementation for problems T21, T42,
T85, T169, and T340. This table contains five new columns. The column marked J / P is the
number of latitudes assigned to each processor for the given problem and number of mocessors.
The column (C+ I) is the maximum (over all processors) of the sum of the communication time
and the idle time at the end of the program spent waiting for the last processor to finish. (As
the number of timesteps increases, the difference between (C + I) and C becomes arbitrarily
small, but it is still a factor in the results reported here.) The column Tperf is the execution
time if the program were “perfectly parallel”, i.e. the execution time when using one processor
divided by P. The column Tcomp is the execution time for a version of the program in which
the subroutine calls that invoke interprocessor communication are commented out. The column
Tcomm is the execution time for a version of the program in which everything is commented
out except the subroutine calls that invoke interprocessor communication and logic associated
with interprocessor communication.

First, note that the efficiency is high (2 80%) if a t least eight latitude lines are assigned to
each processor. Also note that the efficiency is almost solely a function of J / P across all of the
problems. This “fact” is used to define the speedups and efficiencies for problems T169 and
T340, since the executable of the program when compiled for these problems will not fit in the
memory of a single proce~sor .~ The speedup and efficiency for the smallest number of processors
on which the executable will fit is extrapolated from the efficiency values observed in the smaller
example problems for the same number of latitudes per processor. The extrapolated values are
surrounded by quotes in Table 5. Subsequent speedups and efficiencies are calculated from these
extrapolated values. Note that these subsequent values are consistent with the assumption that
efficiency is solely a function of J / P .

As mentioned earlier, the parallel implementation described in this paper is “perfectly par-
allel” in that the floating point operations in the inner loops of the original program are divided
equally among the processors, and the parallel execution time should be Tperf. But this naive
analysis ignores (at least) two other costs, the observable communication overhead, reflecting
the time spent in interprocessor communication routines, and the computation overhead, re-
flecting loop overhead, logic associated with managing interprocessor communication, and the
redundant computation of intermediate results that are too costly to communicate around the
ring.4 An estimate for the observable communication overhead is given by C. The compu-
tation overhead can be estimated by subtracting Tperf from Tcomp. Of these two, only the

.

3The size of the executables can be reduced dramatically by not precomputing the associated Legendre poly-
nomials and their derivatives, but this is beyond the scope of our experiments here. Our parallel implementations
of SSWMSB make no substantive changes to the original serial algorithm except reordering the computations.

‘In general, both of these costs vary from processor to processor. Since the amount and scheduling of both
computation and communication is the same on all processors, there should be little variation in costs between
processors. The performance measurements for our final implementation support this, and we treat these costs
as being processor independent in our discussions.

19

P J I P T S E C (C + I) Tperf
1 32 2.40 1.00 1.00 .OOO 0.00 2.40
2 16 1.24 1.94 .97 .033 0.033 1.20
4 8 .72 3.33 .83 .046 0.047 .60
8 4 .51 4.71 .59 .lo8 0.108 .30
16 2 .49 4.90 .31 .175 0.175 .15

c

Z o m p Tcornm
2.40 .002
1.20 .083
.638 .166
.370 .195
.239 .265

P J / P T S E C (C+ 1) Tperf
1 64 14.03 1.00 1.00 .OOO 0.00 14.03
2 32 7.03 2.00 1.00 ,105 0.105 7.02
4 16 3.70 3.79 .95 .lo1 0.102 3.51
8 8 2.12 6.62 .83 .152 0.152 1.75
16 4 1.41 9.95 .62 .207 0.208 .88
32 2 1.25 11.22 .35 .418 0.418 .44

Tcomp Tcomm
14.03 .004
6.90 .259
3.52 .432
1.86 .515
1.07 .639
.68 .771

16
32
64

8 2.62 13.27 .83 .117 0.129 2.17 2.33 .635
4 1.68 20.69 .65 .198 0.201 1.09 1.31 .674
2 1.28 27.16 .42 .359 0.359 .54 .83 307

Table 5: Performance of best combined latitude/spectral coefficient partitioned code.

