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PARALLELIZING THE SPECTRAL TRANSFORM METHOD - PART I 

Patrick H. Worley 
John B. Drake 

Abstract 

The spectral transform method is a standard numerical technique used to solve 
partial differential equations on the sphere in global climate modeling. In partic- 
ular, it is used in CCMl and CCM2, the Community Climate Models developed 
at the National Center for Atmospheric Research. This paper describes initial ex- 
periences in parallelizing a program that uses the spectral transform method to 
solve the nonlinear shallow water equations on the sphere, showing that an efficient 
implementation is possible on the Intel iPSC/SSO. The use of PICL, a portable 
instrumented communication library, and ParaGraph, a performance visualization 
tool, in tuning the implementation is also described. 

The Legendre transform and the Fourier transform comprise the computational 
kernel of the spectral transform method. This paper is a case study of paralleliz- 
ing the Legendre transform. For many problem sizes and numbers of processors, 
the spectral transform method can be parallelized efficiently by parallelizing only 
the Legendre transform. A subsequent paper will discuss parallelizing the Fourier 
transform as well. 

V 





1. Introduction 

In order to understand the effects of the increasing atmospheric concentrations of greenhouse 
gases, numerical simulations covering hundreds of years using high resolution models are needed. 
This is not computationally feasible using current climate models and computers. Developing 
the ability to adequately model the climate will require advances in both numerical algorithms 
and model physics, and massively parallel multiprocessors will be necessary to run such simu- 
lations in a reasonable amount of time [7]. In this regard, we are investigating the suitability 
for parallel computation of the numerical techniques currently used in climate models. 

The spectral transform method [9], [27], [31] is a standard numerical technique for solving 
partial differential equations on the sphere in weather and climate modeling [l], [2], [29], [40]. 
In particular, it is used in CCM1, the Community Climate Model developed a t  the National 
Center for Atmospheric Research (NCAR) [40]. There are both numerical and algorithmic 
issues to be considered before using the spectral transform method in climate models with 
much finer resolutions. In the work described here, we restrict ourselves to investigating how 
efficiently the spectral transform method can be parallelized on distributed memory multipro- 
cessors, and how this performance is likely to scale as both the problem size and the number 
of processors increase. Some theoretical work has been done in this area [lo], [15], [23], but 
empirical studies have been limited to shared-memory multiprocessors with small numbers of 
processors and to massively parallel SIMD multiprocessors [6], [19], [33], [34]. In this paper, we 
describe our initial experiences in parallelizing a serial program that uses the spectral transform 
method to  solve the nonlinear shallow water equations on the sphere, showing that an efficient 
implementation is possible on the Intel iPSC/860. The shallow water equations constitute a 
simplified atmospheric-like fluid prediction model that has been used to  benchmark a number 
of algorithms and machines [3], [18], [34], [37], [39]. This particular code is similar to  the com- 
putational kernel of CCM2, the successor to CCM1 currently being developed at  NCAR, and 
was provided courtesy of J .  J .  Hack at NCAR. 

The spectral transform method approximates the state variables of the problem in both 
physical space, where nonlinear terms are calculated, and spectral space, where the differential 
terms of the equations are evaluated. The spectral representation of a state variable is defined 
by an approximation of the variable with a truncated series of spherical harmonic functions. The 
physical space is a rectangular tensor-product grid whose axes represent latitude and longitude. 
The spectral space is a triangular grid whose axes represent the Fourier modes and the degrees 
of the Legendre polynomials, respectively, that are used in the spherical harmonic expansion. 

Each timestep of the calculation requires transforming the current approximation to the 
solution from spectral coordinates to  physical coordinates, evaluating the nonlinear terms of 
the differential equation, transforming these terms back to  spectral coordinates, and completing 
the time update. Transforming from physical coordinates to spectral coordinates involves a 
fast Fourier transform for each line of constant latitude, followed by Gaussian quadrature to 
approximate a Legendre transform for each line of constant longitude. The inverse transform 
reverses these two steps. In Hack’s shallow water equation program SSUMSB, the time update 
is calculated in spectral space using a semi-implicit technique. 

Our parallel implementation is based on dividing both the physical and spectral coordinates 
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equally among the processors. The physical coordinates are partitioned into slabs, so that each 
processor is responsible for a specified range of latitudes. The spectral coordinates are ordered 
and this ordering is used to partition them into blocks for assignment to  processors. Using this 
decomposition, each processor contains all the information needed to perform the FFTs for its 
latitudes, so an optimized serial FFT can be used for both forward and inverse transforms. The 
evaluation of a Legendre transform for a given line of constant longitude requires information 
from all grid points on that line. The communication required for this part of the algorithm 
is similar to that of the N-body problem [ll], and can be performed efficiently using a ring 
algorithm. With this decomposition and communication strategy, the code runs efficiently on 
the 128-node Intel iPSC/SSO hypercube for problem sizes of interest. 

By decomposing only over latitude, we limit the number of processors that can be used. 
Thus, for an efficient parallel algorithm, the number of processors must not exceed the number of 
latitudes. In a subsequent paper, we will describe decomposing over longitude and parallelizing 
the fast Fourier transforms, and the impact this has on performance. 

Throughout this paper, we emphasize our use of PICL [la], [13], [14], [42], a portable 
instrumented communication library, and ParaGraph [16], [42], a performance visualization 
tool, when developing and tuning the parallel implementation, and when discovering previously 
unknown performance quirks of the iPSC/860. These tools enable us to visualize the algorithm’s 
performance and simplify the modeling of the performance of the algorithm. This is very 
important because we are parallelizing a complex code and using a new multiprocessor, making 
it difficult to develop reliable performance models a priori. 

