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PARALLELIZING ACROSS TIME WHEN SOLVING TIMEDEPENDENT 

PARTIAL DIFFERENTEAL EQUATIONS 

Patrick H .  Worley 

Abstract 

The standard numerical algorithms for solving time-dependent partial differential equa- 

tions (PDEs) are inherently seqnential in the time direction. This paper describes algo- 

rithms for the time-accurate solution of certain classes of linear hyperbolic and parabolic 

PDEs that can be parallelized in both time and space and have serial complexities that 

are proportional to the serial complexities of the best known algorithms. The algorithms 

for parabolic PDEs are variants of the waveform relaxation niultigrid method (WFMG) 

of Lubich and Ostermann where the scalar ordinary differential equations (ODEs) that 

make up the kernel of WFMG are solved using a cyclic reduction type algorithm. The 

algorithms for hyperbolic PDEs use the cyclic reduction algorithm to solve ODEs along 

characteristics. 

- v -  





1. Introduction 

For many numerical problems in scientific computation, the execution time grows without 

bound as a function of the problem size, independent of the number of processors and of the 

algorithm used 1401, 1431. In particular, for most h e a r  partial differeritial equations (I’DEs) 

arising in mathernatical physics, the parallel complexity grows as log N ,  where N is a particular 

measure of the problenr size. The proof is lmsed on deriving upper and lower bounds on the 

execution t ime  of op lma l  paraIleI algorithms for multiprocessors with a n  unlimited niimber of 

processors  arid no interprocessor communication costs. (Lower bounds for the case when com- 

munication costs are not zer0 can also be calculated [40], [41], [43].) Due to the assumption on 

the number of processors, these optimal. pa.rallel algoritlirns can have very Inrge serial corrtple?c- 

ities, and the tightness of the bounds on the parallel execution time for practical algorithms is 

not established by this analysis. 

An analysis of stmdard numerical algorithms for linear I’DEs indicates that growth in the 

parallel execution time for these algoritlims has an important eRect when using scaled speed- 

up models to evaluate multiprocessor performance [42]. In this analysis, there is a strong 

dichotomy in the nature of the growth in the parallel execution tirrie between algorithms for 

the solution of time-dependent and time-independent I’DEs, a dichodoniy thut is not pr.escn.t 

in t h e  n lgor i thm- independen t  anulgsis. For example, when approximating elliptic PDEs using 

finite difference or finite element discretizations, the serial complexity i s  at least @(N,  ), where 

N ,  is the size of t,he underlying grid and @ ( E )  denotes a positive quantity whose leading order 

term is proportional to 2 [16, p. 311. This linear serial complexity can often be achieved using 

a full multigrid V-cycle algorithrrr, weighted Jacobi or multi-color Gauss-St:idel relaxation, and 

local restrictiou/pro~ongatior~ operators, which ] ins  a parallel complexity of @(log2 N ,  on a 

multiprocessor with O(Nd) processors [2], [3], [rj], [ll]. So, for these problerns, there exists an 

algorithm whose serial complexity is proportional to that of the best serial algorithm and whose 

parallel comp1exit.y is a polylog functhn of the serial complexity. 

Timestepping methods are commonly used to calculate tlie time-accurate solutioii of t h e -  

dependent PDEs. For a time-accurate solution, the solution is required at  a sequence of tirnes 

{ t i  I i = 0, . . , , N t } ,  where t i - 1  < 1, and t i  - d i - l  is small enough to allow accurate interpolation 

of the solution at all times in between. Timestepping algorithms calculate the approxiriiaLe 

solution for ea.ch time level in sequence, calculating the solution at time ti from the approximate 

solution at  times t j ,  j < i. Stmdard timestepping algoritlinL3 based on finite difference or 

finite element discretizations of hyperbolic and parabolic PDEs have serial corriplexities that 

are linear in the nuniber of space-time locations where the solution fri riction is approximated. 