P J / P T S E C (C + 1) Tperf
64 8 28.00 “51.20” “.go” .472 0.519 22.4
128 4 18.19 78.81 .62 350 0.889 11.2

Tcomp Tcomm
24.74 9.21
14.31 9.36

20

observable communication overhead is amenable to minimization in the parallel implementa-
tion, once serial inefficiencies are eliminated. We successfully avoided packing and unpacking
message buffers in our implementations, and, modulo compiler improvements, the computation
overhead represents a fixed cost. Thus, Tcomp is a lower bound on the execution time of any
parallel implementation of SSWMSB.

Without overlapping communication and computation, the observable communication over-
head would be at least as large as Tcomm. (It can be even larger since load imbalance or
network contention appear as communication overhead. Note that Tcomm is only a lower
bound because our use of isend, irecv, and force types for interprocessor communication min-
imizes contention for network resources.) Thus, Tcomm - C is a conservative estimate of the
amount of communication that is available to be overlapped with computation, and

(Tcomm - C)/Tcomm (30)

is a measure of how effective a parallel implementation is at hiding communication. Table 6
describes this measure for our implementation. Thus, our final parallel implementation is very

(Tcomm - C)/Tcomm

Table 6: Relative amount of hidden communication.

effective at hiding communication costs.
Some of the hidden communication still represents an overhead in the parallel implementa-

tion, which we will refer to as the hidden communication overhead. While we conjecture that
this overhead is due to cycle-stealing and memory contention, its magnitude is easily calculated
from our performance numbers. For example, if there were no hidden computation overhead,
then

Tcomp + (C + 1)

would be an overestimate of T. Table 7 describes this estimate and its error for T85. Thus, (31)
is an overestimate only for P = 2, and it is an underestimate by as much as 10% for the other
cases. The fraction of the hidden communication that contributes to the hidden communication
overhead can be estimated by

T - (Tcomp + (C + I))
Tcomm - C

The numerator is an estimate of the increase in computation time due to the hidden overhead,

21

32
64

L

I
- .43 .36 .30 -
- - .20 .35 .31

Table 7: Comparison of execution time estimate to observed execution time.

while the denominator is an estimate of the amount of communication that is hidden. This
measure is indicated in Table 8. On the average, 30% of the hidden communication contributes

I P 11 T21 I T42 I T85 1 T169 I T340 I

1 16 11 .84 I .31 I .31 I .16 1 - 1 I I I I I I

Table 8: Estimate of fraction of hidden communication that contributes to hidden communica-
tion overhead.

to the hidden communication average when P > 2.

IO. Performance model

The following rough analysis supports the strong dependence of the efficiency on J/F. The
dominant terms in the serial complexity of the spectral transform method are of the form

T, z aJI log, I + bJM2

for positive constants a and b. Since the parallel implementation is “perfectly parallel”, the
parallel complexity should be Tp = T,/P plus a term representing the computation overhead
and a term representing the communication overhead, reflecting both the observable and hidden
communication overheads. The dominant term in the computation overhead is proportional to
the number of times the outer loops in the ring algorithms are executed, and has the form chf2
for some positive c. The communication overhead is a function of both the number of sends
(receives) and the volume of information sent (received) during the ring algorithms, and has
the form dP + e M 2 for positive constants d and e if communication and computation are not
overlapped (i.e. all communication is reflected in the observable communication overhead) and

22

if there is no contention for network resources. The speedup of the resulting model is

a J I l o g 2 1 + bJM2
a(J/P)Il0g2 I + b(J/P)M2 + (c+e)M2 + d P ' s =

8

and the efficiency is

E = S / P
- a(J/P)Ilog2 I + b(J/P)M2 -

a(J/P)l log2 I + b(J/P)M2 + (c+e)M2 + dP

Since (Ilog2 I)/M2 and P / M 2 both go to zero as M grows, this expression for the efficiency
is primarily a function of J/P for large M , converging to b/(b + (c + e)P/J) when M + 00.

If communication and computation are instead assumed to be completely overlapped with no
hidden communication overhead, then an analogous result holds with the expression (c + e)
replaced by max{c,e) in the asymptotic formula. Note that both of these models are too
simplistic to model the observed behavior. They ignore the possibility of partially overlapped
communication and of hidden communication overhead. But these models do partially explain
the observed relationship between the efficiency and J/P.

