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DISCRETE PEARSON DISTRIBUTIONS 

K O .  Bowman 
L.R. Shenton 

M.A. Kastenbaum 

Abstract 

These distributions are generated by a first order recursive scheme which equates 
the ratio of successive probabilities to the ratio of two corresponding quadratics. 
The use of a linearized form of this model will produce equations in the unknowns 
matched by an appropriate set of moments (assumed to exist). Given the moments 
we may find valid solutions. There are two cases; (a) distributions defined on the 
non-negative integers (finite or infinite) and (b) distributions defined on negative 
integers as well. For (a), given the first four moments, it is possible to set this up as 
equations of finite or infinite degree in the probability of a zero occurrence, the 5th 
component being a product of s ratios of linear forms in this probability in general. 
For (b) the equation for the zero probability is purely linear but may involve slowly 
converging series; here a particular case is the discrete normal. Regions of validity 
are being studied. 
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1. INTRODUCTION 

Being confronted with several sets of extensive data of a discrete nature organized 
into cells, we found that none of the classic2 structures (Poisson, Binomid, Negative 
Binomial) came near to  acceptability from a goodness-of-fit point of view. A search 
seemed to  suggest that even though there are several generalizations, the fitting problem 
using moments implied fairly serious complications. Since we had 20 or more cells, it 
appeared that 4 or more parametered discrete distributions would be needed. It was 
natural to consider the Pearson discrete family generated by the 1st order recurrence 

P, and Qt being polynomials in T ,  and the probabilities being yo, y1, y2, - - of oc- 
currences in corresponding cells. If we are confronted with experimental (or even 
mathematically defined) data, then we can think of utilizing a set of moments (data 
moments will certainly exist). Now (1) is not carefully defined, for it requires yo, y1, 
y2, - ., and these must be non-negative and sum to unity. The linearization of (1) with 
multiplication by a power of T (including ro)  leads to a required set of equations to 
determine the parameters in P S ( r )  and Q ~ ( T )  in terms of yo in general. We then have 
an equation for yo, for determining yo assuming there is a solution. 

The corresponding case of a doubly infinite set of probabilities (yo, yfl, yf2, ...) is 
treated in a similar fashion and is sometimes referred to  as the Type IV case. We show 
here that potential solutions are easily set up, given a set of moments and assuming 
that yo # 0; transfers of the origin may take care of this case. 

We found the studies of Ord quite illuminating and reference may be made to his 
[5], [6], and [8] papers. There is also his book [7] on frequency distributions with many 
references to  generalizations. 

Of course it would be amiss to omit the name of Karl Pearson [9] to  whom the basic 
notion is usually attributed. 

2. BASIC FORMULAE FOR THE SEMI-INFINITE CASE 

2.1. Development of Formulae 

Let the model be 

subject to  

yo + k1yo 4- k z h y o  + * * = 1. 

It is assumed that k, 2 0, s = 1,2,  . The form in (2) is similar to  that used by Ord 
[5 ] ,  [6], [8]. Our interest is fitting (2) to  statistical data defined as frequencies no, n1, 
- - a; n, being the frequency in the s th  cell. The approach is computer oriented; it is 
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readily generalid. 
The four parameters can be determined by moments using 

00 00 

~ ( C O  i- CIZ f c d ) ( Y r  - Vr-i)z8 = Z'(Q - r )YT- i ,  (U = 0,1,2,3) 
r= l  T-1 

The right hand component may be defined in terms of (a - pi - z). Baaic elements 
are; 

in terms of the mean and central moments, where 

v, = E ( z  + 1y - E(z) . .  
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2.2. Examples 

2.2.1. Poisson distribution 

Poisson distributions are those with yr = e-@O'/r! For this CO = 0, C1 = 1, Cz = 0, 
and C3 = 0. Once yo is evaluated accurately, then subsequent yr  turn out to be all 
exact Poisson probabilities. For example, 

6 = 0.5 0.6065 0.3033 0.0758 0.0126 0.0016 
0 = 0.75 0.4724 0.3543 0.1329 0.0332 0.0062 

