
3 4456 0 2 8 7 7 9 2  

E. R. Jessup 



. ..... 



ORNL/TM-11903 

Engineering Physics and Mathematics Division 

Mathematical Sciences Section 

A CASE AGAINST A DIVIDE AND CONQUER APPROACH TO THE 
NONSYMMETRIC EIGENVALUE PROBLEM 

E.R. Jessup 

Mathematical Sciences Section 
Oak Ridge National Laboratory 

P.O. Box 2008, Bldg. 6012 
Oak Ridge, TN 37831-6367 

DATE PUBLISHED - D E C E M B E R  1 9 9 1  

Research was supported in part by the Applied Mathematical 
Sciences Research Program of the Office of Energy Research, 
U.S. Department of Energy and in part by National Science 
Foundation grant C CR- 9 109785. 

Prepared by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
managed by 

Martin Marietta Energy Systems, Inc. 
for the 

U.S. DEPARTMENT OF ENERGY 
under Contract No. DEAC05-840R21400 

WAHl~NM4HLFTrAkNFHGY bYSTEMSL8SARIfS 

3 4456 0287792 9 





Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
2 A Review of the Symmetric Tridiagonal Method . . . . . . . . . . . . . . . .  2 
3 A Nonsymmetric Eigensolver . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
4 A tearing for Hessenberg matrices . . . . . . . . . . . . . . . . . . . . . . . .  7 
5 Obstacles to the Nonsymmetric Method . . . . . . . . . . . . . . . . . . . . .  9 

5.1 Root-finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
5.2 Eigenvector Computation . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
5.3 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
5.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 





A CASE AGAINST A DIVIDE AND CONQUER APPROACH TO THE 
NONSYMMETRIC EIGENVALUE PROBLEM 

E.R. Jessup 

Abstract 

Divide and conquer techniques based on rank-one updating have proven fast, 
accurate, and efficient in parallel for the real symmetric tridiagonal and unitary 
eigenvalue problems and for the bidiagonal singular value problem. Although the 
divide and conquer mechanism can also be adapted to the real nonsymmetric 
eigenproblem in a straightforward way, most of the desirable characteristics of the 
other algorithms are lost. In this paper, we examine the problems of accuracy 
and efficiency that can stand in the way of a nonsyrnmetric divide and conquer 
eigensolver based on low-rank updating. 
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1. Introduction 

The eigenvalues and eigenvectors of a real nonsymmetric matrix A have traditionally 
been computed by first reducing A to Hessenberg form 11 and then computing the 
eigendecomposition of H by the QR method. The serial nature of the QR method 
combined with the high cost of data transfer on distributed-memory multiprocessors has 
made parallel implementations of this approach inefficient [16]. The failure of parallel 
QR algorithms has sparked recent research into new algorithms including stabilized 
tridiagonalization [9, 141, iterative refinement techniques [ 113, and homotopy methods 

In this paper, we examine the use of divide and conquer techniques based on low- 
rank updating for solving the real nonsymmetric eigenvalue problem. This divide and 
conquer approach was first applied to the symmetric tridiagonal eigenvalue problem 
by Cuppen [8] and analyzed and implemented in parallel by Dongarra and Sorensen 
[12]. The algorithm involves tearing a symmetric tridiagonal matrix T into a pair of 
symmetric tridiagonal submatrices TI and T2 by removing off-diagond elements of T 
and using rank-one updating techniques to form the eigendecomposition of T from 
those of TI and Tz. We review the method in Section 2 of this paper. 

The symmetric divide and conquer technique of 18, 121 provides a fast and accurate 
serial alternative to the QR method or to bisection with inverse iteration [12,23]. In ad- 
dition, the divide and conquer method is efficient when implemented on shared-memory 
multiprocessors [12]. Similar methods have also performed well for the bidiagonal sin- 
gular value problem [24] and for the unitary eigenvalue problem [4]. In this paper, 
we show that the efficiency and accuracy shared by these divide and conquer meth- 
ods cannot be expected in general when the approach is applied to the nonsymmetric 
eigenproblem. 