Thcs, the serial complexity is O ( N ,  . ATt), where iv, is  the size of the iitiderlying grid at a 

fixed time and Nt is  the number of t,ime levels. The calculation of each time level is usually 
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easily parallelized, but the time direction in a timestepping algorithm is inherently sequential. 

Thus, the parallel complexity is always at least @ ( N t ) ,  i.e. not a polylog function of the serial 

complexity. (Variants of the standard timestepping algorithms have been proposed that begin 

the calculation for later time levels before the current time level is finished [12], [30], [39], but 

these algorithms do not alter the sequential nature of the time direction.) This paper addresses 

the question of whether good serial algorithms for time-dependent PDEs are intrinsically less 

parallel than good serial algorithms for time-independent PDEs. We pose the question in the 

following form: 

For a given lime-dependent PDE, i s  there a numerical algorithm for the time-accurate ap- 

proximation of the solution with the properties: 

(1)  Let C , (N)  be the serial complexity of the algorithm for a problem of size N ,  and let 

e,, opt(N) be the serial complexity of the best known serial algorithm for  this problem. 

Then C , (N)  = O(C,, +(N) ) .  

( 2 )  The algorilhm can be parallelized in  the t ime direction as well as the spatial directions, so 

that the achievable parallel complexity given an unlimited number of processors, C,(N), 

satisfies C,(N) = @(logr C, (N) )  for some finite constant y. 

In this paper,l we describe a class of algorithms that have properties (1) and (2) for a large 

class of linear parabolic PDEs. Not only does this class of algorithms aiiswer the above theoret- 

ical question, it may also have practical applications on massively parallel multiprocessors. We 

also briefly describe a ditrerent class of algorithms with properties (1) and (2) for a particular 

class of linear hyperbolic PDEs. 

2. Parabolic PXIEs 

2.1. Waveform relaxation 

Waveform relaxation is a technique for solving systems of ordinary differential equations of 

initial-value type [26] ,  [as]. It is based on applying standard point and block iterative methods 

for the solution of linear systems [37] to the solution of a system of ODES. For example, let 

A be an n x n matrix, and consider the problem dMldt  + AU = F ,  where lJ and F are vector 

furictions of time. Then the kth step of a Jacobi-based iterative method for the solution of this 

system is 

(1) 
d 
dt 
- U ( k )  + D U ( k )  1 F + ( D  - A ) U ( k - l ) ,  

]An earlier version of this paper appears in the Proceedings of the Fifth SIAM Conference on Parallel 
Processing for Scientific Computing. 
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where L) is the diagonal of A. Thus, each step of the method involves the solution of n 

independent scalar ODES. The deconpling of the system allows different discretizations and 

timesteps to  be used for each of the ODES, which can lead to significant SiLvings for sortie 

applications. 

To solve parabolic PDEs, the spatial derivatives are discretized to generate a semi-discrete 

problem and the resulting system of ODES is solved using waveform rela?cation. Miekkala and 

Nevanlinna have analyzed the convergence of waveform relaxation for linear operators [%I. 
They showed that, for linear PDEs of the form ut + Lu = f where L is an elliptic operator and 

for standard spatial discretizations, the convergence rates for Jacobi arid Gauss-Seidel iterations 

for the scmi-discrete probleni are similar to those for the analogous linear system. 

2.2. Waveform relnxatioii midtigrid 

Let h h  represent the discrete operator generated by discretizing an elliptic, operator 1,. The 

correspoiitletice between thr: convergence rate of waveform relaxation applied to  dU/dl-+ L h u  = 
F and the convergence rate of the analogous matrix iterative method applied to Lhu  = F has 

two immediate implications. First, the convergence rate is too slow €or waveform relaxation to 

be competitive with standard titnestepping algorithtns. Secood, multigrid techniques may be 

effective at  accelerating convergenc,e of the iteration. 