2.2.2. St uttering Poisson Distribution 

Stuttering Poisson distributions are those with probability generation function 
e--a-b-c+atfbt2+Ct3;  we restrict attention here to a = 1, b = 1/2, c = 1/3. The moments 
are p i  = 3, p2 = 6, p3 = 14, and p4 = 144. The solutions are 

CO = (-2.476 + 14.35yo)/A 
C1 = (-0.6993 + 4.421yo)lA 
C2 = (0.01748 - O.1206yo)/A 
C3 = (0.3217 - 1.90490)/A 
A = -0.3601 + 2.177~0 

Using 75 terms in (2) gives yo = 0.15527298. True probabilities are generated by 

1 

r + l  
Pr+l = - {aP~+2bP,-1 +3CP,-2}-  ( r = O 7 1 , 2 , * * * ; P r = O  T < O )  

T Discrete Model True Value 
0 0.1553 0.1599 
1 0.1678 0.1599 
2 0.1650 0.1599 
3 0.1476 0.1599 
4 0.1204 0.1199 
5 0.0899 0.0879 
6 0.0619 0.0613 
7 0.0396 0.0384 
8 0.0238 0.0235 
9 0.0135 0.0137 
10 0.0074 0.0075 
11 0.0039 0.0041 
12 0.0020 0.0021 
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2.2.3. Binomial  dis t r i  b u t  ia n 

Binomial distributions are those with probability 

the case n=10. Here CO = npq, C1 = q ,  C2 = 0, C3 = p ,  and frequencies 

p’(1 - p)”-‘; here we examine @) 
Yr 

r 0 1 2 3 4 5 6 7 8 9 10 
p = 0.25 0.0563 0.1877 0.2816 0.2503 0.1460 0.0584 0.0162 0.0031 0.0004 0.0000 0.0000 
p = 0.5 0.0010 0.0093 0.0440 0.1172 0.2051 0.2461 0.2051 0.1172 0.0440 0.0093 0.0010 
p = 0.75 0.0000 0.0000 0.0004 0.0031 0.0162 0.0584 0.1460 0.2503 0.2816 0.1877 0.0563 

The recursion is yr = { p ( n  - T + 1)/(qr)}yr-1, and the derived probabilities are 
correct. 

2.2.4. Ord’s Example of Type I Distribution 

Using a model noted by Ord [ 5 ]  

Yr = (1+ co c2 + - ClX ) Yr-1 

( T  = 1,2,3,  - -, 00; z = T - pi ;  c2 = CY - p i )  

and moments p i ,  p 2 ,  p3 gives the equations 

with moments 

p i  = n, p2 = n(n + 2)/6, p3 = 0. 

For n = 4. 
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T True Value 1 2 3 
0 0.0400 0.0432 0.0425 0.0495 
1 0.0800 0.0774 0.0766 0.0742 
2 0.1200 0.1211 0.1204 0.1096 
3 0.1600 0.1632 0.1626 0.1535 
4 0.2000 0.1861 0.1852 0.1910 
5 0.1600 0.1750 0.1739 0.1910 
6 0.1200 0.1311 0.1300 0.1363 
7 0.0800 0.0742 0.0734 0.0644 
8 0.0400 0.0289 0.0287 0.0215 
9 0.0064 0.0062 
10 0.0004 0.0018 
11 -0.0000 0.0006 
12 0.0000 0.0002 
13 0.0001 
14 0.0000 
4 4.0 3.9649 3.9999 3.9999 

4.0 3.8616 4.0001 3.9977 
0 -0.0661 0.0003 -0.0094 

1.77 2.3460 2.4493 2.8069 
% 
B? 

The basic series for yo was taken to 9, 13, and 21 terms in computing the probabilities 
in columns 1, 2, and 3. For the parameters, 

.~ 

8. BASIC FORMULAE FOR THE BOUNDED SEMI INFINWE CASE 

3.3. Development of Formulae 

For the probabilities g b , f i , * * a , y r v t  let the model be 
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It is assumed that ks 2 0, s = 1 , 2 , .  ., N . We use 

N 

y r s s  = 14s - ( -p!  )"YO 

r= l  

From the last three equations, set up CO, C1, C2 in terms of C3, insert these de- 
rived forms in the first equation and thus find Co, C1, C2, and C3 in terms of yo and 
YN. Then yo + klyo + - -  - = 1 or yo = 1 / ( 1  + k1 + k2kl + + kNkN-1 - - . k 1 )  and 
k ~ k ~ - l k ~ - 2  - . k lyo  = YN. 