2. Shallow water equations on a sphere 

An approximation to atmospheric flow can be obtained by considering a single layer, inviscid, 
isothermal atmosphere with the top of the atmosphere being a free surface. Using the hy- 
drostatic assumption, the pressure variables can be replaced with a height function, h,  or the 
geopotential, = gh.  The approximations resemble those made in modeling wave phenomena 
in shallow water, as for example in [25]. Atmospheric flow differs from shallow water theory 
because of the rotation of the sphere, the effect of the Coriolis force, and the compressibil- 
ity of an atmospheric layer. By incorporating these differences into the shallow water theory, 
the resulting approximate atmospheric model exhibits many of the features of more complete 
models. In particular, the evolution and migration of high and low pressures over the surface 
of the sphere is much like observed weather patterns. The similarities with a full model of 
the atmosphere have led many researchers to evaluate numerical methods for atmospheric flow 
using the shallow water equations on the sphere as a first test [3], [4], [as] ,  [30], [36], [37], [39]. 

The shallow water equations on the sphere consist of equations for the conservation of 
momentum and the conservation of mass. With V denoting the horizontal velocity of the layer, 
V = iu + j v ,  the horizontal momentum and mass continuity equations can be written as [35] 

= -fk x V - V@ dv 
dt  
- 
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and 

where the substantial derivative is given by 

and f is the Coriolis term. 
For the application of the spectral transform method a different form of the equations will 

be used. It is convenient to  redefine the horizontal velocity components as U ucosd and 
V E vcosqh, where q5 is latitude, to avoid the singularity in velocity a t  the poles. The new 
variables U and V go to zero a t  the poles and are thus continuous scalar quantities over the 
sphere. The V operator in spherical coordinates is 

where a is the radius of the sphere and the independent variables X and p denote longitude 
and sin4, respectively. The horizontal momentum can also be specified in terms of relative 
vorticity, 

C E k.(V x V), (5) 

and horizontal divergence, 
s = v * v .  

Using the vector identity 

v - v  
2 (V * V)V G V(-) + Ck x V, 

the horizontal momentum equation (1) becomes 

aV v - v  - = -(C + f)k x V - V(@ + -). 
at 2 

Applying k - V x ( ) and V - ( ) to the moment'um equation yields 

- = -v - (C + f )V a 
db v - v  - = k . V  x (C + f )V - V2(@+ 7). dt  

In terms of the variables U and V these equations can be written as 

1 8  1 0  
-(U77) - - a - ap (Vrl) - - -  arl- 

at u ( l  - p 2 )  ax 
1 8  1 0  u2 + v 2  

a( 1 - p2) 
- ---(Uq) - V2(@ + - as - -  

at u( 1 - p2) d V q )  a aP 

(7) 
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where 

and 

The mass continuity equation can also be rewritten as 

a@ - = -v 
at @V - $6, 

where @ is now a perturbation from a constant average geopotential 6. In terms of the U and 
V variables, (15) can be rewritten as 

The velocity vector can be related to  a scalar stream function, +, and a scalar velocity 
potential, x, by 

V = k x V + +  Vx. 

These are related to  vorticity and divergence, through application of the curl and divergence 
operators, by 

r)=v2++ f (18) 

and 

In the spectral transform method, we solve equations ( l l ) ,  (12), and (16) for r ) ,  6 ,  and @, 
respectively, and use equations (17)-( 19) to  calculate U and V .  

3. Spectral transform method 

The spectral transform method is based on a dual representation of the scalar fields in terms 
of a truncated series of spherical harmonic functions and in terms of values on a rectangular 
tensor-product grid whose axes represent latitude and longitude. Representations of the state 
variables in spectral space are the coefficients of an expansion in terms of complex exponentials 
and associated Legendre polynomials, 

where P,"(p) is the (normalized) associated Legendre function [32] and i = a. The spectral 
coefficients are then determined by the equation 
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since the spherical harmonics P," (p)eiemx form an orthonormal basis for square integrable 
functions on the sphere. In the truncated expansion, M is the highest Fourier mode and N ( m )  
is the highest degree of the associated Legendre function in the north-south representation. 
Since the physical quantities are real, tirn is the complex conjugate of [F, and only spectral 
coefficients for nonnegative modes need to be calculated. 

The tensor-product grid in physical space is rectangular with I grid lines evenly spaced along 
the longitude axis and J grid lines along the latitude axis placed at  the Gaussian quadrature 
points in [-1,1]. To evaluate the spectral coefficients, a fast Fourier transform (FFT) is used to 
find Cm(p) for any given p.  The Legendre transform is then approximated using a Gaussian 
quadrature rule. Denoting the Gauss points in [-1,1] by and the Gauss weights by wj, 

(For simplicity, we will henceforth refer to (22) as the forward Legendre transform.) The point 
values are recovered from the spectral coefficients by computing 

for each m (which we will refer to as the inverse Legendre transform), followed by FFTs to 
calculate [(A, p ) .  To allow exact, unaliased transforms of quadratic terms the following relations 
are sufficient: J 2 ( 3 M  + 1)/2, I = 2J,  and N ( m )  = M [31] .  Using N(m) = M is called a 
triangular truncation because the (m, n) indices of the spectral coefficients make up a triangular 
grid. 

The spectral transform method described in this paper calculates the time update of the 
variables 77, 6 and @ in spectral space. The transformed time evolution equations are 

and 

8 
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In these equations the following quantities have been introduced: 

d P 2  H P  z (1  - p2)-, 
d/r 

A E Ur), B E Vr), C E U @ ,  D E V @ ,  and E ( U 2  + V 2 ) / ( 2  - 2p2). The physical U and V 
fields can be recovered from the spectral representation of r) and S using the following relations: 

and 

Note that, along with the evaluation of nonlinear terms and derivatives, the right-,,and sides 
of equations (24)-(26) represent transformations from physical space to spectral space, and 
are algorithmically very similar to the forward Legendre transform (22). Similarly, equations 
(28) and (29) include transformations from spectral space to  physical space, and their inner 
summations are similar to the inverse Legendre transform (23). 