Multigrid acceleration has been a.iialyzed by Lubich and Ostermaiin [27]. Among their 

results, they showed that fir11 multigrid performance can be achieved for the semi-discrete 

problem if Lh is symmetric positive definite, and either Lh has constant diagonal entries, in 

which c x e  weighted Jacobi relmalion is used, or Lt, has the form 

where D, and 112 are diagonal, in which case Gauss-Seidel relaxation is used. Note thst  this 

latter matrix structure corntnonly occurs when using a red -hlack ordering with standard finitc 

difference stencils. Tliey also show that full rnultigrid performance can be achievd for the fully 

discrete problem (ix.  linear serial complexily) if, in addition to the above conditions, all ODES 

are discretized by the same method, tlw time direction is not coarsened, and the ODE solver 

is an A-stablc linear multistcp or Range-Kutta method. Full multigrid performance also holds 

for A(a)-stable linear multistep or Runge-K\itt,a methods for suitably large a. Note that all of 

these conditions arc sufficient, but not necessary. 

This waveform rPlazatzan raidtigrid algorithm has been tested extensively [32], [33], [34], 

[35], [36], and has been shown to work well for a variety of parabolic problems, both linear and 

nonlinear, on both serial and parallel computers. 
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2.3. Waveform relaxation multigrid cyclic reduct ion  

The waveform relaxation multigrid algorithm is normally implemented in a fashion that is 

still intrinsically sequential in the time direction. But computation in the time direction only 

involves solving linear scalar ODES. If the ODES are solved using a linear multistep method 

with a statically determined timestep, then each ODE solution corresponds to  the solution of 

a banded lower triangular matrix equation, or, equivalently, a linear recurrence. Parallelizing 

linear recurrence equations ha9 been studied extensively [9], [14], [15], [21], [22], [23], [24], [31]. 

In particular, if a cyclic reduction approach is used to  parallelize the linear recurrence, then 

parallelism is introduced without increasing the order of the serial complexity. For example, 

if a two-level scheme, like backward Euler or Crank-Nicolson, is used to discretize the scalar 

ODE, then a lower bidiagonal matrix equation must be solved. Cyclic reduction combines 

even numbered equations with odd numbered equations to  generate a new bidiagonal matrix 

equation of half the size. If the original matrix has the form 

then one step of the cyclic reduction algorithms generates a new matrix equation of the form 

The solution vector of the smaller system is identical to the even-numbered elements of the 

solution vector of the original matrix equation. This process is repeated until only two equations 

are left, at  which time the two-by-two linear system is solved. The solution values for the small 

system are then used to calculate the unresolved values in the next larger linear system. For 

example, in (3), z3 = ('3 - a3222)/a33, which call be calculated immediately since e2 was 

determined when solving the smaller system. By repeating this process, the solution to the 

original matrix equation is calculated. Note that each step of the reduction stage is perfectly 

parallel, in the sense that combining each pair of equations is independent. Similarly, injecting 

solution values into the next larger system and solving for the unresolved variables can be done 

independently for each unresolved variable. Thus, cyclic reduction allows us to  parallelize the 

time direction. 

If a k-step linear multistep algorithm is used to solve the ODE, then the banded lower 

triangular matrix defining the linear recurrence has a bandwidth of k. The cyclic reduction 
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algorithm again halves the nurriber of equations at  each step, but now k consecutive equations 

are needed to transform the dependencies in a given equation from the previous k - 1 values in 

the current matrix equation to  the k - 1 previous values in the new smailer system. As before, 

this process i s  continued until only k equations are Icft. If k > 2, then solving the k x k system 

and injecting the solution back into the next larger system does not decouple the calculation of 

the unresolved variables. Instead, i t  produces a new banded lower triangiilar matrix equation 

to solve, one whose bandwidth is [ k / 2 ] .  Repeatedly applying the cyclic reduction algorithm 

continues to halve the bandwidfh until all of the unresolved variables are calculated, at which 

time they can be injected into the next larger system to reduce its bandwidth. 