If the model is 

c2 - ) Yr-1 co + ClX 
Yr = (1 t 

then the general solutions are, assuming existence 
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where 

and m = N + 1. 

3.2. Examples 

3.2.1. Triangular Distribution 

For the discrete triangular distribution of 2.2.4. with N = 8 ,  pi = 4 ,  pz = 4 ,  and 
p3 = 0 using the fundamental equations 

we find solutions 
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If we assume the true probabilities in the parameters, then 

Co = 5.125, C1 = 0.5, C2 = 0.5, A = 0.4096. 

We use our scheme for yo and YN (N = 8) iteratively and we find the 15th iteratives 
to be yo = 0.0394944261, and yg = 0.0394944261 with the recursive parameters 

Co = 5.102939, C1 = 0.500000, C2 0.500000, A = 0.423591678. 

The evaluated probabilities (symmetric to 6 significant figures) are, 

T 0 and 8 1 and 7 2 and 6 3 and 5 4 

yr 0.039494 0.07786 0.125302 0.166136 0.182414 
True 0.040000 0.08000 0.120000 0.160000 0.200000 

and computed moments 

pi = 4.000000, p2 = 4.000000, p3 = -0.000001. 

From numerical evidence it appears that kgk4 = k6k3 = k7k2 = k8k1 = ksko. From 
the formulas for CO, C1, C2 we find this leads to C1 = 1/2, C2 = 1/2 and yo = y8. 
Hence 

and 

The equation for yo is 

Using it iteratively with yo = 0.04 initially, the 14th iterate is yo = 0.039494425. 

3.2.2. Non- Sym met ric Distribution 

Consider another example with p i  = 2.2, p2 = 1.56 and p3 = -0.144, which has 
probabilities 

yo 1 1/10, y1 = 2/10, 312 = 3/10, y3 = 2/10, ~4 = 2/10. 

The model is 



and given the moments, solutions are 

CO = 4.8672 - 28.776~0 - 
C1 = 1.4160 - 13.080~0 - 5 
C2 = 1.7040 - 10.712~0 - y4 
A = 3.1200 - 22.040~0 - '?J4(A 

16 - 105.6~0) /A 
' - 48.OYo)/A 
- 51.2Yo)/A 

104.0 yo). 

= 0.19184435, with computed 

1 
After 107 iterations, we have yo = 0.09276122, an 
moments, 2.2001, 1.5596, and -0.1498. 

3.2.3. Truncated Poisson Distribution 

The truncated Poisson distribution may be considered i ~ 6  ,bly bounded distribution 

and k; = (1 + e/l! + - - - + ONIN!)-', PO = kk, PN = k>e' Recurrence is 

where CO = p i ,  C1 = 1, Cz = 6 - p i ,  and pi = 8(1-  k&BN/N!) .  
For another example, we take P, = k*8s+2/(s  + 2)!, (s = 0, A 4), with B = 1. 

identical to  
The moments are pi = 0.390716, p2 = 0.446954, p3 = 0.549920, '4 =z 1.303602. 
We find GO = 2.390716, C1 = 1, and C2 = -1.390716, and compu 
the true probabilities P,. 

4. THE DOUBLY INFINITE CASE 

4.1. Formulae 

Suppose the probability yr now includes the negative integers and T = 0, - 2 , . - .  . 
Then 

In other words the new equations for (Co7C1,C2,C3) me those in (5) with yo 1 
t o  be zero (this does not mean that the actual yo is zero), We have after elemen, 
operat ions , 
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leading to the solution (if valid) 

with Ji7; = p3/p;l2 and P2 = p4/pi. We have then 

Yo = { 1 + (kl + k;I) + (k2kl + k:;k;l) + (k3k2k1 + k1;k:;k;l) + * . .}-l (9) 

involving in some cases a slowly converging series. 