In Sections 3 and 4 of this paper, we demonstrate how the symmetric divide and 
conquer method of [8, 121 can be extended in a straightforward way to nonsymmetric 
tridiagonal and Hessenberg eigenproblems if we assume that the submatrices formed 
from tearing are diagonalizable. This algorithm allows us to examine the troubles with 
a nonsymmetric divide and conquer eigensolver in direct analogy to the symmetric 
eigensolver. In [I], Adams and Arbenz consider a general rank-r update to  a non- 
symmetric matrix without assuming diagonalizability. Their proposed algorithm bears 
less resemblance to the symmetric algorithm, but many of the conclusions that we will 
draw about our simplified algorithm do apply to their complete theory. In fact, we will 
show that one major obstacle to accurate implementation of such a method arises for 
virtually any updating method that does not employ the original matrix T at some 
stage after tearing. We discuss the difficulties that can plague a nonsymmetric divide 
and conquer method in Section 5. We present our conclusions in Section 6,  

Throughout this paper, unless otherwise specified, capital Greek and Roman letters 
represent matrices, lower case Roman letters represent column vectors, and lower case 
Greek letters represent scalars. A superscript T denotes transpose, a superscript H 
denotes conjugate transpose, and h is the element-wise complex conjugate of the vector 
h. The vector e3 is the j - th  “canonicd vector” with all elements equal to  zero except 
the j - th  which equals 1. 

1251. 



- 2 -  

2. A Review of the Symmetric Tridiagonal Method 

An unreduced symmetric tridiagonal matrix T of order n = 2m can be written as the 
matrix sum 

where /? is the mth off-diagonal element of T ,  e; is the ith unit vector of length m, and 
TI and T2 are symmetric tridiagonal of order rn. The algorithm can be made backward 
stable with 8 = sign(e%Tle,) [5]. 

If the solutions to  the two smaller eigensystems are TI = X I D I X T  and T2 = 
X2D2XT, then 

T = X [ D + P B (  e - V 2  ) ( l F  8 - ' f T ) ] X T  

where 

1: = e z X 1  is the last row of XI, and f; = eTX2 is the first row of X2. To solve 
the eigenproblem for T ,  it is necessary to  find the eigeiivdues and eigenvectors of the 
diagonal plus rank-one matrix 

D + pzzT = X T T X ,  

where zT = E( 1: 8 - ' f T ) ,  and p is selected so that 11 z 112 = 1 [8]. 
The eigensystem of T is computed via the rank-one updating technique described 

in [6, 181. Namely, if all elements of z are non-zero and if the diagonal elements of D 
are distinct, then the eigenvalues of D +pzzT are the roots A 1  > . . . > A,, of the secular 
equation 

T (e?.)' 
.)(A) = 1 + p z  (D - A)-'z = 1 + 

j=1 sj - A '  
___ 

Lf p > 0 and the diagonal elements of D are given by 61 > . . . > 6,, each eigenvalue is 
bracketed by the adjacent diagonal elements of D :  6j > A; > 6i+l and 61 +pzTz > A1 > 
61. When p < 0, a change of variables leads to  a similar result. This interlacing property 
means that the roots of w(X) may be found efficiently using any one-dimensional root 
finder such as the one based on rational interpolation developed in [6]. Once A j  has 
been found, its corresponding eigenvector uj is computed from 

When the diagonal elements of D are not distinct, ie., 61 = SI+' = . . . = 6 l + k ,  the 
eigenproblem of order n is reduced to  one of order n-k  by the process of deflation. The 
eigenvector basis is first rotated to zero out the elements ( [+I , .  . . , (l+k corresponding 
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to the multiple elements Sl+1 = . . -  = 6l+k: a product of plane rotations GI is applied 
so that 

GI(C,~f+l,...,C+k)* = (s;,cr+,,..*,r;,,,' = (G,o,--.,o)T. 
For I + 1 5 j 2 2 + k, the j t h  eigenvalue in exact arithmetic is the j t h  element of 
D ( X j  = Si), and its corresponding eigenvector is the appropriate canonical vector 
(uj = e j )  [6]. 

Representing the product of all rotations by the matrix G, the matrix T is expressed 
as T = XGT&AQTGXT = U h U T ,  where UAUT is the eigendecomposition of G(D t 
pzzT)GT. The eigenvalues of T are the diagonal elements of A, and the eigenvectors 
of T are the columns of U = XGTQ. 

Deflation rules have also been 
developed for finite precision in [12]: rotations are applied when diagonal elements of 
D are close, and deflation occurs when elements of z are small. Numerical experiments 
have confirmed that the increase in speed due to this deflation is substantial for serial 
and shared-memory parallel implementations [12]. With appropriate choice of deflation 
criteria and use of extended precision, it is possible to guarantee computation of highly 
accurate eigenvalues and orthogonal eigenvectors [30]. 

Implementations of the divide and conquer method 112,221 recursively subdivide the 
symmetric tridiagonal matrix T until the resulting subproblems are of a desired order. 
In parallel implementations, the smallest subproblems are solved in pa rde l  with one 
problem per processor, and the work to solve larger order subproblems is shared by more 
than one processor [12, 221. In particular, high parallel efficiency has been achieved 
on shared-memory multiprocessors by dynamically assigning independent root-finding 
and eigenvector computing tasks to separate processors at  each level of updating [12]. 
A parallel implementation of the divide and conquer method can also be pipelined with 
reduction of a symmetric matrix to tridiagonal form [lo, 121. 

