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ABSTRACT 

We are given N learners each capable of learning concepts (subsets) of a domain 
set x in the sense of Vdiant, i.e. for any c E C c 2x, given a finite set of exam- 
ples of the form < 2 1 ,  A d c ( x l )  >; < 5 2 ,  Mc(zz )  >;. . . ; < 51, llfc(x,) > generated 
according to an unknown probability distribution Px on X, each learner produces 
a close approximation to c with a high probability. We are interested in combining 
the N learners using a single f u s e r  or consolidator,  We consider the paradigm of 
passive fusion, where each learner is first trained with the sample without the influ- 
ence of the consolidator. The composi te  s y s t e m  is constituted by the fuser and the 
individual learners. We consider two cases: open and closed fusion. In o p e n  f u s i o n  
the fuser is given the sample and the hypotheses of the individual learners; we show 
that the fusion rule can be obtained by formulating this problem as another learn- 
ing problem. For the case all individual learners are trained with the same sample, 
we show sufficiency conditions that ensure the composite system to be better than 
the best of the individual: the hypothesis space of the consolidator (a) satisfies the 
i so la t ion  property  of degree at least N ,  and (b) has Vapnik-Chervonenkis diincnsion 
less than or equal to that of every individual learner. If individual lea,rners are 
trained by independently generated samples, we obtain a rnuch weaker bound on 
the VC-dimension of the hypothesis space of the fuser. Second, in closed fusion the 
fuser does not have an access to either the training sample or the hypotheses of thc 
individual learners. By suitably designing a linear threshold function of the outputs 
of individual learners, we show that the composite system can be made bctter than 
the best of the learners. 

Keywords and Phrases: N-learners problem, coniputational learnability, 
passive fusion, open fusion, closed fusion. 
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1. INTRODUCTION 

In several practical applications, we are faced with the problem of cornbin- 
ing information from several sources. Such examples abound among humans and 
machines alike. For example, a judge is required to examine the evidences from 
attorneys and deliver a judgement - in this case the information sources arc "corn- 
petitive". In the example of a robot equipped with a number of sensors, the problem 
is to combine the sensory information and form a description of the environment - 
in this case the information could be (a) "cooperative", e.g. two sensors indicating 
an obstacle in the way; (b) "competitive", e.g. a faulty sensor giving a reading 
different from a non-faulty one; or (c) "complementary", e.g. one sensor giving the 
shape and another giving the color. 

The N - L e a r n e r s  Prob lem is a special (abstracted) case of data fusion: we itre 
given multiple learners that infer concepts, and the problem is to design a consolida- 
tor or f u s e r  that combines the outputs of the individual learners. In the paradigm 
of passive f u s i o n  the individual learners are not supcrvised by tlie fuser. In actiue 
f u s i o n  the individual learners are controlled by the fuser. Note that a passivc fuscr 
is a special type of active fuser that chooses not to control the learning process of 
the individual learners. In this paper, we discuss only passive fusion when the indi- 
vidual learners are as described under the framework of Valiant [as]. The learning 
problems (i.e., design of individual learners) under this framework have been exten- 
sively studied over the past five to six years; a small selection of results is presented 
in Section 4. 

A variant of the N-learners problem has been first discussed in [25] in the context 
of sensor fusion in a hybrid system. Potential applications of the N-learners problem 
include sensor fusion [11,16], hybrid systems [13,25], information pooliiig and group 
decision models [14,20], and majority systems [8] .  

Consider a systcm of N learners L1, L2, ..., L N ,  where each L,  learns concepts 
(subsets) of a domain X in the sense of Valiant [28], i.e., given a sufficiently large 
sample of examples of c E C E 2x, a hypothesis h close to c will be produced 
with a high probability. The closeness of the hypothesis (learned concept) h to c 
is specified by a precis ion parameter e ,  and the probability that this closeness is 
achieved is specified by a confidence parameter 1 - 5. Given two learners trained 
by the sarnc Iiurnber of examples, the one with higher or equal confidence for the 
same value of precision is considercd better (this notion is more precisely defined 
in Section 4). In this paper, we only consider the problem of dcsigning a f w e r  (or 
consol idator)  such that the composi te  s y s t e ~ ~ ~ ,  of tlie fuser with the JV lcariiers, can 
be made better than the best of the learners. 

There are other interesting criteria for designing a fuser. For example, we might 
be interested in making the composite system learn concepts that are not learnable 
by the individual learners. In [26] a system capable of learning Boolean coinbina- 
tions of halfspaces by utilizing a system of perceptrons is described; note that a 
single perceptron is incapable of learning such concepts [B]. 

We first illustrate some simple cases where the composite system can be easily 
seen to be better than each of the learners (Section 3), and then consider more 
general cases. 
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2 In t ro d u c t io n 

We consider two paradigms: 

(a) Open Fusion: In open fusion, the fuser is given the training examples and 
the hypotheses of the individual learners. We introduce a property called the 
isolation, and present sufficiency conditions that ensure the composite system to 
be better than the best of the learners. We show that the problem of designing 
the fuser can be solved by casting it as another learning problem that can be 
solved using known methods if the suitable isolation property is satisfied. We 
consider the two cases: 

(i) all learners are trained with the same sample, and 

(ii) each learner is individually trained with a separate random sample. 

We derive sufficiency conditions for several formulations of the learnability prob- 
lem such that the composite system has higher confidence than the best of the 
learners. In both cases, the hypothesis class of the fuser must satisfy the iso- 
lation property of degree N,  where N is the number of individual learners; 
additionally, the condition in the first case is that the Vapnik and Chervonenkis 
dimension [7] (VC dimension) of the fuser be smaller than or equal to that of 
every learner. And in the second case the fuser can have much larger VC dimen- 
sion (the exact bound is specific to the formulation of the learning mechanism 
of Li’s). In other formulations that do not use VC dimension (e.g., learnabil- 
ity under fixed distributions [ 6 ] ,  learning under metric spaces [15]), we use the 
corresponding parameters to express sufficiency conditions. 

(b) Closed Fusion: In closed fusion, the fuser does not have access to either the 
examples or the hypotheses of the individual learners. We show that a linear 
threshold fuser can be designed such that the composite system is better than 
the best of the learners. This result shows that that even if aJl individual learners 
are completely consistent with the sample (i.e. all of them have zero empirical 
error), we can still make the performance of the composite system better than 
that of any individual learner. 

The organization of this paper is as follows: -4 precise formulation of the present 
version of the N-learners problem is presented in Section 2. Specialized examples 
where a suitable fusion rule makes the overall system better than the best of the 
learners axe given in Section 3. A selection of existing learning formulations, and an 
approach to compare the learners are outlined in Section 4. The general problem is 
solved in Section 5 for the case of open fusion. Closed fusion using linear threshold 
functions (of the outputs of the learners) is addressed in Section 6. 