4.2. Examples 

4.2.1. Pearson Type IV Moments 

Consider the case, pi = 1, pz = 2, a, = 1.5, /32 = 12. Using (8) 

Co = 1.072368, C1 = 0.750120, C2 = 0.154605, C, = 0.095274, 

and using 75 terms of (9), the returned computed moments are 

pi = 0.999998, p2 = 1.999805, JpT= 1.4930, P2 = 11.3460. 

4.2.2. Discrete Pseudo-Normal Distribution 

Next consider the discrete pseudo-normal distribution, using the moments for the con- 
tinuous case, pi = 0, p2 = 1, = 0, P2 = 3. Here y~ = 0.3974 ( using 100 or so terms 
of (9)) and 1/& = 0.3989. Moreover yl/yo = 0.6112 and e-li2 = 0.6065. Using the 
probabilities from the recursion, the first four moment parameters check to  a t  least five 
significant digits and 

For a general normal case, with pi = p, p2 = 02, Jp; = 0, P 2  = 3, we find 

~ ~ - 1 .  ( T  = 0, 51, - . - ;  2 = r -pi). 1 x2 - (6a2 + 2). + Ea4 + 5a2 + 1 
2 2  + 6 ~ 2 2  + ( 12a2 - l)a2 Yr = { 

Now define 
yr  = ke-r2/2, ( T  = 0, f l ,  . . a ) .  
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Then direct calculation finds p2 = 0.999999788, p4 = 3.00007069. Using these mo- 
ments, we retrieve yo, y f l ,  etc. and the recurrence 

yr-1 (T = 0, &I, ...), 11.9980855 - 7.999362604r + r2 
10.9987 + 5.999362608r + r2 

with yo differing slightly from 0.3974 found by taking p2 = 1, p4 = 3 ( p i  = 0, p3 = 0). 

4.2.3. Pearson Type VI1 Moments 

Suppose a distribution has moments 

p; = 0 ,  p2 = 3, p3 = 0, p4 = 75. 

The Type IV model yields the results: 

The first few values of the probabilities are (there being symmetry) 

r 0  1 2 3 4 5 6 
y 0.2751 0.2063 0.09709 0.03641 0.01324 0.00512 0.00215 

Note that yi/yo = 0.75, y2/y1 = 0.4706,313/y2 = 0.375. The returned moments are 

= 0, /.~2 = 2.9997, p3 = -0.0008, p4 = 70.2831, 

using y-75 to  y75 in the computations. Note that kI+ = k;l. 
The fit is poor when the distribution used is yo = p, y i r  = pqlrl/2 ( r  # 0), with 

p = q = 1/2, and Y r l g r - 1  = l /2 ,  r 2 2. The example serves as a reminder that some 
structures will fail in this Type IV and other similar models. 

4.2.4. Bessel Distribution 

Bessel Distribution (see Johnson and Kotz, [3]; Skellam, [lo]) can arise as the distri- 
bution of the difference between two independent Poisson variables (means 81 and 82) 
and probability generating function (P.G.F.); ezcp(llt + &/t  - 81 - 82) with recurrence 
82Ps+2 = &Pa - (s t 1)Ps+l, then 

Pr ( r1  - r2 = t )  = e - e i - e ~ ( e l / 8 2 ) * / 2 ~ t ( 2 ~ )  (e1,02 > 01 

in terms of the Bessel function I t ( - ) .  
The cumulant generating function is 

eleQ + - 81 - 82 
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r Pearson Discrete Bessel 

0 0.294427 0.308508 
1 0.220820 0.2 15269 
2 0.096609 0.093239 
3 0.027603 0.028791 
4 0.006134 0.006865 
5 0.001263 0.001330 
6 0.000271 0.00021 7 
7 0.000064 0.000030 

0.000017 0.000004 
0.000005 

10 0.000002 

Distribution Distribution 

8 9 
i 11 0.00000 1 

so that 
K1 = 01 - 02, 
62 = 01 + 02, 
6 3  = 01 - 6 2 ,  

~4 = 81 + 02.  

and if 01 = 02 = 0, then pi = 0, p2 = 26, p3 = 0, and p4 = 20 + 1202. Moreover, in 
this case 

yo = 

If 8 = 1, then the doubly infinite model 

with Co = 1.5, C1 = 5/12, Cz = 1/1127 C3 = 1/2 and 

24 - 77- + r2 
= (18 + 5r + r2) ”-” 

and from yo = (1 + 251 + 2k1k2 + . - .)-I, we find yo = 0.294427 (true is 0.308508). 