11. Conclusions

Our initial experiments in parallelizing the spectral transform method indicate that efficient
implementations are possible on the iPSC/860 even when decomposing only over latitude in
the physical space and parallelizing only the Legendre transform. This parallel implementation
limits us to using no more than half as many processors as there are lines of latitude, which will
cause problems when scaling the problem size because the serial complexity grows cubically
as a function of the number of latitudes. But, since the performance of the parallel Legendre
transform appears to be solely a function of the number of latitudes assigned per processor,
further exploitation of parallelism, such as decomposing over longitude and parallelizing the
fast Fourier transform, will not change our conclusions about the efficiency of the parallel
Legendre transform. Our next step is to introduce a parallel FFT into SSWHSB and examine the
tradeoffs between decomposing over latitude and longitude, and how the combined efficiency of
the parallel Legendre transform and the parallel FFT varies as a function of the decomposition.

Note that the observed efficiencies are sensitive to compiler improvements or the introduction
of assembly-coded inner loops. The observed Mflop rate for the one processor implementation of
T85 is 4.8, on a processor whose peak rate is 80 Mflops. As better compilers become available,
the efficiency will drop. For example, Tcomm represents a lower bound on the execution time
for any executable of the code, and it is already greater than 60% of the observed execution time
when two latitude lines are assigned to each processor. Thus, while we achieve an aggregate
Mflop rate of 340 when solving T340 using 128 processors, we can not do better than 735 Mflops
for this problem with the current interconnection hardware and microprocessor, no matter how

23

good the compiler is. High efficiency can always be “recovered” by increasing the number
of latitude lines assigned to each processor, but this requires increasing the problem size or
limiting the number of processors.

Execution time, rather than efficiency, is the important issue. The goal of this work is
to determine whether the parallel spectral transform method and the iPSC/860, or similar
machines, can provide the turn-around time to run the next generation of global climate mod-
els. Our performance measurements indicate that our parallel implementation of the Legendre
transform in SSWNSB is near optimal with respect to communication overhead, and that it will
be useful in determining these issues.

The work described in this paper took five months to complete. Without PICL and Para-
Graph, we would likely have stopped the work much sooner, out of simple frustration, and
the results would have been much worse. These tools were crucial in our efforts to identify,
understand, and correct performance bottlenecks.

Acknowledgments

This research was supported by the Department of Energy CHAMMP initiative. We are grate-
ful for the help and advice of the members of the CHAMMP Inter-Organizational Team for
Numerical Simulation, a collaboration involving Argonne National Laboratory, the National
Center for Atmospheric Research, and Oak Ridge National Laboratory. In particular, we thank
J. J. Hack for making SSUMSB available to us, and for his willingness to answer our questions
about the code, R. E. Flanery for helping port SSWNSB from NCAR to ORNL, and I. Foster for
pointing out anomalies in our performance numbers. We also thank P. Pierce of Intel Scien-
tific Computers for his prompt replies to queries and for his clear explanations of the network
protocols used on the iPSC/860.

References

[l] A. P. M. Baede, M. Jarraud, and U. Cubasch, Adiabatic formulation and organization of
ECMWF’s spectral model, ECMWF Tech. Rept. No. 15, European Centre for Medium-
Range Weather Forecasts, Reading, England, 1979.

[2] G. J . Boer, N. A. McFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet, The Cana-
dian climate centre spectral atmospheric general circulation model, Atmos.-Ocean, Vol. 22
(1984), pp. 226-243.

131 G. L. Browning, J . J. Hack, and P. N. Swarztrauber, A comparison of three numerical
methods for solving differential equations on the sphere, Mon. Wea. Rev., Vol. 117 (1989),
pp. 1058-1075.

[4] V. Casulli, Semi-implicit finite difference methods for the two-dimensional shallow water
equations, J. Comp. Phys., Vol. 86 (1990), pp. 56-74.

[5] W. J. Cody, J . T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski,
J . Palmer, F. N. Ris, and D. Stevenson, A proposed radix- and work-length-independent

24

standard for floating-point arithmetic, IEEE Micro, Vol. 4, No. 4 (August 1984), pp. 86-
100.

[6] D. Dent, A modestly parallel model, in The Dawn of Massively Parallel Processing in
Meteorology, G.-R. Hoffman and D. K. Maretis, eds., Springer-Verlag, Berlin, 1990, pp. 21-
31.

[7] Department of Energy, Building an advanced climate model: Progress plan for the
CHAMMP climate modeling program, DOE Tech. Report DOE/ER-O479T, U.S. Depart-
ment of Energy, Washington, D.C., December 1990.