2. N-LEARNERS PROBLEM 

A concept  is a subset of a domain set X; for a concept c X we define a 
membership function M,  : X + { O , l }  such that for 2 E X: M,(x) = 1 if 5 E 
c and M c ( s )  = 0 if z $! c ( for ease of presentation we abuse the notation by 
interchangeably using c and Adc when the reference is clear from the context). A 
set of concepts is called the concept  class. A n  exampEe of a concept c 5 X is any 
pair < z, MC(z)  > for 17: E X, and an 1-sa~nple  of c is a seyue~ice of 2 examples of c.  
An example < 2, M c ( z )  > is called posi t ive  if M c ( z )  = 1 and negative if M,(x)  = 0. 
We assume that an example is randomly produced according to a distribution P,y 
on X ,  and the examples of a sample are produced inde endently. Each learner for 
a concept class C E ZX has a hypothesis  cZass H C 2'. We mainly consider the 
cases where PX is unknown; we consider one case where Px is known. 

The concept class C is learnable by a hypothesis class H if for every P x ,  for 
any concept c E C ,  there exists Z < 03 such that: given an Z-sample of c (i.e., 
< ~ I M C ( ~ I )  >, < 2 2 , M c ( 1 7 : 2 )  >, . . . , < 21, I M C ( 1 7 : i )  >) and E and 6, ( 0 < ~ , 6  < 1) 
an approz ima t ion  h E H can be produced such that 

P r o b [ p ( c A h )  > E] < S (2.1) 

where cAh = (c-h)U(h-c) and p(cAh) = J d P , ~ ( x ) ,  i.e. the integration 

is over all x that precisely belong to one of c and h but not to both [7,2S]. Note that 
p(cAh)  is the probability that a randomly chosen example (with respect to P x )  will 
yield different values under &Ic and Mh. Here c is often called the target concept 
and h is called the hppothesis of the learner. Informally, the equation (2.1) means 
that with an arbitrarily specified confidence 1 - 6, we must be able to produce a 
hypothesis that approximates the target concept within E which is also arbitrarily 
specified. 

The above formulation is popularly referred to as the Probably Approxe'mateEy 
Correct  (PAC) learning [7,28]. Several variants of this basic problcm have been 
studied by a number of researchers (see the references). We refer to condition in 
Eq (2.1) as the ( ~ , S ) - c o n d i t i o n .  This condition is also often expressed as 

M c ( z ) # M h ( x : )  

. 

Prob[p(cAh) 5 E] 2 1 - 6. (2.2) 

We say that C is polynomial ly  learnable by H if the number of examples, often 
called the sample s ize ,  needed to ensure the ( E ,  6)-condition is a polynomial in 1 / ~ ,  
1/6 and some appropriate pasameters of H such as VC dimension, cardinality, etc. 
[7,28]. In some formulations, the sample size has to be polynomial in the complexity 
of the target complexity (e.g. [2,22]). Also, in  some cases only a single parameter 
is used to express the (~,S)-condition; for example, h = ?; = 5 is used in [22,28]. 

Now consider N learners  such that each learner has the same concept class C 5 
2x and the same output space of ( 0 , l ) .  The ith learner L,  has a hypothesis space of 
Hi C 2x. Each learner has its own way of producing a hypothesis. In other words, 
the individual learners can differ in their hypothesis classes, and/or in the methods 
used to produce the hypotheses. The N- learners  proble7n deals with designing a 
f u s e r  or consol idator  that learns a map from the outputs of the N learners to (0, l}. 
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Let H F  denote the hypothesis space of the fuser. One example for the hypothesis 
class of fuser is a set of Boolean combinations of at most N variables. 14'e consider 
more general hypothesis classes by embedding the N-dimensional Boolean cube into 
?RN, and letting H F  to be a subset of 2RN. 

Our main objective is to make the composite system of the fiiser and the learners 
better than the best of the individual learners. The notion of "better" is formalized 
in Section 4. The problem of designing the fuser critically depends on the informa- 
tion available to the fuser such as the type of learners, the examples given to the 
individual learners, etc. We are intersected in identifying the cases in which a fuser 
can be designed to outperform the individual learners. 



3. SIMPLE FUSERS 

To illustrate the basic ideas of passive fusion, we consider a very simple set of 
N learners; we show that in these cases a fuser can be very easily designed. Our 
examples consist of learners, called learners ,with one  sided error, that are allowed to 
make mistakes on only positive examples or only on negative examples of a concept. 

3.1 ONESIDED LEARNERS 

Consider a set of learners such that each H ;  makes only one-sided errors as in 
Valiant [28], i.e., corresponding to a target concept f, Li learns a hypothesis f z  
such that f C f;; we denote this by f + fi. In other words, Li is not allowed 
to misclassify members of f, but can misclassify non-members of f. Valiant 1291 
discusses learning algorithms for such learners for several cases of Boolecm formulae 
(see also Natarajan [22] for some additional work). 

Now consider that each L; has been trained with a sample that ensures ( E ,  6)- 
condition, and x E X is given to be classified. We define a fuser F in this case to 
yield a value of 1 if and only if all L,s yield Is, i.e., the hypothesis of the consolidator 
is h = fz. Clearly, we have f + 0 fi. Properties of the fuser are given in the 

following theorem. 

Theorem 1. For the system of N statistically independent learners with one-sided 
errors such that f =+ fz for each learner L;,  let the hypothesis of the fuser be 
h = n fi. Then we have: 

i i 

I 

(i) With the probability at least 1 - S N  we have p ( f 4 h )  5 E .  

(ii) With the probability at least (1 - 6)N7 we have 

for distinct il,iZ,. . . i, E {1,2,. . . , N }  and 1 5 j 5 N .  
(iv) Let = { f l ,  f 2 , .  . . , f N }  and Fk = - { fk}. For any fk, let 



f i  E F k  

+ (-1)N-’Prob 

We also have 

f i  2 f j  E F k  

p ( f A h )  5 E - niax{Prob[fk] - A , , } .  
f k  €3 

Proof: Since each L ,  is a Valiant’s learner, we have p ( f A f , )  >_ E with a probability 
of at most 6. Thus with a probability of at least 1 - SN, there exists L,  with 
p ( f A f , )  5 E .  Since h s fa and f =+ h ,  every z in h but not in f ,  will definitely 
be in f,. Thus every z that contributes a lion-zero value to p ( f A h )  will also 
contribute the same value to p(fAfz). Hence we have (i). For the second part, 
with a probability of (1 - S ) N ,  we have p ( f A f ,  5 E )  for each L,. By taking AND 
of f, and f3 we reduce E by p tJ .  

,4 tighter bound on the total amount of reduction in E can be estimated by using 
the the Inclusion-Exclusion Principle [12,18]; this bound is given in (iii) and (iv) 
parts. Consider a set Y .  For any AI ,  A*, . . . , A,  C Y ,  and a function q5 : 2’ ++ 
[O,M] for M < 00, such that d(A U B )  = $(A)  + $ ( B )  for any two disjoint subsets 
A ,  B 2 Y ,  we have 

where A, = Y - A,. 
We identify q5 with the probability measure [12]. Let Y = fo - f ,  thus Prob[Y] = 

. . . f , ,)Af).  Thus the part (iii) directly follows. Part (iv) follows along the lines of 
(iii) by simple algebraic manipulation. QED. 