The above derivation assumes exact arithmetic. 

3. A Nonsymmetric Eigensolver 

In this section, we investigate the application of low-rank updating techniques to the 
nonsymmetric tridiagonal eigenproblem. This problem arises as a subproblem in other 
numerical methods such as exponential interpolation [2, 31. Tridiagonal eigenproblems 
also result from nonsymmetric Lanczos algorithms [19] or the stabilized reduction of 
general eigenproblems to tridiagonal form [9,15]. We show in Section 4 that the theory 
we develop in this section for the tridiagonal problem extends in a straightforward 
manner to Hessenberg matrices. We assume the use of exact arithmetic in both cases. 
The nonsymmetric algorithms presented in this paper require that the submatrices be 
farmed by the matrix tearing be diagonalizable. 

The method of Section 2 was based on rank-one updating of a torn symmetric 
tridiagonal matrix. The theory behind that method does not carry through to solving 
a nonsymmetric updating problem D + wT. Furthermore, the updating matrix uvT 
is dense and otherwise unstructured. In this paper, we employ a rank-two tearing of 
a nonsymmetric matrix that leads to  smaller order subproblems, a shorter recursion 
tree, and a convenient arrowhead updating matrix. A symmetric tridiagonal eigensolver 
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based on rank-two updating appears to be competitive with the symmetric eigensolver 
based on rank-one updating [13]. Solution of symmetric arrowhead eigenproblems is 
discussed in [28, 311. 

Let T be the tridiagonal matrix with diagonal elements a1,.  . . an, sub-diagonal ele- 
ments 71, .  . . , ~ ~ - 1 ,  and super-diagonal elements P I , .  . . , & I ,  and suppose n = 2wi+ 1. 
By splitting off two superdiagonal elements Pm and ,f3m+l and the corresponding sub- 
diagonal elements y m  and yrn+l, we can write the matrix T in terms of the tridiagonal 
submatrices 7'1 and T2: 

= (q-z--+-) + (*) Ym+l 

. 

If TI and T2 are diagonalizable, we can compute the eigendecompositions TI = X I  DIXl-' 

and T2 = X2DzXzf  with diagonal matrices D1 and D2. Substituting these decompo- 
sitions and abbreviating a = a, gives the matrix product 

T =  (-) + (*) 
X2D2X,  Ym+l 

= x [ (*) + (*)I X - l ,  

where 

01 = PrnXi1em, 02 = Y r n + l X l l e l ,  hl = YmXTern, and 
vectors el and e ,  of appropriate length. 

We permute the elements of equation (2) to  form 

h2 = Pm+lX,Tel for canonical 

T = x [ (  D l  . . l a ) + (  h ~ ,  h j , j 9 ) 1 X - 1  

with 

and rewrite the interior matrix of equation (3) as 

(3) 
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The arrowhead matrix M is the sum of a diagonal matrix and a rank two nonsymmetric 
matrix. The eigenvalues of the matrix M are the eigenvalues of T .  The left and right 
eigenvectors of M premultiplied by X - H  and X ,  respectively, are the left and right 
eigenvectors of T .  

The procedure for computing the remaining eigenvalues and eigenvectors of M fol- 
lows basic steps similar to those for the eigendecomposition of a diagonal plus symmetric 
rank one matrix developed in [6, 181, but because M is nonsymmetric, the details differ 
in several important ways. 

and last 
row (hl ,  . . . , hn-l, a), then the following lemmas establish when diagonal elements of 
M can be retained as eigenvalues of T .  

If M has diagonal elements 61 , . . . , 6,-1 , a, last column (VI, . . . , vn-l , 

Lemma 3.1. If the diagonal elements SI?. . . 6,-1 of M are distinct, the element Sj is 
an eigenvalue of M if and only if vjhj = 0. 

Lemma 3.2. If M has  repeated diagonal elements 5; = 5j with h;hj # 0, M is similar 
to  a matrix with 6; = Sj and h; = 0. 

Proof: The proof is by construction of the unitary similarity transformation that re- 
duces h; to  zero when 6; = 6,. Let 

then the matrix is transformed in the following way 

0 6j sv; 4- cvj 
6; 0 8; si 0 cv, - sv j  

0 0 1  O r  CY 

Similarly, if 6i = 6j and w i w j  # 0, M is similar to a matrix with 6; = Sj and wi = 0. If 
h; = 0, e; is the right eigenvector of M corresponding to the eigenvalue 6,. If o; = 0, e; 
is the left eigenvector of M corresponding to the eigenvalue Si .  