4.2.5. Bessel Distribution with Bias 

We have 61 = 4, 62 = 1, then, pi = 3, p2 = 5 p3 = 3, and p4 = 80, Basic model is 

yr-l ( r  = O7fl,f2,...,z = T - 3) 

and solutions are CO = 4.574468, C1 = 0.7375589, C2 = 0.028369, and C3 = 0.234043. 
Pearson estimates yo is 0.076536 and true is 0.076152. 

1 c3 - 2 
co + ClZ + C2Z2 Y r =  (I+ 
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5.  A GENERALIZATION 

5.1. Formulae 

Suppose in the recursive scheme in (2) that the numerator is of degree t(2 1) whereas 
the denominator is of degree T > t ,  both in the variable x = T - p i .  Then 2r + t - 1 
moments will be required, the model being 

where 
and linear in yo. 

and Cx are rational fractions with numerator and denominator of degree 1 

The equations become 

We consider the case for which the probabilities are zero on the negative real axis. 
The T + t + 1 equations are linear in the unknown 90 (# 0). By multiplying the s th  

equation (s = 0, 1, - - -, T + t )  by p i  and adding to  the (s + 1)th equation, there will 
be one equation only involving yo explicitly, namely when s = 0. The remaining T + t 
equations will involve T + t + 1 unknowns. By a simple matrix inversion, we can find 
T + t of the parameters C and C in terms of an excluded parameter. A return to  (10) 
with s = 0 determines the T + t + 1 unknowns. 

The type IV case equations follow by taking yo = 0 in (10) but not in the equation 
analogous to (9). 

5.2. The Hansmann Distribution 

Hansmann [2] considered the Pearson Type symmetric family defined by 

and gave explicit solutions for seven different forms. A discrete form of this would be 
Yr = k.ryr-1 with 

( T  = f l ,  f2, * - ; 5 = T - pi, cs = Cy - p i )  

in the doubly infinite case; recall that  here y-1 = yo/Eo, 31-2 = yo / (kok-1 )  etc. In 
(11) there is no contradiction when positive and negative values of the argument are 
considered, whereas an exact discrete form would clearly be invalid; however it could 
be considered when yr refers to the positive axis only. In the doubly infinite case, C1 
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and C3 in (12) play an important role. 
There are six parameters in (12) determined from 

and 

(S = 1,2 ,3 ,4 ,5)  

These 5 equations (14) in 6 unknowns are used in (13) to determine the 6 unknowns. 
For the double infinite case, use the modified parameters given in section 4. 

5.3. Further Comments on the Models 

We can not say what further forms of the fundamental recurrence will turn out to be 
useful for practical situations. Much will depend on sample sizes and the range of T in 
the probability yr; another important factor is the response of the model to  sampling 
errors in higher sample moments (note, for example, that for a quartic denominator and 
cubic numerator ten moments are required). If we are not dealing with experimental 
data but with theoretical structures for which a set of moments are available then a 
model may prove of some use although perhaps difficult to  gain insight from. 

There are several choices available for the numerator if we extend models like (12). 
Consider the case of a cubic. Then 

and one parameter is available for disposal. The basic form in (1) and its extension 
in (12) would suggest using Cl = -1. Then for the eight unknowns we have in the 
semi-infinite case 

along with the seven equations (eight unknowns) 
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5.4. Examples 

5.4.1. Discrete Pseudo-Normal Distribution 

Take pi = 0, p 2  = 1, p3 = 0, p4 = 3, p5 = 0 and p6 = 15. The model is 

Evaluated values are 

Co = 0.785715 = 11/14 
C1 = 0.428572 = 6/14 
C2 = 0.071429 = 1/14 
e o  = 0.5 
c 2 = 0 .  

This is identical to the earlier case 3.2.2 with (?z taken to  be zero. 