The algorithm for calculating the time update begins with the initial state vectors in physical 
space. To initialize the computation the quantities r), 6 and @ are transformed from physical to 
spectral space. To begin the time update, the quantities A to  E are computed at  each physical 
grid point. Then FFTs are performed on these quantites. Next, the right-hand sides of the 
spectral time update equations (24)-(26) are computed. Once right-hand sides are available, the 
time update is calculated using a standard finite difference approximation to the time derivative. 
An inverse transform updates the variables q ,  6 and @ in physical space. The physical grid values 
of U and V are then updated using equations (28) and (29). This completes the time step. 

Assume that a triangular truncation is used. Computing A, B, C ,  D, and E on the physical 
grid requires O ( I J )  operations.' The FFT at each Gaussian latitude for each of these quantities 
requires @ ( I  log I) operations, for a total complexity of O(J . I log I). The subsequent evaluation 
of the right-hand sides of equations (24)-(26) requires e(J) operations for each of the modes, 
resulting in a total complexity of O(J  . M 2 ) .  The complexity of the time update is O( 1) for each 
of the spectral coefficients, for a total complexity of 0 ( M 2 ) .  The inverse transform to update 
r), 6, and @ and the update formula for U and V all have the same order of complexity as a 
Legendre transform for each mode (O(J  - M 2 ) )  followed by an FFT for each Gaussian latitude 
( @ ( J  Ilog I)). Thus, the total complexity for a single timestep is O(J . Ilog I) + O(J - M 2 ) .  
Note that if J M (3M + 1)/2 and I = 2J,  then the complexity becomes O ( M 3 ) ,  in agreement 
with the complexity reported in [3], and the Legendre transform and its algorithmic equivalents 
are the most time consuming portion of the calculation for large M. 

lIn this discussion, the expression Q(z) denotes a quantity whose leading order term is proportional to x. 
See Horowitz and Sahni [20, p. 311 for a formal definition of €3 notation. 
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4. Example problems 

A triangular truncation of the spherical harmonic expansion is one of the three options, along 
with rhomboidal and trapezoidal truncations, found in CCM1 [40, pp. 41-45]. For a triangular 
truncation, it is common practice to choose J and I to be the smallest values satisfying J > 
(3M + 1)/2 and I = 2 J for which I is a convenient number of longitudes over which to calculate 
an FFT. For such a model, the value of A4 is sufficient to characterize the resolution of the 
model, and is commonly referred to  as TM. 

It is unclear what resolution future climate models will use. The initial design point for 
CCM2 is T42 [41, p. 31. A resolution of T213 is being planned for the European operational 
weather model [24]. In this paper we present results for T21, T42, T85, T169, and T340. These 
examples indicate how the parallel implementation scales as a function of problem size and 
number of processors. The T85 example, which is the largest of our examples that will fit in 
the memory of a single node on the Intel iPSC/860, will be used in examples detailing the 
performance of the algorithm. 

As a minimal test of the correctness of our parallel implementations, initial data is used that 
represent a steady state zonal flow [38]. Note that the choice of initial data does not influence 
the execution time of the method once the other problem parameters have been fixed. 

5 .  SSWMSB 

SSWMSB is a FORTRAN program written by J.  J .  Hack at  NCAR. It is a serial implementa- 
tion of the algorithm described in $3 that was designed to solve the shallow water equations 
efficiently on a vector computer. When using a triangular truncation, storage is required for 
the approximately M2/2 complex spectral coefficients of 77, 6 ,  and a, and for U ,  V ,  q, 6, and 

on the I x J tensor-product grid. The associated Legendre polynomials P z ( p )  and their 
scaled derivatives H,fia(p) are precalculated for each spectral coefficient and for each latitude 
in the northern hemisphere, requiring storage for approximately J . M2/2 values. The pro- 
gram exploits symmetry in the approximation to the Legendre transform between northern 
and southern latitudes, effectively halving the operation count over the naive implementation. 

We first ported SSWMSB to a Sun workstation, and then to a single processor on the IPSC/860. 
It is a reflection on the high quality of SSWMSB that this was a relatively simple task, requiring 
primarily the removal of calls to graphics routines and associated logic that are used in the 
post-processing of the results. 

6. Intel iPSC/S60 

The Intel iPSC/860 is a state-of-the-art medium-grained distributed-memory multiprocessor 
with up to 128 nodes. Each node is either an Intel 8 6 0  microprocessor with 8 megabytes of local 
memory or an Intel 80386 microprocessor with 1, 4, 8, or 16 megabytes of local memory. The 
nodes are physically interconnected by a hypercube network, but the communication hardware 
effectively emulates a fully connected network. (See [8] and [22] for more details.) The iPSC/860 
is also known as the Touchstone Gamma prototype, since it represents an early phase of Intel’s 
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Touchstone project. Future Touchstone prototypes will scale up to  2048 nodes [26], and are 
candidate architectures for the next generation of global climate models. 

The iPSC/860 at Oak Ridge National Laboratory, which was used for our performance 
measurements, has 128 nodes, each of which is a 40 MHz i860 processor with a peak execution 
rate of 80 Mflops for 32-bit floating point calculations. Thus, the aggregate peak performance 
is 10 Gflops. The peak execution rates are based on conditions that are difficult to  realize (and 
sustain) in practice even for assembly coded routines [17]. For most compiled FORTRAN or 
C programs, the performance is significantly less, ranging between 2 and 8 Mflops on a single 
node. All performance results reported here used standard FORTRAN 77 source code compiled 
using the Portland Group compiler with -01 optimization. At the time of these experiments, 
invoking higher levels of optimzation did not consistently improve performance, and sometimes 
introduced errors. 