We first consider the case where D has distinct diagonal elements b1 # 62.. . # 6, 
and 21 and h have no zero elements. By Lemmas 3.1 
SI,. . . , Sn-l can be an eigenvalue of M .  The eigenvalues 
complex rational equation 

and 3.2, no diagonal element 
of M are then the roots of the 

= 0. (4) 
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The right eigenvector q of M associated with eigenvalue X is given by 

and the left eigenvector is 

where 6, ( are chosen to make sTqj = 1. (This normalization ensures that the left 
eigenvector matrix is the inverse of the right eigenvector matrix.) 

When there are zero elements in v or h,  the matrix (D - X I )  is singular, and 
equations ( 5 )  and (6) cannot be used to compute the eigenvectors of M .  To derive rules 
for computing eigenvectors in this case, we first suppose that M has been transformed 
by a series of elementary transformations accumulated into the matrix G so that equal 
diagonal elements correspond to zero elements of v or h.  We then permute the 71 x n 
matrix M t PGMG*PT so that all zero elements in its last row or column are grouped 
together as follows: 

D o 0  0 0  

0 D2 

0 

0 H M  
(7) 

with 

where V and have no zero elements. We further assume that the similarity trans- 
formations have been applied so that & and & have no common diagonal elements. 
Thus, no eigenvalue of bl is an eigenvalue of & or of A?. 

The zero structure of M allows us to deflate out some eigenpairs. Specifically, The 
diagonal elements of the diagonal submatrix bo E C j x j  are eigenvalues of the matrix 
M with corresponding left and right eigenvectors (Ij, 0, 0, O ) T .  The diagonal 
elements of B1 f C t X f  are eigenvalues of M with right eigenvectors ( 0  0 O ) T .  
The eigenvalues of b2 E C P x P  are eigenvalues of M with corresponding left eigenvectors 
( 0 ,  0, I p ,  O ) T .  The remaining eigenvalues of M are the eigenvalues of A?. By 
Lemmas 3.1 and 3.2, no eigenvalue of b1 or Bz can also be an eigenvalue of ~. 

To compute the remaining eigenvectors, we first determine the eigenvectors of the 
submat rix 

It 
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The right eigenvector (i;, qT)T corresponding to the eigenvalue X satisfies 

(8, - X)Gl = 0 

HG1 + ( A 2  - X)42 = 0. 

If X is not a diagonal element 
eigenvector of ~ determined 
(if, iz)" satisfies 

of 8 2 ,  then = 0, (~ - A)& = 0, and G2 is the right 
from equation ( 5 ) .  The corresponding left eigenvector 

iF(Bi , -X)+SfH = 0. 

The vector 82 is found using equation (6), and the vector dl comes from a diagonal 
scaling of s r H .  If X is the kth diagonal element of 8 2 ,  then = els, (A? - A)& = 
- H e k ,  and can be found by solving the latter linear system. The corresponding left 
eigenvector is the appropriate canonical vector. Note that for the arrowhead matrix 
k E C r x r ,  any left or right eigenvector of MH can be found O ( T )  operations. 

We then determine the eigenvectors of the matrix 

Mv = (%' E, ;) 
H A 2  

from those of M H .  The left eigenvector (ST, s?)' of Mv corresponding to the eigenvalue 
X satisfies 

sy(b1-X) = 0 

Sr(0,  v) t S f ( M H  - A) = 0 

If X is not a diagonal element of &, .sr = 0, and sf is just a left eigenvector of M H .  
The corresponding right eigenvector (gr ,  q?)" of M satisfies 

($1 - + (0,V)qZ = 0 

(MH - A)%! = 0, 

and 42 is the associated right eigenvector of M H .  The vector q1 is produced by a 
diagonal scaling of (0,V)qa. If X i s  the kth diagonal element of b1, s r  = ek,  and 
sf is found by solving the arrowhead system S;(MH - A) = -ef(O, V )  in O(T + t )  
operations. The corresponding right eigenvector is the appropriate canonical vector. 

The eigenvectors of M are those of Mv and of DO with zeros appended or prepended 
as necessary. 