5.4.2. Discrete Pseudo-Normal with the First 8 Moments 

The equations in matrix form are: 

' 0 1  1 4  7 1  
1 1  4 7 2 6 1  
1 4  7 2 6  6 1 2  
4 7 26 61 232 4 
7 26 61 232 659 10 

. 26 61 232 659 2610 26 

1 
2 
4 

10 
26 
76 

The  solution is 

b = 4 ( - - R ) / 4 ( W ,  ( R  = T - 1/2) 

and 
$(R) = 7430.0625 + 3710R + 605.5R2 - 7R4, 

with a negative coefficient of R4. The probabilities are 

T 0 f l  f 2  f 3  f 4  ltr5 
yT 0.4006 0.2432 0.05419 0.004454 0.0001375 0.517 x 

with sum 1.0046; is negative. 

for which yT/yT-1 = e2 

A curiosity is the comparison of this case with the approximation yT 
1-7 . 
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Ratio Yr/Yr--l 

T Discrete Model Normal Approx. 
1 0.606825 0.606531 
2 0.222874 0.223 130 
3 0.082410 0.082085 
4 0.030319 0.030197 
5 0.003759 0.011109 

-0.5 2.7 18164 2.718282 (e) 

5.4.3. Discrete Pseudo-Normal with the First 10 Moments 

We take R = T - 1/2 and 

Thus pzS+l = -2qZ3+l. New "enriched model" i s  

- R  - 2 ~ ; ~ 3  
At; + AiR + A;R2 + A5R3 + AzR4 Yr Yr-1 = Yr-1 

and 

= @(R).  
At; + (Ai  - l )R  + AzR2 - A:R3 4- A;R4 

kr = A; + AiR t AZR2 + A5R3 + A;R4 

( R  = T - 1/2; 'r = 0, f l ,  f 2 ,  - - .) 
Then @(R)@(-R)  = 1 provided A; = 1 - A; or A; = 1/2. 

The equations in matrix form with four parameters are: 

The solution is 
' Af, zz 31025/(8 * 3878) 

Ai = 1939/3878 
A; = 411/3878 
AS = 44/3878 
A: = 2/3878. 
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5.4.4. Discrete Pseudo-Normal with the First 16 Moments 

The "enriched model" is 

A0 - AIR + A2R2 - A3R3 + A4R4 - A5R5 + A6RG 
k -  A0 + AIR + A2R2 + A3R3 + A4R4 + A5R5 + A@' 

( R  = T - l /2;  T = 0, f l ,  i-2, * * .) 

The equations in matrix form with six parameters are: 

The solution is 

The probabilities are 

- A0 
A2 
A3 
A4 
A5 

. A6 

A0 = 1.00000002049 
A1 = 0.5 
A2 = 0.113276449857 
A3 = 0.014971578751 
A4 = 0.001224410918 
A5 = 0.000059007755 
A6 = 0.00000 131 1283. 

- 42 
- 44 

-96 
-98 

-410 

- -412 

r with 10 moments with 16 moments e- -r2 /2 /& 
0 0.39894030 0.39894228 0.39894228 
f l  0.24197226 0.24197072 0.24197072 
f 2  0.05399025 0.05399097 0.05399097 
f3 0.00443204 0.00443 185 0.00443 185 
f 4  0.00013381 0 .OOO 13383 0.00013383 
f 5  0.000001486 0 .OOOOO 1487 0 .OOOOO 1487 
x 1.0000 1 .oooo 1 .oooo 

Note that ~ - 1 / 2 / ~ - 3 / 2  for the 4, 10, 16 moments model has the values 2.697,2.718278, 
and 2.718281840 respectively as approximants to  e .  

5.4.5. Discrete Bessel Distribution with the First 10 Moments 

We consider the case with 81 = 82 = 1/2. The first 10 moments are 0, 1, 0, 4, 0, 31, 0, 
379, 0, and 6556. The basic model with four moments is 

yr- l  ( R  = T - 1/2) 1 (2R  - 4)2 + 11 
(2R + 4)2 + 11 Y r =  [ 
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and ”enriched model with 10 moments is 

The solution is 

A0 = 1145/(8 - 236), A1 = 118/236, A2 = 115/236, A3 = 24/236, A4 = 2/236. 