P(f0A.f) 5 E ;  and let A, , , , , ,  , l )  = ( f o  n fl n. . . f]> - f, thus P z , , z z ,  , Z J  = P(fo n f i ,  n 

Now consider the implications of this theorem. First, we are able to ensure 
that the composite system has a higher confidence factor of 1 - SN of bounding 
the precision by E ;  also, the ratio of the corresponding confidence factors increases 
with N since = 1 + S + S2 + . . . + S N - l .  Second, with lesser confidence, we 

can reduce the E by p i , ) .  Note that p;, j  U pj, i .  = p ( f ; A f j ) ;  thus the reduction in e 

is proportional to the biggest amount of “dissimilarity” between two hypotheses of 
the individual learners. An expression for more precise reduction in E is given in 
(iii) and (iv). 

N 
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Example 3.1. Finite Hypotheses Classes: 

Consider the case of finite number of hypotheses for each learner, i.e. /Hi1 < 00. 

Assume that C C_ H ,  for i = 1,2,  . . . , N .  Then the number of examples needed to 

et a1 [7]) .  A learning algorithm for L,  in this case simply produces a hypothesis that 
is consistent with the sample, i.e. any h E H ,  that contains all positive examples and 
does not contain any negative examples is guaranteed to satisfy the ( E ,  6)-condition. 
In our present case, we assume that the individual learners differ in the way they 
pick their hypotheses. 

Now consider the condition (i) of Theorem 1. If a single learner of the above 
kind has to satisfy the ( E ,  b N )  condition, then the number of examples required is 
given by ml = $ In (9). Thus the effect of composite syetem is as if the number 
of examples to a single learner has been increased by $ ln (&). 

Sirnilar computations can also be carried out using the other parts of Theorem 1. 
By using part (ii) we havc 

ensure learnability is given by m = f In (+) I f f  I as in Natarajan [22] (also see Bluiner 

[l - (1 -cy].& 5 [l - (1 - 6) N $  ] 

the effective increase in the number of examples is at least 

It is interesting to note that if E = pmax, then the effective increment in the 
examples is 00; this is because this condition is tantamount to recovering f coni- 
pletely. Also the more the number of learners, the more will the effective increment 
in the number of examples. 

We now consider the counterpart case where each learner L;  satisfies the prop- 
erty: any x € X in fi must be in f, Le. Li is allowed to misclassify elements of f, 
but is not allowed to misclassify non-members of f .  i.e., L;  learns concept f ;  such 
that fj C f; we denote this condition by f fi. In t,his c.ase, the hypothesis of the 
fuser is h = U fi. We have f 

Theorem 2. For the system of N statistically independent learners with one-sided 
errors such that f .(z f; for each learner Li, let the hypothesis of the fusel- be 
h = U f,. Then we have: 

U f;. 
i i 

i 

(i) With pmbabilitj. at least 1 - bN we have ,u( f Ah)  5 e, 
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(ii) With probability of at least (1 - 6)" we have 

P ( f A h )  5 E - max{Pz,j) 
'93 

where pi, j  = P( fin( fi n fj)). 
(iii) With probability at least 1 - S N  we have 

N 
~ ( f ~ h )  5 N E  - ( N  - I ) T ~  + 1 yi,j + . . . + (-1) yi1,iZ ,..., i,v 

. .  
zr3 

where ~f = Prob[ f ] ,  yi, j  = P r o b [ f ; n f j ] ,  for distinct z,j E {1 ,2 , .  . . , N }  and 

yil,iZ ,..., i j  = Prob[fi, n fiz n . . . n f i j ]  

for distinct i l , i 2 , .  . . ij E {1,2, .  . . , N }  and 1 5 j 5 N .  
(iv) With probability ( 1 - 6) for 

for some K ,  we have 
p(fAh) < E - K 

Proof: The proofs for parts (i) and (ii) are similar to those in Theorem 1. For (E), 
we first note, for f = Y 

p ( f A h )  = Prob(fi  n f2  f~ . . . n f ~ ) .  
Then using the Inclusion-Exclusion principle, and Prob( Y) = Prob( f), and 
Prob(f;) 2 yf - E, we have (iii). Then 

. .  ' 33 i 

Let us denote 

i,j i , j , k  

Then the condition p ( f A h )  5 E - K ,  where K 2 0, is implied by 

x K 

N - 1  N - 1  
Prob[f]  2 E + ~ + ___ 

We now derive an upper bound on X as follows: 

A <  ( ; ) € , - ( ; ) E L + . . .  
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and 

Thus X 5 [ZN-' - $ ] ( E u  - E L )  + N E L .  QED. 

N If EU = E L ,  then we can reduce the E by a e  = (Prob[ f]  - E ) ( N  - 1) - = E L .  

The value of E can be reduced by employing a suitable number of learners. In a 
general case, such reduction may not be achievable. 

3.2 COMBINATION OF LEARNERS 
Now we consider the case where we have N independent learners of the type in  

Theorem 1 and N independent leariiers of the type in Theorem 2. The hypotheses 
of the first type of leaners are denoted by fi, fi, . . . , f ~ ,  and those of the second type 
are denoted by g I , g J , .  . . , g ~ .  Let .F = {fi,fi,. . . , fN} and G = {SI, g 2 , .  . . ,ynr} 
Then we obtain a static fusion rule given by (for IC E X): 

N 

i= 1 
if 5 E U gi ,  then output 1 

else if 5 $ n f;, then output 0 

else flip a fair coin, and output 1 if heads or output 0 otherwise; 

Consider that Ai = 1, then with probability (1 - 6)2 we have f4h 5 F. To see 
this, note that with probability 1 - 5 both fl and gl will guarantee a precision of 
E .  Using the above algorithm, the region of error is (fl - f) U ( f  - g l )  aiid the 
probability of error for any point in this region is $. Thus the total probability 
of error is ;[p(flAf) + p(fAgl)] 5 E .  In the general case the following we direct 
consequences of the discussion of last subsections. 

N 

9=1 

(i) With probability at least (1 - S N ) 2  we Eiave p(fAh) 5 e, 

(ii) With probability of at, least (1 - S)2" we have 

In view of (i) this algorithm fares worse than the best of the individual learners 

for the particular case when N = 1. In a general case the condition (1 - S N )  2 1-6 
is implied by 1 - S N  2 1 - $ [l]. This condition in turn is satisfied if N 2 1 + u- 

t 1 / 6 ) '  
thus, we can make the system have confidence higher than 1-6 by suitably choosing 
the number of learners. In particular if S < 1/2, i.e. each learner perform? better 
than a fair coin, it suffices to ensure N >_ 2. Also note that this algorithm can 
exploit the diversity of members of both .F and G! i ts  in (ii). More precise bounds 
on p(fAh) can also be worked out along the lines of last subsections. 