7. PICL and ParaGraph 

The Portable Instrumented Communication Library (PTCL) is a subroutine library that imple- 
ments a generic message-passing interface on a variety of multiprocessors [12], [ 131, [ 141, [42]. 
Programs written using PICL routines instead of the native commands for interprocessor com- 
munication are portable in the sense that the source can be compiled on any machine on which 
the library has been implemented. Correct execution is also a function of the parameter values 
passed to  the routines, but standard error trapping is used to  inform the user when a parame- 
ter value is not legal on a particular machine. Programs written using PICL routines will also 
produce timestamped trace data on interprocessor communication, processor busy/idle times 
and simple user-defined events if a few additional statements are added to the source code. 

ParaGraph is a graphical display system for visualizing the behavior of parallel algorithms 
on message-passing multiprocessor architectures [16], [42]. It takes as input execution trace 
data provided by PICL and replays it pictorially, thus providing a dynamic depiction of the 
behavior of the parallel program. ParaGraph provides several distinct visual perspectives from 
which to view the same performance data, enabling the viewer to gain insights that might be 
missed by any single view. 

We used PICL subroutine calls to implement interprocessor communication when paralleliz- 
ing SSWHSB. This allows us to port the resulting code to similar message-passing multiprocessors, 
like the NCUBE family of hypercubes, with only a slight loss of performance. For example, 
when tracing is not enabled, the overhead of using PICL instead of the native commands is 
less than 1% for our implementations of SSWHSB on the iPSC/860. More importantly, the use 
of PICL allows us to  collect trace data for analyzing and tuning the parallel implementation. 
This has been crucial in our efforts to produce an efficient parallel program. ParaGraph is an 
invaluable tool in the analysis since the amount of trace data collected in a typical run is very 
large. We use ParaGraph displays in the subsequent sections to illustrate the behavior of our 
parallel implementations. Note that ParaGraph displays are most detailed (and informative) 
when viewed in color, but monochrome displays are also supported, and these monochrome 
displays are used in this paper. 

. 
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8. Parallel Implementation 

Y 

V 

Our first step in parallelizing SSWHSB was to  partition the physical coordinates into slabs, so 
that each processor was responsible for a specified range of latitudes. To exploit the symmetry 
in the Legendre transform, each processor was assigned two slabs, one for latitudes in the 
northern hemisphere and one for the “reflected” latitudes in the southern hemisphere. Thus, at 
most J / 2  processors could be used, and each processor was responsible for at least two latitude 
lines. 

The second step in parallelizing SSWHSB was to partition the spectral coefficients as well. 
Partitions of the latitudes and the spectral coefficients are independent, and all equipartitions 
of the spectral coefficients are equally good. We chose to  order the spectral coefficients and to 
use this ordering to  partition the spectral coefficients into blocks for assignment to processors. 
We ordered the spectral indices by first running up the columns (of constant mode) and then 
moving from left to right (increasing mode). This ordering will be convenient when partitioning 
over longitude in physical space as well. Figure 1 gives an example partitioning of 15 spectral 
coefficients into 3 subsets using this approach. 

00... 
00.. 
000 
00 

l o  
m 

Figure 1: Example three-element partition of triangular grid representing spectral coefficients. 
Each circle represents a spectral coefficient, and each circle pattern represents a different element 
of the partition. 

Using this decomposition, each processor contains all the information needed to perform 
the FFTs for its latitudes, so an optimized serial FFT can be used for both forward and inverse 
transforms. The evaluation of a Legendre transform for a given line of constant longitude 
requires information from all grid points on that line. The communication required for this 
part of the algorithm is similar to that of the N-body problem [ll], and can be performed 
efficiently using a ring algorithm. 

When transforming from spectral space to physical space, the spectral coefficients are moved 
around a “ring” of processors. At each step a processor sends its current block of data to the 
processor on its left (in the ring topology), uses the data to calculate contributions to the 
physical quantities it is responsible for, then receives a new block of data from the processor 
on the right. After P steps, the calculation is complete and each block of spectral coefficients 
has been returned to its source processor. The concurrent send (receive) volume of data is 
approximately M 2 / 2  complex numbers for each state variable, and much of the computation 
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and communication is overlapped because the data is forwarded before it is used. We will refer 
to this as the first ring algorithm, or ring algorithm 1. 

When transforming from physical to spectral space, the spectral values being calculated are 
circulated around the ring. Each processor calculates its contribution to  the block of coefficients 
it knows that it will receive next, receives that block from the “right”, adds in its contribution, 
sends the updated block to the “left”, and begins the calculation for the next block. As before, 
the computation and communication are overlapped and the concurrent send (receive) volume 
is M 2 / 2  complex values per state variable (or equation). We will refer to  this as the second 
ring algorithm, or ring algorithm 2. 

As part of this parallel implementation, we also modified SSWHSB to combine the evaluations 
of all forward (inverse) transforms during each timestep and to combine the state vectors into 
a single array of one larger dimension. Combining the transforms increases the communica- 
tion/computation overlap and decreases communication start-up cost. Combining the state 
vectors eliminates the need to pack and unpack message buffers. 

While other approaches to parallelizing the Legendre transform in SSWMSB exist, equi- 
partitioning both the physical and spectral coordinates among the processors and using the 
ring algorithms to transform between the physical and spectral coordinates has numerous ad- 
vantages. First, this parallel implementation is “perfectly parallel” in the sense that the floating 
point operations in the inner loops of the original program are divided equally among the pro- 
cessors. Second, the ring algorithms require only that the underlying architecture support a 
ring topology in order to minimize the communication cost, which may be important in the 
next generation of distributed-memory multiprocessors. Third, the communication volume gen- 
erated by the ring algorithms is the minimum possible for a parallel Legendre transform that 
does not perform redundant calculations. Fourth, the organization of the ring algorithms max- 
imizes the potential for communication/computation overlap. One disadvantage of the ring 
algorithms is that the communication start-up cost is O ( P ) ,  which is not the minimum for a 
parallel Legendre transform. The communication/computation overlap (potentially) offsets the 
additional communication cost. 