The cyclic reduction algorithm is more expensive than the standard serial algorithm, but 

the complexity i s  still @)(lit) for each ODE solution (if k is independent of N t ) .  For example, for 

a twvlevel scheme, the serial complexity of the standard algorithm is 3 N t ,  while for the cyclic 

reduction algoritlirn it is 5Nt or 7 N t ,  depending on wlicther certain values are precomputed. 

For a three-level scheme, the complexity of tlie slaridard algorithm is 5 N t ,  compared to  l lNt  or 

21Nt for the cyclic reductio11 algorithm. A s  long as the complcsity of the ODE solver is O ( N t ) ,  

the waveforrn relaxatiori inultigrid algorithm remaitis an S ( N 8  . N t )  complexity algorithm. 

The parallel complexity of the cyclic rtduction algorithm is a function of the number of 

timc levels used in the discrctization of the ODE. For a k-level scherrie, it is @)(logy N t ) ,  where 

7 = [ R / 2 1 .  Thus, incliitlirig the para114 cyclic reduction algorilhm in a parallel waveform 

relaxation multigrid algorithm based on weighted Jacobi or red-black GaussSeidel iteratioil 

results in a total parallel complexity of the form @(log2 N ,  . logy N t ) ,  which is worsc than for 

elliptic problems, but is still polylog. 

2.4. Niinierical Results 

Parallel implementations of multigrid and cyclic reduction have been discussed elsewhere. 

See [ll], [19], and [38] for pointers to the literature. In this section, we verify the predicted 

linear serial complexity of the waveform relaxation multigrid algorithms for a specific example 

problem. 

We solved the heat equation ut + Vu = f on the unit square [ O ,  11 x [ O ,  I] in the t h e  

interval [0, I] using Dirichlet boil ridary conditions. Staridard centered differencing wa.s used 

to  discretize the spatial derivatives. Crank-Nicolson, a two-level scherne, ani1 the 2nd order 

backward difference foriniila (RDF) , a three-level scheme, were used to  discretize the time 

derivative. 'T.'he same titnestep and spacestep were used in the discretization, = N t ,  and 

a sequence of problem sizes was examined. 

Three algorithms were tried: waveform relaxation mutigrid with the cyclic reduction ODE 

solver (WFMCCR), waveform relaxation mufigrid with the standard ODE solver (WFMG), and 
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a timestepping algorithm that uses multigrid at  each timestep. The convergence of the multigrid 

algorithm was  essentially identical for all three algorithms, and four full V-cycle multigrid cycles, 

with 1 relaxation sweep before and after each coarse grid correction, was sufficient to identify 

convergence (small residual and little change between successive iterates) for all problem sizes 

and forcing functioiis tried. The approximate solutions were also essentially identical, indicating 

that the cyclic reduction algorithm is no less stable (for these problems) than the standard 

ODE solver. The numbers of floating point operations (flops) required to  solve the problems 

are displayed in Figures 1 and 2.  The data indicate linear growth in complexity for all three 

methods, with WFMGCR being somewhat more expensive than WFMG because of its more 

expensive ODE solver. 

Ns 
WFMGCR (. . .) WFMG (- -) 'fimestepping (-) 

Figure 1: Serial Complexity for Crank-Nicolson time discretization. 