2 



4. COMPARISON O F  LEARNERS 

In judging the performance of various learners, it is often necessary to make 
comparisons between the learners. We characterize a learner by the parameter  
pair ( E , & ) ;  recall that the learner L; and the fuser F are characterized by the 
pairs ( e ; ,  6;) and ( E F ,  6,) respectively. In general, for many formulations of the 
learnability probleni, there is a functional relation between E ;  and 6; of a learner 
as will be subsequently illustrated. Also, some authors use a single parameter to 
characterize the learners (e. g. [22,28]). We compute the adjusted S;, denoted 

by 8i ,  corresponding to  the mean value of 5 = e;; the subsequent discussion 

is, however, valid for any other value for 5. In the case all learners are trained 
by the same number of examples we define hmin = min8;. The parameter 8 is 

used for comparing the various learners. L;  is considered better than Lj if 8; 5 8 j ,  

i.e. 1 - 6; 2 1 - S j ,  for the same sample size; this definition is extensively used 
subsequently in this paper. 

We now present a list of examples for different existing formulations of the 
individual learners; in each formulation we describe some interesting features and 
underlying formulae of the learnability problem. Our intention here is to illustrate 
some important existing formulations, and also to derive formmilae for adjusted 8's 
for these cases. These formulae are used in obtaining some suffciency conditions in 
Section 5 .  In the rest of this section we assume that each learner is trained with a 
m-sample. 

N 

i = l  

1 

,. 

Example 4.1. Finite Hypotheses Classes: 

From Example 3.1, we have, 6; = IHile-""", and the adjusted 6 is given by 

8; = IH;le-m', where 5 = & E ; .  Note that if all learners are trained by the same 

set of examples (or the same number of examples), the learner with least number 
of hypotheses will yield highest adjusted confidence. Stated in another way, the 
learner that can explain the sample using only a smaller set of hypotheses will a 
better predictor of the target concept. 

N 

i=l 

The formulation of Example 4.1 can be adapted to take into the account the 
comples i ty  of the target concept, denoted by n, as illustrated in the next example. 

Example 4.2. Occam's Razor: 

Consider the case H ,  is countably infiuite. We assume that C C H,. Let the 
cornpzezity of a hypothesis h E H ,  denote the number of bits needed to specify 11 
in some fixed encoding [7]. An Occam-algori thm for If, with constant parameters 
c, 2 1 and 0 5 ail < 1 is a learning algorithm that: 

(i) produces a hypothesis of complexity at most nCinzal when given a sample 
of size m of any concept of C of complexity at most n,  and 

10 
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(ii) runs in time polynomial in the length of the sample. 

It has been shown that the existence of a n  Occam-algorithm for H implies polyno- 
mial learnability [7].  Then given a sample of c E C of complexity at most n, the 
number of examples needed to ensure polynomial learnability is given by 

where E is a constant. The value of the adjusted S is given by 

A F m  6. - e"-T 

where x = n'-*;Zl-~; . Note that in this case each learner is characterized by the 
parameters of its Occam-algorithm. 

1 -  

ci 2 

We now consider more general cases of X and H ,  as discussed in [TI. A family 
H C 2" shatters a set XI = {x l ,x2 , .  . . ,xi} C X, if { h  n Xlllz E H }  = 2'1, i.e. for 
every subset of XI there exists h E H that contains this subset but not its com- 
plement. The Vapnik and  Chervonenkis  d i m e n s i o n  of H ,  denoted by VCdirn(W) is 
the maximum size such that every subset of X of this size is shattered by H .  The 
VCdzm(.) plays a very critical role in learnability in that C C H is learnable if and 
only if V C d i r n ( H )  < ca [7]. 

Example 4.3. Infinite domain and iiifinite hypotheses classes: 

We now consider the cases when X is finite, finitely enumerable, a Boolean 
cube or a vector space and C C H,;  let VCdim(H,)  = d, < m. From Blumer et 
a1 [7], the number of examples needed for learnability using hypothesis space H ,  
V C d i r n ( H )  = d ,  is given by 

4 2 8d 
E 6 E  

max (-log -, - log E) € . 

Here, the learning algorithm simply outputs any hypothesis that is consistent with 
the given sample. Thus we take a sufficient value of the required number of examples 
given by: 

4 2 8d 13 

€ S €  E 
m = -log- + -log-. 

Then adjusted 6i corresponding to a m-sample is given by 

A 2d;log(13) 9 6; = 2e r e  I 

Further assume that each example is subjected to misclassification with a prob- 
ability of 1 - y. Then the number of examples needed to ensure ( E ,  &)-condition is 
given by (BIumer et a1 [7, Theorem A3.11): 

niax (7tc -In :, - 7% 1 n E )  y2€ . 
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Then adjusted 6; is given by 

Now if all learners are trained by the same set of examples, the leaner with least 
VC-dimension for the set of hypotheses will yield highest adjusted confidence. 

In some formulations of learnability, the notion of cover plays a very important 
role; one such instance occurs when Px is known. For E 2 0, a set C, C 2” is an 
E-cover of C C_ 2x under P” if for every c E C there is 2 E C, such that p ( c A t )  5 E .  

C is finitely coverable with respect to  Px if for every E 2 0 there is a finite €-cover 
C, of C. It has been shown in 161 that C is learnable with respect to Px if and only 
if C is finitely coverable with respect to Px. 

Example 4.4. Learnability under fixed distribution: 

We will now consider the case where P,y is known, which is known as learnu,bility 
under $zed distributions [6]. In this case, the number of examples needed to ensure 
( E ,  6) is given by 

n2 = E In (::) 
E 

where N ,  = N,(C,  P x ,  E )  is thc cardinality of a finite ;-cover of hypothesis space H 
with respect to Px.  In this case the adjusted 6; is given by 

where N;  is the ;-cover of Hi .  If each example is subjected to misclassification with 
a probability of p, the required number of examples is given by 

12(€ + p - 2€P)  N 
m =  In 7 

E*(l/2 - p ) 2  b 

The adjusted S is given by 

More details on these aspects can be found in [SI 

Example 4.5. Learning under malicious errors: 

Kearns and Li 1171 study the problem of learning in presence of classification 
error. The probability distribution P,x- is represented as a combination of two 
distributions E‘$ and P s  based on concept c;  P$ and P i  are distributions on 

( N E G L )  which produces 2 E X such that 

c and X - c respectively. Here a learning algorithm can make calls to oracle POS, P 

(a) with probability at least 1 - p, x belongs to c ( X  c); and 
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(b) with probability p, z's classification may or may not be correct. 