4. A tearing for Hessenberg matrices 

In this section, we show how the divide and conquer scheme of Section 3 can be applied 
to an upper Hessenberg matrix H of order n = 2m + 1, under the assumption that 
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the Hessenberg submatrices formed by matrix tearing are diagonalizable. If N1 = 
XlDlX;' and Hz = X2D2XF1, then 

= (=)+(e) 
Ym+l 

= x [(%) + (J)] x-1 

Y r n + & -  el 

with a = a, and X the direct sum X I @  1 @X2. The interior matrix can be permuted 
to  form 

M =  (m), 
where v1 = X c ' v ,  v2 = -ym+lX;'el, hl = ymXTem, and h2 = XTh. The eigenvalues 
of M not equal to diagonal elements of D1 and 0 2  are the roots of the secular equation 

.(A) = ( a  -- A )  + hT(D1 - XI)-'wl + hr(Dz  - XI)-2vz - 

hT(D1 - XI)-'(X,'zX2)(D2 - )r1)-lv2. (9) 

Note that .(A) = 0 has the same form as the tridiagonal secular equation (4) plus an 
additional cross term involving 2. 

The right eigenvector of M for eigenvalue X is 

-(D1 - XI)- ' [ - (x; 'Zx2)(D2 - XI)-'vz + v1] 
-(D2 - XI)-'v2 

!?= ( F )  = I (  1 

The deflation rules for the right eigenvectors of M derive from this expression (using 
M q  = Xq) and are not as simple as those given for the tridiagonal case in Lemmas 3.1 
and 3.2. For example, a diagonal element of D1 is retained as an eigenvalue X of M 
whenever 0 2  - X I  is nonsingular, and both of the following relations are satisfied: 

for eT(D1 - XI) = 0 and any choice of 42. The requirements are similarly complicated 
if X is a diagonal element of Dz but not of D1. If X appears in both D1 ( j th  diagonal 
element) and 0 2  (kth diagonal element), the requirements simplify to 
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for any g1. The formulas for the left eigenvector and deflation rules resemble those 
for the right eigenvector. The divide and conquer mechanism thus extends to the 
Hessenberg case, although less simply and less efficiently than to the tridiagonal case. 

5. Obstacles to the Nonsymmetric Method 

To this point, we have shown that as long as the submatrices formed from tearing are 
diagonalizable, a divide and conquer method for nonsymmetric tridiagonal and Hessen- 
berg eigenproblems can be derived along the lines of the symmetric method reviewed 
in Section 2. In the remainder of this paper, we discuss difficulties with efficiency and 
stability that stand in the way of a practical implementation of a nonsymmetric divide 
and conquer method. We use our method and that of [l] to illustrate the problems, 
but many of our deliberations would apply to any divide and conquer algorithm of this 

type. 

5.1. Roo t-find ing 

An accurate and efficient root-finder is essential to the success of the symmetric divide 
and conquer method of 18, 121. The nonsymmetric tridiagonal secular equation (4) 
g(X) = 0, however, shares few of the properties that make the symmetric secular 
equation (2) w(X) = 0 so easy to solve. The nonsymmetric function g(X) can still be 
evaluated in O ( n )  flops, but because it derives from the spectral decompositions of 
TI and T2, it can have complex coefficients. The complex roots of g(X) = 0 occur in 
conjugate pairs but otherwise can lie anywhere within the union of Gerschgorin disks 
of T or of M .  Only the poles 6 1 , .  . . , 6,-l of g(X) are easily identified. Unlike the 
symmetric equation, where the roots interlace the poles, there is no obvious connection 
between the locations of the poles and roots of g(X) = 0. The only advantage of 
the nonsymmetric equation is that only its roots with nonnegative (or nonpositive) 
imaginary roots need be explicitly computed to determine the full spectrum. 

To illustrate the general structure of g(X) we present contour plots of log(lg(X)I) 
over the area of the complex plane containing all roots and poles for two 5 x 5 matrices. 
Figure 1 shows the function for matrix T5 having diagonal elements 1, 2, 3, 4, 5 and 
off-diagonal elements /?k = 1, 7k = -1, k = 1,. . , 4. Boxes mark the four complex 
poles of the function, and X’S mark its one real and four complex roots. In this case, 
the structure of Ig(X)l is quite regular. Figure 2 shows log(lg(X)I) for a 5 x 5 random 
tridiagonal matrix. In this instance, two poles and three roots lie on the real line. The 
remaining complex conjugate poles and roots are nearly coincident, although deflation 
ensures that they are not equal. (In both cases, the function rises monotonically toward 
the poles: apparent structure near the poles is an artifact of the printer’s resolution.) 

In this section, we examine the possibility of unconditional global convergence to 
alI roots of g(X) = 0 .  As the roots and poles of this equation do not interlace, the first 
order of business is to localize the roots. To this end, we present Weyl’s algorithm [20] 
which was originally devised for polynomials. Given an initial search interval for the 
roots (here, the union of all Gerschgorin disks of T or of the deflated matrix M ) ,  we can 
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cover it with closed squares and determine the number of roots lying within each. Any 
squares found to contain no roots are discarded from the search area, The remaining 
squares are subdivided and the process is repeated recursively with the smaller squares. 
(Lehmer's method uses a similar process that covers the search area with disks [20,21]. 
DerwiduG's method covers the upper half plane with strips [all.) 