2.5. Discussion 

Using cyclic reduction with the waveform relaxation multigrid algorithm has the desired prop- 

erties (linear serial complexity and polylog parallel complexity) for all problems for which (a) 

the waveform relaxation multigrid algorithm has a linear serial complexity when using a re- 

laxation technique that can be efficiently parallelized, like Jacobi or multi-color Gauss-Seidel, 

and (b) cyclic reduction is a stable algorithm for solving the linear recurrences arising from 

discretizing the scalar ODES. Both theory and empirical evidence indicate that (a) is true for a 

large class of parabolic problems, both linear and nonlinear. While some work on the stability 

of parallelizing recurrence equations has been done [all, [31] and the numerical examples de- 

scribed here give no indication of stability problems, more work must be done to  establish the 
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108 

106 

flops 

104 

102 

N ,  
WFMGCR (. . .) WFMG (- -) Timestepping (--) 

Figure 2: Serial complexity for second order BDF time discretization. 

stability of this algorithm, especially whvn the bandwidth of the recurrence (k) is largc. This 

is especially true given the stability problems of the straightforward implementation of cyclic 

reduction €or elliptic problems [8] .  

Wlien properties (a) and (b) hold, we have shown the algorithm to have an achievable 

parallel complexity of @(log2 N ,  .log7 N t ) ,  where 7 = [ k / 2 1 .  This i s  higher than that for elliptic 

problems, and the question arises as to whether it can be decreased. There is some hop 

is normally not necessary to  solve the "subprobleins" exactly in a multigrid solver. The simplest 

approach is to nse Jacobi iteration to approxirriately solvt. the banded triangular systems, 

instead of using cyclic reduction This is essentially the method of Hackbusch [13], which has 

been shown to lead to an cficient parallel algorithra for many applications, if some care is taken 

in choosing the discretization [l], [(i], 171, [17], [18]. l h t  the following iirg"Inet1t shows that the 

total number of Jacohi iteratioris used to approximate the solution of the triangular systems 

over the coursi: of the algoritlirri must incwase at  least linearly as a fiinction of N t .  

Consider solving for the solution at, a given location in thr  space-time grid As the error due 

to the discretization decreases, and Nt  increaises, data tliroughout an increasing portion of the 

domain of dependence of the solution operator for this locatioii must be sampled to accurately 

approximate the solution. Since this domain is independent of N t ,  and since some fixed fraction 

a of the Nt grid points used to  approximate the scalar ODE falls in this domain, at  least aNt 

Jacobi iterations are required for the data at  thew grid points to be used in approximating 

the solution at  the given location. Thus, asymptotically, the parallel complexity will have a 

term that grows like N t .  The same argumeiit applies to other point iterative methods that 
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might be used to solve the triangular systems in parallel. Note that this is not necessarily a 

condemnation of Hackbusch’s method since this growth as a function of Nt can be very small, 

and may not show up for realistic sized problems. 

The obvious approach to avoiding the problem indicated above is to coarsen the grid in 

time (as well as space) during the multigrid process. In this way, data from more distant 

grid points can propagate through the coarse grids. Unfortunately, the theory of Lubich and 

Ostermann does not hold in this situation, and experiments indicate that naive implementations 

of this approach do not work. Local mode (Fourier) analysis for the example problem and 

discretizations described in $2.4 confirm the experimental evidence, that coarsening in time does 

not work, but more sophisticated discretizations, possibly differing between grids, may still allow 

the time direction to be treated in an analogous way to  the spatial directions [4]. In summary, 

whether or not the parallel complexity can be further reduced, without a corresponding increase 

in the serial complexity, is not yet known. 

2.6. Generalizations 

The waveform relaxation multigrid cyclic reduction algorithm described above was motivated 

by the theoretical question introduced in $1. The following generalizations are motivated by 

practical issues. 

Fiiie grain parallel algorithms By imitating Hockney’s PARACIL algorithm [15], we can 

lower the parallel complexity of the parallel cyclic reduction algorithm to @(log Nt), independent 

of the length of the recurrence, without increasing the nuniber of processors needed. Thc trick 

is to  modify all equations at each reduction step. Thus, after log, Nt steps, there are N t / k  

independent k x k systems whose solutions solve the original problem. While the resulting 

algorithm has a serial cornplexity of O(Ni logNt), this is unimportant on a rrrultiprocessor with 

@ ( N J  . N t )  processors. 