[8] T. H. Dunigan, Performance of the Intel iPSC/860 hypercube, Tech. Rep. ORNL/TM-
11491, Oak Ridge National Laboratory, Oak Ridge, T N , June 1990.

[9] E. Eliasen, B. Machenhauer, and E. Rasmussen, On a numerical method for integration of
the hydrodynamical equations with a spectral representation of the horizontal fields, Rep.
No. 2, Institut for Teoretisk Meteorologi, Kobenhavns Universitet, Denmark, 1970.

[lo] I. Foster, W. Gropp, and R. Stevens, The scalability of the spectral transform method for
parallel climate modeling, (in preparation), Argonne National Laboratory, Argonne, IL,
1991.

[ll] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J . K. Salmon, and D. W. Walker,
Solving Problems on Concurrent Processors, vol. 1, Prentice-Hall, Englewood Cliffs, NJ ,
1988.

[12] G. A. Geist, M. T . Heath, B. W. Peyton, and P. H. Worley, A machine-independent
communication library, in The Proceedings of the Fourth Conference on Hypercubes, Con-
current Computers, and Applications, J . L. Gustafson, ed., Golden Gate Enterprises, P.O.
BOX 428, LOS Altos, CA, 1990, pp. 565-568.

~ 3 1 - , PICL: a portable instrumented communication library, C reference manual, Tech.
Rep. ORNL/TM-11130, Oak Ridge National Laboratory, Oak Ridge, T N , July 1990.

~ 4 1 - , A users’ guide to PICL: a portable instrumented communication library, Tech. Rep.
ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, T N , August 1990.

[15] J. J. Hack, On the promise of general-purpose parallel computing, Parallel Computing, Vol.
10 (1989), pp. 261-275.

[16] M. T. Heath, Visual animation of parallel algorithms for matrix computations, in The Fifth
Distributed Memory Computing Conference, D. W. Walker and Q. F. Stout, eds., IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 1213-1222.

[17] M. T . Heath, G. A. Geist, and J . B. Drake, Early experience with the Intel iPSC/860
at Oak Ridge National Laboratory, Tech. Rep. ORNL/TM-11655, Oak Ridge National
Laboratory, Oak Ridge, T N , September 1990.

25

[18] G.-R. Hoffman, P. N. Swarztrauber, and R. A. Sweet, Aspects of using multiprocessorsfor
meteorological modeling, in Multiprocessing in Meteorological Models, G.-R. Hoffman and
D. F. Snelling, eds., Springer-Verlag, New York, 1988, pp. 125-196.

[19] R. N . Hoffman and T. Nehrkorn, Multiprocessing a global spectral numerical weather pre-
diction model, in Parallel Processing for Scientific Computing, J. Dongarra, P. Messina,
D. C. Sorenson, and R. G. Voigt, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990, pp. 168-173.

[20] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Maryland, 1978.

[21] Intel Scientific Computers, iPSC/Z and iPSC/SSO programmer’s reference manual, Beaver-
ton, OR, June 1990.

[22] -, iPSC/Z and iPSC/SSO user’s guide, Beaverton, OR, June 1990.

[23] T. Kauranne, Asymptotic parallelism of weather models, in The Dawn of Massively Parallel
Processing in Meteorology, G.-R. Hoffman and D. K. Maretis, eds., Springer-Verlag, Berlin,
1990, pp. 303-314.

[24] T. Kauranne and G.-R. Hoffmann, Parallel processing: a view f rom ECMWF. Oral pre-
sentation at Computers in Atmospheric Science, September 1990.

[25] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1959.

[26] S. L. Lillevik, Touchstone program overview, in The Fifth Distributed Memory Computing
Conference, D. W. Walker and Q. F. Stout, eds., IEEE Computer Society Press, Los
Alamitos, CA, 1990, pp. 647-657.

[27] B. Machenhauer, The spectral method, in Numerical Methods Used in Atmospheric Models,
vol. I1 of GARP Pub. Ser. No. 17. JOC, World Meteorological Organization, Geneva,
Switzerland, 1979, ch. 3, pp. 121-275.