Basic Model 10 moments 16 moments e- l Ir (  1) 

r Yr Yr ?ir Yr 

0 0.4223 12 0.455065 0.464351 0.465760 
fl 
f 2  
f 3  
It4 
f 5  
f 6  
f 7  
k8 
f 9  
f 10 

0.234617 0.2 139 19 0.208621 0.207910 
0.046923 0.049170 0.049910 0.049939 
0.006120 0.008246 0.008177 0.008155 
0.000927 0.001026 0.001007 0.001007 
0.000185 0.000098 0.000100 0.000100 
0.000047 0.000008 0.000008 0.000008 
0.000014 0.000001 0.000001 0.000001 
0.000005 
0.000002 
0.000001 

yr  1.000000 1.000000 1 .oooooo 

6. THE ALGEBRAIC STRUCTURE FOR THE DOUBLY BOUNDED 
CASE 

6.1. First Order Equations 

From the fundamental moment parameter in (3) we deduce the following: 

N 

C(Y, - yr-1)(z3 - ) = -2, (s = 1,2, ...) 
r= l  

= - [is + ( - l ) ’p:-’(N + l)yo] (15) 



- 19 - 

where 

6.2. Second Order Equations 

It will be seen from (15-16) that the moment-parameter involved eliminates YN as an 
explicit component; similarly the moment operator in (17-18) eliminates yo. Again the 
"quadratic" moment parameter in (19-20) eliminates yo and YN as far as they appear 
explicitly. These formulas show that, in the general discrete model, the parameters of 
the multiplier k, will be ratios of polynomials each involving a constant, and terms in 
yo, YN and y o y ~  only. We illustrate using the basic model for which 

eo - 2 ( T =  1 , 2 , - . - , N )  k r = l +  co + C l X  + C222' 
Using (15-20) the equations now become 

[k - ( N  + l)yo]Co + v 2  + p w  + l)YO]Cl+ [ f 3  - p i2 (N + l)~O]C2 + 7 4 0  = n2 

[h - ( N  + 1)2/N] CO + [& - T ( N  + 1 ) y N ]  c1 + [4 - T ( N  + l ) y N ]  c2 

+ [?l - ( N  + 1)!/N] eo = k 2  - T ( N  + 1)yN 
L2CO + L3c1 + L4c2 + M2CO = M3 
L3Co + L4Ci + LsC2 + M3Co = M4 

(22) 

Th last two equations do not contain yo or Y N ;  yo is linear in the first equation, and 

(Note that the powers of pi in the first equation of (22) alternate in sign, whereas those 
of T in the second equation do not.) 

Y N  linear in the second equation. Again it will be seen that the first three columns of 
the underlying matrix refer t o  the denominator of k,. Clearly the determinant of the 
system A involves only a constant, yo, y~ and Y O ~ N ;  similarly for the numerators of Co, 
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C1, C2 and Co.  Algebraic solutions of (22 )  and similar generalizations should present 
no problem using a computer language such as Maple; one would assume the existence 
of moments, and non-singular matrices. Numerically one would use yt; and y& as seeds 
in ( 2 2 )  and attempt iterative solutions of xr y, = 1, and y~ = YN - yjv-1 - 

To study generalization of (21 ) ,  suppose the denominator is Co + Clz + . . .CxzX, 
and the numerator C o  + elx -I- . - + cuxu. We elect which parameter shall be unity; 
suppose it is c, for simplicity; then X + u t 1 equations are needed. The linearized 
model is then operated on by (15) and ( 1 6 ) ;  then (17)  and (18) and finally (19) and 
(20 ) .  The first X + 1 columns of the matrix will contain (f, k, L ) ,  and the remaining u 
columns will contain (n ,  m, M ) .  

-yo.  