To implement Weyl's algorithm, it remains to  devise an ezclirsion test to  determine 
which squares are empty [20]. Let I' be the boundary of a square to be tested. Because 
we know the locations of the poles of g(X), we could determine the number of roots 
inside of I' by numerically evaluating the winding number 

which equals the number of zeros of g(X) inside I' minus the number of poles of g(X) 
inside I' [7]. The cost of computing this integral can be high, however, and it may be 
impossible to attain an accurate result when zeros lie close to  r [20]. An alternative 
is to  see whether "?Ig(X)l ever exceeds "?1g'(X)Ifi on a square I' of side w not 
enclosing a pole. If it does, the function cannot have a zero inside of [7]. (A similar 
test is described in [20] for polynomials.) Determining these maxima amounts to  yet 
another root-finding or optimization problem and so would be expensive. Such a test 
could also fail for roots near poles or near the edge of a square. 

Even if a practical exclusion test could be devised, Weyl's method offers only linear 
convergence. Furthermore, Weyl's algorithm requires that significant work be per- 
formed on intervals containing no eigenvalues. (In the symmetric case, the interlacing 
property means that only intervals of the real line containing eigenvalues are exam- 
ined [12, 221.) Weyl's algorithm does lend itself to  a parallel implementation as each 
square can be examined independently by one processor, although experiments with 
one-dimensional multisection routines suggest that an efficient mechanism for dynam- 
ically assigning squares to processors would be required for good performance [22, 261. 
According to  Ilenrici [20], this sort of multisection procedure is the only way to  compute 
all roots of a polynomial to  a desired precision with unconditional global convergence. 
We are not aware of any other globally convergent method for computing all zeros of 
rational functions. 

While it appears that there is no reasonably efficient globally convergent method 
for solving the secular equation, alternatives such as Newton's method, Bernoulli's 
method, Graeffe's root squaring method, or Rutishauser's quotient-difference method 
[20, 211 might work in practice. We could also pose the root-finding problem as the 
problem of finding all local minimizers of Ig(X)l within the minimal set of Gerschgorin 
disks of T or M. As a consequence of the Maximum Modulus Theorem [7], the modulus 
1g(X)1 has no local minimizers other than its roots. In this case, we can use the method 
of steepest descent for guaranteed convergence to  a single root [17, 201. Any of these 
methods would require a mechanism for choosing starting guesses for each root and a 
mechanism for determining if all roots have been computed. 

Finally, we note that the O ( n )  cost for evaluating g(X) results from having a tridi- 
agonal matrix torn into diagonalizable submatrices. In contrast, when evaluating the 
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Hessenberg secular equation (9), we must first determine X'T1ZX1 in O(m3) opera- 
tions then evaluate .(A) = 0 in O(m2)  operations where m = ?. If the submatrices 
resulting from tearing a tridiagonal or Hessenberg matrix, are not diagonalizable, the 
cost of evaluating the resulting secular equation is also higher than for g(X) or .(A), 
respectively [I]. 

5.2. Eigenvector Computation 

The derivation in Section 3 shows that, for an n x n matrix M ,  all left and right eigen- 
vectors are produced by our nonsymmetric divide and conquer algorithm in O(n2)  
operations. Furthermore, at  each stage, every eigenvector of M H ,  Mv, or M is com- 
puted independently of every other. Although independent computation of eigenvectors 
is good for parallel efficiency, it may not be the best numerical strategy for the non- 
symmetric eigenproblem. To compute an accurate singular value decomposition of a 
matrix by the divide and conquer strategy of [24], it is necessary to  compute each 
right singular vector from its corresponding left singular vector rather than by inde- 
pendent formulas. In p a t ,  this ensures correct pairing of left and right singular vectors 
corresponding to close singular values. Similarities between the divide and conquer 
algorithms for the SVD and the nonsymmetric eigenproblem suggest than an accurate 
eigensolver for the latter might also require the right eigenvectors to  be computed from 
the left eigenvectors. 