If /3 5 ~ / 2 ,  a learning algorithm, called p - ~ o b u ~ t  Occam A lgor i thm,  exists (for 
hypothesis space H )  with the sample size given by 

such that e bounds both the errors due to P$ and E';. Let the m examples returned 

by POSL and NEGG be u1, u2, ..., urn E X ,  and V I ,  212, ..., v , ~  E X respectively. 
Here, the @-robust Occam Algorithm returns, with probability at  least 1 - 6, lz E H 
such that 

Thus, with high probability h agrees with a fraction exceeding 1 - 

In this case the adjusted 5 is given by 8i = 21H; le -e .  
of the sample. 

Example 4.6. Learning subsets of metric spaces: 

We now consider a special case of Haussler [15] who discusses the problcrn of 
learning functions of the forni f : X H 1'; the following discussion deals with case 
Y = [O,M] Ii! (note that for concept learning we have Y = { O , l } ) >  Here P,u is 
chosen from a set of distributions D; if 27 denotes set of all probability distributions 
we have the case of distribution-free learning of Valiant [as] and if /Dl = 1 we have 
the learnability by fixed distribution by Benedek and Itai [6]. 

Consider a set S with a metric d : S x S t--) E+. For any E 2 0, an E-coveT for 
T 2 S is a finite set N C S such that for all rz: E T there exists y E N such tliat 
d(z,y) 5 E .  Note that this cover is different from that in Example 4.4. 

Consider a probability space (S, D ) ,  for D E D, and let F denote a set of real- 
valued random variables on S .  For any fixed sequence ( = (&, . . . , E m )  E S"' and 

f E F ,  let f i t ( f )  = f f(c;) which is the empirical estimate of the iiieaii of f 

based on c. Further for E E S", define 

m 

Z? 1 

Let dL1  denote the L1 metric. Then let N ( E ,  Fli, d ~ l )  be the size of the smallest 
ecover of F I ~  by arbitrary points in Rm under metric L1. Let us define a metric 

d v ( f 7 4  = - 7  Ir-sI for ant real 2) > 0 and non-negative reals r and s. The sample size 
needed to solve the learnability problem for any 27 in this case is given by 

The adjusted di in this case is given by 



14 Comparison of Learners 

where F*( . )  corresponds to the hypothesis class of learner L;.  



5.  FUSION AS LEARNING 

Consider that the product space of the outputs of the learner (0, l}N be em- 
bedded in ?RN. Let H F  be a faiiiily of subsets of ? R N ;  if H F  consists of Boolean 
functions they can be embedded in ?RN and viewed as subsets of g N .  Let 0 denote 
the origin, axid I; denote the N-dimensional vector with 1 in the i th component 
and 0 in all other components. We say that H F  satisfies isolation proper ty  of degree 
N if for i = 1 , 2 , .  - - , N ,  there exists h, E H F  such that h, n (0, I} = (0, I}, and 

C wjij w3 >_ 1. The isolation degree of H F ,  denoted 
j # i  j # i  

by I - d i r n ( H ~ )  is the maximum value of N such that H F ,  embedded in RN, has 
the isolation property of degree N .  This property, as simple as it is, is sufficient to 
guarantee that the passive fusion through leaning yields a system that is at least 
as good as the best of the leariiers. 

hi for wj E (0 , l )  and 

Example 5.1. 

trivially satisfies the isolation property of degree N .  
Consider that H F  is the set of all Boolean functions of N variables. This set 

Example 5.2. 

Let H F  correspond to set of all hyperplanes of XN. It is trivial to note that 
I - d i r n ( H ~ )  = N .  In the next example we show that various subclasses of one- 
dimensional hyperplanes will have I-dim( .) of N .  

Example 5.3. 

Let H F  correspond to set of all line segments of the form { st + (1 - t)yl for some 
x , y  E ?XN and 15 - yI 2 1). Here I - d i n z ( H ~ )  = N .  Note that the samc value is 
retained if we restrict the line segments to orthonormal or iso-oriented, i.e. parallel 
to one of the coordinate axes. If the condition I L  - yI 2 1 is changed to 111: - yI < 1, 
then I - d i m ( N ~ )  = 0. 

Example 5.4. 

that the length of each side is greater than 1. For this set I-&m(.) = 0. 
Consider the class of iso-oriented boxes of dimensionality more than one such 

Using I-dim(), we show the following theorem. 

Theorem 3. Let the domain be either finite, finitely enumerable, a vector space 
or a Boolean lattice. Consider that same set of examples are used in training the 
individual learners, and each learrier is statistically independent. Let 6~ and 6 ,  
denote the adjusted 6’s of the fuser and the learner L ,  respectively. If H F  satisfies 

15 
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isolation property of degree AT, and has a VC-dimension less than or equal to tha.t 
of the smallest of learners, then composite system can he made such that 

S F  5 min6,. 

Proof: We solve the passive fusion problem as another learning problem - we pick 
the hypothesis h E H F  that has the least amount of empirical error. Thus by the 
isolation property of degree N, we are guaranteed to pick a hypothesis whose error 
is less than or equal to the least among the f,s. Note that by the isolation property, 
the fuscr can "mimic" any of the individual learners. For all the four cases of X - 

namely, vector space, Boolean lattice, finitely enumerable and finite - the required 
number of examples to ensure (c,S)-condition is monotonically related to the VC- 
dimension [7]. Thus for the same number of examples, the consolidator will have 
least adjusted S because its VC-dimension is at most as large as the least of the 
learners. QED. 

1 

We now consider the case when each of the learners is trained by an indepen- 
dently generated m-saniple. 

Theorem 4. Consider that each learners is trained by an independently generated 

m-sample. Let 5 = -$ Then a sufficiency- 

condition for making confidence of the composite system higher than or equal to 
that of the best of the (statistically independent) learners is given by: 

N 

a= 1 
E , ,  and 6, be the adjusted S of L, .  

(i) If X is finite, then 
JN--l)rnG IHFI L min{lHzl> 

(ii) If X is a vector space, Boolean lattice, or finitely enumerable, then 

( N  - 1 ) m S  VCdirn(HF) 5 min{VCdim(Hi)} + - 
2 81og 

(iii) If the classification of the examples is subjects to an error with probability 
1 - p, then 

( N  - l ) p 2 m c  
I 1 6 1 n g  ' 

VCdim(HF)  5 min{VCdinz(Hi)} + 

Proof: The critical point is that the fuser has an (Nm)-sample to pick its hypothesis. 
whereas each L ,  has m examples. First consider the case of finite set. The adjusted 
6, for this case can be obtained from Natarajan [a21 as 8, = 1H,le-"2' (from Example 
4.1). Then S F  = l H ~ l e - ~ ~ ' .  The condition Stp 5 minS, establishes the claim ( i ) .  

From Blumer et a1 171, the number of examples needed for ensuring (E, 6) condition 
in the case (ii) is given by 

1 

4 2 8d 
E S E  E 

max (-log -, - log E) . 
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The adjusted 6, is given by (as in Example 4.3.) 

6. - 2e2d"0g(y )  e .  
z -  

Now a simple algebraic manipulation of the condition S F  5 min& establishes (ii). 