8.1. Denormalized numbers. 

Table 1 contains the performance numbers for our initial implementation of the algorithm 
described above. Here P is the number of processors used, T is the total execution time (in 
seconds) for 10 timesteps, S is the observed speed-up over the execution time on one processor, 
E is the parallel efficiency, C is the maximum communication time (in seconds) observed on 
a single processor, and C/T is the ratio of the maximum communication time to the total 
execution time. The communication time is the observed time during which a processor is 
sending a message, receiving a message, or waiting for a message. The time that a processor 
spends within a system routine is observable, while cycle-stealing and memory contention caused 
by overlapping communication and computing are not. 

These performance numbers are both disappointing and surprising. Most surprising is that 
the communication cost is very high for small numbers of processors, and is not reasonable 
until P becomes large. The reason for the unexpected behavior of this implementation can 

. 
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Commmunication (C)  
.oo 

3.62 
5.23 
3.22 
2.41 
1.69 
1.76 

C/T 
0.00 
0.17 
0.37 
0.40 
0.48 
0.51 
0.63 

. 

Time (T) 
39.51 
21.57 
14.29 
8.03 
5.00 
3.31 
2.80 

F== Processors ( P )  Speedup (S) Efficiency (E) 
1 .oo 1 .oo 
1.83 .92 
2.76 .69 
4.92 .62 
7.90 .49 
11.94 37 
14.11 .22 

16 
32 

I 64 

I 

Table 1: Performance of initial parallel implementation. 

E3 
TFsK1 TAQ( 2 

m 
TASK 0 

Figure 2: Task graph showing effect of denormalized numbers on ring algorithm. 
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be observed from the tusk graph in Fig. 2. The task graph indicates what each processor was 
doing at a given time. Three different tasks are indicated. Task 1 is the computational kernel 
of the first ring algorithm, calculating contributions to  physical quantities from the current 
block of spectral coefficients. Thus, a sequence of P “task 1” blocks, separated by white blocks 
representing interprocessor communication, occurs for each processor during each timestep. 
Task 2 is the computation occurring between the two ring algorithms, primarily a sequence of 
FFTs. Task 0 is the computational kernel of the second ring algorithm, calculating contributions 
to the next block of spectral coefficients to arrive. Thus, each processor also has a sequence of 
P “task 0” blocks per timestep. Because only three tasks can be indicated in this monochrome 
display, the spectral coefficient update in the second ring algorithm is also called task 1 and 
the time update of the spectral coefficients is also called task 2. Both of these tasks take very 
little time, and are easily distinguished in the task graph. 

The task graph in Fig. 2 displays a little more than one timestep when using 16 processors to 
solve T85. Since the latitudes and spectral coefficients are divided equally among the processors, 
each instance of a task should take approximately the same amount of time as every other 
instance of the same task. This is true for task 2, but the bottom four processors have some 
task 0 and task 1 blocks that are up to 20 times as long as they should be. The resulting 
load imbalance destroys the efficiency of the ring algorithm, causing processors to wait for 
long periods for messages. The reason for the load imbalance is the presence of denormalized 
numbers2 in the precalculated values P z ( p )  and H,“(p) .  The Intel iPSC/860 supports the 
IEEE floating point standard, but handles computation with denormalized single or double 
precision numbers in software, not hardware. Using our partition of the spectral coefficients 
and the latitudes, the denormalized numbers are not equidistributed over the processors, causing 
large load imbalances. 

8.2. Blocking sends 

The solution to  the problem of denormalized numbers is simple, for this application. For 
the resolution of the example problems used in our tests, the additional accuracy provided by 
denormalized numbers is unnecessary. Our solutions are just as accurate when the denormalized 
P r ( p )  and H r ( p )  values are set to zero. If higher accuracy is required, using double precision 
arrays to hold P,”(p) and H , ” ( p )  eliminates the denormalized numbers when solving T85 and 
restores the load balance. For the larger examples, denormalized numbers will reoccur even 
when using double precision variables, and will still need to be set to zero. Note that, while using 
double precision arrays would normally significantly increase the execution time of SSWHSB when 
compared to using single precision arrays, the increase is partially offset by not doing arithmetic 
with denormalized numbers. For example, the execution time for solving T85 when using one 
processor is approximately 30% greater when the arrays are double precision than when they 
are single precision, if denormalized numbers have been zeroed. When denormalized numbers 
are not set to zero, the double precision version is only 5% slower than the single precision 
version, and it becomes faster when more than one processor is used, due to the better load 

. 

2A denormalized number is a non-zero floating-point number whose exponent is the minimum admitted and 
whose leading significant digit is zero [5]. 
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balance. 
Table 2 contains the performance numbers when denormalized P T ( p )  and Hr(p)  values are 

set to zero. Note that speedup and efficiency are measured in terms of the execution time when 
using one processor with this implementation. Since the fastest serial execution time belongs 
to an implementation described later in this paper, we have not normalized the speedup and 
efficiency measures over all implementations. To compare between implementations, we use the 
raw execution times. 

As expected, the improvement over the previous implementation is significant, but the 
communication cost is still higher than expected for small P. The Gun22 c h a d  in Fig. 3 indicates 
what the difficulty is. The Gantt chart indicates what state (busy, communicating, idle) each 
processor is in at any given time. Figure 3 is a magnified snapshot of the start of the second 
ring algorithm, calculating the right-hand sides of equations (24)-(26), for problem T85 when 
using 16 processors. Note the stagger of the shaded blocks. These blocks primarily represent 
time spent in the PICL routine sendO, which initiates a message transmission. In most cases, a 
processor is not exiting send0 until the processor it is sending to (the one immediately below it 
in the Gantt chart) has finished computing. This causes long delays for the sending processor. 