[28] Y. Masuda and H. Ohnishi, An integration scheme o f t h e primitive equation model with
an icosahedral-hexagonal grid system and its application to the shallow water equations,
in Short- and Medium-Range Numerical Weather Prediction, Meteorological Society of
Japan, Tokyo, 1987, pp. 317-326.

[29] B. J. McAvaney, W. Bourke, and K. Puri, A global spectral model f o r simulation of the
general circulation, J . Atmos. Sci., Vol. 35 (1978), pp. 1557-1583.

[30] P. E. Merilees, The pseudo-spectral approximation applied to the shallow water equations
on a sphere, Atmosphere, Vol. 11 (1973), pp. 13-20.

[31] S. A. Orszag, Transform method f o r calculation of vector-coupled sums: Application to the
spectralform o f t h e vorticity equation, J. Atmos. Sci., Vol. 27 (1970), pp. 890-895.

[32] I. A. Stegun, Legendre functions, in Handbook of Mathematical Functions, M. Abramowitz
and I. A. Stegun, eds., Dover Publications, New York, 1972, ch. 8, pp. 332-353.

26

[33] P. N. Swarztrauber and R. K. Sato, Experiences on the connection machine. Oral presen-
tation at Computers in Atmospheric Science, September 1990.

P41 - , Solving the shallow water equations on the Cray X-MP/48 and the Connection
Machine 2, in The Dawn of Massively Parallel Processing in Meteorology, G.-R. Hoffman
and D. K. Maretis, eds., Springer-Verlag, Berlin, 1990, pp. 260-276.

[35] W. Washington and C. Parkinson, A n Introduction to Three-Dimensional Climate Model-
ing, University Science Books, Mill Valley, CA, 1986.

[36] D. L. Williamson, Integration of the barotmpic model over a spherical geodesic gr id , Mon.
Wea. Rev., Vol. 98 (1969), pp. 512-520.

[371 - , Difference approximations for fluid flow on a sphere, in Numerical Methods Used
in Atmospheric Models, vol. I1 of GARP Pub. Ser. No. 17. JOC, World Meteorological
Organization, Geneva, Switzerland, 1979, ch. 2, pp. 51-120.

[38] D. L. Williamson and G. L. Browning, Comparison of grids and diflerence approximations
f o r numerical weather prediction over a sphere, J. Appl. Meteor., Vol. 12 (1973), pp. 264-
274.

[39] D. L. Williamson, J. B. Drake, J . J . Hack, R. Jakob, and P. N. Swarztrauber, A standard
test set f o r numerical upproximations to the shallow water equations on the sphere, Tech.
Rep. ORNL/TM-11773, Oak Ridge National Laboratory, Oak Ridge, T N , 1991.

[40] D. L. Williamson, J. T. Kiehl, V. Ramanathan, R. E. Dickinson, and J. J. Hack, De-
scription of N C A R community climate model (CCMl), NCAR Tech. Note NCAR/TN-
285+STR, NTIS PB87-203782/AS, National Center for Atmospheric Research, Boulder,
CO, June 1987.

[41] D. L. Williamson, Ed., CCM progress report - July 1990, NCAR Tech Note NCAR/TN-
351+PPR, National Center for Atmospheric Research, Boulder, CO, July 1990.

[42] P. H. Worley and M. T. Heath, Performance characterization research at Oak Ridge Na-
tional Laboratory, in Parallel Processing for Scientific Computing, J . Dongarra, P. Messina,
D. C. Sorenson, and R. G. Voigt, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990, pp. 431-436.

27

ORNL/TM-11747

INTERNAL DISTRIBUTION

1.
2.
3.
4.

5-6.
7.

8-12.
13.
14.
15.
16.
17.
18.
19.
20.

B. R. Appleton
E. F. D'Azevedo
C. Bottcher
B. A. Carreras
T. S. Darland
J . J . Dongarra
J . B. Drake
T. H. Dunigan
W. R. Emanuel
R. E. Flanery
W. F. Lawkins
M. R. Leuze
R. C. Mann
C. E. Oliver
B. W. Peyton

2 1-25.
26-30.

31.
32.
33.

34-38.
39-43.

44.
45.
46.
47.

48.
49-50.