In the SVD algorithm of [24], the right singular vector is given by a diagonal scaling 
of the left singular vector. The relationship between the left and right singular vectors 
that makes this efficient transformation possible does not carry through to the nonsym- 
metric eigenproblem. If the matrix &? in equation (7) is diagonalizable, the matrix of 
right eigenvectors Q can be computed from the left eigenvectors only by inverting the 
latter in O(r3)  operations. If the eigendecomposition M H  = QHAHQ;;~ is computed 
stably, the left eigenvectors of the diagonalizable matrix Mv derive from 

and the relation 

In this case, A = -CQ;;', and each element of C is computed by 

1 5 j 5 p and 1 5 k 5 T +t. Computing the submatrix C takes O(p(r  +t))  operations, 
but computing A takes O ( p ( ~ $ t ) ~ )  operations. The matrix product needed to  compute 
A and the inversion of Q" make the eigenvector computation expensive both serially 
and in parallel. In the algorithm of [l], the left and right eigenspaces are computed 
independently. 
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5.3. Deflation 

In practice, the cost of the symmetric divide and conquer method of [8, 121 is strongly 
problem dependent and is determined by the amount of deflation occurring for a given 
problem [12, 231. When deflation is prevalent, divide and conquer is the fastest way to  
compute accurately all eigenvalues and eigenvectors of a symmetric tridiagonal matrix, 
but if no deflation occurs, the divide and conquer and QR methods are of comparable 
cost [23]. We have not done experiments to determine the likelihood of deflation in the 
nonsymmetric case but do note that the zero structure of the computed eigenvector 
matrices could influence the savings. For symmetric matrices, the eigenvector matrix 
decouples into the direct sum of an identity matrix and a computed submatrix, but 
for nonsymmetric matrices, the eigenvector matrices have nonsymmetric zero structure 
and, hence, possibly fewer zeros than if TI = h. Fewer zeros would mean less savings 
when the eigenvectors of M are computed and and when they are backtransformed to  
those of the original matrix T .  

As in the symmetric case, deflation rules can be formulated for use in a finite 
precision implementation. A diagonal element 6j of the matrix M is retained as an 
eigenvalue of M when 6 j  is close to  some other diagonal element 6; or when an element v; 
or hi is small. In the first instance, similarity transformations are applied as in Lemma 
3.2 to  zero out a border element hj or vj corresponding to  one duplicate diagonal 
element. Error analysis of this process proceeds much as for the symmetric case in 
[6, 121 and shows that finite precision deflation leads us to  work with a matrix M + E 
close to  the one we would use in exact arithmetic. 

If we accept the eigendecomposition of M + E as the eigendecomposition of M ,  we 
can then see an error in a computed eigenvalue A; of M as large as [19, 311 

where l/a(A;) is the condition number of the eigenvalue A;. Thus, if a11 eigenvalues of 
M are well conditioned, deflation of this sort should pose no threat to the accuracy 
of the method. Similarly, a well-conditioned eigenvector would not be sensitive to the 
small errors introduced by the similarity transformations. 

also appears to  have little influence on the 
accuracy of the solution as measured by the residual error. We accept ( & , e ; )  as a 
right eigenpair of M whenever Ih;l 5 to1 = BEMII M 11 with 8 = O(1) and EM = 
machine epsilon. This ensures that the residual error of the eigenpair is bounded above 
by a small value 

11 M e ;  - 6;e; 11 = I(hTe;)e,I = lh;l 5 tol. 

These results indicate that deflation should not influence the accuracy of well-conditioned 
eigenpairs but could be problematic for ill-conditioned eigenpairs. 

The time savings due to deflation are difficult to  predict. The nonsymmetric zero 
structure of the eigenvector matrices leads to  reduced savings in both computation and 
backtransformation of the eigenvectors of M when compared to deflation in the sym- 
metric method. The loss of the efficient root-finder, however, suggests that eigenvalue 

Ignoring small elements of h and 
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computation time may occupy a substantidy larger fraction of the total time than 
it does in the symmetric case. If this is true, the savings in eigenvalue computation 
following deflation would be more important for nonsymmetric than for symmetric 
ma trices. 

The algorithm of [l] attains a low operation count by computing the eigenvectors 
of T through direct system solution rather than by computing and backtransforming 
the eigenvectors of an intermediate matrix. Adams and Arbenz conclude that as long 
as the required system solution is stable, deflation of the problem is unnecessary. (The 
stability of the computation is as yet unestablished.) 

5.4. Stability 

There remains one additional aspect of a divide and conquer method that can most 
severely impact its accuracy even if it allows for defective submatrices. Namely, if 
either of the torn submatrices TI or Tz of a nonsymmetric matrix T is ill-conditioned 
with respect to the eigenproblem, the accuracy of its computed eigendecomposition 
can be poor [19, 311. Because the eigendecomposition of T is built up from those of 7'1 

and 2'2 and is never corrected using T itself, the eigendecomposition of T will also be 
inaccurate. 