The problem is due to the communication protocol on the iPSC/860 when using the native 
iPSC command csend, which is called within the PICL routine send0. On the Intel iPSC/2, if 
a message is sent to a processor that is not expecting it, the user process is interrupted and the 
message is copied into a system buffer. When the request for the message is finally made, the 
message is copied from the system buffer into the designated user buffer. In an attempt to cut 
down on buffer copies of long messages, the current operating system on the iPSC/860 does 
not interrupt the user process to handle the incoming message, but rather waits until control is 
relinguished to the operating system for other r e w n s .  Since the iPSC command csend blocks 
until the message is on its way and the message buffer can be reused, the sending processor 
is blocked until a compute phase on the receiving processor is finished. The operating system 
designers are aware of this problem, and future revisions of the operating system will use a 
different communication protocol. 

8.3. Blocked network protocol messages 

To avoid the “blocking send” phenomenon, we replaced the calls to the native iPSC commands 
csend and crecv, which do not return until the message buffer can be used, with calls to the 
commands isend and irecv, which return immediately. The logic of the first ring algorithm 
is now (a) call irecv to indicate where the next message should be put, (b) call isend to send 
the current data to the neighbor to the left, (c) compute using the current data, and (d) wait 
until the isend and irecv calls have completed by calling msgwait. Similar logic is used for the 
second ring algorithm. This requires double buffering so that incoming data does not overwrite 
the data that is currently being used. Since isend, irecv, and msgwait are not available in the 
original version of PICL, new commands sendbegin0, sendendo, recvbegin0, and recvendO 
have been added that use these commands. 

This new logic not only avoids the blocking send, but also eliminates some of the (system- 
level) buffer copying inherent in the previous implementation. Other minor modifications were 
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Table 2: Performance of combined latitude/spectral coeficient partitioned code after removal 
of denormals. 

16637 rn 
BUSY OVERNAD 

. 

. 

0 
IDLE 

17437 

Figure 3: Gantt chart showing effect of blocking send on ring algorithm. 
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also made at this time to increase the potential for communication/computation overlap. Ta- 
ble 3 contains the performance numbers for this new implementation. First, note we achieve 
“superlinear” speed-up when P = 2. The performance of the i860 processor is very sensitive to 
the number of cache misses, and the decrease in the workload per processor as P increases from 
1 to 2 permits a higher percentage of the data to reside in cache at one time. We notice this 
for the first time in this implementation because the double buffering increases data locality, 
thus decreasing cache misses. The performance of this implementation is very good for small 
numbers of processors, and does not seem inappropriate for large P. 

I. Foster, one of a group of researchers at Argonne National Laboratory who are examining 
the theoretical scalability of the spectral transform method [lo], used our performance numbers 
to  validate their analysis. The numbers fit very well if the communication costs of the iPSC/SSO 
are much higher than benchmarks indicate. To clarify this anomaly, we used ParaGraph to 
examine the behavior of this implementation more closely. Figure 4 is the Gantt chart for 
the first part of the second ring algorithm when using 32 processors to  solve T85. This figure 
indicates that processors are idle an unexpectedly large portion of the time, although it is 
unclear at first glance what is causing this behavior. Upon closer examination (of this figure 
and other ParaGraph displays), we discovered that the time required to  send a message to a 
neighboring processor varies significantly during the computation. This inconsistency has the 
same effect as a load imbalance on the ring algorithms, causing a significant increase in the 
idle time when P is large. We queried P. Pierce at Intel, and received the following reply. The 
standard protocol for long messages is (a) to query the destination processor as to  whether there 
is sufficient space for the message, (b) to wait for the reply, and (c) to begin the transmission of 
the message. In a ring algorithm, each processor is not only requesting to  send a message to its 
“left”, but it is also being requested to accept a message from its “right”. If the transmission 
of the message from the right begins before the acknowledgement from the left is received, 
this acknowledgement is blocked until the “incoming” message is completed. As P increases, 
and the amount of computation between communication calls decreases, this behavior becomes 
both more probable and more destructive to the efficiency of the ring algorithms. 

8.4. Simplified network protocol 

A simple solution to the performance problem caused by the communication protocol is to use 
a special message type available on the Intel iPSC/2 and iPSC/860. If the message type used 
to  send a message is within a special range [21], then the destination processor is not queried as 
to whether there is room for the message. If the user has not “told” the destination processor 
to expect the message, by calling crecv or i recv  for example, before the message arrives, then 
the message is thrown away. Some care is required to use these force types correctly, but the 
ring algorithms are deterministic, and all message types and sizes are known a priori .  Thus, 
by increasing the amount of working storage allocated to message buffering, the request and 
acknowledgement messages of normal interprocessor communication can be eliminated. The 
performance of this implementation for T85 is indicated in Table 4. Figure 5 is the Gantt 
chart for the first part of the second ring algorithm when using 32 processors to solve T85. It 
is clear that using force types avoids the inefficient behavior illustrated in Fig. 4: almost all 
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Table 3: Performance of combined latitude/spectral coefficient partitioned code after eliminat- 
ing blocking send phenomenon. 