S. A. Raby
R. F. Sincovec
G. M. Stocks
M. R. Strayer
D. W. Walker
R. C. Ward
P. H. Worley
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library
/Document Reference Station
Laboratory Records - RC
Laboratory Records Depart men t

EXTERNAL DISTRIBUTION

51. Christopher R. Anderson, Department of Mathematics, University of California, Los An-
geles, CA 90024

52. David C. Bader, Atmospheric and Climate Research Division, Office of Health and En-
vironmental Research, Office of Energy Research, ER-76, U.S. Department of Energy,
Washington, DC 20585

53. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet
Field, CA 94035

54. Marsha J . Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street, New
York, NY 10012

55. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkoping, Swe-
den

56. John H . Bolstad, Lawrence Livermore National Laboratory, L-16, P. 0. Box 808, Liver-
more, CA 94550

57. George Bourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade Av-
enue, Suite 260, Dallas, T X 75237-3946

58. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical Sci-
ences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

28

59. I-liang Chern, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 South Cass Avenue, Argonne, IL 60439

60. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

61. Jean Cote, RPN, 2121 Transcanada Highway, Suite 508, Dorval, Quebec H9P 1J3, CANADA

62. John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall, McCormick
Road, University of Virginia, Charlottesville, VA 22901

63. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX,
England

64. John Dukowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

65. Ian Foster, Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

66. Geoffrey C. Fox, Department of Physics, Room 229.1, Syracuse University, Syracuse, NY
13244-1 130

67. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Ave. N, Suite 500, Seattle, WA
98119

68. Paul 0. Frederickson, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA
94035

69. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

70. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808, Livermore,
CA 94550

71. William D. Gropp, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

72. Eric Grosse, AT&T Bell Labs 21'-504, Murray Hill, NJ 07974

73. James J . Hack, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO
80307

74. Robert M. Haralick, Department of Electrical Engineering, Director, Intelligent Systems
Lab, University of Washington, 402 Electrical Engineering Building, FT-10, Seattle, WA
98195

75. Michael T. Heath, Center for Supercomputing Research and Development, 305 Talbot
Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL 61801-2932

76. Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

77. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

29

.

t

78. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cornell
University, Ithaca, NY 14853-3901

79. Hans Kaper, Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

80. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

81. James E. L e k , 13013 Chestnut Oak Drive, Gaithersburg, MD 20878

82. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808,
Livermore, CA 94550

83. Robert Malone, Los Alamos National Laboratory, C-3, Mail Stop B265, Los Alamm, NM
87545

84. Len Margolin, Los Alamos National Laboratory, Los Alamos, NM 87545

85. Frank McCabe, Department of Computing, Imperial College of Science and Technology,
180 Queens Gate, London SW7 2BZ, ENGLAND

86. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. California
Blvd. Pasadena, CA 91125

87. Neville Moray, Department of Mechanical and Industrial Engineering, University of Illi-
nois, 1206 West Green Street, Urbana, IL 61801

88. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station B,
Nashville, T N 37235

89. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA 94305

90. Robert 0 'Malley, Department of Mat hemat ical Sciences, Rensselaer Polytechnic Inst i t Ute,
Troy, NY 12180-3590

91. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of
Virginia, Charlottesville, VA 22901

92. Ron Peierls, Applied Mathematical Department, Brookhaven National Laboratory, Up-
ton, NY 11973

93. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton, OR
97006

94. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville, TN
37996-1300

95. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading University, Read-
ing RG6 2AX, ENGLAND

30

96. Lee Riedinger, Director, The Science Alliance Program, University of Tennessee, Knoxville,
T N 37996

97. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Labora-
tory, Livermore, CA 94550

98. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton,
OR 97006

99. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA
94035

100. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

101. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los
Alamos, NM 87545

102. Peter Smolarkiewicz, National Center for Atmospheric Research, MMM Group, P. 0. Box
3000, Boulder, CO 80307

103. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, WEST GERMANY

104. Rick Stevens, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 South Cass Avenue, Argonne, IL 60439

t

105. Paul N. Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000, Boul-
der, CO 80307

106. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo, On-
tario, Canada N2L 3Gl

107. Harold Trease, Los Alamos National Laboratory, Mail Stop B257, Los Alamos, NM 87545

108. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

109. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. 0. Box 1892,
Houston, T X 77251

110. David L. Williamson, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,
CO 80307

111. Samuel Yee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford, MA
01731

112. Office of Assistant Manager for Energy Research and Development, U.S. Department of
Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

113-122. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831 .