The following example demonstrates that even a matrix that is well-conditioned for 
eigendecomposition can have ill-conditioned submatrices. The Hessenberg matrix 

H ( 6 )  = 

0 0 0 10-84-6 0 0 0 0 1 
1 0 0  0 0 0 0 0 1  
0 1 0  0 0 0 0 0 1  
0 0 1  0 0 0 0 0 1  
0 0 0  1 0 0 0 0 1  
0 0 0  0 1 0 0 0 1  
0 0 0  0 0 1 0 0 1  
0 0 0  0 0 0 1 0 1  
0 0 0  0 0 0 0 1 1  

has distinct eigenvalues all with condition numbers near 10 and an eigenvector matrix 
with 2-norm condition number of 3.4 when S = 0. Like H ( O ) ,  the 4 x 4 submatrix 
formed by rank-two tearing 

0 0 0 1  
1 0 0 1  

0 0 1 1  
H 2 =  (. 1 0 

has distinct eigenvalues with condition numbers near 10 and an eigenvector matrix with 
2-norm condition number 2.0. However, the submatrix 
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has four distinct eigenvalues with condition numbers around lo5 - lo6 and an eigen- 
vector condition number of about lo6 for 6 near or equal to zero. (See [31].) 

in our divide and conquer algorithm, we first compute the structured matrix 
To demonstrate the sensitivity of H ( 6 )  to the ill-condition of H l ( 6 )  = X1(6)D1(6)X1(6)-' 

from equation (8) using Matlab [27] for 6 = 0 and 6 = E M  = 2.22 x All 
eigendecompositions needed to construct and analyze M are computed in double preci- 
sion using the Matlab function eig which computes the eigenvalues by the QL method 
[29, 271. 

The small perturbation in H ( 6 )  leads to a difference in M ( 6 )  of 

or a relative difference of 

In the latter cases, the absolute errors are 

The residual error for the computed right eigenpairs is 

By any of these measurements, we see that a very small change in H ( 6 )  leads to 
a significantly larger error in its computed eigendecomposition. An ill-conditioned 
problem in which deflation takes place could be even more inaccurate. As these errors 
are caused by ill-condition, there is no reason to expect a substantially different result 
when the QL method used for our experiments is replaced by root-finding. 

If an inaccurate subproblem solution is detected, the matrix could be divided at 
a different point and the ill-conditioned submatrix replaced with a new submatrix. 
Despite the additional work involved, this approach cannot guarantee new subproblems 
with better condition than the original ones. Furthermore, efficient divide and conquer 
methods typically recursively subdivide the original matrix more than once to form a 
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tree of updating problems [12, 22, 241. Even if the smallest submatrices a t  the leaves 
of the tree are well-conditioned with respect to the eigenproblem, larger submatrices 
farther up the tree may not be. To correct for ill-conditioning at level k of the tree, it 
would be necessary to redivide the matrix and repeat the updating procedure for all 
levels of the tree from the leaves to level k. Again, this redivision could not guarantee 
improved condition of the level k problems. To make matters worse, ill-conditioning 
could be introduced in the new problems below level k. 

6. Conclusion 

We have seen that the divide and conquer method that has been so successfully applied 
to other matrix problems can fall short when extended to the nonsymmetric eigenvalue 
problem. The speed and accuracy of the other methods rely largely on the availability of 
a fast and globally convergent root-finder and on the prevalence and ease of deflation. 
However, there appears to  be no equivalent root-finder for the nonsymmetric case, 
and deflation of of the nonsymmetric problem may not be as advantageous as in the 
symmetric case. Furthermore, if it is necessary to compute the left eigenvectors from 
the right eigenvectors to maintain accuracy, the eigenvector computation may become 
inefficient, especially in parallel. 

The greatest danger with the divide and conquer method, however, lies in its po- 
tential instability. Even if the original matrix is well-conditioned with respect to the 
eigenproblem, an ill-conditioned submatrix can be created at  any level of updating. 
Thus, even small errors introduced by tearing, deflation, or updating can lead to large 
errors in the computed eigendecomposition. Because the original matrix is never used 
in the updating procedure, there is no opportunity to correct an error introduced by an 
ill-conditioned submatrix. Two divide and conquer methods that employ the matrix 
original matrix T in the updating procedure and appear to overcome poor intermediate 
results are discussed in [11, 251. 
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X 

Figure 1: Contour plot of log( 1g(X)1) for the 5 x 5 matrix T5. Poles are marked with 
boxes, and roots are marked with X’S 
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Figure 2: Contour plot of log(lg(X)I) for a random 5 x 5 matrix. Poles are marked with 
boxes, and roots are marked with X’S 
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