I 
W S Y  

0 
IDLE 

Figure 4: Gantt chart showing effect of three step message protocol on ring algorithm. 
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1 

16 2.62 13.27 3 3  .117 0.04 
32 1.68 20.69 .65 .198 0.12 

c 

I I  I I I I 

64 11 1.28 I 27.16 [ .42 I .359 I 0.28 I 
Table 4: Performance of combined latitude/spectral coefficient partitioned code after introduc- 
ing force types. 

rn 
BUSY 

0 
IDLE 

Figure 5: Gantt chart showing effect of using force types in the ring algorithms. 
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idle time has been eliminated and 50% more steps of the ring algorithm have been completed 
during the interval of time displayed in the figure. 

9. Results and analysis 

Table 5 contains the performance numbers of the final implementation for problems T21, T42, 
T85, T169, and T340. This table contains five new columns. The column marked J / P  is the 
number of latitudes assigned to each processor for the given problem and number of mocessors. 
The column (C+ I) is the maximum (over all processors) of the sum of the communication time 
and the idle time at  the end of the program spent waiting for the last processor to finish. (As 
the number of timesteps increases, the difference between (C + I) and C becomes arbitrarily 
small, but it is still a factor in the results reported here.) The column Tperf is the execution 
time if the program were “perfectly parallel”, i.e. the execution time when using one processor 
divided by P. The column Tcomp is the execution time for a version of the program in which 
the subroutine calls that invoke interprocessor communication are commented out. The column 
Tcomm is the execution time for a version of the program in which everything is commented 
out except the subroutine calls that invoke interprocessor communication and logic associated 
with interprocessor communication. 

First, note that the efficiency is high (2 80%) if a t  least eight latitude lines are assigned to 
each processor. Also note that the efficiency is almost solely a function of J / P  across all of the 
problems. This “fact” is used to define the speedups and efficiencies for problems T169 and 
T340, since the executable of the program when compiled for these problems will not fit in the 
memory of a single proce~sor .~  The speedup and efficiency for the smallest number of processors 
on which the executable will fit is extrapolated from the efficiency values observed in the smaller 
example problems for the same number of latitudes per processor. The extrapolated values are 
surrounded by quotes in Table 5. Subsequent speedups and efficiencies are calculated from these 
extrapolated values. Note that these subsequent values are consistent with the assumption that 
efficiency is solely a function of J / P .  

As mentioned earlier, the parallel implementation described in this paper is “perfectly par- 
allel” in that the floating point operations in the inner loops of the original program are divided 
equally among the processors, and the parallel execution time should be Tperf. But this naive 
analysis ignores (at least) two other costs, the observable communication overhead, reflecting 
the time spent in interprocessor communication routines, and the computation overhead, re- 
flecting loop overhead, logic associated with managing interprocessor communication, and the 
redundant computation of intermediate results that are too costly to communicate around the 
ring.4 An estimate for the observable communication overhead is given by C. The compu- 
tation overhead can be estimated by subtracting Tperf from Tcomp. Of these two, only the 

. 

3The size of the executables can be reduced dramatically by not precomputing the associated Legendre poly- 
nomials and their derivatives, but this is beyond the scope of our experiments here. Our parallel implementations 
of SSWMSB make no substantive changes to the original serial algorithm except reordering the computations. 

‘In general, both of these costs vary from processor to processor. Since the amount and scheduling of both 
computation and communication is the same on all processors, there should be little variation in costs between 
processors. The performance measurements for our final implementation support this, and we treat these costs 
as being processor independent in our discussions. 
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P J I P  T S E C ( C + I )  Tperf 
1 32 2.40 1.00 1.00 .OOO 0.00 2.40 
2 16 1.24 1.94 .97 .033 0.033 1.20 
4 8  .72 3.33 .83 .046 0.047 .60 
8 4  .51 4.71 .59 .lo8 0.108 .30 
16 2 .49 4.90 .31 .175 0.175 .15 

c 

Z o m p  Tcornm 
2.40 .002 
1.20 .083 
.638 .166 
.370 .195 
.239 .265 

P J / P  T S E C (C+ 1) Tperf 
1 64 14.03 1.00 1.00 .OOO 0.00 14.03 
2 32 7.03 2.00 1.00 ,105 0.105 7.02 
4 16 3.70 3.79 .95 .lo1 0.102 3.51 
8 8 2.12 6.62 .83 .152 0.152 1.75 
16 4 1.41 9.95 .62 .207 0.208 .88 
32 2 1.25 11.22 .35 .418 0.418 .44 

Tcomp Tcomm 
14.03 .004 
6.90 .259 
3.52 .432 
1.86 .515 
1.07 .639 
.68 .771 

16 
32 
64 

8 2.62 13.27 .83 .117 0.129 2.17 2.33 .635 
4 1.68 20.69 .65 .198 0.201 1.09 1.31 .674 
2 1.28 27.16 .42 .359 0.359 .54 .83 307  

Table 5: Performance of best combined latitude/spectral coefficient partitioned code. 

P J / P  T S E C (C + 1) Tperf 
64 8 28.00 “51.20” “.go” .472 0.519 22.4 
128 4 18.19 78.81 .62 350 0.889 11.2 

Tcomp Tcomm 
24.74 9.21 
14.31 9.36 
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observable communication overhead is amenable to minimization in the parallel implementa- 
tion, once serial inefficiencies are eliminated. We successfully avoided packing and unpacking 
message buffers in our implementations, and, modulo compiler improvements, the computation 
overhead represents a fixed cost. Thus, Tcomp is a lower bound on the execution time of any 
parallel implementation of SSWMSB. 