Case (iii) follows similarly (using Example 4.3). QED. 
I 

W-e now take several formulations of the learnability problem and obtain suffi- 
ciency condrtions similar to those in Theorem 4. 

Example 5.5. Learning Boolean Formulae: 

We consider problem of learning certain disjunctive normal form (DNF) dis- 
cussed in Valiant [29]. Let Mu denote the set of all monomials on a set of t pred- 
icates, where each monomial is a product obtained by a subset of the prcdicates. 
A DNF expression f is of the form m,, where M C Mo. A set MI C Mu is 

polynomial  generable determinis t ical ly  if and only if there is a deterministic algo- 
rithm that runs in time polynomial in t and generates descriptions of all members 
of MI. A learning algorithm for some Ml that guarantees ( e 7  6)- condition such that 
h = 1 e 6  = 1 requires L(h ,  IM11) 5 2h()n/r,I + In h )  negative examples. Notice that in 
this case there is only a single parameter h that characterizes the learner. 

Let Mz and hi denote the monomial set and the parameter of L ,  respectively. 
Now let h p  denote the parameter of the fuser, and let hrnin be the parameter of the 
learner with minimum Mi. Now we show that a sufficiency condition for h p  2 hmin 

is IMF~ L NIMminI for N Z h,,, io: h m i n .  

Using 2hmiII( IMmin l+  lnh,;,) = m and 2 h ~ (  IMFI + 111 J Z F )  = N m ,  and by equating 
the two values for m we obtain 

m, EM 

h F i 0  h F  

(5.5.1) 

we get the second term on the right hand side Under the condition N 2 h,,, lo: h,,, , 
to be positive. This implies l M p I  2 N l n / l , n i n I ( h m i n / h ~ ) ,  which yields J Z F  2 hmjn if 
l M ~ l  NIAdminl .  Now consider the condition for the general case. Eq (5.5.1) can 
be rewritten as 

h ~ l o  h F  

The the following condition 

(5.5.2) 

implies h~ 2 12- , .  Also, since hmin > 1, the condition 
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or equivalently l M ~ l  5 NIMmin I +In( l / h F )  implies Eq (5.5.2) which in turn implies 
h~ 2 hmin .  

On the other hand, by noting that hF  > 1 we have 

Thus the following condition 

or equivalently lMFl >_ NIMn,inl + Nh,inlog(h,i,) in turn implies h F  5 hmin-  

Several other cases of learning Boolean formulae are presented in Table 1. For 
the case of learning DNF under error probability of p = &, bsi equating the 
value of m we obtain (&IF is the monomial set of the fuser and see Table 1 for 
definition of other terms) 

Now under the condition l M ~ l  5 IMmir,l~niI1(hmin/h~,N),  we have IMfi-IhF 5 
IMminIhmin and , 
which reduces Eq (5.5.3) to 2 %u. The second condition then implies that 

h~ 2 h m i n -  

Now consider the third case in Table 1. In this case the number examples needed 
to ensure the ( E ,  6)- condition is given by h(nD(n) + log n)  where D ( n )  is called the 
dimension of the hypothesis class (see [16] for the precise definition). Then the 
condition h~ 2 hmin is equivalent to 

log ( I Mmin  I hrntn 1 5 N .  The first condition implies that 1 5 

such that Dm;,(n) = min{D,;(n)}, where D ; ( n )  is the dimension of H ; .  The above 

equation is equivalent to 
1 

hi - 1 
D F ( ~ )  2 NDmin(n) + ~ log n. 

n 
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1 Case Forniula for 7 n  Condition for Sp 5 niin 6; 

Natarajan [16] 
n: number of 
variables 
D(n) :  dimension of 

1 hypotheses family 
, h = 1 / ~  = 1/S 

I 1 

DNF wath errors 

Valiant [a 11 
p = -  1 

4hlhfiI 

:error probability 

monomials 
h = 1 / ~  = 1/6 

Mi:  subset of 

M:: monomial set 
of L; 

I Boolean  f u n c t i o n s  h (nD(n)  + log 92)  

Table 1. Leaning Boolean formulae. 

19 

Example 5.6. 

We now present the results along the lines of Theorem 4 for Example 4.1 through 
4.6 in Table 2; the derivations for all, except the Occam's algorithm, are direct. For 
Occam's algorithm we have 

rn = kln(l/S) + k ( n C ~ / ~ ) ' / ( ' - * ~ ) .  

Since each Occam's algorithm is characterized by ( cz, a,),  we normalize with respect 

to CU = is given by 12Cama, = 

. Then the condition 6~ 5 minS, is equivalent 

N 

i= 1 
a;. Thus normalized value of e ; ,  denoted by 

n log c,  +( a, -6) log rn 
n'trn'; thus E ,  = log ?I 2 

to 

nCtn,r ,  1/(1--6) n2(N - 1) I/ (  1 - 6 )  (7) +-) + (4.6.1). 

Since 0 < 6 < 1, we have 2 1. Thus the condition (4.6.1) is definitely implied 

by 
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m(N-1)E 
Since n 2 1, this condition in turn is implied by CF 5 c m i n  + . 

_. 
Ex. No. Case Condition for Sr;. 5 minS; 

classes 

m ( N - l ) F  4.2. Occam's algorithm C F  5 c m i n + -  k 

4.3. Infinite hypothesis 
classes 

d F  L dmin + ( N -. 1 ) r n z  
8 ln(13/6) 

4.4. Fixed distribution 
- no error 

Fixed distribution 
with error 

4.5. Learning under 
malicious error 

4.6. Learning in metric 

spaces 

Table 2. Concept learning. 

We now discuss some more formulations of the learnability problem that have 
not been covered earlier. 

Example 5.7. Learning under noise: 

We consider the case where the classification is prone to an error with probability 
77 5 q b .  This case has been studied by Angluin and Laird [3]; this noise model is 
more general than that of Valiant [29] and more benign than that of Kearns and Li 
[17]. In this case the sample size required to ensure ( E ,  6) condition is given by 

m =  € 2 ( 1  - 277# In(?). 

The condition of Theorem 4 yields 
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where H m i n  corresponds to the learner with minimuiii adjusted Cii. 

Example 5.8. Heuristic leaniability: 

Consider that we wish to learn a concept class Cz by using a hypothesis class 
C1 when concepts of latter can only approximate those of Cz . This form of learning 
has been studied by Amsterdam [a].  A concept class C1 is said to be h - d e n s e  in 
the concept class C2 if and only if for every e2 E Cz and probability P x ,  there 
exists c1 E C1 such that p(clAc2) 5 E .  Then the concept class C1 is h-heuristically 
learnable by a concept C2 if there exists an algorithm A that 

(i) runs in time polynomial in $, $ and the size of c1 E C1, and 

(ii) outputs a concept c2 E C2 such that with probability 1 - 6, we have 
/ x ( c ~ A c ~ )  < h + e. 