7. THE EXPONENTIAL AND THE NORMAL 

7.1. The Continued Fraction 

Recalling that for the discrete normal we assume there is the approximation yt. = 
so that k, = 

(c.f.) for k,, namely 

_ _  
yp/y,.-l = ell2-' = eR.  But there is a continued fraction 

l R R R R R  
1- 1+ 2- 3+ 2- 5t (PI 4 ------... (23)  

with convergents xs (R) /oS (R) ,  where 

S x s  ( R )  WS ( R )  
0 0 1 
1 1 1 
2 1 1 - R  
3 2 + R  2 - R  
4 6+2R 6 - 4R + R2 
5 12 t 6R+ R2 12 - 6R t R2 

9 
6 60 + 24R + 3R2 60-36R+9R2- R3 

1680 + 840R + MOR2 + 20R3 + R4 1680 - 840R + NOR2 - 20R3 t R4 

It will be seen that there is a subset of convergents of the form [#(R)/#(-R)] ,  $(.) 
being a polynomial. In fact the subset is X ~ ~ + ~ ( R ) / L J ~ ~ + ~ ( R ) .  And these consist of 
polynomials which are positive for all real R; they are thus compatible with the desired 
structure of kT. 

It is of some interest to note the definite integral form (not apparently given in the 
standard textbooks on c.f.s): 
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00 

W ~ ~ + I ( R )  = 11 eWtts ( t  - R)sdt 
S!  

These can be proved by integration by parts and reference to  the c.f. in (23). 

7.2. Relation to Whittaker Functions 

There are asymptotic forms for R + 00 and R -+ -00. From Whittaker and Watson 
[113 we first of all consider positive R. Now 

for all z except negative reds. Hence 

s -1 /2eR/2W 
~ 2 s ( - R )  = R 112 ,s ( R )  
WZs+l ( - -R)  = ~ s e R ~ ~ ~ 0 , s + 1 / 2 ~ R )  

When I2 > 0 there are two components in the integrals. 

( R  ' 0) 

Here 

The first term relates to  the confluent hypergeometric 

and the second to Whittaker's W .  In fact, 

Similarly, 

Whittaker and Watson [ll] give the asymptotic form for 1x1 large, the basic asymptotic 
being 

Wk,m(z> N e-z12zk. ( 1  argzl 5 K - cy < 
In our present context it will be seen that 
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7.3. Application to the Normal 

We can now set up the discrete normal not using moments but appropriate convergents 
of (23). For example, we may use 

k - k g ) =  1 2 - 6 R + R 2  
1 2 t  6 R t  R2 

r -  

to  determine YQ. Note however there is a small error in using 
Aitken [l] gave 

former choice, yo = 0.397466120 and 1/& N 0.398942280. 

yr = 1; incidentally 

An alternative is to assume yo = 1/& and determine the sum from (24). For the 

Higher order convergents, such as 

e - r 2 / 2  = 2.506628288 (nearly) or CEIP, yr N 1.000,000,005. 

k?3+’ = Ld48+1(R)/W4s+l(-R) (s = 

lead to using the limiting value e z p ( - R )  so that y,/y~ is seen as the product 

a very interesting interpretation, providing a link between c.f.s and the discrete normal. 

7.4. Moments of t h e  Discrete Normal Dis t r ibu t ion  

We use Hermite polynomials { H 3 ( z ) } ,  an orthogonal system with respect to  the basic 
normal density ezp( - z2 /2 ) / f i ,  and for which 

(25) 
N 3 ( 2 )  = e -03223 ,  
2 3  = eD:/2H3(z>. (D, d/dz ;  D , H , ( ~ )  = s ~ , - l ( z ) )  

Consider then the evaluation of 

Then the Euler summation formula (see Konrad Knopp), [4] shows that 

where 
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and 

Integration by parts, with assumptions regarding uniform convergence, leads to  

where 
00 

hzs = 2( - 1)" 

For examples, 

with regard to  h;. Dr. Robert Byers using a variable precision package "Derive", gives 

a h ;  = 2.506,628,288,0427905,544,830,G7, 

and 
&(h; - 1) = 0.000, 000,013,411,905,042,414,91. 

From (25) and (26) we now have the general formula for the central moments of 
the discrete normal distribution, namely 

For examples, 

8. CONCLUDING REMARKS 

We have studied various aspects of the Pearson discrete model in generalized forms, in- 
cluding the doubly infinite case, semi-infinite case and the bounded case. The examples 
chosen have been directed at gaining insight into the models and their implementation. 
New interesting properties have been discovered with respect to  the normal case; on 
the one hand using the standard normal moments as against the corrected moments. 

Applications to empiricd data and estimation problems are not undertaken at  this 
time. 
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