Without overlapping communication and computation, the observable communication over- 
head would be at least as large as Tcomm. (It can be even larger since load imbalance or 
network contention appear as communication overhead. Note that Tcomm is only a lower 
bound because our use of isend, irecv, and force types for interprocessor communication min- 
imizes contention for network resources.) Thus, Tcomm - C is a conservative estimate of the 
amount of communication that is available to be overlapped with computation, and 

(Tcomm - C)/Tcomm (30) 

is a measure of how effective a parallel implementation is at hiding communication. Table 6 
describes this measure for our implementation. Thus, our final parallel implementation is very 

(Tcomm - C)/Tcomm 

Table 6: Relative amount of hidden communication. 

effective at hiding communication costs. 
Some of the hidden communication still represents an overhead in the parallel implementa- 

tion, which we will refer to as the hidden communication overhead. While we conjecture that 
this overhead is due to cycle-stealing and memory contention, its magnitude is easily calculated 
from our performance numbers. For example, if there were no hidden computation overhead, 
then 

Tcomp + (C + 1) 

would be an overestimate of T. Table 7 describes this estimate and its error for T85. Thus, (31) 
is an overestimate only for P = 2, and it is an underestimate by as much as 10% for the other 
cases. The fraction of the hidden communication that contributes to the hidden communication 
overhead can be estimated by 

T - (Tcomp + (C + I ) )  
Tcomm - C 

The numerator is an estimate of the increase in computation time due to the hidden overhead, 
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32 
64 

L 

I 
- .43 .36 .30 - 
- - .20 .35 .31 

Table 7: Comparison of execution time estimate to  observed execution time. 

while the denominator is an estimate of the amount of communication that is hidden. This 
measure is indicated in Table 8. On the average, 30% of the hidden communication contributes 

I P 11 T21 I T42 I T85 1 T169 I T340 I 

1 16 11 .84 I .31 I .31 I .16 1 - 1 I I  I I I I 

Table 8: Estimate of fraction of hidden communication that contributes to  hidden communica- 
tion overhead. 

to the hidden communication average when P > 2. 

IO. Performance model 

The following rough analysis supports the strong dependence of the efficiency on J/F. The 
dominant terms in the serial complexity of the spectral transform method are of the form 

T, z aJI log,  I + bJM2 

for positive constants a and b. Since the parallel implementation is “perfectly parallel”, the 
parallel complexity should be Tp = T,/P plus a term representing the computation overhead 
and a term representing the communication overhead, reflecting both the observable and hidden 
communication overheads. The dominant term in the computation overhead is proportional to 
the number of times the outer loops in the ring algorithms are executed, and has the form chf2  
for some positive c. The communication overhead is a function of both the number of sends 
(receives) and the volume of information sent (received) during the ring algorithms, and has 
the form dP + e M 2  for positive constants d and e if communication and computation are not 
overlapped (i.e. all communication is reflected in the observable communication overhead) and 
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if there is no contention for network resources. The speedup of the resulting model is 

a J I l o g 2 1  + bJM2 
a(J/P)Il0g2 I + b(J/P)M2 + (c+e)M2 + d P '  s =  

8 

and the efficiency is 

E = S / P  
- a(J/P)Ilog2 I + b(J/P)M2 - 

a(J/P)l log2 I + b(J/P)M2 + (c+e)M2 + dP 

Since (Ilog2 I)/M2 and P / M 2  both go to zero as M grows, this expression for the efficiency 
is primarily a function of J/P for large M ,  converging to b/(b + ( c  + e)P/J)  when M + 00. 

If communication and computation are instead assumed to be completely overlapped with no 
hidden communication overhead, then an analogous result holds with the expression (c + e) 
replaced by max{c,e) in the asymptotic formula. Note that both of these models are too 
simplistic to  model the observed behavior. They ignore the possibility of partially overlapped 
communication and of hidden communication overhead. But these models do partially explain 
the observed relationship between the efficiency and J/P. 

11. Conclusions 

Our initial experiments in parallelizing the spectral transform method indicate that efficient 
implementations are possible on the iPSC/860 even when decomposing only over latitude in 
the physical space and parallelizing only the Legendre transform. This parallel implementation 
limits us to using no more than half as many processors as there are lines of latitude, which will 
cause problems when scaling the problem size because the serial complexity grows cubically 
as a function of the number of latitudes. But, since the performance of the parallel Legendre 
transform appears to be solely a function of the number of latitudes assigned per processor, 
further exploitation of parallelism, such as decomposing over longitude and parallelizing the 
fast Fourier transform, will not change our conclusions about the efficiency of the parallel 
Legendre transform. Our next step is to introduce a parallel FFT into SSWHSB and examine the 
tradeoffs between decomposing over latitude and longitude, and how the combined efficiency of 
the parallel Legendre transform and the parallel FFT varies as a function of the decomposition. 

Note that the observed efficiencies are sensitive to compiler improvements or the introduction 
of assembly-coded inner loops. The observed Mflop rate for the one processor implementation of 
T85 is 4.8, on a processor whose peak rate is 80 Mflops. As better compilers become available, 
the efficiency will drop. For example, Tcomm represents a lower bound on the execution time 
for any executable of the code, and it is already greater than 60% of the observed execution time 
when two latitude lines are assigned to each processor. Thus, while we achieve an aggregate 
Mflop rate of 340 when solving T340 using 128 processors, we can not do better than 735 Mflops 
for this problem with the current interconnection hardware and microprocessor, no matter how 
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good the compiler is. High efficiency can always be “recovered” by increasing the number 
of latitude lines assigned to each processor, but this requires increasing the problem size or 
limiting the number of processors. 

Execution time, rather than efficiency, is the important issue. The goal of this work is 
to determine whether the parallel spectral transform method and the iPSC/860, or similar 
machines, can provide the turn-around time to run the next generation of global climate mod- 
els. Our performance measurements indicate that our parallel implementation of the Legendre 
transform in SSWNSB is near optimal with respect to communication overhead, and that it will 
be useful in determining these issues. 

The work described in this paper took five months to complete. Without PICL and Para- 
Graph, we would likely have stopped the work much sooner, out of simple frustration, and 
the results would have been much worse. These tools were crucial in our efforts to identify, 
understand, and correct performance bottlenecks. 
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