The number of examples needed to ensure ( E ,  6)-condition is giver1 Ly in = 
-$ In (q). The condition 6~ 5 miri 6, yields the following condition 

2 

1j.q = Iffminje(W=$ 

where each H ,  is h-dense in C, and Hmin corresponds to the learner with minimum 
adjusted 6,. 

Example 5.9. Concepts on Strings: 

Now we consider that X is a set of strings on a fixed alphabet E; this case has 
been studied by Natarajan [22] .  Here X can be naturally partitioned into finitely 

enumerable classes using the length of the strings, i.e., X = u X,, where x',,,, 

denotes the set of all strings of length m on the alphabet E. For L,  now let H," 
denote the set of all strings of H, of length at most n. The dimension of H, is 
defined to be d ; ( n )  = log(H?). The number of examples needed to ensure the 
(~,6)-condition is given by nz = h(d ,  ( n )  + log(h)). In this case let h ~ ( 7 z )  denote 
the parameter of the fuser and hmin(n )  denote the parameter of the learner with 
minimum dimension d,;,(n) for particular n. A sufficiency condition for h ~ ( n )  5 
hmin(n )  is ~ F ( Y L )  5 Ndmin(n) for AT > h, , , (n) log~l , , , (n )  h p ( n ) l o g ' l F ( n )  as in the case of Example 
5.5. We obtain a more refined condition as follows: note that rri = h n l i l , ( n ) [ ~ ~ , , , , , ( 7 b ) +  

log hInin(n)] and N m  = h l ; . ( n ) [ d ~ ( n )  + log k ~ ( f ~ ) ] .  Thus we obtain (by using value 
of rn from the former in the latter) 

CCI 

t = l  

The rest of the derivation is similar to that of Example 5.5. Also by noting that 
h,i,(n) > 1, the condition of Eq (5.9.1) is implied by 



6. FUSION BY LINEAR THRESHOLD FUNCTIONS 

The method of the last section requires the knowledge of the examples and 
the hypotheses of the individual learners. We now consider the case where such 
knowledge is not readily available. This section also covers the case where the 
empirical error achieved by the fuser is greater than or equal to that of some of the 
individual learners. This situation can happen when H F  does not have the isolation 
property of degree N and also when the sufficiency conditions of the last section 
are not satisfied. 

We consider all learners with minimum &, denoted by 5. Further we assume 
that 5 < l / 2 .  Thus, each of these learners is guaranteed to ensure that the precision 
is greater than E with a probability of at rnost delta 5. Further assume that we have 
N such learners in a given set of M 2 N learners. 

We now discuss a specific class of fusion rules obtained by taking the linear 
combinations of the outputs of the learners and comparing with a threshold, i.e. 

functions of the form y; 2 r N .  Note that the example of Theorem 1 (Section 3) 

corresponds to T = 1, and the esample of Theorem 2 corresponds to T = 1 /N .  We 
first show the result for the special case T- = 1/2, and then generalize it. 

The basic intuition for expecting that such fusers are possible is provided by 
the following JUTY Theorem formulated by Condorcet in 1785. 

Condorcet Jury Theorem. [I41 Given a group of hr (N is odd) voters each 
capable of making the right choice in a set of two alternatives with probability p 
independent of others, the probability that the majority ( the rule that chooses the 
decision of  the majority of the group) makes the right choice is given by 

N 

i=l 

where m = ( N  + 1)/2. 
Fu r t h er 
(i) if 1 > p > 1/2, then Phi is monotonica.lly increasing in N and lim Phi t 1; 

N+'X 
(ii) if 1/2 > p > 0,  then PN is monotonically decreasing in N and lim PN + 0; 

(iji) if p = 112, then PN = 112 for all N .  
N-CO 

Several variations and extensions of this theorem have been studied in various 
contexts such as information pooling group decision making models (see Grofman 
and Owen [14] and Miller [20] for some recent surveys), majority systems [8,27], etc. 

In the present context, if N is sufficiently la.rge, then the composite system can 
be made to have confidence arbitrarily close to 1; hence its 6 can Le made smaller 
than that of the best learner (namely, 6). Here, we are interested in more exact con- 
ditions that guarantee that the composite system is better than the best of the learn- 
ers. We first show that a majority system ensures this condition if the number of 

learners is larger than 2(3--6) and 0 < S < 1/2, such that I; 5 min (1 + fi, h) 
22 
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in Theorem 5 ;  this condition does not guarantee that majority system can be used 
as a fuser for smaller values of N. Thai,  we show that the composite system can 
be guarantced to be better than the best of the learners by suitably choosing 7% of 
the threshold function as specified in Theorem 6. 

Theorem 5. I f  the number of learners is larger. than -$-- and 0 < 6 < 1/2, such 

that 0 < k 5 min (1 + fi, -) then the fwion rule y, 2 N / 2  will ensure 

that 6~ 5 6, where 6 corresponds to  the lowest of the individual learners trained 
with an I-sample. For example, by choosing k = 2 ( 1 / 2  - 6) we have 6F 5 6.  

Proof: Let event Ei denote the fact that p(fAf,) 5 E .  E, occurs with a probability 
of 6. Assuming all events E, are independent, the probability that there will be at 
most N / 2  successes of the events from a total of N Bernoulli trials is given by 
(Angluin and Laird [3]): 

2 ( 2 - 6 )  
N 

r= 1 

This is the probability with which this composite rule generates mi error greater 
than E .  Thus, we have the probability that p ( f A g )  2 E is less than e-2(1/2-6)2N. 
BY using N z 2 ( 1 / 2 4 )  we have e-2(1/2-s)'N - < e-(1/2-6)k. Now we show that under 

the hypotheses of the theorem 6 2 e-(1/2-6)k. In the view of Lemma A l ,  under the 
condition ( 1 / 2  - 6 ) k  5 1 it suffices to show that 

E' 
2 

6 2 1 - k ( 1 / 2  - 6) + -(1/2 - 6)'. 

Since S < 1/2 and k > 0 this condition is implied by 

6 2 1 + k ( 1 / 2  - 6 )  + k2(1/2 - 6)2. 

This condition in turn yields a quadratic equation 

k'(6 - 1/2)2 - ( k  + 1)(6 - 1/2)  + l / 2  5 0 

whose solution is given by 

2k2 
(6 - 1/2) = 

In order that the roots of the above equation are real, the quantity under square 
root sign must be positive. This yields a quadratic equation k 2  - 2k - 1 5 0 whose 
roots axe 1 f &; this condition yields 1 - & 5 k 5 1 + a. This condition coupled 
with the condition (1/2 - 6 ) k  < 1 is satisfied by the hypothesis 

( l / 2  - 6) > .  
o < F 5 min 1 + J l 2 > ,  ( 
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Note that the range of k always exists since the lower bound is always negative and 
the upper bound is positive by hypothesis. 