Coarse grain parallel algorithms - I By imitating the blocked cyclic reduction algorithm 

discussed in [19] and [20], the communication cost can be reduced to a manageable size for 

distributed memory multiprocessors. For example, if Pt processors are assigned to the solution 

of an ODE, the blocked algorithm generates a. Pt x Pt linear system whose solution introduces 

Pt-way parallelism into the rest of the calculation. 

Coarse grain parallel algorithms - I1 Since each relaxation in the multigrid algorithm 

involves the solution of many ODES, much of the analysis used in determining how best to  

parallelize AD1 algorithms for elliptic problems applies immediately [19], [20]. In particular, 

this analysis addresses the issue of whether to  move data for a single ODE to a single processor 
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and use a fast serial algorithm or to use a cyclic reduction algorithm to parallelize the ODE 

solution, attempting to overlap communication with computation since parts of many ODE 

calculations may be assigned to the same processor. 

Coarse grain parallel algorithms - 111 Selectively exploiting parallelism in time can 

alleviate the inefficiency of solving on coarse grids in the multigrid algorithm. For example, the 

cyclic reduction algorithm rnighl be used only on coarse grids, when processors have been idled 

by the coarsening. 

3. Hyperbolic PDEs 

WhiZe waveform relaxation can bP used to solve hyperbolic PDEs, multigrid does not accelerate 

the convergence, and the serial complexity of the resulting algorithm is riot O ( N b  . N i ) .  R u t  l h e  

saine approach to p;tralleliziag in time can be applied to any algorithm whose cornputalional 

kernel i s  solving a linear scalar ODL. In this section we briefly describe such an algorithm for 

constant, coelficirnt hyperbolic PUEs that can be written in the form 

where the n x 71 matrices { A , }  can be sirnultaneoiisly diagonalized. Were, the problem is defined 

in d space dimensions and F is a function of both 5 and t ,  wliere 3 = (21, . . . , zd). 

Let T be the matrix that diagorializes { A ,  I i = 1,. . . , d } ,  ?'A,T-' = A,. Define V = T'(J 

a id  G = T F .  Then (5) can be writlen as 

Equation (6) is actually n independent scalar PDEs of {,he form 

each of which can be solved be solved by iritegratiiig the ODE 

along the characteristic defined by the set of eyuatioris {Ez  = 2, - X , t  I i = 1,. . . , d }  for each 

point (el, . . . ,&) in the problem domain [1O], 1251. For a numerical algorithm, we would specify 

a grid in the space-time domain and only track characteristics that exit the space-time domain 
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at a grid point. To recover the desired variables requires interpolating from characteristics 

back to  the desired space-time grid, and calculating T-’V at each grid location. Since this 

overhead is a linear function of the number of grid points, the serial complexity of the resulting 

algorithm is still linear. Both the interpolation and the inversion are “local” processes, and all 

ODE calculations are independent. Therefore, the parallel complexity of the overall algorithm 

is @(logr N t )  when using cyclic reduction, where y i s  again determined by the number of levels 

in the discretization of the ODE. 

Note that the form of (5) is very general. For example, the wave equation utt - u,, = f 
can be rewritten as 

where 01 = ut and v2 = us. After applying the above algorithm to solve for v1 and 212, u can 

be recovered by solving the ODE ut = for each spatial grid point, using the parallel cyclic 

reduction algorithm as before. This extra step alters neither the order of the serial complexity 

nor the order of the parallel complexity. 

4. Conclusions 

The algorithms described in this paper establish that major classes of linear time-dependent 

YDEs can be solved in polylog parallel time without giving up linear serial complexity. Beyond 

the theoretical question, WFhlGCR has promise as a practical parallel algorithm, as indicated 

in $2.6, since WFMG is a competitive serial algorithm for many applications. Additionally, 

WFMGCR can be used for nonlinear problems since many multigrid solvers automatically 

linearize the ODES. 
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