Now going back to Eq (6.l), we have ( k  + 1)2 - 2k2 = ( k  + 1 - &%)( k + 1 + a k ) .  
Let X = k ( l  - &) + 1. Now the condition X 2 0 yields k 5 & =A + 1; this 

condition is subsumed by Eq (6.2). Then we have 

[(l + &)k + 112 2 ( k  + 1)2 - 2k2 2 [(l - &)k -f 11’ 

Now the condition of Eq (6.1) can be expanded as 

( k  2k2  + 
- q-- 2k2  5 ( S  - 1/2) 5 ( k + l )  2k2 +@ Jm. 

Since X 2  5 [ ( k  + - 2 k 2 ]  and x’ 2 0 this condition is implied by 

Using this, we obtain the bounds on 5 as follows: 

1 1 1 1 3 

Jzk. 2k2 - k ,  fi 2 k 2  
+ - < 6 5 -(1 --- -) + -. 

Now in order that the range is feasible for 6 we have 

- k < k ( 1 -  -) 1 + 1 Jz- Jz 
which yields k 5 1 which is equivalent to k 5 1 + 2/2. 

To show the second part choose k = 2(1/2 - 6) which translates to condition on 

6 as 7 < 6 < H ,  2 which is implied by the hypothesis 0 < 6 < 1/2. Hence the 
Theorem. Q E f  

Jz- 1 

Note that r = 1/2 corresponds to the majority rule; it is possible to reduce 
the confidence even under a non-majority rule by choosing a suitable value for r as 
shown in the following theorem. 

Theorem 6. For 0 < S < 1/2 and N 2 q-& for any r = 6 + 9 and k > 1, 6~ 
is smaller than that of the lowest adjusted S of the individual learners. 

Proof: Along the lines of proof of Theorem 4 and from Angluin and Laird [3], we 
have 

LE(5, N ,  r )  5 e-2(r -6)2N 

By choosing N 2 2(~--6) the condition for reducing the adjusted 6 of the entire 
system, we have the condition 

l i y r  - S ) 2  

2 
6 2 l - k ( r  - S ) +  
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This yields a quadratic equation in ( r  - 6) whose solution yields the following 
condition: 

(k - 1) - J(l - k)2 - 2 k y 1  - T )  ( k  - 1) + Jcl - k)2  - 2P(1 - T )  

kz - .< (7-  - 6) 5 
k2 

Note that, since k > 1 and k d m '  > 0 

(1 - k ) 2  - 2k2(1 - T )  2 [(k - 1) - kd-l2, 
and 

2 
[(k - 1) - kd-l2 = [I;,/- - k + 112 = [ k ( d m -  1 )  + 1.1 . 

Now let X = k ( d m  - 1) + 1. First consider the case X 2 0; this condition 
implies 

d m  2 1 - l /k .  

The above condition on T - 6 is implied by the following condition (similar to the 
proof of Theorem 5) 

k - 1 - X  k - l + X  

k2 
- < (7. - 6) 5 

k2 
Thus the lower bound is evaluated as follows: 

2k -2  - k , / m  k - 1 
2 -. 

k2 k2 

Then the upper bound can be evaluated as 

kJz<l-;r;r  k - 1  
2 - 0  

k2 k 2  

Thus the choice of 7. = 6 + will definitely imply the required condition on 

T - 6. To ensure 0 < T < 1 we need to ensure that 0 < < 1/2; this condition 
can be easily shown to be satisfied if k > 1. In the second case when X 5 0, wc 
use Y = -X and the rest of the derivation is essentially the same. The condition 
N 2 - is straight forward. Hence the theorem. &ED 

As an example of the conditions of this theorem, for k = 2, we obtain N 2 4 
and T = 6 + 0.25. 

Consider that all learners are consistent, i.e. they correctly classify each exmi- 
ple. In this case, the method of last section stands the chance of picking one of the 
learners which may or may not be the best (Le. has lowest adjusted 6); whereas, 
using Theorem 6 we are guarantecd to have the perforrnance of the best of the 
learner in the worst case. 
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One of the natural questions to ask is: can we minimize the expected error of 

misclassification of the fuser in the class of functions of the form C w,y, 2 r ,  for 

w z  E 32 ? If the probabilities with which the examples are chosen from the target 
concept and its complement, and Prob[f, - f] and Prob[f - fi] are known, then 
we can compute wZ’s and r of the required fuser by using the result of Chow [9]; 
this mcthod cannot be directly applied in distribution-free formulations, or in the 
fixed distribution formulation of [ 6 ] .  It would be interesting to see if some estimated 
values can be used to compute w,’s and T in order to guarantee close to optimal 
performance. 

N 

a=1 



7. CONCLUSIONS 

We have addressed the N-learners problem where each learner is capable of 
learning subsets of a domain set X in the sense of Valirtnt [28]. That is for each 
learner and for any c E C C Z X ,  given a finite set of examples of the form < 
1c1, M c ( x l )  >; . . . ; < XI, M C ( x ~ )  > generated according to an unknown distribution 
on X ,  each learner produces a close approximation to c with high a probability. The 
N learners problem requires a combination of the outputs of the N learners using 
a single consolidator. We considered the paradigm of passive fusion, where each 
learner is trained with the sample, and then consolidator is allowed to use the sample 
and the functions of the learners. We inferred the fusion rule by formulating this 
problem as a basic learning problem. A sufficiency condition to make this composite 
system better than the best of the individual learners is: the hypothesis space of 
the consolidator (a) satisfies the i so la t ion  proper ty  of degree at least N ,  and (b) has 
Vapnik-Chervonenkis dimension less than or equal to that of the individual learners. 
Then we considered the case where the fuser does not have access to the training 
sample or the hypotheses of the individual learners. Then by suitably designing a 
linear threshold function of the outputs of individual learners, we showed that the 
confidence parameter of the entire system can be made greater than or equal to 
that of a best learner. 

This work can be used as a basis for applications involving sensor fusion, infor- 
mation pooling and majority systems; to this end, however, some extensions and 
adaptations of the present formulation would be needed. Future work can be fo- 
cussed in several directions. Obvious extensions to the present work include fusion 
of functions and relations, and active fusion. Another topic of interest deals with 
the cases where the composite system is capable of achieving tasks that are beyond 
the capabilities of the individual learners. Some preliminary work on this topic has 
been presented in 1261. 
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APPENDIX A 

Lemma A. l .  
(a)  For 0 < x < 1, 

x x 2  
e < l - - + -  

l! 2! 
--I 

(h)  For M 5 x 5 M + 1, for positive integer M 

M x x 2  x M - l  2 
for M o d d  

x x 2  
l! 2! M !  - l! 2! ( M  - l)! 

1--+-+ . . . - - -  < e-" l e q l  - - + - +. . . - 

x x2 ZM-l  x x2 xM 

l! 2! ( M  - l)! - 
1--+-+  . . . -  f o r M e v e n  

Proof: We express e-' = 1 - l !  + 2!  - . . . + (-l)*$ + . . . into even and odd forms 
respectively as follows: 

Simple algebraic manipulation of these equations will establish the required result. 
&ED 
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